10

15

20

25

30

AldWater v1.0: An open source python package for modeling
hydrological time series using data-driven methods

Ather Abbas!, Laurie Boithias?, Yakov Pachepsky?, Kyunghyun Kim? Jong Ahn Chun®, Kyung Hwa
Chot

!Urban and Environmental Engineering, Ulsan national institute of science and technology, Ulsan, Republic of Korea.
2Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, UPS, 31400 Toulouse, France

SEnvironmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA.

“Watershed and Total Load Management Research Division, National Institute of Environmental Research, Hwangyeong-ro
42, Seogu, Incheon 22689, Republic of Korea

SAPEC Climate Center, Climate Research Department, Busan, Republic of Korea.

Correspondence to: Jong Ahn Chun (jachun@apcc21.org) Kyung Hwa Cho. (khcho@unist.ac.kr)

Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of
machine learning-based hydrological models requires advanced skills from diverse fields, such as programming and
hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning
models is a time-intensive process. In this study, we developed a python-based framework that simplifies the process of
building and training machine learning-based hydrological models and automates the process of pre-processing of hydrological
data and post-processing of model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in
the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different
HRU discretization definitions. The post-processing utilities help in interpreting the model’s results from a hydrological point
of view. This framework will help increase the application of machine learning-based modeling approaches in hydrological

sciences.

1 Introduction

Theory-driven modeling approaches have been traditionally applied to simulate hydrological processes (Remesan and Mathew,
2016). However, with advancements in computation power and data availability, there has been a surge in the application of
data-driven approaches to model hydrological processes (Lange and Sippel, 2020). Data-driven approaches that involve time
series input data can be used to build several types of hydrological models. VVarious machine learning approaches have been
successfully applied to predict surface water quality (Chen et al., 2020a), estimate stream flow (Shortridge et al., 2016),
simulate surface and sub-surface flow (Abbas et al., 2020), forecast evapotranspiration (Ferreira and Da Cunha, 2020), and
model groundwater flow and transport (Chakraborty et al., 2020). Deep learning, which includes the application of large neural

networks, has shown promising results for hydrological modeling (Moshe et al., 2020). A typical workflow of data-driven

1

35

40

45

50

55

60

modeling comprises data collection, pre-processing, model selection, training of the algorithm with optimized
hyperparameters, and deployment.

Recent advances in the field of data science have resulted in the growth of Python packages, which assist in accomplishing
machine learning and deep learning tasks. According to the latest survey on Kaggle, an online platform for machine learning
competitions, the most popular libraries among data scientists are TensorFlow (Abadi et al., 2016), Pytorch (Paszke et al.,
2019), Scikit-learn (Pedregosa et al., 2011), and XGBoost (Chen and Guestrin, 2016). These libraries have accelerated research
in the field of machine learning owing to their simple user interface and robust implementation of difficult algorithms such as
back propagation (Chollet, 2017). However, feature engineering, data pre-processing, and post-processing of results are still
the most time-consuming tasks in building and testing machine learning models (Cheng et al., 2019). Feature engineering
includes modifying existing input data and generating new features based on existing data such that it improves learning using
data-driven algorithms. This also incorporates background knowledge and context into the model in order to assist the
algorithm in learning the underlying function. Infusion of background knowledge, such as basin architecture (Moshe et al.,
2020) and land use (Abbas et al., 2020) in data-driven hydrological modeling leverages the algorithm and enhances its
performance (Karpatne et al., 2017). The pre-processing step involves modifying the available data in a form suitable for
feeding into the learning algorithm. Nourani et al. (2020) showed how different smoothing and de-noising functions affect the
performance of artificial neural networks for forecasting evaporation. The post-processing step includes the calculation of
performance metrics, visualization of results, and interpretation.

Recently, several frameworks have been developed to accelerate the process of building and testing machine learning models,
such as Ludwig (Molino et al., 2019) and MLflow (Zaharia et al., 2018). However, these frameworks are too general and do
not deal with the intricacies of time series and hydrological modeling. Several studies have looked at pre-processing, building,
training, and post-processing of machine learning models with time series data. These include libraries such as sktime (Loning
etal., 2019), Seglearn (Burns and Whyne, 2018), Tslearn (Tavenard et al., 2020), tsfresh (Christ et al., 2018), and pyts (Faouzi
and Janati, 2020). Some libraries have also been developed with a focus on hydrological issues. Pastas (Collenteur et al., 2019)
is a library dedicated to analyzing groundwater time series data. NeuralHydrology (Kratzert et al., 2019) allows the application
of several long short-term memory (LSTM)-based models for rainfall runoff modeling. However, most of these libraries either
focus on the processing of data and feature extraction from time series or building and training of the model. A framework that
combines pre-processing, feature extraction, building and training, post-processing of model results, and interpretation of data-
driven models, particularly for solving hydrological problems, is missing.

For the advancement of machine learning in the field of hydrology, experimentation with readily available and fully
documented benchmark datasets is required (Leufen et al., 2021). The collection of hydrological data is usually expensive and
time-consuming. Several hydrological datasets are publicly available on different online platforms (Coxon et al., 2020).

Although these datasets are documented and organized, they are not usually in a form that can be directly used in machine

65

70

75

80

85

90

learning algorithms. Therefore, there is a need for a uniform and simplified interface to access and feed hydrological data to
machine learning algorithms.

In this study, we developed a new framework for fast and rapid experimentation to develop data-driven hydrological models.
In this study, we present Al4Water, a Python-based framework that assists in machine learning and deep learning-based
modeling with a focus on hydrology. The specific objectives of Al4Water were to provide a uniform and simplified interface
for 1) access and streaming of freely available datasets to data-driven algorithms, 2) pre-processing of hydrological data, 3)
automatic feature extraction from hydrological data, 4) automatic model selection and its hyperparameter optimization, and 5)

post-processing of results for visualization and interpretation of models.

2 Workflow

The core of Al4Water is Model class, which implements data preparation, building, and training of the model, and makes
predictions from the model (Fig. 1). However, Al4Water includes several utilities for data pre-processing, feature generation,
post-processing and visualization of results, hyperparameter optimization, and model comparison. All of these utilities can be
used with Al4Water as well as independently. The Datasets utility helps in fetching and pre-processing several open-source
datasets to be used in machine learning models. The SpatialProcessing utility allows distribution of weather data among
hydrologic response units (HRUSs) using different HRU discretization schemes. The et sub-module helps calculate potential
evapotranspiration using various theoretical methods. The SeqMetrics sub-module calculates several time-series performance
metrics for regression and classification problems. HyperOpt assists in the implementation of various hyperparameter
optimization algorithms. The Experiment class can be used to compare different machine learning models. Finally, Al4Water

has an Interpret utility that can be used to interpret the model’s results.

The Model class of Al4Water has two implementations and can have three backends. The two implementations are “model-
subclassing” and “functional.” The backends are either tensorflow, pytorch, or none. The backends, together with the
implementations, determine the attributes that the Model class will inherit upon its creation. In model-subclassing
implementation, the Model class inherits either from the tensorflow’s Model class or the nn.module of pytorch. This
implementation allows all the attributes from the corresponding backend to be also available from Al4Water’s Model class.
For example, the “count_params” attribute of tensorflow’s Model class can also be obtained from the Al4Water’s Model class.
In functional implementation, the Model class of Al4Water does not inherit from the parent modules of tensorflow/pytorch. In
this case, the built tensorflow/pytorch model object is exposed to the user as a “_model” attribute of the Model class. This is
similar to tensorflow and pytorch libraries, both of which also have model-subclass and functional implementations. For

models other than tensorflow or pytorch, the Model class does not have any backend. In these cases, the machine learning

95

100

105

110

115

120

models are built using libraries such as scikit-learn, xgboost, catboost, or lightgbm. The built model object is exposed to the
user as “_model” attribute of the Model class.

The success of machine learning is proportional to testing various hypotheses by training and testing machine learning models
and analyzing the results (Zaharia et al., 2018). This can quickly lead to a large number of output files. Al4Water handles this
by automatically saving all the model-related files starting from model creation to pre-processing until post-processing of each
output in the respective folders. A detailed output directory structure is shown in Fig. 2. Upon every model run, a directory is
created whose name is the date and time when the model is created. This naming convention allows for a simple and distinct
directory structure for every new model. This parent directory is called “model path” and contains several sub-folders and files
which are related to model configuration, model training, and post-processing of results (Fig. 2a). The results for each target
variable are saved in a separate folder. Additionally, the files related to the model’s optimized parameters and interpretations
are saved in a separate directory. The saved configuration file along with the weights can later be used to reproduce the model’s
results. In case of hyperparameter optimization, a directory named “hpo path” is created, which consists of several “model
paths”. Each of these “model paths” correspond to each iteration of the optimization algorithm (Fig. 2b). In case of
Experiments, when different models are compared, a separate “hpo path” is created for each of the models being compared.
Fig. 2c shows the output file structure for an Experiment when different machine learning algorithms are compared. This

ordered arrangement of results facilitates the fast comparison and analysis of the results.

3 Sub-modules and code-structure

The code architecture of Al4Water, that is, its sub-submodules, their available classes, and third-party libraries are illustrated
in Fig. 3. Al4Water comprises 11 sub-modules, among which 10 are task-based, and one is a general-purpose module named
“utils.” These sub-modules can be divided into two categories. The sub-modules on the left-hand side of Fig. 3 are designed
for model building, hyperparameter optimization, and model comparison, whereas those on the right-hand side perform pre-
processing and post-processing. Each sub-module exposes one or more classes to the user. For example, the hyperopt sub-
module presents the Real, Categroical, Integer, and HyperOpt classes. The third-party libraries required for each sub-module
were annotated inside them. There are five “generic” third-party libraries that are required in all sub-modules (lower part of
Fig. 3). The et and utils sub-modules do not require specific third-party libraries and depend only on generic libraries. The
arrows in Fig. 3 indicate interaction between the sub-modules. The origin of the arrow denotes the caller sub-module, whereas
their end points denote the sub-module that is being called. The Model class interacts with the pre-processing and post-
processing modules using its functions, the names of which are shown in green in Fig. 3. For example, the DataHandler class
in the pre-processing sub-module was responsible for data preparation. The Model class interacts with DataHandler using
training_data, validation_data, and test_data methods, which are responsible for fetching training, validation, and test data

from the DataHandler class, respectively.

125

130

135

140

145

150

The large number of utilities in Al4Water increases the number of underlying libraries. The Model class is built on top of the
Scikit-learn, CatBoost, XGBoost, and LightGBM libraries to build classical machine learning models. These models have been
used in several hydrological studies (Huang et al., 2019; Ni et al., 2020; Shahhosseini et al., 2021). To build deep learning
models using neural networks, Al4Water uses popular deep learning platforms, such as TensorFlow (Abadi et al., 2016) and
Pytorch. A complete list of the dependencies for Al4Water is presented in Table 1. It is divided into two parts. The first half
shows the minimal requirements for running the basic utilities, which include building and training the model and making
predictions from it. The second part of Table 1 comprises an exhaustive list of dependencies required to utilize all the
functionalities of Al4Water. However, these utilities are optional and do not hamper the basic package functionality. Moreover,
the modular structure of Al4Water allows the user to install libraries corresponding to a particular sub-module while ignoring
the others, which are not required. For example, to use the HyperOpt class for hyperparameter optimization, libraries related
to post-processing are not required. Table 1 also presents the exact version of the underlying libraries, which were used to test
the 1.0 version of Al4Water. Al4Water handles the version conflicts of the underlying libraries, thereby making it version-

independent. This implies that the user can use any version greater than the version number provided in Table 1.

3.1 Datasets

The first step in building a data-driven hydrological model is to obtain the data. There have been several efforts by the
hydrological science community to build hydrological datasets that are publicly available. For example, for rainfall-runoff
modeling, there exists the CAMELS dataset for several countries (Addor et al., 2017). The CAMELS dataset consists of daily
weather data and streamflow records for multiple catchments. Another large rainfall runoff dataset is LamaH (Klingler et al.,
2021), which consists of observations from 859 catchments in Europe. While the number of such open source datasets is large,
the use of these data sources is slow as each database is available on different platforms and implements a different application
programming interface (API). A core function of Al4Water is to provide a simple and homogeneous API to feed these datasets
directly into machine learning models. Fig. 4 shows the usage of the CAMELS_AUS dataset, where the user needs to define
only the name of the dataset and the input and output variables. This simple interface will help exploit the use of these datasets.
Furthermore, benchmarking open-source datasets will likely accelerate the progress of machine learning in hydrological
science. A brief summary of the rainfall-runoff datasets available in Ald4water is given in Table 2.

3.2 Exploratory data analysis

A crucial step in data-driven hydrological modeling workflow is the visualization of the data. This step assists in understanding
the data, finding outliers, selecting relevant features, and guiding the machine-learning-based modeling process. Al4Water
provides an eda function which can be employed to conduct a comprehensive analysis of input and output data. For example,
the correlation plots illustrate which input variables are more correlated with each other. Heatmaps show the amount and

position of the missing values. Histogram and box-whisker plots depict the distributions of both the input and output variables.

5

155

160

165

170

175

180

This function can also perform a principal component analysis of the input data and plot the principal components. This helps

in understanding the dynamics of the input data and filtering the relevant features.

3.3 Preprocessing
3.3.1 Transformations

Data transformation includes standardizing and transforming the data onto a different scale. Transforming the data can
significantly affect the performance of a data-driven model. The scikit-learn library provides several transformation functions
such as minmax, standardscaler, robust, and quantile. Additionally, several decomposition methods such as empirical mode
transformation (EMD), ensemble EMD (EEMD), wavelet transform (Sang, 2013), and fast Fourier transform (Sang et al.,
2009) were found to improve the performance of hydrological models. Al4Water provides a uniform interface for all of these
transformation methods under the sub-module Transformations. The user can apply any of the available transformations to
any of the input features by using a simplified and uniform interface. The predicted features are transformed back after the
prediction. Fig. 5 shows a comparison of different transformations using a Taylor plot (Taylor, 2001). These results were
generated by modeling in-stream E. coli concentrations in a small Laotian catchment (Boithias et al., 2021) using LSTM
(Hochreiter and Schmidhuber, 1997). The input data was precipitation, relative humidity, air temperature, wind speed and

solar radiation.

3.3.2 Imputation

Missing values are often found in real-world datasets. However, missing data cannot be fed to machine-learning algorithms.
Al4Water provides various solutions for handling missing data that can be used using the impute method. These include using
either the 1) pandas library (Mckinney, 2011), 2) scikit-learn library-based methods, or 3) dedicated algorithms to fill the
missing input data. The pandas library allows the handling of missing values either by filling the missing values using the
fillna method or interpolating the missing values using the interpolate method. Both these methods can be seamlessly used
with the impute method in Al4Water. Several imputation methods for filling missing values are available in the scikit-learn
library. These methods include KNNImputer, Iterativelmputer, and Simplelmputer. Al4Water provides a uniform interface for
all imputation methods without hindering their functionality.

Several other libraries have been developed that have dedicated algorithms for imputing missing time series data. These include
fancyimpute (Rubinsteyn and Feldman, 2016) and transdim (Chen et al., 2020b). The fancyimpute library provides several
state-of-the-art algorithms such as Softimpute (Mazumder et al., 2010), IterativeSVD (Troyanskaya et al., 2001),
MatrixFactorization, NuclearNormMinimization (Candés and Recht, 2009), and Biscaler (Hastie et al., 2015). The transdim
library provides algorithms based upon neural networks for filling missing data. Al4Water provides a simple interface for using

these libraries with their full functionalities, using the impute method.

185

190

195

200

205

210

3.3.3 Missing labels

In supervised machine-learning problems, the training data consist of examples. Each example consists of one or more input
data and a corresponding label, which is the true value for the given example. Similar to the input data, it is common for the
labels to have missing data. Although the missing values in target features can be handled similarly to that of input features,
which has been explained in Section 2.3, this can lead to unrealistic results, particularly when the number of missing values is
large. Al4Water allows the user to exclude examples with missing labels during model training. For multi-output prediction,
one can encounter situations in which all target variables are not available for a given example. Al4Water allows the user to
handle such situations by masking the missing observations during loss calculation. However, the user can also opt to exclude
these examples, although this can reduce the number of examples in water quality problems where the number of samples is

already very small.

3.3.4 Resampling

Modeling hydrological processes at high temporal resolutions can result in a large amount of data (Li et al., 2021). Training
with this large input data can be computationally expensive. However, temporally coarse input data contain little information.
Al4Water handles large amount of data by either resampling the data at a lower temporal resolution using the Resample class,
or by skipping every n-th input data, where ‘n’ represents the time-step. The latter can be achieved by setting the “input_steps”
argument to a value >1. The default value of this argument is 1, which results in the use of all input data.

3.3.5 Feature generation

The incorporation of scientific knowledge into machine learning models is an emerging paradigm for constraining predictions
from machine learning models to reality (Wang et al., 2020). The guiding principle of Al4Water is to integrate domain-specific
knowledge and hydrological data. Al4Water automates the calculation of several features and their inputs to the machine
learning algorithm. The input data requirement for the calculation of these features is minimal as they are calculated from the
raw data. The calculated features are in the form of a time series, which are then directly given as input to machine learning

algorithms. The following sections describe the feature generation process in more detail.

Land use change and HRU discretization

In rainfall-runoff modeling, the method of discretization of the HRU plays an important role in many theory-driven models
such as the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and Hydrological Simulation Program FORTRAN
(HSPF) (Bicknell et al., 1997). An HRU is a building block of a process-driven hydrological model in which all the processes
are simulated. The area and formation of an HRU depend on its definition. For example, in the HSPF model, an HRU is defined
as a unique land use in a unique sub-basin. On the other hand, the SWAT model considers slope classes and soil type

distributions in an HRU. In catchments, which undergo changes in land use over time, the corresponding HRUs also change
7

215

220

225

230

235

240

with time. Temporal changes in HRUs are a major challenge in most process-driven models (Kim et al., 2018). However, it
has been shown that machine learning models can easily incorporate land-use changes with time and dynamic HRU
calculations (Abbas et al., 2020). Al4Water contains a sub-module MakeHRUSs, which helps in distributing the time-series of
weather data into HRUs using different HRU definitions. Fig. 6 shows two discretization schemes that combine land use, soil
type, and sub-basin. However, the user can also add other spatially varying features, such as slope, in the HRU definition. A
complete list of the HRU definitions is provided in Table S1. Fig. 7 illustrates the HRU variation with time in a Laotian
catchment (Abbas et al., 2020). The HRUs shown in Fig. 7 are defined as a unique land use with a unique soil type. Thus,
every HRU has distinct land use and soil characteristics. As there are four land-use types and three soil types in the catchment,
the total number of HRUs was 12. We can observe how the area of certain HRUSs, e.g., “Alisol_Fallow”, decreases with time
at the expense of other HRUs (Fig. 7a). The relative contributions of each HRU for the years 2011, 2012, 2013, and 2014 is
illustrated in Fig. 7b—e, respectively. The MakeHRUs sub-module requires shapefiles of land use, soil and slope to make the

HRU according to a given definition.

2.3.6 DataHanlder class

The DataHandler class prepares the input data for the machine learning model and acts as an intermediate between the Model
class and other pre-processing classes, such as Imputation and Transformation classes. The DataHandler can read data from
various files as long as the data are in a tabular format in those files. The complete list of allowed file types and their accepted
file extensions is provided in Table S5. Internally, the DataHandler class stores data as a pandas DataFrame object, which is
a data model of pandas for tabular data (Mckinney, 2011). DataHandler can also save processed data as an HDF5 file, which

can be used to inspect processed input data.

3.4 Evapotranspiration

The amount of evapotranspiration is an important factor that affects the total water budget in a catchment. The impact of
evapotranspiration process representation in rainfall-runoff models has been studied extensively (Guo et al., 2017). Several
potential and reference evapotranspiration calculation methods are available in the literature. Al4Water contains sub-module
‘et” which can be used to calculate the potential evapotranspiration using various methods. These include complex methods
such as Penman—Monteith (Allen et al., 1998), which require many input variables, and simplified methods such as Jensen and
Haise (Jensen and Haise, 1963), which only depend on temperature. The et can furthermore calculate potential
evapotranspiration at various time intervals, from 1 min to 1 yr. The names of the 22 evapotranspiration methods available in
et and their data requirements are summarized in Table S2. The CAMELS Australia dataset (Fowler et al., 2021) comes with
pre-calculated potential evapotranspiration using the Morton (Morton, 1983) method. We compared this method with three

different potential evapotranspiration calculation methods using et, as depicted in Fig. 8.

245

250

255

260

265

270

275

3.5 Hyperparameter optimization

The hyperparameters of a machine learning algorithm are the parameters that remain fixed during model training and
significantly influence its performance (Chollet, 2017). Thus, the choice of hyperparameters plays an important role in
evaluating the performance of machine learning algorithms. Some of the most popular approaches for optimizing
hyperparameters are random search, grid search, and the Bayesian approach. Random search involves randomly selecting
parameters from the given space for a given number of iterations. Grid search, on the other hand, comprehensively explores
all possible combinations of hyperparameters in the hyperparameter space. Although grid search can ensure global minima,
the number of iterations increases exponentially with an increase in the number of hyperparameters. This renders the grid
search practically unfeasible for deep neural network-based models, which are computationally expensive. The two commonly
used Bayesian approaches are Gaussian processes (Snoek et al., 2012) and the tree of Parzen estimators, (TPE) (Bergstra et
al., 2011).

The libraries used to implement these algorithms are hyperopt (Bergstra et al., 2013), scikit-optimize (Head et al., 2018), optuna
(Akiba et al., 2019), and scikit-learn (Pedregosa et al., 2011). These libraries implement different algorithms with different
strengths. The scikit-optimize library allows the application of the Bayesian optimization approach using Gaussian Processes.
The scikit-learn library can be used for random and grid-search-based approaches. The hyperopt module assists in Bayesian
optimization using TPEs. The HyperOpt sub-module in Al4Water provides a uniform interface to interact with all of the
aforementioned libraries. The integration of HyperOpt with its underlying modules not only complements the underlying
optimization algorithms but also adds additional functionality, such as visualization. For example, the importance of
hyperparameters is plotted using the functional analysis of variance (FANOVA) method proposed by (Hutter et al., 2014).
We demonstrate the use of the HyperOpt sub-module of Al4Water for optimizing the hyperparameters of an LSTM-based
neural network for rainfall-runoff modeling. The input data consisted of climate data, whereas the target was streamflow. For
this example, we used CAMELS data from a catchment in Australia (Fowler et al., 2021). We compared the performance of
random search, grid search, and two Bayesian algorithms based on Gaussian Processes and TPEs. The convergence plots of
all four algorithms are shown in Fig. 9. The Bayesian approach using Gaussian processes was found to be the most useful for
minimizing the objective function. The objective function was the minimum of the validation loss. We also observed that grid

search, despite a large number of iterations, did not perform better than the other three methods.

3.6 Model comparison with Experiment

AldWater consists of an Experiment sub-module, which makes it easier to compare different machine learning models. The
basic purpose of the Experiment class is to compare different models by optimizing their hyperparameters. This is made
possible as the Experiment class encompasses the HyperOpt class, which in turn encompasses the Model class (Fig. 10). Thus,
the Experiment class can be used for combined algorithm selection and hyperparameter optimization (Thornton et al., 2013).

The results from the Experiment class are organized within an “exp path” directory (Fig. 2). The Experiment class can be sub-
9

280

285

290

295

300

305

classed to compare any number and type of models. It consists of three sub-classed experiments: MLRegressionExperiment,
MLClassificationExperiment, and TransformationExperiment. The MLRegressionExperiment class runs and compares
approximately 50 different classical machine learning algorithms for a regression task. The MLClassificationExperiment class
compares classical machine learning algorithms for a classification problem. The TransformationExperiment class can be used
to compare the application of different transformation techniques (Sect. 2.3.1) on different input and output features.

We conducted an experiment to compare the performance of classic machine learning algorithms in predicting antibiotic-
resistant genes (ARGS) at a recreational beach (Jang et al., 2021). The results of this experiment are shown in Fig. 11, which
compares the correlation coefficients for the training and test sets. It can be seen that some algorithms can yield an R? as high
as 0.65. Other algorithms provide training R? as high as 1.0, which indicates overfitting. In particular, we observed strong
overfitting in the case of the decision tree regressor and Gaussian process regressor. It can also be inferred from Fig. 11 that
ensemble methods such as AdaBoost (Freund and Schapire, 1997), gradient boosting (Friedman, 2001), bagging (Ho, 1998),
extra trees (Geurts et al., 2006), and random forest (Liaw and Wiener, 2002) yield better performance than other methods. We
also observed that simple linear models such as Lars, Lasso, and multi-layer perceptron are not able to model the dynamic and
complex functions of the ARG distribution at the beach. On the other hand, complex non-linear models such as CATBoost
(Prokhorenkova et al., 2017), XGBoost (Chen and Guestrin, 2016), and light gradient boosting machines (Ke et al., 2017) are
able to adequately capture dynamic features related to the ARG distribution. We also observed that algorithms with cross-

validation performed better than their counterparts without cross-validation.

3.7 Post processing

The post-processing submodule of aidwater consists of several utilities which can be used once the machine learning model
has been trained. These utilities are discussed in detail below.

3.7.1 Visualization

The “visualize” sub-module, consisting of a Visualize class, is used to examine inside the machine learning model. When the
model comprises several layers of neural networks, this class plots the outputs of the intermediate layers, gradients of these
outputs, weights and biases of intermediate layers, and gradients of these weights. Thus, this class helps to visualize the
working of neural networks and can be used to plot the decision tree learned by the tree-based machine learning model. We
demonstrate the use of this class by building a four-layer neural network to predict streamflow using the CAMELS dataset
(Fowler et al., 2021). The four-layered neural network comprises an input layer, two layers of LSTM, and one output layer
(Fig. S1). Figures S2—S5 show the outputs of the first LSTM layer and its gradients along with the weights of the first LSTM

layer, and the gradients of those weights.

10

310

315

320

325

330

335

3.7.2 Interpretation and Explainable Al

The interpretation of the results of machine learning models is an area of active research. For classical machine learning
algorithms, interpretation tools include the plotting of decision trees or input feature importance. For neural network-based
models, explainability is considered an even bigger challenge. Al4Water consists of a sub-module called Interpret, which can
be used to plot interpretable results. The Interpret class takes the trained model of Al4Water as input and plots numerous
results, which help to explain the behavior of the model. The exact type of plots generated by the Interpret sub-module depends
on the algorithm used by the model. For neural network-based models, which consist of a layered structure, the Interpret sub-
module plots all the trained weights, the outputs of each layer, the gradients of weights, and the gradients of the activations of
neural networks. This also includes plotting attention weights if the model consists of an attention mechanism. Al4Water
automatically plots the results of the model when a model is used for prediction. These include the scatter and line plots of
each target variable.

We demonstrate this by using a dual-stage attention model (Qin et al., 2017) for daily rainfall-runoff modeling in catchment
number 401203 in the CAMELS Australia dataset (Fowler et al., 2021). The input data consisted of evapotranspiration,
precipitation, minimum and maximum temperatures, vapor pressure, and relative humidity. The dual-stage model showed
significant performance during training (R? = 0.93) and test (R? = 0.87), as shown in Fig. S6. The dual-stage attention model
highlights the importance of the input variables for prediction. The attention weights for each of the input variables are shown
in Fig. S7-S9. From these figures, we can infer that the highest attention is given to precipitation followed by
evapotranspiration. Furthermore, we also observed that the input of the previous 3—4 days was the most important. This can
be attributed to the higher attention weights during the first 3—4 lookback steps in these figures. We also observed periodic
changes in attention weights for all input variables, which can be attributed to the seasonal variations of input variables.
Several model-agnostic methods have recently been developed to explain black-box machine learning models, such as local
independent model explanations (LIME) (Ribeiro et al., 2016) and Shapely Additive Explanations (SHAP) (Lundberg and Lee,
2017). These methods explain the behavior of complex machine-learning models (such as black-box) using a simplified but
interpretable model. However, using these methods in high-stake decision-making has been criticized (Rudin, 2019). The
explanations of these methods can be local or global. A local explanation describes the behavior of the model for a single
example, whereas a global explanation can describe the model’s behavior for all examples. The LIME method is only relevant
for local explanations, whereas SHAP also provides explanations for approximating the global importance of a feature.
Al4Water consists of LimeExplainer and ShapExplainer classes to explain its behavior using the LIME and SHAP methods.
We built an XGBoost (Chen and Guestrin, 2016) model for the prediction of E. coli in a Laotian catchment (Boithias et al.,
2021). Fig. S10 shows the output of the LimeExplainer class, whereas Fig. S11 shows the output of the ShapExplainer class.
In Fig. S10, a large horizontal bar for a given feature indicate that this feature strongly affected the model’s prediction. A
positive value indicate that the given feature caused increase in model’s prediction. On the other hand, the negative value

indicate that it caused decrease in model’s prediction. Thus, large negative value for solar radiation in example 41 indicate that
11

340

345

350

355

360

365

the solar radiation causes large reduction in model’s prediction. Large positive values for water level in examples 42 to 46
indicate that the water level in these cases strongly increased model’s prediction. The numerical values of features along y-
axis indicate which value of feature was responsible for the aforementioned behaviour. Thus, more precisely, the water level
above 147.8 causes very large increase in model’s prediction. Therefore, we can verify that the E. coli prediction during flood
events are more strongly affected by water level.

The SHAP module provides more detailed explanation about local as well as global importance of input features on model’s
prediction. Fig. S11a and Fig. S11b show the local explanation summary of model in the form of SHAP of each input feature
for each example (Lundberg et al., 2020). Fig. S11a shows that the examples with large SHAP values of water level and
suspended matter resulted in large E. coli prediction. The f(x) in Fig. S11a indicate model’s prediction. The examples in Fig.
Sllaare clustered in such a way that examples with similar explanations are grouped together. Fig S11b indicate that the large
values of water level and suspended particulate matter results in increase in E. coli. On the other, large values of solar radiation
resulted in negative SHAP values. This shows that large solar radiation causes reduction in E. coli prediction. Fig S11c shows
the global importance of input features for E. coli prediction. This global importance is obtained by calculating mean of SHAP
value of a feature for all examples (Lundberg and Lee, 2016). The explanations from Fig. S11 correlate with our background
understanding of E. coli behavior. Several studies have shown that E. coli in surface water is strongly affected by suspended

solids, water level and solar radiations (Nakhle et al., 2021; Pandey and Soupir, 2013).

3.7.3 Performance metrics

Performance metrics are a vital component of the evaluation framework for machine learning (Botchkarev, 2018). There are
two major types of performance metrics related to the evaluation of a model’s forecasting ability. These include scale-
dependent and scale-independent error metrics. Scale-dependent metrics, such as mean absolute error, provide a good estimate
of a single model’s performance, but they cannot be used across the models because of their scale dependency (Prestwich et
al., 2014). Scale-independent error metrics are more useful when comparing the performance of various models (Hyndman
and Koehler, 2006). However, certain scale-independent error metrics cannot be defined when one or more observed values
are zero, such as percentage errors or relative errors (Hyndman, 2006). The choice of a performance metric to evaluate the
model depends on the problem definition and model objectives (Wheatcroft, 2019). Al4Water calculates over 100 regression
metrics and numerous classification metrics to help the user analyze the general characteristics of the forecasts. These
performance metrics are sub-packaged under SeqMetrics in Al4Water. These metrics are calculated automatically for all the
target variables whenever a model is used for prediction using the predict method. The metrics are stored in a json file inside
the path of the model (errors.json in Fig. 2). The names of the performance metrics calculated by Al4Water are listed in Table

S3. Additionally, several statistical parameters of the predicted variable were calculated and stored in this json file.

12

370

375

380

385

390

395

4 Loading and saving models in a readable json file

All features of Al4Water can be accomplished using a configuration file. The configuration file (config.json) of Al4Water
consists of a human-readable json file. All the information regarding pre-processing of data, building and training of the model,
predictions, and post-processing results is written in this file. This file is generated every time a new model is built. One of the
advantages of this configuration file is that any user can build and run the models without having to write the code explicitly.
All examples presented in this study can be run using the corresponding configuration files. Fig. 4 shows three examples of
configuration files. Fig. 4a, shows an LSTM-based model built for rainfall-runoff modeling using the CAMELS (Fowler et al.,
2021) dataset. Fig. 4b and c show the usage of the temporal fusion transformer and XGBoost models for the same task. The
user can define commands such as the input and output features to use or the training duration for the model. All

hyperparameters of the model can also be set using this configuration file.

5. Advanced usage

AldWater was built using the object-oriented programming (OOP) paradigm. Its core logic was implemented by the Model
class. The use of OOP allows a user to customize any steps of model building, training, or testing by sub-classing the Model
class. This may include the implementation of a custom training loop or a customized loss function. Similarly, the pre-
processing and data preparation steps implemented in the Model class can also be overwritten for specific usages. For example,
if users want to implement another transformation on the training data, they can subclass the Model class and overwrite the
“training_data” method. Similarly, the user can customize the loss function by overwriting the “loss” method of Model class.
Additionally, Al4Water exposes the underlying machine learning libraries such as TensorFlow and scikit-learn to the user.
Thus, users can directly use these libraries and implement the desired configuration. However, this requires a deeper

understanding of the underlying libraries.

6. Test coverage and continuous integration

Al4Water version 1.0 was tested with continuous integration tools with GitHub Actions to ensure that it passes all the written
tests and can be installed on computers. The tests were conducted on Windows and Linux-based operating systems. In addition,
we tested the package on Python versions 3.6, 3.7, and 3.8. The package was also tested with TensorFlow versions 1.15 and

above.

7. Limitations and scope for expansion

e The current version of Al4Water was designed only for supervised learning problems. However, there has been

growing interest in unsupervised machine learning models, such as generative adversarial networks (GANs) and
13

400

405

410

415

420

425

reinforcement learning. GANs have been shown to exhibit high performance for time series-related tasks such as
filling missing data (Luo et al., 2018) or generating new high-resolution data (Chen et al., 2019). This aspect of GANs
can be useful in water quality modeling, where data collection is costly and missing observations are common.
Reinforcement learning can be applied to optimal policy design in hydrological systems, such as scheduling the
release of water from a dam (Sit et al., 2020).

e Another limitation of Al4Water is its dependence on a large number of third-party libraries. This can be challenging
during installation when the interdependencies of libraries conflict each other. Although we have provided the exact
versions of the third-party libraries, which were used to test the current version of Al4Water, a conflict in future due
to the changes in third-party libraries cannot be guaranteed. As Al4Water is an open-source project, we consider that
such conflicts can be minimized with community inputs.

e Al4Water was designed for the rapid testing and experimentation of deep learning models. However, it should be
noted that the current version of the framework is not suitable for the deployment of deep learning models in
production.

e Asall the options to use Al4Water are accommodated in a configuration file, this makes it suitable for developing a
graphical user interface (GUI. Adding GUIs will further widen the user-base of Al4Water by being accessible to non-

programmers.

8. Conclusion

Modeling hydrological processes by machine learning requires the development of pipelines that encompasses data retrieval,
feature extraction, visualization, building, training, and testing the machine learning model, along with visualization and
interpretation of its results. The Al4Water software introduced in this work was designed to facilitate the development, reuse,
and reproducibility of machine learning models for applications in hydrology. Al4Water was designed to integrate the domain-
specific aspects of hydrological modeling with the professional level of machine learning and data processing software already
developed and used by the Python community. We demonstrated the applicability of Al4Water with supervised learning
examples related to hydrological modeling. Further development of the package is suggested with new features that may make

Al4Water more versatile. The platform is expected to be practical for a wide range of users interested in hydrological modeling.

Code and data availability

The Al4Water source code can be found in a publicly available GitHub repository (https://github.com/AtrCheema/Al4Water)
and its version 1.0 is archived at https://zenodo.org/record/4904517. The user manual is built into the source code Docstring

and compiled into a “read the docs” web page (https://aidwater.readthedocs.io/en/latest/) using the MKDocs (Christie, 2014)

14

software. The Jupyter notebooks replicating the examples described in the manuscript are available in the “examples”

directory.

Team list

430 Ather Abbas
Laurie Boithias
Yakov Pachepsky
Kyunghyun Kim
Jong Ahn Chun

435 Kyung Hwa Cho

Author contribution

Ather Abbas: Conceptualization, code development, writing draft
Laurie Boithias: Review and editing
Yakov Pachepsky: Review and editing
440 Kyunghyun Kim: Review and editing
Jong Ahn Chun: Review and editing, supervision

Kyung Hwa Cho: Conceptualization, Funding acquisition, supervision, review and edition

Competing interests

The authors declare that they have no conflict of interest.

445 Acknowledgement

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (No. 2017R1D1A1B04033074), and Korea Environment Industry and Technology
Institute (KEITI) through the Aquatic Ecosystem Conservation Research Program funded by Korea Ministry of Environment
(MOE) (No. 2020003030003).

450 Tables

Table 1. Compilete list of third-party Python libraries, which are used by Al4Water. The first half the table enlists those libraries
which are required while the second half consists of those libraries which are optional.

15

Library Name Version Usage

numpy 1.19.2 array processing

pandas 124 array processing

matplotlib 3.4.2 visualization

h5py 2.10 storage

plotly 5.0 extended visualization

tensorflow 1.15,2.1 building layers of neural networks
scikit-learn 0.24.2 building classical machine learning models
xgboost 1.4.2 implementing XGBoost based algorithms
catboost 0.26 implementing CatBoost based algorithms
lightgbm 321 implementing Light Gradient Boost based algorithms
Pyspark 3.1.2 Building classical machine learning models
tpot 0.11.7 Optimizing machine learning pipeline
imageio 2.9.0 spatial processing of shape files

shapely 1.7.1 spatial processing of shape files

pyshp 0.45 spatial processing of shape files
Scikit-optimize 0.8.1 Hyperparameter optimization using Bayesian
Optuna 2.8.0 Hyperparameter optimization

hyperopt 0.25 Hyperparameter optimization

shap 0.39.0 Model-agnostic interpretation

lime 0.2.0.1 Model interpretation

seaborn 0.111 visualization

Table 2. Name and attributes of open source datasets included in Al4Water.

Dataset Name Number of Number of Number of L ocation
catchments Variables Observations
CAMELS_AUS 222 23 21184 Australia
CAMELS_BR 593 17 14245 Brazil
CAMELS _CL 516 12 38374 Chile
CAMELS_GB 671 10 16436 Britain
CAMELS_US 877 33 12784 United States of America
LamaH 859 5 12775 Europe

455
16

Figures

Pre-processing Post-processing
Model

Datasets

Datasets

Fetching of publicly available \ . /
hydrological datasets Train

Feature generation .
8 Build Test §
ETUtil, SpatialProcessing —_—
Evapotranspiration calculation,

Spatial discretization of HRUs

vedict
Exploratory data analysis / \\

Eda

Comprehensive analysis of available
input and output

Figure 1: Conceptual framework of hydrological modeling using Al4Water. Al4Water consists of modules for pre-processing and
460 post-processing. The names of the modules are written in italic. The pre-processing steps involve collecting data, conducting

exploratory data analysis on data, and generating new features from the data. The core of the model consists of building, training,

and predicting. After this step, the predicted steps are used for visualization, performance comparison, and model interpretation.

465

a)

= activations & target1
[targeti.csv
= data [regression_plot.png
[errors.json
&= weights
[weights_1.h5 = target2
D) weights_2.h5 [config.json [loss_curve.png
O weights_3.n5 [indices.json [losses.csv
[info.json) model.png
hpo path
= activations ™ targeti W activations = target1
]]
= data E = data E
.":isms = target2 .';Bigms = target2
8 8 8 5 8 8
o [] [+ o
[convergence.png
= activations = target1
™ B
"\Eﬂ'!'“l ®target2 D fanova_importance.png

o

D D 2
o B D [resuits.json

exp path

., | e —

E] =rn P

— = —= =
e o | O |
e o] S [Cor e]
= = == AETTT——
hpo path

— = [config.json
P -— = - [") taylor_plot.png
— = [4r2.png
= - [Crmcemons]
) - | tamoea_importance.pog |

Pl T—

Figure 2: Output directory structure of Al4Water. A “model path” (a) is created upon creation of a new model. An “hpo path” (b)
470 is created during hyperparameter optimization. An “exp path” (c) is created when several models are compared during an
experiment. The “hpo path” consists of several “model paths” and an “exp path” consists of several “hpo paths”.

18

475

480

Module name
Class name

Function name

®

HYPEROPT

R

hyperopt

“Real

« Categorical
< Integer

< HyperOpt

training_data, test_data

“+MTropicsLaos

datasets N
“rCamels

<+ DataHandler
**Transformation

1F TensorFlow

< Model
O PyTorch

“*Learner

models

++MLRegressionExperiments
“ MLClassificationExperiments

validation_data

explain, interpret

preprocessing < Imputation
“+HRUDiscretization

*»Featurization

6 # imageio

et O‘l~ ETULIL

*»ShapExplainer
“»LimeExplainer
& Interpret

postprocessing % Visualize

“»RegressionMetrics
*» ClassificationMetrics

Interpretable
Maodel-agnostic
xplanations

utils taylor_plot

h5py

|E:| pandas

Figure 3: Framework architecture, sub-modules, classes and third-party libraries used by Al4Water. Each box represents a sub-
module. The names of classes in each sub-module are written along with the corresponding box. The third-party libraries upon
which the sub-module depends, are written inside the box. Empty boxes show that these sub-modules do not depend on a specific
third-party library. The five generic libraries written at the bottom are used in all sub-modules. Arrows represent the caller sub-
module and the sub-module being called. The sub-modules on right hand side are related to pre-processing and post-processing. The
Model class interacts with pre-processing and post-processing sub-modules using its methods which are written in green colour.

19

(0 @ ~
“model”: {“layers™: {* 643},

“input features™: [‘et mortan’, ‘precipitation’, ‘tmax’, ‘tmin’],
“output_features”: [*streamflow’],

“data”: {*name”: “CAMELS AUS”: station™: 224206}

AN

N

(b)
a
“model”: {“layers”: {* ”: {*hidden_units”; 64, “encoder steps”: 20, “decoder steps™:7}}},
“input features™: [‘et mortan’, ‘precipitation’, ‘tmax’, ‘tmin’],
“output_features™: [‘streamflow’],
“data”: {“name”: “CAMELS AUS”: station”: 224206}

AN

(c)
“model”: {* 7 {*n_estimators™: 64, “max_depth™: 20}},
“mnput_features™: [‘et mortan’, ‘precipitation’, ‘tmax’, ‘tmin’],
“output_features”: [‘streamflow’],
“data”: {“name”: “CAMELS AUS”: station”: 224206} }

NG

U Y,

Figure 4: Examples of declarative model definition in a config.json file. a) shows an example of an LSTM-based model using the
CAMELS_AUS data (Fowler et al., 2020). b) and c¢) show contents of configuration file for using temporal fusion transformer (Lim
485 et al., 2020) and XGBoost (Chen et al., 2018) for rainfall-runoff modeling using CAMELS_AUS data, respectively.

20

Reference
logn
logl0
robust
zscore
minmax
quantile

27000
24000~
21000
18000 -

4d4dP P a4

15000
12000 1
9000 -
6000 -

Standard deviation

3000 1/}

. . S - . :
9000 15000 21000 27000

Standard deviation

3000

9000 -
8000 -
7000 -
6000
5000 -
4000
3000
2000 -
1000

Standard deviation

T T 4— T .
3000 5000 7000 9000

Standard deviation

1000

Figure 5: Comparison of different transformations of output data on the performance of a neural network on the simulation of in-
490 stream E. coli concentration (MPN 100 ml) in a watershed in Lao PDR.

21

Sub-basins Land uses HRUs

HRUs

Sub-basins

A.B,... Sub-basins
1,2,... Land uses / soil types
i, ii,... HURs

PY catchment outlet

Figure 6: Example of HRU discretization schemes by combining a): sub-basins and land uses and b) by combining sub-basins and
soil types.

o —m- Alisol_Fallow
- Alisol_Forest
301 - Alisol_Teak
-~ Alisol_Crop
25 4 —#- Luvisol_Fallow
a —#- Luvisol_Forest
9 5. - LuvisoI_Teak
g ~- Luvisol_Crop
‘; ~i- Leptosol_Fallow
v 5 ~#- Leptosol_Forest
< - Leptosol_Teak
10 A ~- Leptosol_Crop
5.
0. - - 8
2011-01 2011-07 2012-01 2012-07 2013-01 2013-07 2014-01
Time

(b) Leptosol_Crop

Leptosol_Forest

awos 2011

Luvisol_Fallow

Alisol_Teak

Luvisol_Crop

Alisol_Crop
Luvisol_Teak

Leptosol_Crop

Leptosol_Fallow

Alisol_Fallow

4 HRUs 20 1 3
Alisol_Crop

Leptosol_Forest

Alisol_Teak

Luvisol_Teak

Luvisol_Fallow 2
= Alisol_Fallow

495

2012

4 HRUs

() Leptosol_Crop

Leptosol_Forest

Leptosol_Fallow
Alisol_Teak

Alisol_Crop

Luvisol_Teak

Leptosol_Teak

Leptosol_Fallow

Luvisol_Fallow

Alisol_Fallow

4 HRUs

2014

Leptosol_Forest

Alisol_Crop Alisol_Teak

Luvisol_Teak

Alisol_Fallow

Luvisol_Fallow

Figure 7: Discretization of a catchment in Loas (Boithias et al., 2021) according to the HRU definition of “unique land use in unique
soil”. The catchment consists of three soil types and four land use types. The soil types are Alisol, Luivsol and Leptosol while the

23

land use types are Fallow, Forest, Teak, and Crop. The combination of soil types and land use types results in 12 distinct HRUs. (a)
shows annual variation of these 12 land use types while (b)—(e) show the percentage area of HRUs in the catchment in 2011, 2012,

500 2013, and 2014, respectively.

Elo- $id:i:¢d2 1i 3 A3t i Mpon
o 2] TR E 't . ¥ 1 F ';.:’1: 1§21
E 0- T T T T l T T T
g 10 1 - Hargreaves and Samani
o 51 i it1idrasidg Lil ®
I R
g ; i1ilt sidtidy i 13l JensenandHai'se
S ftatibiiait it iiin 1T
o | (AARAARREAAASS ARARRLA AR AR AT \55 Wi

B oL W IRWIWWIRAAWIWIV WY VWWW
£

£ 51

o

..

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 8: Comparison of various evapotranspiration methods for the CAMELS_AUS dataset. CAMELS_AUS dataset comes with
Morton method while the remaining three methods are calculated by et sub-module of Al4Water.

24

505

0.0012| ! -#- TPE
i GP
ij: e Grid
0.0011{ --A- Random
i
» 0.00104
= -
] .
< -
_ I \
800009 ity
© T
S »
9= H |
£0.00081 & &
£ AR
0.0007{ 1 e
! ﬁ 5
: 1 =
‘. e | A
0.0006 >
0 20 40 60 80 100 120 140

Number of iterations n

Figure 9: Comparison of four optimization algorithms for optimizing hyperparameters of an LSTM-based model for rainfall-runoff
modeling. GP represents Bayesian with Gaussian Processes while TPE stands for tree of Parzen estimators. Grid and Random stand
for grid search and random search-based optimization, respectively. The x-axis shows the number of function evaluations while min
f(x) in the y-axis represents the objective function, which takes x hyperparameters and returns the minimum of validation loss.

25

Hierarchy of Al4Water

Experiments

Module for
comparison of
different models after
tuning their hyper-
parameters

HyperOpt
Module for tuning of
hyper-parameters of
Model using various

methods
510

Model Comparison and
selection (Experiments)

Hyper-parameter
optimization (HyperOpt)

Training and
testing
(Model)

Model

Module for building,
training and
prediction of

machine learning or

deep learning model

Figure 10: Hierarchy of model building and comparison in Al4Water. The Model involves building, training, and prediction. The
hyperparameter optimization step iterates over Model until the best hyperparameters are obtained. Experiments are then designed

to compare performance of different model architectures after tuning their hyperparameters.

26

Train Test

XGBoostRegressor

NusVR
RandomForestRegressor
XGBoostRFRegressor
ExtraTreesRegressor
HistGradientBoostingRegressor
SVR

CATBoostRegressor
LGBMRegressor
GradientBoostingRegressor
ADABoostRegressor
BaggingRegressor
ExtraTreeRegressor
KNeighborsRegressor
LassolLarsCV

LassolarsIC

RidgeCV

Ridge

BayesianRidge
KernelRidge

LassoCV

ElasticNetCV
LinearRegression
ARDRegressor
DecisionTreeRegressor
TweedieRegressor
PoissonRegressor

Lars

LarsCV
OrthogonalMatchingPursuitCV
HuberRegressor

LinearswvR
GaussianProcessRegressor
RANSACRegressor
OrthogonalMatchingPursuit
OneClassSVM
MLPRegressor
TheilsenRegressor
SGDRegressor

Lassolars

T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

R2 R2

515 Figure 11: An ‘Experiment’ which compares ARG prediction performance at a recreational beach in Korea, using various machine
learning algorithms. The y-axis represents abbreviations of the algorithms. The complete names of algorithms are given in Table
S4. The hyperparameters of each of the algorithm were optimized during the ‘Experiment’.

27

520

525

530

535

540

545

550

555

560

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow:
A system for large-scale machine learning, 12th {USENIX} symposium on operating systems design and implementation
({OsSDI} 16), 265-283,

Abbas, A., Baek, S., Kim, M., Ligaray, M., Ribolzi, O., Silvera, N., Min, J.-H., Boithias, L., and Cho, K. H.: Surface and sub-
surface flow estimation at high temporal resolution using deep neural networks, Journal of Hydrology, 590, 125370, 2020.
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrology and Earth System Sciences, 21, 5293-5313, 2017.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-generation hyperparameter optimization
framework, Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2623-
2631,

Bergstra, J., Yamins, D., and Cox, D.: Making a science of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures, International conference on machine learning, 115-123,

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for hyper-parameter optimization, Advances in neural
information processing systems, 24, 2011.

Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., and Johanson, R. C.: Hydrological simulation program—
FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US
Environmental Protection Agency, Athens, Ga, 1997.

Boithias, L., Auda, Y., Audry, S., Bricquet, J. p., Chanhphengxay, A., Chaplot, V., de Rouw, A., Henry des Tureaux, T., Huon,
S., and Janeau, J. 1.: The Multiscale TROPIcal CatchmentS critical zone observatory M-TROPICS dataset II: land use,
hydrology and sediment production monitoring in Houay Pano, northern Lao PDR, Hydrological Processes, 35, 14126, 2021.
Botchkarev, A.: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties
and typology, arXiv preprint arXiv:1809.03006, 2018.

Burns, D. M. and Whyne, C. M.: Seglearn: A python package for learning sequences and time series, The Journal of Machine
Learning Research, 19, 3238-3244, 2018.

Candes, E. J. and Recht, B.: Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9,
717-772, 2009.

Chakraborty, M., Sarkar, S., Mukherjee, A., Shamsudduha, M., Ahmed, K. M., Bhattacharya, A., and Mitra, A.: Modeling
regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing
physically-based model with machine learning, Science of The Total Environment, 748, 141107, 2020.

Chen, H., Zhang, X., Liu, Y., and Zeng, Q.: Generative adversarial networks capabilities for super-resolution reconstruction
of weather radar echo images, Atmosphere, 10, 555, 2019.

Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., and Wang, J.: Comparative analysis of
surface water quality prediction performance and identification of key water parameters using different machine learning
models based on big data, Water research, 171, 115454, 2020a.

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, 785-794, https://doi.org/10.1145/2939672.2939785,

Chen, X., Yang, J., and Sun, L.: A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation,
Transportation Research Part C: Emerging Technologies, 117, 102673, 2020b.

Cheng, Y., Li, D., Guo, Z., Jiang, B., Lin, J., Fan, X., Geng, J., Yu, X., Bai, W., and Qu, L.: DIbooster: Boosting end-to-end
deep learning workflows with offloading data preprocessing pipelines, Proceedings of the 48th International Conference on
Parallel Processing, 1-11,

Chollet, F.: Deep learning with Python, Simon and Schuster2017.

28

https://doi.org/10.1145/2939672.2939785

565

570

575

580

585

590

595

600

605

610

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.: Time series feature extraction on basis of scalable hypothesis tests
(tsfresh—a python package), Neurocomputing, 307, 72-77, 2018.
MkDocs. Project documentation with MarkDown.: https://www.mkdocs.org/, last
Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.: Pastas: open source software for the analysis of
groundwater time series, Groundwater, 57, 877-885, 2019.
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J., Lane, R., Lewis, M., and Robinson,
E. L.. CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth
System Science Data, 12, 2459-2483, 2020.
Faouzi, J. and Janati, H.: pyts: A Python Package for Time Series Classification, J. Mach. Learn. Res., 21, 46:41-46:46, 2020.
Ferreira, L. B. and da Cunha, F. F.: New approach to estimate daily reference evapotranspiration based on hourly temperature
and relative humidity using machine learning and deep learning, Agricultural Water Management, 234, 106113, 2020.
Fowler, K. J., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: Hydrometeorological time series and
landscape attributes for 222 catchments in Australia, Earth System Science Data, 13, 3847-3867, https://doi.org/10.5194/essd-
13-3847-2021, 2021.
Freund, Y. and Schapire, R. E.: A decision-theoretic generalization of on-line learning and an application to boosting, Journal
of computer and system sciences, 55, 119-139, 1997.
Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Annals of statistics, 1189-1232, 2001.
Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Machine learning, 63, 3-42, 2006.
Guo, D., Westra, S., and Maier, H. R.: Impact of evapotranspiration process representation on runoff projections from
conceptual rainfall-runoff models, Water Resources Research, 53, 435-454, 2017.
Hastie, T., Mazumder, R., Lee, J. D., and Zadeh, R.: Matrix completion and low-rank SVD via fast alternating least squares,
The Journal of Machine Learning Research, 16, 3367-3402, 2015.
Head, T., MechCoder, G. L., and Shcherbatyi, I.: scikit-optimize/scikit-optimize: v0. 5.2, Zenodo, 2018.
Ho, T. K.: The random subspace method for constructing decision forests, IEEE transactions on pattern analysis and machine
intelligence, 20, 832-844, 1998.
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735-1780, 1997.
Huang, Y., Bardossy, A., and Zhang, K.: Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data,
Hydrology and Earth System Sciences, 23, 2647-2663, 2019.
Hutter, F., Hoos, H., and Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance, International
conference on machine learning, 754-762,
Hyndman, R. J.: Another look at forecast-accuracy metrics for intermittent demand, Foresight: The International Journal of
Applied Forecasting, 4, 43-46, 2006.
Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, International journal of forecasting, 22,
679-688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.
Jang, J., Abbas, A., Kim, M., Shin, J., Kim, Y. M., and Cho, K. H.: Prediction of antibiotic-resistance genes occurrence at a
recreational beach with deep learning models, Water Research, 196, 117001, 2021.
Jensen, M. E. and Haise, H. R.: Estimating evapotranspiration from solar radiation, Journal of the Irrigation and Drainage
Division, 89, 15-41, 1963.
Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., and Kumar,
V.: Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Transactions on knowledge and
data engineering, 29, 2318-2331, 2017.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: Lightgbm: A highly efficient gradient
boosting decision tree, Advances in neural information processing systems, 30, 3146-3154, 2017.
Kim, M., Boithias, L., Cho, K. H., Sengtaheuanghoung, O., and Ribolzi, O.: Modeling the Impact of Land Use Change on
Basin-scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance, Journal of environmental quality, 47, 1115-
1122, 2018.
Klingler, C., Schulz, K., and Herrnegger, M.: LamaH| Large-Sample Data for Hydrology and Environmental Sciences for
Central Europe, Earth System Science Data Discussions, 1-46, 2021.
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.: NeuralHydrology—interpreting LSTMs in
hydrology, in: Explainable Al: Interpreting, explaining and visualizing deep learning, Springer, 347-362, 2019.

29

https://www.mkdocs.org/
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.1016/j.ijforecast.2006.03.001

615

620

625

630

635

640

645

650

655

660

Lange, H. and Sippel, S.: Machine learning applications in hydrology, in: Forest-water interactions, Springer, 233-257, 2020.
Leufen, L. H., Kleinert, F., and Schultz, M. G.: MLAIr (v1. 0)-a tool to enable fast and flexible machine learning on air data
time series, Geoscientific model development, 14, 1553-1574, https://doi.org/10.5194/gmd-14-1553-2021, 2021.
Li, W., Kiaghadi, A., and Dawson, C.: High temporal resolution rainfall-runoff modeling using long-short-term-memory
(LSTM) networks, Neural Computing and Applications, 33, 1261-1278, 2021.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R news, 2, 18-22, 2002.
Léning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Kiraly, F. J.: sktime: A unified interface for machine learning
with time series, arXiv preprint arXiv:1909.07872, 2019.
Lundberg, S. and Lee, S.-l.: An unexpected unity among methods for interpreting model predictions, arXiv preprint
arXiv:1611.07478, 2016.
Lundberg, S. M. and Lee, S.-1.: A unified approach to interpreting model predictions, Proceedings of the 31st international
conference on neural information processing systems, 4768-4777,
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S .-
I.: From local explanations to global understanding with explainable Al for trees, Nature machine intelligence, 2, 56-67,
https://doi.org/10.1038/s42256-019-0138-9, 2020.
Luo, Y., Cai, X., Zhang, Y., Xu, J., and Yuan, X.: Multivariate time series imputation with generative adversarial networks,
Proceedings of the 32nd International Conference on Neural Information Processing Systems, 1603-1614,
Mazumder, R., Hastie, T., and Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices, The
Journal of Machine Learning Research, 11, 2287-2322, 2010.
McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for high performance and
scientific computing, 14, 1-9, 2011.
Molino, P., Dudin, Y., and Miryala, S. S.: Ludwig: a type-based declarative deep learning toolbox, arXiv preprint
arXiv:1909.07930, 2019.
Morton, F. I.: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology,
Journal of hydrology, 66, 1-76, 1983.
Moshe, Z., Metzger, A., Elidan, G., Kratzert, F., Nevo, S., and El-Yaniv, R.: Hydronets: Leveraging river structure for
hydrologic modeling, arXiv preprint arXiv:2007.00595, 2020.
Nakhle, P., Ribolzi, O., Boithias, L., Rattanavong, S., Auda, Y., Sayavong, S., Zimmermann, R., Soulileuth, B., Pando, A.,
and Thammahacksa, C.: Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong
basin, Lao PDR, Scientific reports, 11, 1-17, 2021.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation
version 2009, Texas Water Resources Institute, 2011.
Ni, L., Wang, D., Wu, J., Wang, Y., Tao, Y., Zhang, J., and Liu, J.: Streamflow forecasting using extreme gradient boosting
model coupled with Gaussian mixture model, Journal of Hydrology, 586, 124901, 2020.
Nourani, V., Sayyah-Fard, M., Alami, M. T., and Sharghi, E.: Data pre-processing effect on ANN-based prediction intervals
construction of the evaporation process at different climate regions in Iran, Journal of Hydrology, 588, 125078, 2020.
Pandey, P. K. and Soupir, M. L.: Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of
flows and sediment characteristics, JAWRA Journal of the American Water Resources Association, 49, 1261-1269,
https://doi.org/10.1038/s41598-017-12853-y, 2013.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., and Antiga, L.:
Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems, 32,
8026-8037, 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and
Dubourg, V.: Scikit-learn: Machine learning in Python, the Journal of machine Learning research, 12, 2825-2830, 2011.
Prestwich, S., Rossi, R., Armagan Tarim, S., and Hnich, B.: Mean-based error measures for intermittent demand forecasting,
International Journal of Production Research, 52, 6782-6791, 2014.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.: CatBoost: unbiased boosting with categorical
features, arXiv preprint arXiv:1706.09516, 2017.
Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G.: A dual-stage attention-based recurrent neural network for
time series prediction, arXiv preprint arXiv:1704.02971, 2017.

30

https://doi.org/10.5194/gmd-14-1553-2021
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s41598-017-12853-y

665

670

675

680

685

690

695

Remesan, R. and Mathew, J.: Hydrological data driven modelling, Springer2016.

Ribeiro, M. T., Singh, S., and Guestrin, C.: " Why should i trust you?" Explaining the predictions of any classifier, Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144,

Rubinsteyn, A. and Feldman, S.: fancyimpute: A Variety of Matrix Completion and Imputation Algorithms Implemented in
Python, Version 0.0, 16, 2016.

Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,
Nature Machine Intelligence, 1, 206-215, https://doi.org/10.1038/s42256-019-0048-x, 2019.

Sang, Y.-F.: A review on the applications of wavelet transform in hydrology time series analysis, Atmospheric research, 122,
8-15, 2013.

Sang, Y.-F., Wang, D., Wu, J.-C., Zhu, Q.-P., and Wang, L.: The relation between periods’ identification and noises in
hydrologic series data, Journal of Hydrology, 368, 165-177, 2009.

Shahhosseini, M., Hu, G., Huber, 1., and Archontoulis, S. V.: Coupling machine learning and crop modeling improves crop
yield prediction in the US Corn Belt, Scientific reports, 11, 1-15, 2021.

Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F.: Machine learning methods for empirical streamflow simulation: a
comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds, Hydrology and Earth System Sciences,
20, 2611-2628, 2016.

Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, .. A comprehensive review of deep learning
applications in hydrology and water resources, Water Science and Technology, 82, 2635-2670, 2020.

Snoek, J., Larochelle, H., and Adams, R. P.: Practical bayesian optimization of machine learning algorithms, Advances in
neural information processing systems, 25, 2012,

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., RuBwurm, M., and Kolar,
K.: Tslearn, A Machine Learning Toolkit for Time Series Data, J. Mach. Learn. Res., 21, 1-6, 2020.

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research:
Atmospheres, 106, 7183-7192, 2001.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter
optimization of classification algorithms, Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, 847-855,

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.: Missing
value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525, 2001.

Wang, L., Chen, J., and Marathe, M.: Tdefsi: Theory-guided deep learning-based epidemic forecasting with synthetic
information, ACM Transactions on Spatial Algorithms and Systems (TSAS), 6, 1-39, 2020.

Wheatcroft, E.: Interpreting the skill score form of forecast performance metrics, International Journal of Forecasting, 35, 573-
579, 2019.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S., Nykodym, T., Ogilvie, P., and
Parkhe, M.: Accelerating the machine learning lifecycle with MLflow, IEEE Data Eng. Bull., 41, 39-45, 2018.

31

https://doi.org/10.1038/s42256-019-0048-x

