
1

AI4Water v1.0: An open source python package for modeling

hydrological time series using data-driven methods

Ather Abbas1, Laurie Boithias2, Yakov Pachepsky3, Kyunghyun Kim4, Jong Ahn Chun5, Kyung Hwa

Cho1 5

1Urban and Environmental Engineering, Ulsan national institute of science and technology, Ulsan, Republic of Korea.
 2Geosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, UPS, 31400 Toulouse, France
3Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA.
4Watershed and Total Load Management Research Division, National Institute of Environmental Research, Hwangyeong-ro

42, Seogu, Incheon 22689, Republic of Korea 10
5APEC Climate Center, Climate Research Department, Busan, Republic of Korea.

Correspondence to: Jong Ahn Chun (jachun@apcc21.org) Kyung Hwa Cho. (khcho@unist.ac.kr)

Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of

machine learning-based hydrological models requires advanced skills from diverse fields, such as programming and

hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning 15

models is a time-intensive process. In this study, we developed a python-based framework that simplifies the process of

building and training machine learning-based hydrological models and automates the process of pre-processing of hydrological

data and post-processing of model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in

the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different

HRU discretization definitions. The post-processing utilities help in interpreting the model’s results from a hydrological point 20

of view. This framework will help increase the application of machine learning-based modeling approaches in hydrological

sciences.

1 Introduction

Theory-driven modeling approaches have been traditionally applied to simulate hydrological processes (Remesan and Mathew,

2016). However, with advancements in computation power and data availability, there has been a surge in the application of 25

data-driven approaches to model hydrological processes (Lange and Sippel, 2020). Data-driven approaches that involve time

series input data can be used to build several types of hydrological models. Various machine learning approaches have been

successfully applied to predict surface water quality (Chen et al., 2020a), estimate stream flow (Shortridge et al., 2016),

simulate surface and sub-surface flow (Abbas et al., 2020), forecast evapotranspiration (Ferreira and Da Cunha, 2020), and

model groundwater flow and transport (Chakraborty et al., 2020). Deep learning, which includes the application of large neural 30

2

networks, has shown promising results for hydrological modeling (Moshe et al., 2020). A typical workflow of data-driven

modeling comprises data collection, pre-processing, model selection, training of the algorithm with optimized

hyperparameters, and deployment.

Recent advances in the field of data science have resulted in the growth of Python packages, which assist in accomplishing

machine learning and deep learning tasks. According to the latest survey on Kaggle, an online platform for machine learning 35

competitions, the most popular libraries among data scientists are TensorFlow (Abadi et al., 2016), Pytorch (Paszke et al.,

2019), Scikit-learn (Pedregosa et al., 2011), and XGBoost (Chen and Guestrin, 2016). These libraries have accelerated research

in the field of machine learning owing to their simple user interface and robust implementation of difficult algorithms such as

back propagation (Chollet, 2017). However, feature engineering, data pre-processing, and post-processing of results are still

the most time-consuming tasks in building and testing machine learning models (Cheng et al., 2019). Feature engineering 40

includes modifying existing input data and generating new features based on existing data such that it improves learning using

data-driven algorithms. This also incorporates background knowledge and context into the model in order to assist the

algorithm in learning the underlying function. Infusion of background knowledge, such as basin architecture (Moshe et al.,

2020) and land use (Abbas et al., 2020) in data-driven hydrological modeling leverages the algorithm and enhances its

performance (Karpatne et al., 2017). The pre-processing step involves modifying the available data in a form suitable for 45

feeding into the learning algorithm. Nourani et al. (2020) showed how different smoothing and de-noising functions affect the

performance of artificial neural networks for forecasting evaporation. The post-processing step includes the calculation of

performance metrics, visualization of results, and interpretation.

Recently, several frameworks have been developed to accelerate the process of building and testing machine learning models,

such as Ludwig (Molino et al., 2019) and MLflow (Zaharia et al., 2018). However, these frameworks are too general and do 50

not deal with the intricacies of time series and hydrological modeling. Several studies have looked at pre-processing, building,

training, and post-processing of machine learning models with time series data. These include libraries such as sktime (Löning

et al., 2019), Seglearn (Burns and Whyne, 2018), Tslearn (Tavenard et al., 2020), tsfresh (Christ et al., 2018), and pyts (Faouzi

and Janati, 2020). Some libraries have also been developed with a focus on hydrological issues. Pastas (Collenteur et al., 2019)

is a library dedicated to analyzing groundwater time series data. NeuralHydrology (Kratzert et al., 2019) allows the application 55

of several long short-term memory (LSTM)-based models for rainfall runoff modeling. However, most of these libraries either

focus on the processing of data and feature extraction from time series or building and training of the model. A framework that

combines pre-processing, feature extraction, building and training, post-processing of model results, and interpretation of data-

driven models, particularly for solving hydrological problems, is missing.

For the advancement of machine learning in the field of hydrology, experimentation with readily available and fully 60

documented benchmark datasets is required (Leufen et al., 2021). The collection of hydrological data is usually expensive and

time-consuming. Several hydrological datasets are publicly available on different online platforms (Coxon et al., 2020).

Although these datasets are documented and organized, they are not usually in a form that can be directly used in machine

3

learning algorithms. Therefore, there is a need for a uniform and simplified interface to access and feed hydrological data to

machine learning algorithms. 65

In this study, we developed a new framework for fast and rapid experimentation to develop data-driven hydrological models.

In this study, we present AI4Water, a Python-based framework that assists in machine learning and deep learning-based

modeling with a focus on hydrology. The specific objectives of AI4Water were to provide a uniform and simplified interface

for 1) access and streaming of freely available datasets to data-driven algorithms, 2) pre-processing of hydrological data, 3)

automatic feature extraction from hydrological data, 4) automatic model selection and its hyperparameter optimization, and 5) 70

post-processing of results for visualization and interpretation of models.

2 Workflow

The core of AI4Water is Model class, which implements data preparation, building, and training of the model, and makes

predictions from the model (Fig. 1). However, AI4Water includes several utilities for data pre-processing, feature generation,

post-processing and visualization of results, hyperparameter optimization, and model comparison. All of these utilities can be 75

used with AI4Water as well as independently. The Datasets utility helps in fetching and pre-processing several open-source

datasets to be used in machine learning models. The SpatialProcessing utility allows distribution of weather data among

hydrologic response units (HRUs) using different HRU discretization schemes. The et sub-module helps calculate potential

evapotranspiration using various theoretical methods. The SeqMetrics sub-module calculates several time-series performance

metrics for regression and classification problems. HyperOpt assists in the implementation of various hyperparameter 80

optimization algorithms. The Experiment class can be used to compare different machine learning models. Finally, AI4Water

has an Interpret utility that can be used to interpret the model’s results.

The Model class of AI4Water has two implementations and can have three backends. The two implementations are “model-

subclassing” and “functional.” The backends are either tensorflow, pytorch, or none of them. The backends, together with the 85

implementations, determine the attributes that the Model class will inherit upon its creation. In model-subclassing

implementation, the Model class inherits either from the tensorflow’s Model class or the nn.module of pytorch. This

implementation allows all the attributes from the corresponding backend to be also available from AI4Water’s Model class.

For example, the “count_params” attribute of tensorflow’s Model class can also be obtained from the AI4Water’s Model class.

In functional implementation, the Model class of AI4Water does not inherit from the parent modules of tensorflow/pytorch. In 90

this case, the built tensorflow/pytorch model object is exposed to the user as a “_model” attribute of the Model class. This is

similar to tensorflow and pytorch libraries, both of which also have model-subclass and functional implementations. For

models other than tensorflow or pytorch, the Model class does not have any backend. In these cases, the machine learning

4

models are built using libraries such as scikit-learn, xgboost, catboost, or lightgbm. The built model object is exposed to the

user as “_model” attribute of the Model class. 95

The success of machine learning is proportional to testing various hypotheses by training and testing machine learning models

and analyzing the results (Zaharia et al., 2018). This can quickly lead to a large number of output files. AI4Water handles this

by automatically saving all the model-related files starting from model creation to pre-processing until post-processing of each

output in the respective folders. A detailed output directory structure is shown in Fig. 2. Upon every model run, a directory is

created whose name is the date and time when the model is created. This naming convention allows for a simple and distinct 100

directory structure for every new model. This parent directory is called “model path” and contains several sub-folders and files

which are related to model configuration, model training, and post-processing of results (Fig. 2a). The results for each target

variable are saved in a separate folder. Additionally, the files related to the model’s optimized parameters and interpretations

are saved in a separate directory. The saved configuration file along with the weights can later be used to reproduce the model’s

results. In case of hyperparameter optimization, a directory named “hpo path” is created, which consists of several “model 105

paths”. Each of these “model paths” correspond to each iteration of the optimization algorithm (Fig. 2b). In case of

Experiments, when different models are compared, a separate “hpo path” is created for each of the models being compared.

Fig. 2c shows the output file structure for an Experiment when different machine learning algorithms are compared. This

ordered arrangement of results facilitates the fast comparison and analysis of the results.

3 Sub-modules and code-structure 110

The code architecture of AI4Water, that is, its sub-submodules, their available classes, and third-party libraries are illustrated

in Fig. 3. AI4Water comprises 11 sub-modules, among which 10 are task-based, and one is a general-purpose module named

“utils.” These sub-modules can be divided into two categories. The sub-modules on the left-hand side of Fig. 3 are designed

for model building, hyperparameter optimization, and model comparison, whereas those on the right-hand side perform pre-

processing and post-processing. Each sub-module exposes one or more classes to the user. For example, the hyperopt sub-115

module presents the Real, Categrorical, Integer, and HyperOpt classes. The third-party libraries required for each sub-module

were are annotated inside them. There are five “generic” third-party libraries that are required in all sub-modules (lower part

of Fig. 3). The et and utils sub-modules do not require specific third-party libraries and depend only on generic libraries. The

arrows in Fig. 3 indicate interaction between the sub-modules. The origin of the arrow denotes the caller sub-module, whereas

their end points denote the sub-module that is being called. The Model class interacts with the pre-processing and post-120

processing modules using its functions, the names of which are shown in green in Fig. 3. For example, the DataHandler class

in the pre-processing sub-module was is responsible for data preparation. The Model class interacts with DataHandler using

training_data, validation_data, and test_data methods,. These methods which are responsible for fetching training, validation,

and test data from the DataHandler class, respectively.

Formatted: Font color: Light Blue

5

 The large number of utilities in AI4Water increases the number of underlying libraries. The Model class is built on top of the 125

Scikit-learn, CatBoost, XGBoost, and LightGBM libraries to build classical machine learning models. These models have been

used in several hydrological studies (Huang et al., 2019; Ni et al., 2020; Shahhosseini et al., 2021). To build deep learning

models using neural networks, AI4Water uses popular deep learning platforms, such as TensorFlow (Abadi et al., 2016) and

Pytorch. A complete list of the dependencies for AI4Water is presented in Table 1. It is divided into two parts. The first half

shows the minimal requirements for running the basic utilities, which include building and training the model and making 130

predictions from it. The second part of Table 1 comprises an exhaustive list of dependencies. These dependencies are required

to utilize all the functionalities of AI4Water. However, these utilities are optional and do not hamper the basic package

functionality. Moreover, the modular structure of AI4Water allows the user to install libraries corresponding to a particular

sub-module while ignoring the others, which are not required. For example, in order to use the HyperOpt class for

hyperparameter optimization, libraries related to post-processing are not required. Table 1 also presents the exact version of 135

the underlying libraries, which were used to test the 1.0 version of AI4Water. AI4Water handles the version conflicts of the

underlying libraries, thereby making it version-independent. This implies that the user can use any version greater than the

version number provided in Table 1.

3.1 Datasets

The first step in building a data-driven hydrological model is to obtain the data. There have been several efforts by the 140

hydrological science community to build hydrological datasets that are publicly available. For example, for rainfall-runoff

modeling, there exists the CAMELS dataset for several countries (Addor et al., 2017). The CAMELS dataset consists of daily

weather data and streamflow records for multiple catchments. Another large rainfall runoff dataset is LamaH (Klingler et al.,

2021), which consists of observations from 859 catchments in Europe. While the number of such open source datasets is large,

the use of these data sources is slow as each database is available on different platforms and implements a different application 145

programming interface (API). A core function of AI4Water is to provide a simple and homogeneous API to feed these datasets

directly into machine learning models. Fig. 4 shows the usage of the CAMELS_AUS dataset, where the user needs to define

only the name of the dataset and the input and output variables. This simple interface will help exploit the use of these datasets.

Furthermore, benchmarking open-source datasets will likely accelerate the progress of machine learning in hydrological

science. A brief summary of the rainfall-runoff datasets available in AI4water is given in Table 2. 150

3.2 Exploratory data analysis

A crucial step in data-driven hydrological modeling workflow is the visualization of the data. This step assists in understanding

the data, finding outliers, selecting relevant features, and guiding the machine-learning-based modeling process. AI4Water

provides an eda sub-modulefunction which can be employed to conduct a comprehensive analysis of input and output data.

For example, the correlation plots illustrate whichthe input variables which are more correlated with each other. Heatmaps 155

6

show the amount and position of the missing values. Histogram and box-whisker plots depict the distributions of both the input

and output variables. This function sub-module can also perform a principal component analysis of the input data and plot the

principal components. This helps in understanding the dynamics of the input data and filtering the relevant features.

3.3 Preprocessing

3.3.1 Transformations 160

Data transformation includes standardizing and transforming the data onto a different scale. Transforming the data can

significantly affect the performance of a data-driven model. The scikit-learn library provides several transformation functions

such as minmax, standardscaler, robust, and quantile. Additionally, several decomposition methods such as empirical mode

transformation (EMD), ensemble EMD (EEMD), wavelet transform (Sang, 2013), and fast Fourier transform (Sang et al.,

2009) were found to improve the performance of hydrological models. AI4Water provides a uniform interface for all of these 165

transformation methods under the sub-module Transformations. The user can apply any of the available transformations to

any of the input features by using a simplified and uniform interface. The predicted features are transformed back after the

prediction. Fig. 5 shows a comparison of different transformations using a Taylor plot (Taylor, 2001). These results were

generated by modeling in-stream E. coli concentrations in a small Laotian catchment (Boithias et al., 2021) using LSTM

(Hochreiter and Schmidhuber, 1997). The input data was precipitation, relative humidity, air temperature, wind speed and 170

solar radiation.

3.3.2 Imputation

Missing values are often found in real-world datasets. However, missing data cannot be fed to machine-learning algorithms.

AI4Water provides various solutions for handling missing data that can be used using the impute method. These include using

either the 1) pandas library (Mckinney, 2011), 2) scikit-learn library-based methods, or 3) dedicated algorithms to fill the 175

missing input data. The pandas library allows the handling of missing values either by filling the missing values using the

fillna method or interpolating the missing values using the interpolate method. Both these methods can be seamlessly used

with the impute method in AI4Water. Several imputation methods for filling missing values are available in the scikit-learn

library. These methods include KNNImputer, IterativeImputer, and SimpleImputer. AI4Water provides a uniform interface for

all imputation methods without hindering their functionality. 180

Several other libraries have been developed that have dedicated algorithms for imputing missing time series data. These include

fancyimpute (Rubinsteyn and Feldman, 2016) and transdim (Chen et al., 2020b). The fancyimpute library provides several

state-of-the-art algorithms such as SoftImpute (Mazumder et al., 2010), IterativeSVD (Troyanskaya et al., 2001),

MatrixFactorization, NuclearNormMinimization (Candès and Recht, 2009), and Biscaler (Hastie et al., 2015). The transdim

library provides algorithms based upon neural networks for filling missing data. AI4Water provides a simple interface for using 185

these libraries with their full functionalities, using the impute method.

7

3.3.3 Missing labels

In supervised machine-learning problems, the training data consist of examples. Each example consists of one or more input

data and a corresponding label, which is the true value for the given example. Similar to the input data, it is common for the

labels to have missing data. Although the missing values in target features can be handled similarly to that of input features, 190

which has been explained in Section 2.3, this can lead to unrealistic results, particularly when the number of missing values is

large. AI4Water allows the user to exclude examples with missing labels during model training. For multi-output prediction,

one can encounter situations in which all target variables are not available for a given example. AI4Water allows the user to

handle such situations by masking the missing observations during loss calculation. However, the user can also opt to exclude

these examples, although this can reduce the number of examples in water quality problems where the number of samples is 195

already very small.

3.3.4 Resampling

Modeling hydrological processes at high temporal resolutions can result in a large amount of data (Li et al., 2021). Training

with this large input data can be computationally expensive. However, temporally coarse input data contain little information.

AI4Water handles large amount of data by either resampling the data at a lower temporal resolution using the Resample class, 200

or by skipping every n-th input data, where ‘n’ represents the time-step. The latter can be achieved by setting the “input_steps”

argument to a value >1. The default value of this argument is 1, which results in the use of all input data.

3.3.5 Feature generation

The incorporation of scientific knowledge into machine learning models is an emerging paradigm for constraining predictions

from machine learning models to reality (Wang et al., 2020). The guiding principle of AI4Water is to integrate domain-specific 205

knowledge and hydrological data. AI4Water automates the calculation of several features and their inputs to the machine

learning algorithm. The input data requirement for the calculation of these features is minimal as they are calculated from the

raw data. The calculated features are in the form of a time series, which are then directly given as input to machine learning

algorithms. The following sections describe the feature generation process in more detail.

Land use change and HRU discretization 210

In rainfall-runoff modeling, the method of discretization of the HRU plays an important role in many theory-driven models

such as the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and Hydrological Simulation Program FORTRAN

(HSPF) (Bicknell et al., 1997). An HRU is a building block of a process-driven hydrological model in which all the processes

are simulated. The area and formation of an HRU depend on its definition. For example, in the HSPF model, an HRU is defined

as a unique land use in a unique sub-basin. On the other hand, the SWAT model considers slope classes and soil type 215

distributions in an HRU. In catchments, which undergo changes in land use over time, the corresponding HRUs also change

8

with time. Temporal changes in HRUs are a major challenge in most process-driven models (Kim et al., 2018). However, it

has been shown that machine learning models can easily incorporate land-use changes with time and dynamic HRU

calculations (Abbas et al., 2020). AI4Water contains a sub-module MakeHRUs, which helps in distributing the time-series of

weather data into HRUs using different HRU definitions. Fig. 6 shows two discretization schemes that combine land use, soil 220

type, and sub-basin. However, the user can also add other spatially varying features, such as slope, in the HRU definition. A

complete list of the HRU definitions is provided in Table S1. Fig. 7 illustrates the HRU variation with time in a Laotian

catchment (Abbas et al., 2020). The HRUs shown in Fig. 7 are defined as a unique land use with a unique soil type. Thus,

every HRU has distinct land use and soil characteristics. As there are four land-use types and three soil types in the catchment,

the total number of HRUs was 12. We can observe how the area of certain HRUs, e.g., “Alisol_Fallow”, decreases with time 225

at the expense of other HRUs (Fig. 7a). The relative contributions of each HRU for the years 2011, 2012, 2013, and 2014 is

illustrated in Fig. 7b–e, respectively. The MakeHRUs sub-module requires shapefiles of land use, soil and slope to make the

HRU according to a given definition.

2.3.6 DataHanlder class

The DataHandler class prepares the input data for the machine learning model and acts as an intermediate between the Model 230

class and other pre-processing classes, such as Imputation and Transformation classes. The DataHandler can read data from

various files as long as the data are in a tabular format in those files. The complete list of allowed file types and their accepted

file extensions is provided in Table S5. Internally, the DataHandler class stores data as a pandas DataFrame object, which is

a data model of pandas for tabular data (Mckinney, 2011). DataHandler can also save processed data as an HDF5 file, which

can be used to inspect processed input data. 235

3.4 Evapotranspiration

The amount of evapotranspiration is an important factor that affects the total water budget in a catchment. The impact of

evapotranspiration process representation in rainfall-runoff models has been studied extensively (Guo et al., 2017). Several

potential and reference evapotranspiration calculation methods are available in the literature. AI4Water contains sub-module

‘et’ which can be used to calculate the potential evapotranspiration using various methods. These include complex methods 240

such as Penman–Monteith (Allen et al., 1998), which require many input variables, and simplified methods such as Jensen and

Haise (Jensen and Haise, 1963), which only depend on temperature. The et can furthermore calculate potential

evapotranspiration at various time intervals, from 1 min to 1 yr. The names of the 22 evapotranspiration methods available in

et and their data requirements are summarized in Table S2. The CAMELS Australia dataset (Fowler et al., 2021) comes with

pre-calculated potential evapotranspiration using the Morton (Morton, 1983) method. We compared this method with three 245

different potential evapotranspiration calculation methods using et, as depicted in Fig. 8.

9

3.5 Hyperparameter optimization

The hyperparameters of a machine learning algorithm are the parameters that remain fixed during model training and

significantly influence its performance (Chollet, 2017). Thus, the choice of hyperparameters plays an important role in

evaluating the performance of machine learning algorithms. Some of the most popular approaches for optimizing 250

hyperparameters are random search, grid search, and the Bayesian approach. Random search involves randomly selecting

parameters from the given space for a given number of iterations. Grid search, on the other hand, comprehensively explores

all possible combinations of hyperparameters in the hyperparameter space. Although grid search can ensure global minima,

the number of iterations increases exponentially with an increase in the number of hyperparameters. This renders the grid

search practically unfeasible for deep neural network-based models, which are computationally expensive. The two commonly 255

used Bayesian approaches are Gaussian processes (Snoek et al., 2012) and the tree of Parzen estimators, (TPE) (Bergstra et

al., 2011).

The libraries used to implement these algorithms are hyperopt (Bergstra et al., 2013), scikit-optimize (Head et al., 2018), optuna

(Akiba et al., 2019), and scikit-learn (Pedregosa et al., 2011). These libraries implement different algorithms with different

strengths. The scikit-optimize library allows the application of the Bayesian optimization approach using Gaussian Processes. 260

The scikit-learn library can be used for random and grid-search-based approaches. The hyperopt module assists in Bayesian

optimization using TPEs. The HyperOpt sub-module in AI4Water provides a uniform interface to interact with all of the

aforementioned libraries. The integration of HyperOpt with its underlying modules not only complements the underlying

optimization algorithms but also adds additional functionality, such as visualization. For example, the importance of

hyperparameters is plotted using the functional analysis of variance (fANOVA) method proposed by (Hutter et al., 2014). 265

We demonstrate the use of the HyperOpt sub-module of AI4Water for optimizing the hyperparameters of an LSTM-based

neural network for rainfall-runoff modeling. The input data consisted of climate data, whereas the target was streamflow. For

this example, we used CAMELS data from a catchment in Australia (Fowler et al., 2021). We compared the performance of

random search, grid search, and two Bayesian algorithms based on Gaussian Processes and TPEs. The convergence plots of

all four algorithms are shown in Fig. 9. The Bayesian approach using Gaussian processes was found to be the most useful for 270

minimizing the objective function. The objective function was the minimum of the validation loss. We also observed that grid

search, despite a large number of iterations, did not perform better than the other three methods.

3.6 Model comparison with Experiment

AI4Water consists of an Experiment sub-module, which makes it easier to compare different machine learning models. The

basic purpose of the Experiment class is to compare different models by optimizing their hyperparameters. This is made 275

possible as the Experiment class encompasses the HyperOpt class, which in turn encompasses the Model class (Fig. 10). Thus,

the Experiment class can be used for combined algorithm selection and hyperparameter optimization (Thornton et al., 2013).

The results from the Experiment class are organized within an “exp path” directory (Fig. 2). The Experiment class can be sub-

10

classed to compare any number and type of models. It consists of three sub-classed experiments: MLRegressionExperiment,

MLClassificationExperiment, and TransformationExperiment. The MLRegressionExperiment class runs and compares 280

approximately 50 different classical machine learning algorithms for a regression task. The MLClassificationExperiment class

compares classical machine learning algorithms for a classification problem. The TransformationExperiment class can be used

to compare the application of different transformation techniques (Sect. 2.3.1) on different input and output features.

We conducted an experiment to compare the performance of classic machine learning algorithms in predicting antibiotic-

resistant genes (ARGs) at a recreational beach (Jang et al., 2021). The results of this experiment are shown in Fig. 11, which 285

compares the correlation coefficients for the training and test sets. It can be seen that some algorithms can yield an R2 as high

as 0.65. Other algorithms provide training R2 as high as 1.0, which indicates overfitting. In particular, we observed strong

overfitting in the case of the decision tree regressor and Gaussian process regressor. It can also be inferred from Fig. 11 that

ensemble methods such as AdaBoost (Freund and Schapire, 1997), gradient boosting (Friedman, 2001), bagging (Ho, 1998),

extra trees (Geurts et al., 2006), and random forest (Liaw and Wiener, 2002) yield better performance than other methods. We 290

also observed that simple linear models such as Lars, Lasso, and multi-layer perceptron are not able to model the dynamic and

complex functions of the ARG distribution at the beach. On the other hand, complex non-linear models such as CATBoost

(Prokhorenkova et al., 2017), XGBoost (Chen and Guestrin, 2016), and light gradient boosting machines (Ke et al., 2017) are

able to adequately capture dynamic features related to the ARG distribution. We also observed that algorithms with cross-

validation performed better than their counterparts without cross-validation. 295

3.7 Post processing

The post-processing submodule of ai4water consists of several utilities which can be used once the machine learning model

has been trained. These utilities are discussed in detail below.

3.7.1 Visualization

The “visualize” sub-module, consisting of a Visualize class, is used to examine inside the machine learning model. When the 300

model comprises several layers of neural networks, this class plots the outputs of the intermediate layers, gradients of these

outputs, weights and biases of intermediate layers, and gradients of these weights. Thus, this class helps to visualize the

working of neural networks. andIt can also be used to plot the decision tree learned by the tree-based machine learning model.

We demonstrate the use of this class by building a four-layer neural network to predict streamflow using the CAMELS dataset

(Fowler et al., 2021). The four-layered neural network comprises an input layer, two layers of LSTM, and a Dense layer oneas 305

output layer (Fig. S1). The Dense layer is a fully connected layer which is used for dimensionality reduction (Chollet, 2018).

Figures S2–S5 show the outputs of the first LSTM layer and its gradients along with the weights of the first LSTM layer, and

the gradients of those weights.

11

3.7.2 Interpretation and Explainable AI 310

The interpretation of the results of machine learning models is an area of active research. For classical machine learning

algorithms, interpretation tools include the plotting of decision trees or input feature importance. For neural network-based

models, explainability is considered an even bigger challenge. AI4Water consists of a sub-module called Interpret, which can

be used to plot interpretable results. The Interpret class takes the trained model of AI4Water as input and plots numerous

results, which help to explain the behavior of the model. The exact type of plots generated by the Interpret sub-module depends 315

on the algorithm used by the model. For neural network-based models, which consist of a layered structure, the Interpret sub-

module plots all the trained weights, the outputs of each layer, the gradients of weights, and the gradients of the activations of

neural networks. This also includes plotting attention weights if the model consists of an attention mechanism. AI4Water

automatically plots the results of the model when a model is used for prediction. These include the scatter and line plots of

each target variable. 320

We demonstrate this by using a dual-stage attention model (Qin et al., 2017) for daily rainfall-runoff modeling in catchment

number 401203 in the CAMELS Australia dataset (Fowler et al., 2021). The input data consisted of evapotranspiration,

precipitation, minimum and maximum temperatures, vapor pressure, and relative humidity. The dual-stage model showed

significant performance during training (𝑅2 = 0.93) and test (𝑅2 = 0.87), as shown in Fig. S6. The dual-stage attention model

highlights the importance of the input variables for prediction. The attention weights for each of the input variables are shown 325

in Fig. S7–S9. From these figures, we can infer that the highest attention is given to precipitation followed by

evapotranspiration. Furthermore, we also observed that the input of the previous 3–4 days was the most important. This can

be attributed to the higher attention weights during the first 3–4 lookback steps in these figures. We also observed periodic

changes in attention weights for all input variables, which can be attributed to the seasonal variations of input variables.

Several model-agnostic methods have recently been developed to explain black-box machine learning models, such as local 330

independent model explanations (LIME) (Ribeiro et al., 2016) and Shapely Additive Explanations (SHAP) (Lundberg and Lee,

2017). These methods explain the behavior of complex machine-learning models (such as black-box) using a simplified but

interpretable model. However, using these methods in high-stake decision-making has been criticized (Rudin, 2019). The

explanations of these methods can be local or global. A local explanation describes the behavior of the model for a single

example, whereas a global explanation can describe the model’s behavior for all examples. The LIME method is only relevant 335

for local explanations, whereas SHAP also provides explanations for approximating the global importance of a feature.

AI4Water consists of LimeExplainer and ShapExplainer classes to explain its the behavior of machine learning model using

the LIME and SHAP methods respectively.

We built an XGBoost (Chen and Guestrin, 2016) model for the prediction of E. coli in a Laotian catchment (Boithias et al.,

2021). Fig. S10 shows the output of the LimeExplainer class, whereas Fig. S11 shows the output of the ShapExplainer class. 340

In Fig. S10, a large horizontal bar for a given feature indicates that this feature strongly affected the model’s prediction. A

positive value indicate that the given feature caused increase in model’s prediction. On the other hand, the negative value

12

indicate that it caused decrease in model’s prediction. Thus, large negative value for solar radiation in example 41 indicate that

the solar radiation causes large reduction in model’s prediction. Large positive values for water level in examples 42 to 46

indicate that the water level in these cases strongly increased model’s prediction. The numerical values of features along y-345

axis indicate which value of feature was responsible for the aforementioned behaviour. Thus, more precisely, the water level

above 147.8 causes very large increase in model’s prediction. Therefore, we can verify that the E. coli prediction during flood

events are more strongly affected by water level.

The SHAP module provides more detailed explanation about local as well as global importance of input features on model’s

prediction. Fig. S11a and Fig. S11b shows the local explanation summary of model in the form of SHAP value of each input 350

feature for each example (Lundberg et al., 2020). Fig. S11a shows that the examples with large SHAP values of water level

and suspended matter resulted in large E. coli prediction. The 𝑓(𝑥) in Fig. S11a indicate sum of SHAP values of all input

features.model’s prediction. The prediction of machine learning model is equal to sum of f(x) and base value. The base value

is mean of total predictions from model on training data (Lundberg et al., 2018). In our example the base value was 4661.082

MPN100 mL-1. The examples in Fig. S11a are clustered in such a way that examples with similar explanations are grouped 355

together. Fig S11b indicate that the large values of water level and suspended particulate matter results in increase in E. coli.

On the other hand, large values of solar radiation resulted in negative SHAP values. This shows that large solar radiation causes

reduction in E. coli prediction. Fig S11c shows the global importance of input features for E. coli prediction. This global

importance is obtained by calculating mean of SHAP value of a feature for all examples (Lundberg and Lee, 2016). The

explanations from Fig. S11 correlate with our background understanding of E. coli behavior. Several studies have shown that 360

E. coli in surface water is strongly affected by suspended solids, water level and solar radiations (Nakhle et al., 2021; Pandey

and Soupir, 2013).

3.7.3 Performance metrics

Performance metrics are a vital component of the evaluation framework for machine learning (Botchkarev, 2018). There are

two major types of performance metrics related to the evaluation of a model’s forecasting ability. These include scale-365

dependent and scale-independent error metrics. Scale-dependent metrics, such as mean absolute error, provide a good estimate

of a single model’s performance, but they cannot be used across the models because of their scale dependency (Prestwich et

al., 2014). Scale-independent error metrics are more useful when comparing the performance of various models (Hyndman

and Koehler, 2006). However, certain scale-independent error metrics cannot be defined when one or more observed values

are zero, such as percentage errors or relative errors (Hyndman, 2006). The choice of a performance metric to evaluate the 370

model depends on the problem definition and model objectives (Wheatcroft, 2019). AI4Water calculates over 100 regression

metrics and numerous classification metrics to help the user analyze the general characteristics of the forecasts. These

performance metrics are sub-packaged under SeqMetrics in AI4Water. These metrics are calculated automatically for all the

target variables whenever a model is used for prediction using the predict method. The metrics are stored in a json file inside

13

the path of the model (errors.json in Fig. 2). The names of the performance metrics calculated by AI4Water are listed in Table 375

S3. Additionally, several statistical parameters of the predicted variable were calculated and stored in this json file.

4 Loading and saving models in a readable json file

All features of AI4Water can be accomplished using a configuration file. The configuration file (config.json) of AI4Water

consists of a human-readable json file. All the information regarding pre-processing of data, building and training of the model,

predictions, and post-processing of results is written in this file. This file is generated every time a new model is built. One of 380

the advantages of this configuration file is that any user can build and run the models without having to write the code explicitly.

All examples presented in this study can be run using the corresponding configuration files. Fig. 4 shows three examples of

configuration files. Fig. 4a, shows an LSTM-based model built for rainfall-runoff modeling using the CAMELS (Fowler et al.,

2021) dataset. Fig. 4b and c show the usage of the temporal fusion transformer and XGBoost models for the same task. The

user can define commands such asto control the input and output features to use or the training duration for the model. All 385

hyperparameters of the model can also be set using this configuration file.

5. Advanced usage

AI4Water was built using the object-oriented programming (OOP) paradigm. Its core logic was implemented by the Model

class. The use of OOP allows a user to customize any steps of model building, training, or testing by sub-classing the Model

class. This may include the implementation of a custom training loop or a customized loss function. Similarly, the pre-390

processing and data preparation steps implemented in the Model class can also be overwritten for specific usages. For example,

if users want to implement another transformation on the training data, they can subclass the Model class and overwrite the

“training_data” method. Similarly, the user can customize the loss function by overwriting the “loss” method of Model class.

Additionally, AI4Water exposes the underlying machine learning libraries such as TensorFlow and scikit-learn to the user.

Thus, users can directly use these libraries and implement the desired configuration. However, this requires a deeper 395

understanding of the underlying libraries.

6. Test coverage and continuous integration

AI4Water version 1.0 was tested with continuous integration tools with GitHub Actions to ensure that it passes all the written

tests and can be installed on computers. The tests were conducted on Windows and Linux-based operating systems. In addition,

we tested the package on Python versions 3.6, 3.7, and 3.8. The package was also tested with TensorFlow versions 1.15 and 400

above.

14

7. Limitations and scope for expansion

• The current version of AI4Water was designed only for supervised learning problems. However, there has been

growing interest in unsupervised machine learning models, such as generative adversarial networks (GANs) and

reinforcement learning. GANs have been shown to exhibit high performance for time series-related tasks such as 405

filling missing data (Luo et al., 2018) or generating new high-resolution data (Chen et al., 2019). This aspect of GANs

can be useful in water quality modeling, where data collection is costly and missing observations are common.

Reinforcement learning can be applied to optimal policy design in hydrological systems, such as scheduling the

release of water from a dam (Sit et al., 2020).

• Another limitation of AI4Water is its dependence on a large number of third-party libraries. This can be challenging 410

during installation when the interdependencies of libraries conflict with each other. Although we have provided the

exact versions of the third-party libraries, which were used to test the current version of AI4Water, a conflict in future

due to the changes in third-party libraries cannot be guaranteed. As AI4Water is an open-source project, we consider

that such conflicts can be minimized with community inputs.

• AI4Water was designed for the rapid testing and experimentation of deep learning models. However, it should be 415

noted that the current version of the framework is not suitable for the deployment of deep learning models in

production.

• As all the options to use AI4Water are accommodated in a configuration file, this makes it suitable for developing a

graphical user interface (GUI. Adding GUIs will further widen the user-base of AI4Water by being accessible to non-

programmers. 420

8. Conclusion

Modeling hydrological processes by machine learning requires the development of pipelines that encompasses data retrieval,

feature extraction, visualization, building, training, and testing the machine learning model, along with visualization and

interpretation of its results. The AI4Water software introduced in this work was designed to facilitate the development, reuse,

and reproducibility of machine learning models for applications in hydrology. AI4Water was designed to integrate the domain-425

specific aspects of hydrological modeling with the professional level of machine learning and data processing software already

developed and used by the Python community. We demonstrated the applicability of AI4Water with supervised learning

examples related to hydrological modeling. Further development of the package is suggested with new features that may make

AI4Water more versatile. The platform is expected to be practical for a wide range of users interested in hydrological modeling.

15

Code and data availability 430

The AI4Water source code can be found in a publicly available GitHub repository (https://github.com/AtrCheema/AI4Water)

and its version 1.0 is archived at https://zenodo.org/record/4904517. The user manual is built into the source code Docstring

and compiled into a “read the docs” web page (https://ai4water.readthedocs.io/en/latest/) using the MKDocs (Christie, 2014)

software. The Jupyter notebooks replicating the examples described in the manuscript are available in the “examples”

directory. 435

Team list

Ather Abbas

Laurie Boithias

Yakov Pachepsky

Kyunghyun Kim 440

Jong Ahn Chun

Kyung Hwa Cho

Author contribution

Ather Abbas: Conceptualization, code development, writing draft

Laurie Boithias: Review and editing 445

Yakov Pachepsky: Review and editing

Kyunghyun Kim: Review and editing

Jong Ahn Chun: Review and editing, supervision

Kyung Hwa Cho: Conceptualization, Funding acquisition, supervision, review and edition

Competing interests 450

The authors declare that they have no conflict of interest.

Acknowledgement

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education (No. 2017R1D1A1B04033074), and Korea Environment Industry and Technology

16

Institute (KEITI) through the Aquatic Ecosystem Conservation Research Program funded by Korea Ministry of Environment 455

(MOE) (No. 2020003030003). The authors also thank Campus France (PHC STAR 41510WH) for their financial support.

Tables

Table 1. Complete list of third-party Python libraries, which are used by AI4Water. The first half the table enlists those libraries

which are required while the second half consists of those libraries which are optional.

Library Name Version Usage

numpy 1.19.2 array processing

pandas 1.2.4 array processing

matplotlib 3.4.2 visualization

h5py 2.10 storage

plotly 5.0 extended visualization

tensorflow 1.15, 2.1 building layers of neural networks

scikit-learn 0.24.2 building classical machine learning models

xgboost 1.4.2 implementing XGBoost based algorithms

catboost 0.26 implementing CatBoost based algorithms

lightgbm 3.2.1 implementing Light Gradient Boost based algorithms

Pyspark 3.1.2 Building classical machine learning models

tpot 0.11.7 Optimizing machine learning pipeline

imageio 2.9.0 spatial processing of shape files

shapely 1.7.1 spatial processing of shape files

pyshp 0.45 spatial processing of shape files

Scikit-optimize 0.8.1 Hyperparameter optimization using Bayesian

Optuna 2.8.0 Hyperparameter optimization

hyperopt 0.2.5 Hyperparameter optimization

shap 0.39.0 Model-agnostic interpretation

lime 0.2.0.1 Model interpretation

seaborn 0.11.1 visualization

 460

Table 2. Name and attributes of open source datasets included in AI4Water.

Dataset Name
Number of

catchments

Number of

Variables

Number of

Observations
Location

17

CAMELS_AUS 222 23 21184 Australia

CAMELS_BR 593 17 14245 Brazil

CAMELS_CL 516 12 38374 Chile

CAMELS_GB 671 10 16436 Britain

CAMELS_US 877 33 12784 United States of America

LamaH 859 5 12775 Europe

Figures

 465

Figure 1: Conceptual framework of hydrological modeling using AI4Water. AI4Water consists of modules for pre-processing and

post-processing. The names of the modules are written in italic. The pre-processing steps involve collecting data, conducting

exploratory data analysis on data, and generating new features from the data. The core of the model consists of building, training,

and predicting. After this step, the predicted steps are used for visualization, performance comparison, and model interpretation.

 470

18

19

 475

Figure 2: Output directory structure of AI4Water. A “model path” (a) is created upon creation of a new model. An “hpo path” (b)

is created during hyperparameter optimization. An “exp path” (c) is created when several models are compared during an

experiment. The “hpo path” consists of several “model paths” and an “exp path” consists of several “hpo paths”.

20

 480

Figure 3: Framework architecture, sub-modules, classes and third-party libraries used by AI4Water. Each box represents a sub-

module. The names of classes in each sub-module are written along with the corresponding box. The third-party libraries upon

which the sub-module depends, are written inside the box. Empty boxes show that these sub-modules do not depend on a specific

third-party library. The five generic libraries written at the bottom are used in all sub-modules. Arrows represent the caller sub-

module and the sub-module being called. The sub-modules on right hand side are related to pre-processing and post-processing. The 485
Model class interacts with pre-processing and post-processing sub-modules using its methods which are written in green colour.

21

Figure 4: Examples of declarative model definition in a config.json file. a) shows an example of an LSTM-based model using the 490
CAMELS_AUS data (Fowler et al., 2020). b) and c) show contents of configuration file for using temporal fusion transformer (Lim

et al., 2020) and XGBoost (Chen et al., 2018) for rainfall-runoff modeling using CAMELS_AUS data, respectively.

22

 495

Figure 5: Comparison of different transformations of output data on the performance of a neural network on the simulation of in-

stream E. coli concentration (MPN 100 ml) in a watershed in Lao PDR.

23

Figure 6: Example of HRU discretization schemes by combining a): sub-basins and land uses and b) by combining sub-basins and 500
soil types.

24

Figure 7: Discretization of a catchment in Loaos (Boithias et al., 2021) according to the HRU definition of “unique land use in unique

soil”. The catchment consists of three soil types and four land use types. The soil types are Alisol, Luivsol and Leptosol while the
Formatted: Font color: Light Blue

25

land use types are Fallow, Forest, Teak, and Crop. The combination of soil types and land use types results in 12 distinct HRUs. (a) 505
shows annual variation of these 12 land use types while (b)–(e) show the percentage area of HRUs in the catchment in 2011, 2012,

2013, and 2014, respectively.

Figure 8: Comparison of various evapotranspiration methods for the CAMELS_AUS dataset. CAMELS_AUS dataset comes with

Morton method while the remaining three methods are calculated by et sub-module of AI4Water. 510

26

Figure 9: Comparison of four optimization algorithms for optimizing hyperparameters of an LSTM-based model for rainfall-runoff

modeling. GP represents Bayesian with Gaussian Processes while TPE stands for tree of Parzen estimators. Grid and Random stand

for grid search and random search-based optimization, respectively. The x-axis shows the number of function evaluations while min 515
f(x) in the y-axis represents the objective function, which takes x hyperparameters and returns the minimum of validation loss.

27

Figure 10: Hierarchy of model building and comparison in AI4Water. The Model involves building, training, and prediction. The

hyperparameter optimization step iterates over Model until the best hyperparameters are obtained. Experiments are then designed

to compare performance of different model architectures after tuning their hyperparameters. 520

28

Figure 11: An ‘Experiment’ which compares ARG prediction performance at a recreational beach in Korea, using various machine

learning algorithms. The y-axis represents abbreviations of the algorithms. The complete names of algorithms are given in Table

S4. The hyperparameters of each of the algorithm were optimized during the ‘Experiment’.

 525

29

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow:

A system for large-scale machine learning, 12th {USENIX} symposium on operating systems design and implementation 530

({OSDI} 16), 265-283,

Abbas, A., Baek, S., Kim, M., Ligaray, M., Ribolzi, O., Silvera, N., Min, J.-H., Boithias, L., and Cho, K. H.: Surface and sub-

surface flow estimation at high temporal resolution using deep neural networks, Journal of Hydrology, 590, 125370, 2020.

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for

large-sample studies, Hydrology and Earth System Sciences, 21, 5293-5313, 2017. 535

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-generation hyperparameter optimization

framework, Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2623-

2631,

Bergstra, J., Yamins, D., and Cox, D.: Making a science of model search: Hyperparameter optimization in hundreds of

dimensions for vision architectures, International conference on machine learning, 115-123, 540

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for hyper-parameter optimization, Advances in neural

information processing systems, 24, 2011.

Bicknell, B. R., Imhoff, J. C., Kittle Jr, J. L., Donigian Jr, A. S., and Johanson, R. C.: Hydrological simulation program—

FORTRAN user’s manual for version 11, Environmental Protection Agency Report No. EPA/600/R-97/080. US

Environmental Protection Agency, Athens, Ga, 1997. 545

Boithias, L., Auda, Y., Audry, S., Bricquet, J. p., Chanhphengxay, A., Chaplot, V., de Rouw, A., Henry des Tureaux, T., Huon,

S., and Janeau, J. l.: The Multiscale TROPIcal CatchmentS critical zone observatory M‐TROPICS dataset II: land use,

hydrology and sediment production monitoring in Houay Pano, northern Lao PDR, Hydrological Processes, 35, e14126, 2021.

Botchkarev, A.: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties

and typology, arXiv preprint arXiv:1809.03006, 2018. 550

Burns, D. M. and Whyne, C. M.: Seglearn: A python package for learning sequences and time series, The Journal of Machine

Learning Research, 19, 3238-3244, 2018.

Candès, E. J. and Recht, B.: Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9,

717-772, 2009.

Chakraborty, M., Sarkar, S., Mukherjee, A., Shamsudduha, M., Ahmed, K. M., Bhattacharya, A., and Mitra, A.: Modeling 555

regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing

physically-based model with machine learning, Science of The Total Environment, 748, 141107, 2020.

Chen, H., Zhang, X., Liu, Y., and Zeng, Q.: Generative adversarial networks capabilities for super-resolution reconstruction

of weather radar echo images, Atmosphere, 10, 555, 2019.

Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., and Wang, J.: Comparative analysis of 560

surface water quality prediction performance and identification of key water parameters using different machine learning

models based on big data, Water research, 171, 115454, 2020a.

Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining, 785-794, https://doi.org/10.1145/2939672.2939785,

Chen, X., Yang, J., and Sun, L.: A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation, 565

Transportation Research Part C: Emerging Technologies, 117, 102673, 2020b.

Cheng, Y., Li, D., Guo, Z., Jiang, B., Lin, J., Fan, X., Geng, J., Yu, X., Bai, W., and Qu, L.: Dlbooster: Boosting end-to-end

deep learning workflows with offloading data preprocessing pipelines, Proceedings of the 48th International Conference on

Parallel Processing, 1-11,

Chollet, F.: Deep learning with Python, Simon and Schuster2017. 570

https://doi.org/10.1145/2939672.2939785

30

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.: Time series feature extraction on basis of scalable hypothesis tests

(tsfresh–a python package), Neurocomputing, 307, 72-77, 2018.

MkDocs. Project documentation with MarkDown.: https://www.mkdocs.org/, last

Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.: Pastas: open source software for the analysis of

groundwater time series, Groundwater, 57, 877-885, 2019. 575

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J., Lane, R., Lewis, M., and Robinson,

E. L.: CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth

System Science Data, 12, 2459-2483, 2020.

Faouzi, J. and Janati, H.: pyts: A Python Package for Time Series Classification, J. Mach. Learn. Res., 21, 46:41-46:46, 2020.

Ferreira, L. B. and da Cunha, F. F.: New approach to estimate daily reference evapotranspiration based on hourly temperature 580

and relative humidity using machine learning and deep learning, Agricultural Water Management, 234, 106113, 2020.

Fowler, K. J., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: Hydrometeorological time series and

landscape attributes for 222 catchments in Australia, Earth System Science Data, 13, 3847-3867, https://doi.org/10.5194/essd-

13-3847-2021, 2021.

Freund, Y. and Schapire, R. E.: A decision-theoretic generalization of on-line learning and an application to boosting, Journal 585

of computer and system sciences, 55, 119-139, 1997.

Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Annals of statistics, 1189-1232, 2001.

Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Machine learning, 63, 3-42, 2006.

Guo, D., Westra, S., and Maier, H. R.: Impact of evapotranspiration process representation on runoff projections from

conceptual rainfall‐runoff models, Water Resources Research, 53, 435-454, 2017. 590

Hastie, T., Mazumder, R., Lee, J. D., and Zadeh, R.: Matrix completion and low-rank SVD via fast alternating least squares,

The Journal of Machine Learning Research, 16, 3367-3402, 2015.

Head, T., MechCoder, G. L., and Shcherbatyi, I.: scikit-optimize/scikit-optimize: v0. 5.2, Zenodo, 2018.

Ho, T. K.: The random subspace method for constructing decision forests, IEEE transactions on pattern analysis and machine

intelligence, 20, 832-844, 1998. 595

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735-1780, 1997.

Huang, Y., Bárdossy, A., and Zhang, K.: Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data,

Hydrology and Earth System Sciences, 23, 2647-2663, 2019.

Hutter, F., Hoos, H., and Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance, International

conference on machine learning, 754-762, 600

Hyndman, R. J.: Another look at forecast-accuracy metrics for intermittent demand, Foresight: The International Journal of

Applied Forecasting, 4, 43-46, 2006.

Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, International journal of forecasting, 22,

679-688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.

Jang, J., Abbas, A., Kim, M., Shin, J., Kim, Y. M., and Cho, K. H.: Prediction of antibiotic-resistance genes occurrence at a 605

recreational beach with deep learning models, Water Research, 196, 117001, 2021.

Jensen, M. E. and Haise, H. R.: Estimating evapotranspiration from solar radiation, Journal of the Irrigation and Drainage

Division, 89, 15-41, 1963.

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., and Kumar,

V.: Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Transactions on knowledge and 610

data engineering, 29, 2318-2331, 2017.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: Lightgbm: A highly efficient gradient

boosting decision tree, Advances in neural information processing systems, 30, 3146-3154, 2017.

Kim, M., Boithias, L., Cho, K. H., Sengtaheuanghoung, O., and Ribolzi, O.: Modeling the Impact of Land Use Change on

Basin‐scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance, Journal of environmental quality, 47, 1115-615

1122, 2018.

Klingler, C., Schulz, K., and Herrnegger, M.: LamaH| Large-Sample Data for Hydrology and Environmental Sciences for

Central Europe, Earth System Science Data Discussions, 1-46, 2021.

Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.: NeuralHydrology–interpreting LSTMs in

hydrology, in: Explainable AI: Interpreting, explaining and visualizing deep learning, Springer, 347-362, 2019. 620

https://www.mkdocs.org/
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.1016/j.ijforecast.2006.03.001

31

Lange, H. and Sippel, S.: Machine learning applications in hydrology, in: Forest-water interactions, Springer, 233-257, 2020.

Leufen, L. H., Kleinert, F., and Schultz, M. G.: MLAir (v1. 0)–a tool to enable fast and flexible machine learning on air data

time series, Geoscientific model development, 14, 1553-1574, https://doi.org/10.5194/gmd-14-1553-2021, 2021.

Li, W., Kiaghadi, A., and Dawson, C.: High temporal resolution rainfall–runoff modeling using long-short-term-memory

(LSTM) networks, Neural Computing and Applications, 33, 1261-1278, 2021. 625

Liaw, A. and Wiener, M.: Classification and regression by randomForest, R news, 2, 18-22, 2002.

Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., and Király, F. J.: sktime: A unified interface for machine learning

with time series, arXiv preprint arXiv:1909.07872, 2019.

Lundberg, S. and Lee, S.-I.: An unexpected unity among methods for interpreting model predictions, arXiv preprint

arXiv:1611.07478, 2016. 630

Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, Proceedings of the 31st international

conference on neural information processing systems, 4768-4777,

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-

I.: From local explanations to global understanding with explainable AI for trees, Nature machine intelligence, 2, 56-67,

https://doi.org/10.1038/s42256-019-0138-9, 2020. 635

Luo, Y., Cai, X., Zhang, Y., Xu, J., and Yuan, X.: Multivariate time series imputation with generative adversarial networks,

Proceedings of the 32nd International Conference on Neural Information Processing Systems, 1603-1614,

Mazumder, R., Hastie, T., and Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices, The

Journal of Machine Learning Research, 11, 2287-2322, 2010.

McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for high performance and 640

scientific computing, 14, 1-9, 2011.

Molino, P., Dudin, Y., and Miryala, S. S.: Ludwig: a type-based declarative deep learning toolbox, arXiv preprint

arXiv:1909.07930, 2019.

Morton, F. I.: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology,

Journal of hydrology, 66, 1-76, 1983. 645

Moshe, Z., Metzger, A., Elidan, G., Kratzert, F., Nevo, S., and El-Yaniv, R.: Hydronets: Leveraging river structure for

hydrologic modeling, arXiv preprint arXiv:2007.00595, 2020.

Nakhle, P., Ribolzi, O., Boithias, L., Rattanavong, S., Auda, Y., Sayavong, S., Zimmermann, R., Soulileuth, B., Pando, A.,

and Thammahacksa, C.: Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong

basin, Lao PDR, Scientific reports, 11, 1-17, 2021. 650

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation

version 2009, Texas Water Resources Institute, 2011.

Ni, L., Wang, D., Wu, J., Wang, Y., Tao, Y., Zhang, J., and Liu, J.: Streamflow forecasting using extreme gradient boosting

model coupled with Gaussian mixture model, Journal of Hydrology, 586, 124901, 2020.

Nourani, V., Sayyah-Fard, M., Alami, M. T., and Sharghi, E.: Data pre-processing effect on ANN-based prediction intervals 655

construction of the evaporation process at different climate regions in Iran, Journal of Hydrology, 588, 125078, 2020.

Pandey, P. K. and Soupir, M. L.: Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of

flows and sediment characteristics, JAWRA Journal of the American Water Resources Association, 49, 1261-1269,

https://doi.org/10.1038/s41598-017-12853-y, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., and Antiga, L.: 660

Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems, 32,

8026-8037, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and

Dubourg, V.: Scikit-learn: Machine learning in Python, the Journal of machine Learning research, 12, 2825-2830, 2011.

Prestwich, S., Rossi, R., Armagan Tarim, S., and Hnich, B.: Mean-based error measures for intermittent demand forecasting, 665

International Journal of Production Research, 52, 6782-6791, 2014.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.: CatBoost: unbiased boosting with categorical

features, arXiv preprint arXiv:1706.09516, 2017.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G.: A dual-stage attention-based recurrent neural network for

time series prediction, arXiv preprint arXiv:1704.02971, 2017. 670

https://doi.org/10.5194/gmd-14-1553-2021
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s41598-017-12853-y

32

Remesan, R. and Mathew, J.: Hydrological data driven modelling, Springer2016.

Ribeiro, M. T., Singh, S., and Guestrin, C.: " Why should i trust you?" Explaining the predictions of any classifier, Proceedings

of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144,

Rubinsteyn, A. and Feldman, S.: fancyimpute: A Variety of Matrix Completion and Imputation Algorithms Implemented in

Python, Version 0.0, 16, 2016. 675

Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,

Nature Machine Intelligence, 1, 206-215, https://doi.org/10.1038/s42256-019-0048-x, 2019.

Sang, Y.-F.: A review on the applications of wavelet transform in hydrology time series analysis, Atmospheric research, 122,

8-15, 2013.

Sang, Y.-F., Wang, D., Wu, J.-C., Zhu, Q.-P., and Wang, L.: The relation between periods’ identification and noises in 680

hydrologic series data, Journal of Hydrology, 368, 165-177, 2009.

Shahhosseini, M., Hu, G., Huber, I., and Archontoulis, S. V.: Coupling machine learning and crop modeling improves crop

yield prediction in the US Corn Belt, Scientific reports, 11, 1-15, 2021.

Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F.: Machine learning methods for empirical streamflow simulation: a

comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds, Hydrology and Earth System Sciences, 685

20, 2611-2628, 2016.

Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, I.: A comprehensive review of deep learning

applications in hydrology and water resources, Water Science and Technology, 82, 2635-2670, 2020.

Snoek, J., Larochelle, H., and Adams, R. P.: Practical bayesian optimization of machine learning algorithms, Advances in

neural information processing systems, 25, 2012. 690

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., and Kolar,

K.: Tslearn, A Machine Learning Toolkit for Time Series Data, J. Mach. Learn. Res., 21, 1-6, 2020.

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research:

Atmospheres, 106, 7183-7192, 2001.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter 695

optimization of classification algorithms, Proceedings of the 19th ACM SIGKDD international conference on Knowledge

discovery and data mining, 847-855,

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.: Missing

value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525, 2001.

Wang, L., Chen, J., and Marathe, M.: Tdefsi: Theory-guided deep learning-based epidemic forecasting with synthetic 700

information, ACM Transactions on Spatial Algorithms and Systems (TSAS), 6, 1-39, 2020.

Wheatcroft, E.: Interpreting the skill score form of forecast performance metrics, International Journal of Forecasting, 35, 573-

579, 2019.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S., Nykodym, T., Ogilvie, P., and

Parkhe, M.: Accelerating the machine learning lifecycle with MLflow, IEEE Data Eng. Bull., 41, 39-45, 2018. 705

https://doi.org/10.1038/s42256-019-0048-x

