
The manuscript presents a new framework for fast and rapid experimentation to develop data-

driven hydrological models. The manuscript provides an important tool for hydrologic

community to utilize machine learning models without expert knowledge. However, there are

some minor details missing or not clear in the manuscript.

Response: We thank the reviewer for the valuable comments. We have revised the code and

manuscript according to the guidelines of the reviewer. Please find the responses to each of the

reviewer’s comments below. We have updated the code and archived the latest release of the code

at Zenodo at the URL https://zenodo.org/record/5595680. We have updated the documentation of

the code, which is available at https://ai4water.readthedocs.io/en/latest/. The code to reproduce the

figures shown in the manuscript is given in the “examples” folder of the code repository.

Methods section is not easy to follow. It is not clear how the python library is developed, which

dependencies are required, underlying methods and protocols for data transfer, processing and

visualization.

Response: We have added a visual diagram (Fig. 3), which shows the code architecture and the

interaction between the different modules of AI4Water. We have also changed the numbering and

arrangement of the chapters to match the conceptual flowchart shown in Fig. 3. All the sub-

modules are now part of Chapter 3. We have also added details about the dependencies, underlying

methods of data transfer, and technical details of the framework.

Details about dependencies

Lines 124 – 136: The large number of utilities in AI4Water increases the number of underlying

libraries. The Model class is built on top of the Scikit-learn, CatBoost, XGBoost, and LightGBM

libraries to build classical machine learning models. These models have been used in several

hydrological studies (Huang et al., 2019; Ni et al., 2020; Shahhosseini et al., 2021). To build deep

learning models using neural networks, AI4Water uses popular deep learning platforms, such as

TensorFlow (Abadi et al., 2016) and Pytorch. A complete list of the dependencies for AI4Water is

presented in Table 1. It is divided into two parts. The first half shows the minimal requirements

for running the basic utilities, which include building and training the model and making

predictions from it. The second part of Table 1 comprises an exhaustive list of dependencies

required to utilize all the functionalities of AI4Water. However, these utilities are optional and do

not hamper the basic package functionality. Moreover, the modular structure of AI4Water allows

the user to install libraries corresponding to a particular sub-module while ignoring the others,

which are not required. For example, to use the HyperOpt class for hyperparameter optimization,

libraries related to postprocessing are not required. Table 1 also presents the exact version of the

underlying libraries, which were used to test the 1.0 version of AI4Water. AI4Water handles the

version conflicts of the underlying libraries, thereby making it version-independent. This implies

that the user can use any version greater than the version number provided in Table 1.

underlying methods and protocols for data transfer

Lines 228 – 233: The DataHandler class prepares the input data for the machine learning model

and acts as an intermediate between the Model class and other preprocessing classes, such as

Imputation and Transformation classes. The DataHandler can read data from various files as long

as the data are in a tabular format in those files. The complete list of allowed file types and their

accepted file extensions is provided in Table S5. Internally, the DataHandler class stores data as

a pandas DataFrame object, which is a data model of pandas for tabular data (Mckinney, 2011).

DataHandler can also save processed data as an HDF5 file, which can be used to inspect processed

input data.

A visual architecture diagram of all classes and third-party libraries will be helpful.

Response: We have added a figure depicting all the modules along with their available classes and

third-party libraries (Fig. 3). AI4Water comprises several sub-modules, such as eda, preprocessing,

postprocessing, datasets, et, Experiments, and hyperopt. Two types of third-party libraries are

required by AI4Water. The first type of libraries are global, which are used in all the modules.

These include numpy (Harris et al., 2020), matplotlib (Hunter, 2007), pandas (Mckinney, 2011),

h5py (Collette, 2013) and plotly (Sievert, 2020). The second type of libraries are module-specific.

Because these modules perform different tasks, their third-party dependencies are different from

each other. For example, the “hyper_opt” module, which performs hyperparameter optimization,

is reliant on hyperopt (Bergstra et al., 2015), scikit-optimize (Head et al., 2018), and optuna (Akiba

et al., 2019) libraries. Similarly, the experiment module, which is used to compare different

machine learning models, depends on tpot (Olson and Moore, 2016) and auto-keras (Jin et al.,

2019) libraries. We have added a section named “sub-modules and code structure,” which

comprehensively discusses the sub-modules present in AI4Water and their interactions with each

other.

Lines 109 – 123:

Sub-modules and code-structure

The code architecture of AI4Water, that is, its sub-submodules, their available classes, and third-

party libraries are illustrated in Fig. 3. AI4Water comprises 11 sub-modules, among which 10 are

task-based, and one is a general-purpose module named “utils.” These sub-modules can be divided

into two categories. The sub-modules on the left-hand side of Fig. 3 are designed for model

building, hyperparameter optimization, and model comparison, whereas those on the right-hand

side perform pre-processing and post-processing. Each sub-module exposes one or more classes

to the user. For example, the hyper_opt sub-module presents the Real, Categroical, Integer, and

HyperOpt classes. The third-party libraries required for each sub-module were annotated inside

them. There are five “generic” third-party libraries that are required in all sub-modules (lower part

of Fig. 3). The et and utils sub-modules do not require specific third-party libraries and depend

only on generic libraries. The arrows in Fig. 3 indicate interaction between the sub-modules. The

origin of the arrow denotes the caller sub-module, whereas their end points denote the sub-module

that is being called. The Model class interacts with the preprocessing and postprocessing sub-

modules using its functions, the names of which are shown in green in Fig. 3. For example, the

DataHandler class in the preprocessing sub-module was responsible for data preparation. The

Model class interacts with DataHandler using training_data, validation_data, and test_data

methods, which are responsible for fetching training, validation, and test data from the

DataHandler class, respectively.

Figure 3: Framework architecture, sub-modules, classes and third-party libraries used by

AI4Water. Each box represents a sub-module. The names of classes in each sub-module are written

along with the corresponding box. The third-party libraries upon which the sub-module depends,

are written inside the box. Empty boxes show that these sub-modules do not depend on a specific

third-party library. The five generic libraries written at the bottom are used in all sub-modules.

Arrows represent the caller sub-module and the sub-module being called. The sub-modules on

right hand side are related to pre-processing of data and post-processing of results. The Model class

interacts with preprocessing and postprocessing sub-modules using its methods which are written

in green color.

Technical details of data integration and API is not provided in detail.

Response: We have added technical details about the implementation of the Model class and its

interaction with other sub-modules of AI4Water.

Lines 83 – 94: The Model class of AI4Water has two implementations and can have three backends.

The two implementations are “model-subclassing” and “functional.” The backends are either

tensorflow, pytorch, or none. The backends, together with the implementations, determine the

attributes that the Model class will inherit upon its creation. In model-subclassing implementation,

the Model class inherits either from the tensorflow’s Model class or the nn.module of pytorch. This

implementation allows all the attributes from the corresponding backend to be also available from

AI4Water’s Model class. For example, the “count_params” attribute of tensorflow’s Model class

can also be obtained from the AI4Water’s Model class. In functional implementation, the Model

class of AI4Water does not inherit from the parent modules of tensorflow/pytorch. In this case, the

built tensorflow/pytorch model object is exposed to the user as a “_model” attribute of the Model

class. This is similar to tensorflow and pytorch libraries, both of which also have model-subclass

and functional implementations. For models other than tensorflow or pytorch, the Model class does

not have any backend. In these cases, the machine learning models are built using libraries such as

scikit-learn, xgboost, catboost, or lightgbm. The built model object is exposed to the user as

“_model” attribute of the Model class.

A discussion about the interaction of DataHandler and Model class is also added in the revised

manuscript.

Lines 227 – 233: The DataHandler class prepares the input data for the machine learning model

and acts as an intermediate between the Model class and other preprocessing classes such as

Imputation and Transformation classes. The DataHandler can read data from various files as long

as the data are in a tabular format in those files. The complete list of allowed file types and their

accepted file extensions is provided in Table S5. Internally, the DataHandler class stores data as

a pandas DataFrame object, which is a data model of pandas for tabular data (Mckinney, 2011).

DataHandler can also save processed data as an HDF5 file, which can be used to inspect processed

input data.

Table S5. File types and their extensions accepted by AI4Water.

File extension File type

.csv Comma separated file

.xlsx Microsoft Excel

.npz Numpy zipped file

.parquet Parquet

.feather Feather

.nc netCDF5

.mat MATLAB

Which machine learning framework and version is used in the framework? Does system allow

changing or updating the underlying ML library? They are briefly mentioned at the end but they

are the most critical components of the framework.

Response: The inter-dependence of Python libraries is a complex issue and is difficult to resolve

for a novice user. For example, Tensorflow 1.x is compatible with certain versions of a numpy

library, whereas Tensorflow 2.x depends on some other version of the numpy. The same is true

for other third-party libraries. Therefore, we have specified the exact versions with which the

framework was tested. We have also modified the corresponding paragraph to add more details

about this.

Lines 124 – 136: The large number of utilities in AI4Water increases the number of underlying

libraries. The Model class is built on top of the Scikit-learn, CatBoost, XGBoost, and LightGBM

libraries to build classical machine learning models. These models have been used in several

hydrological studies (Huang et al., 2019; Ni et al., 2020; Shahhosseini et al., 2021). To build deep

learning models using neural networks, AI4Water uses popular deep learning platforms, such as

TensorFlow (Abadi et al., 2016) and Pytorch. A complete list of the dependencies for AI4Water is

presented in Table 1. It is divided into two parts. The first half shows the minimal requirements

for running the basic utilities, which include building and training the model and making

predictions from it. The second part of Table 1 comprises an exhaustive list of dependencies

required to utilize all the functionalities of AI4Water. However, these utilities are optional and do

not hamper the basic package functionality. Moreover, the modular structure of AI4Water allows

the user to install libraries corresponding to a particular sub-module while ignoring the others,

which are not required. For example, to use the HyperOpt class for hyperparameter optimization,

libraries related to post-processing are not required. Table 1 also presents the exact version of the

underlying libraries, which were used to test the 1.0 version of AI4Water. AI4Water handles the

version conflicts of the underlying libraries, thereby making it version-independent. This implies

that the user can use any version greater than the version number provided in Table 1.

Table 1. Complete list of third-party Python libraries, which are used by AI4Water. The first

half the table enlists those libraries which are required while the second half consists of those

libraries which are optional.

Library Name Version Usage

numpy 1.19.2 array processing

pandas 1.2.4 array processing

matplotlib 3.4.2 visualization

h5py 2.10 storage

plotly 5.0 extended visualization

tensorflow 1.15, 2.1 building layers of neural networks

scikit-learn 0.24.2 building classical machine learning models

xgboost 1.4.2 implementing XGBoost based algorithms

catboost 0.26 implementing CatBoost based algorithms

lightgbm 3.2.1 implementing Light Gradient Boost based

algorithms

Pyspark 3.1.2 Building classical machine learning models

tpot 0.11.7 Optimizing machine learning pipeline

imageio 2.9.0 spatial processing of shape files

shapely 1.7.1 spatial processing of shape files

pyshp 0.45 spatial processing of shape files

Scikit-optimize 0.8.1 Hyperparameter optimization using Bayesian

Optuna 2.8.0 Hyperparameter optimization

hyperopt 0.2.5 Hyperparameter optimization

shap 0.39.0 Model-agnostic interpretation

lime 0.2.0.1 Model interpretation

seaborn 0.11.1 visualization

How does the framework keep up with updates in third-party libraries and dependencies used in

the framework?

Response: In AI4Water, we tried to remove the conflicts caused by the changes in the versions of

third-party libraries. For example, significant changes were made in tensorflow code from version

1.x to 2.x. However, the user interface for building neural networks in AI4Water remained the

same for both versions. This is because of the declarative model definition allowed in AI4Water.

However, AI4Water cannot resolve issues that result from the changes in the requirements of third-

party libraries. For example, the scikit-optimize library, which implements a Bayesian

optimization algorithm, depends on a specific version of the scikit-learn library. This inter-

dependency of the third-party libraries is difficult to predict. Similarly, different versions of

tensorflow are dependent on different versions of numpy, which can be a major challenge for the

user; therefore, we have mentioned the exact versions of all third-party libraries with which this

framework has been tested. As this is an open source framework, we expect that future conflicts

arising from the dependencies of third-party libraries can also be resolved. We have added the

following lines in Chapter 7: Limitations and scope for expansion of the manuscript to highlight

this challenge.

Lines 403 - 408: Another limitation of AI4Water is its dependence on a large number of third-

party libraries. This can be challenging during installation when the interdependencies of libraries

conflict each other. Although we have provided the exact versions of the third-party libraries,

which were used to test the current version of AI4Water, a conflict in future due to the changes in

third-party libraries cannot be guaranteed. As AI4Water is an open-source project, we consider

that such conflicts can be minimized with community inputs.

Does the library allow adding new data transformation, resampling, imputation or other

functions?

Response: We used the object-oriented programming (OOP) paradigm to build this library. This

paradigm allows the customization of any functionality of the Model class. The Model class

interacts with the DataHandler class using training_data, validation_data, and test_data methods.

Thus, if the users want to implement a custom transformation on the training data, they can

subclassify the Model class and overwrite the training_data function. We have added code

examples for implementing custom transformation, customizing the training loop of neural

networks, and customizing the loss function. These examples are available as ipython notebooks

in the example folder of the code repository. We have also added details regarding this in the

manuscript.

Lines 384 - 386: For example, if users want to implement another transformation on the training

data, they can subclass the Model class and overwrite the “training_data” method. Similarly, the

user can customize the loss function by overwriting the “loss” method of Model class.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and
Isard, M.: Tensorflow: A system for large-scale machine learning, 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 265-283,
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-generation hyperparameter
optimization framework, Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2623-2631,
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D.: Hyperopt: a python library for model
selection and hyperparameter optimization, Computational Science & Discovery, 8, 014008, 2015.
Collette, A.: Python and HDF5: unlocking scientific data, " O'Reilly Media, Inc."2013.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., and Smith, N. J.: Array programming with NumPy, Nature, 585, 357-362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.
Head, T., MechCoder, G. L., and Shcherbatyi, I.: scikit-optimize/scikit-optimize: v0. 5.2, Zenodo, 2018.
Huang, Y., Bárdossy, A., and Zhang, K.: Sensitivity of hydrological models to temporal and spatial
resolutions of rainfall data, Hydrology and Earth System Sciences, 23, 2647-2663, 2019.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing in science & engineering, 9, 90-95,
2007.
Jin, H., Song, Q., and Hu, X.: Auto-keras: An efficient neural architecture search system, Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1946-1956,
McKinney, W.: pandas: a foundational Python library for data analysis and statistics, Python for high
performance and scientific computing, 14, 1-9, 2011.
Ni, L., Wang, D., Wu, J., Wang, Y., Tao, Y., Zhang, J., and Liu, J.: Streamflow forecasting using extreme
gradient boosting model coupled with Gaussian mixture model, Journal of Hydrology, 586, 124901,
2020.
Olson, R. S. and Moore, J. H.: TPOT: A tree-based pipeline optimization tool for automating machine
learning, Workshop on automatic machine learning, 66-74,
Shahhosseini, M., Hu, G., Huber, I., and Archontoulis, S. V.: Coupling machine learning and crop
modeling improves crop yield prediction in the US Corn Belt, Scientific reports, 11, 1-15, 2021.
Sievert, C.: Interactive web-based data visualization with R, plotly, and shiny, CRC Press2020.

https://doi.org/10.1038/s41586-020-2649-2

