
The manuscript describes the new python package AI4Water, intended as a modelling tool for 

hydrological predictions. It incorporates the basic steps of data-driven analysis and modelling - 

preprocessing, choosing one or several modelling approaches, post-processing including error 

analysis and visualization - and makes extensive use of existing python libraries. The focus is 

strongly on machine learning approaches and the package embraces many of the currently 

discussed and newly developed algorithms.  

 

The paper is easy to read and, while surely leaving many details out and thus not a manual for 

the ambitious user, summarizes the fundamental steps in the modelling process in a concise 

manner. The authors do not develop their own routines or approaches, but the collection of state-

of-the-art modelling utilities and approaches is impressive. 

Response: We thank the reviewer for their valuable comments and suggestions. Your suggestions 

have substantially improved the quality of the manuscript. Our point-by-point responses to the 

reviewers’ comments are provided below. We have updated the code and archived its latest release 

at Zenodo (https://zenodo.org/record/5595680). We have updated the documentation of the code 

that is available at https://ai4water.readthedocs.io/en/latest/. The code to reproduce figures shown 

in the manuscript is given in the “examples/paper” folder in the code repository. 

 

it would be nice if the authors could address three major issues relevant for anybody intending to 

analyze their own data: 



Response: We have revised the manuscript. Accordingly, the code of AI4Water has been 

assigned to it so that others can analyze their own data using this package. Please find the 

detailed responses below each comment. 

 

1. It is not obvious how users might get their own data (time series) into the package. The access 

to two existing databases is implemented, CAMELS and LamaH, and the authors rightly remark 

that the different data formats, conventions etc. are an obstacle slowing down the analysis 

process. How generic are the input options to accomodate own data in different formats (text of 

Excel files, spatially extended time series in netcdf files, and the like)? 

Response: AI4Water contains a DataHandler class that pre-processes the input data and prepares 

the training, validation, and test data. This class can read data from various files as long as the data 

are in the correct format in those files. AI4Water is designed for tabular data; therefore, 

DataHandler expects the data to be in tabular form in a given file. For example, in a csv or excel 

file, if the data are arranged in a tabular form, one column represents one input or output feature, 

and each row indicates one example. In this case, the DataHandler class reads data from the given 

file. However, the user must specify the names of the input and output features, which must 

correspond to the names of columns in the files. Internally, DataHandler reads the input file and 

converts it into a pandas’ DataFrame object. A DataFrame object is a data model of pandas for 

tabular data (Mckinney, 2011). DataHandler can read tabular data from the most commonly used 

file systems, such as a comma separated file (.csv), Microsoft Excel (.xlsx), network common data 

form (netCDF), feather, parquet (Vohra, 2016), npz, and mat files. If the given file is in netCDF 

format, it is read using the xarray package (Hoyer and Hamman, 2017) and then converted into 



pandas DataFrame. We have added an ipython notebook named “input_data_file_types.ipynb” to 

demonstrate this. This notebook shows how users can bring data from .csv, .xlsx, and netcdf files 

into the model using DataHandler. The DataHandler can save the processed data into an HDF5 

file, which can be used by the user for inspection. The processed data comprise training, validation, 

and test data. In reference to this, we have added the following lines to the manuscript.  

Lines 228 - 233: The DataHandler class prepares the input data for the machine learning model 

and acts as an intermediate between the Model class and other preprocessing classes such as 

Imputation and Transformation classes. The DataHandler can read data from various files as long 

as the data are in a tabular format in those files. The complete list of allowed file types and their 

accepted file extensions is provided in Table S5. Internally, the DataHandler class stores data as 

a pandas DataFrame object, which is a data model of pandas for tabular data (Mckinney, 2011). 

DataHandler can also save processed data as an HDF5 file, which can be used to inspect the 

processed input data. 

 

Table S5. File types and their extensions accepted by AI4Water. 

File extension File type 

.csv Comma separated file 

.xlsx Microsoft Excel 

.npz Numpy zipped file 

.parquet Parquet 

.feather Feather 

.nc netCDF5 

.mat MATLAB 

 



2. Expandibility: it might well be that for the specific data at hand or the particular user, other 

methods then the ones already provided might be desirable. An example would be gap-filling, 

but also others. The part of the manuscript describing that (chapter 3) is very vague and general, 

please be more specific.     

Response: We agree with the reviewer that the ability to customize a certain functionality will be 

advantageous to the user. Therefore, we used the object-oriented programming (OOP) paradigm 

for writing the code of AI4Water. This paradigm makes it easier to expand or enhance a specific 

functionality of AI4Water, such as customizing the training loop and loss function, or adding an 

extra pre-processing step to the input data before feeding it to the model. We have also provided 

examples of codes that customize the loss function, training step, and training loop. These 

notebooks are available under the examples/paper folder in the code repository. We have added 

these details in the manuscript in the following lines. 

Lines 381 - 386: AI4Water was built using the object-oriented programming (OOP) paradigm. Its 

core logic was implemented by the Model class. The use of OOP allows a user to customize any 

steps of model building, training, or testing by sub-classing the Model class. This may include the 

implementation of a custom training loop or a customized loss function. Similarly, the pre-

processing and data preparation steps implemented in the Model class can also be overwritten for 

specific usages.  For example, if users want to implement another transformation on the training 

data, they can subclass the Model class and overwrite the “training_data” method. Similarly, the 

user can customize the loss function by overwriting the “loss” method of Model class. 

3. Interpretation: it would be wonderful if the package could produce a comprehensive 

interpretation of the results achieved with the chosen model approaches. Interpretation also 



implies making connections to existing hydrologcal knowledge (process understanding) as well 

as local conditions (metadata) available for the site, its pecularities. However, in this context, 

interpretation is merely a visualization of the model architecture (e.g. the weights in the case of 

NNs).  A more modest phrasing, e.g. "Model Visualization" instead of "Interpret" as the class 

name, seems to be more appropriate.   

Response: We have added a separate sub-module named “visualize” to view the model. This sub-

module exposes a class named Visualize to the user. This class plots the decision tree learned by 

the tree-based machine learning model. For neural network-based deep learning models, this class 

can plot the outputs of intermediate layers, weights, gradients of layer outputs, and gradients of 

weights. This sub-module is separate from the “Interpret” and “Explain” sub-modules. The 

Interpret sub-module is used to interpret the behavior of attention-based deep learning models, 

such as DA-LSTM (Qin et al., 2017) or temporal fusion transformers (Lim et al., 2021). The 

purpose of “Explain” sub-module is to explain the output of the machine learning model by 

considering it as black-box. This sub-module comprises two classes: ShapExplainer and 

LimeExplainer, which explain the model using the SHAP (Lundberg and Lee, 2017) and LIME 

(Ribeiro et al., 2016) methods, respectively. All of these sub-modules are part of the 

postprocessing sub-module of AI4water. We have added figures (S2–S5) using the Visualize sub-

module of an LSTM model, which show the outputs and weights of LSTM along with the gradients 

of LSTM outputs and gradients of weights of LSTM. We have added separate sub-sections about 

interpretability (2.10.1) and visualization (2.10.2) in the manuscript. 

Lines 298 - 305: The “visualize” sub-module, consisting of a Visualize class, is used to examine 

inside the machine learning model. When the model comprises several layers of neural networks, 



this class plots the outputs of the intermediate layers, gradients of these outputs, weights and biases 

of intermediate layers, and gradients of these weights. Thus, this class helps to visualize the 

working of neural networks and can be used to plot the decision tree learned by the tree-based 

machine learning model. We demonstrate the use of this class by building a four-layer neural 

network to predict streamflow using the CAMELS dataset (Fowler et al., 2021). The four-layered 

neural network comprises an input layer, two layers of LSTM, and one output layer (Fig. S1). 

Figures S2–S5 show the outputs of the first LSTM layer and its gradients along with the weights 

of the first LSTM layer, and the gradients of those weights. 



 

 

 

Figure S1: Architecture of a four-layer neural network used for prediction of streamflow at catchment number 224206 of CAMELS-AUS. Seven climate 

variables were used and 12 days of historical data was used for training the model. A) The model consisted of 2 LSTM layers followed by a Dense layer as 

output layer. The output was finally reshaped into 3d array. B) Training and validation loss curves during model training. The model was trained for 700 

epochs. 



 

Figure S2: Output of first LSTM for 24 days. The model consisted of two LSTM layers with 32 units for each 

LSTM. The lookback steps indicate the number of historical days used by the model to predict value for next day. 

The titles for each subplot indicate Julian day for the year 2000. 

 

 



 

 

Figure S3: Gradients of outputs of first LSTM for 24 days. The model consisted of two LSTM layers with 32 units 

for each LSTM. The lookback steps indicate the number of historical days used by the model to predict value for 

next day. The titles for each subplot indicate Julian day for the year 2000. 

 



 

Figure S4: Weight matrices of LSTM layer. The LSTM layer consists of two weight matrices. The portion of weight matrices responsible for input gate, 

forget gate, output gate and cell state are highlighted by lack lines. 



 

 

Figure S5: Gradients of weight matrices of LSTM layer. The LSTM layer consists of two weight matrices. The portion of weight matrices responsible for input 

gate, forget gate, output gate and cell state are highlighted by lack lines. 



Lines 327 – 355: Several model-agnostic methods have recently been developed to explain black-

box machine learning models, such as local independent model explanations (LIME) (Ribeiro et 

al., 2016) and Shapely Additive Explanations (SHAP) (Lundberg and Lee, 2017). These methods 

explain the behavior of complex machine-learning models (such as black-box) using a simplified 

but interpretable model. However, using these methods in high-stake decision-making has been 

criticized (Rudin, 2019). The explanations of these methods can be local or global. A local 

explanation describes the behavior of the model for a single example, whereas a global explanation 

can describe the model’s behavior for all examples. The LIME method is only relevant for local 

explanations, whereas SHAP also provides explanations for approximating the global importance 

of a feature. AI4Water consists of LimeExplainer and ShapExplainer classes to explain its behavior 

using the LIME and SHAP methods.  

We built an XGBoost (Chen and Guestrin, 2016) model for the prediction of E. coli in a Laotian 

catchment (Boithias et al., 2021). Fig. S10 shows the output of the LimeExplainer class, whereas 

Fig. S11 shows the output of the ShapExplainer class. In Fig. S10, a large horizontal bar for a 

given feature indicate that this feature strongly affected the model’s prediction. A positive value 

indicate that the given feature caused increase in model’s prediction. On the other hand, the 

negative value indicate that it caused decrease in model’s prediction. Thus, large negative value 

for solar radiation in example 41 indicate that the solar radiation causes large reduction in model’s 

prediction. Large positive values for water level in examples 42 to 46 indicate that the water level 

in these cases strongly increased model’s prediction. The numerical values of features along y-

axis indicate which value of feature was responsible for the aforementioned behaviour. Thus, more 

precisely, the water level above 147.8 causes very large increase in model’s prediction. Therefore, 



we can verify that the E. coli prediction during flood events are more strongly affected by water 

level. 

The SHAP module provides more detailed explanation about local as well as global importance of 

input features on model’s prediction. Fig. S11a and Fig. S11b show the local explanation summary 

of model in the form of SHAP of each input feature for each example (Lundberg et al., 2020). Fig. 

S11a shows that the examples with large SHAP values of water level and suspended matter 

resulted in large E. coli prediction. The 𝑓(𝑥)  in Fig. S11a indicate model’s prediction. The 

examples in Fig. S11a are clustered in such a way that examples with similar explanations are 

grouped together. Fig S11b indicate that the large values of water level and suspended particulate 

matter results in increase in E. coli. On the other, large values of solar radiation resulted in negative 

SHAP values. This shows that large solar radiation causes reduction in E. coli prediction. Fig S11c 

shows the global importance of input features for E. coli prediction. This global importance is 

obtained by calculating mean of SHAP value of a feature for all examples (Lundberg and Lee, 

2016). The explanations from Fig. S11 correlate with our background understanding of E. coli 

behavior. Several studies have shown that E. coli in surface water is strongly affected by suspended 

solids, water level and solar radiations (Nakhle et al., 2021; Pandey and Soupir, 2013).  

 

 



 

 

Figure S10. Explanation of XGBoost model for E. coli prediction using LIME method for six 

selected examples from test data. The explanations show the importance for each input feature 

by the model. 



 

Figure S11. Explanation of XGBoost model for E. coli prediction using SHAP method. The 

explanations show the importance for each input feature by the model. (a) SHAP values as 



heatmap (b) SHAP values for individual examples in test data, (c) global feature importance 

based upon SHAP values. 

 

 

 

 

The language quality is good to very good with very few typos etc.  Some specific comments and 

corrections: 

Response: Please find the responses to the specific comments attached below. 

 

l. 78: "time series errors": do you rather mean performance measures rather than errors? 

Response: Yes, we have replaced the word, “errors” with “performance metrics” 

Lines 78-79: The SeqMetrics sub-module calculates several time-series performance metrics for 

regression and classification problems. 

 

l. 112:  "Fig. 3 shows examples of the three configuration files" -> "Fig. 3 shows three examples 

for configuration files" 

Response: We have corrected the sentence. 

Lines 375 - 375: Fig. 4 shows three examples of configuration files. 

 



l. 118: "obtain large and diverse data"  - no, this cannot be guaranteed, and the hope is that 

modelling is also possible when there is only a limited amount of data from a given catchment, 

as is often the case! 

Response: As suggested by the reviewer, we have removed the term “large and diverse” from 

the sentence. 

Line 138: The first step in building a data-driven hydrological model is to obtain the data. 

l. 139: what is the difference between "scaling" and "transforming the data onto a different 

scale" ? 

Response: We agree that the terms “scaling” and “transforming the data onto a different scale’” 

are similar. Therefore, we have removed the word “scaling” from this sentence. 

Line 159: Data transformation includes standardizing and transforming the data onto a different 

scale. 

 

l. 142: EMD is a decomposition, not a transformation method, much like PCA. Of course, using 

IMFs as input rather than the original variables does change the model setup and has an impact 

on performance etc. as is correctly stated further down. 

Response: We have modified the sentence to highlight that EMD is a decomposition method. 

Lines 161-163: Additionally, several decomposition methods such as empirical mode 

transformation (EMD), ensemble EMD (EEMD), wavelet transform (Sang, 2013), and fast 



Fourier transform (Sang et al., 2009) were found to improve the performance of hydrological 

models. 

 

l. 146  "were" -> "are" 

Response: We have replaced the word “were” with “are”. 

Line 162: The predicted features are transformed back after the prediction. 

 

l. 153 "(McKinney, 2011) scikit" -> "(McKinney, 2011), 2) scikit" 

Response: We have corrected the sentence. 

Lines 172 - 173: These include using either the 1) pandas library (Mckinney, 2011), 2) scikit-

learn library-based methods, or 3) dedicated algorithms to fill the missing input data. 

 

ch. 2.4 Missing labels: it should be mentioned that this refers to a classification task only, not to 

regression.  

Response: We apologize for the confusion in this section. The absence of target data is common 

in regression tasks. AI4Water can handle these situations for both regression and classification 

problems. 

 



Also, what is the difference between "exclude examples" (l. 170) and "skip these examples" (l. 

173)?  

Response: The words “exclude” and “skip” mean the same in these lines. Thus, we now use only 

the term “exclude”. 

Lines 192-194: However, the user can also opt to exclude these examples, although this can 

reduce the number of examples in water quality problems where the number of samples is 

already very small. 

 

l. 179  "later" -> "latter" 

Response: We have replaced “later” with “latter.” 

Line 199: The latter can be achieved by setting the “input_steps” argument to a value >1. 

 

l. 198 "time series weather data" -> "time series of weather data" 

Response: We have replaced “time-series weather data” with “time-series of weather data.” 

Line 217-218: AI4Water contains a sub-module MakeHRUs, which helps in distributing the 

time-series of weather data into HRUs using different HRU definitions. 

 

l. 205 how does the user provide HRUs / soil types, land use classes etc. ? Through shapefiles if 

available? 



Response: Yes, the module requires shapefiles of soil types, land use classes, slope, and sub-

basins to make the HRUs according to a given definition. We have also specified this in the 

manuscript. 

Line 225 - 226: The MakeHRUs sub-module requires shapefiles of land use, soil and slope to 

make the HRU according to a given definition. 

 

l. 212 "large" -> "many" 

Response: We have replaced the word “large” with “many.” 

Line 238 - 239: These include complex methods such as Penman–Monteith (Allen et al., 1998), 

which require many input variables. 

 

l. 272 "all possible results" -> "many different results" 

Response: We have corrected the sentence.  

Line 311-312: The Interpret class takes the trained model of AI4Water as input and plots 

numerous results, which help to explain the behavior of the model. 

l. 294 "cannot be defined" -  why not? 

Response: We have mentioned that scale-independent error metrics cannot be defined for some 

cases. This is true for percentage errors, such as mean absolute percentage error (MAPE), where 

one or more values in the observed array can be equal to zero. In such cases, the MAPE calculation 

yields infinity as result. For cases where one or more values are close to zero, the calculated MAPE 



values are extremely skewed. This has been emphasized in the literature, such as Hyndman (2006) 

and Prestwich et al. (2014). We have elaborated this in the manuscript as well. 

Line 362-363: However, certain scale-independent error metrics cannot be defined when one or 

more observed values are zero, such as percentage errors or relative errors (Hyndman, 2006).  

l. 335 delete the first occurence of "training" in this line 

Response: We have deleted the first occurrence of ‘training.’  

Lines 415 - 417: Modeling hydrological processes by machine learning requires the development 

of pipelines that encompasses data retrieval, feature extraction, visualization, building, training, 

and testing the machine learning model, along with visualization and interpretation of its results 

 

l. 346 Christine, 2014 does not seem to be in the reference list 

Response: We have corrected this and added a reference for MKDocs in the reference list.  

Lines 425-426: The user manual is built into the source code Docstring and compiled into a 

“read the docs” web page (https://ai4water.readthedocs.io/en/latest/) using the MKDocs 

(Christie, 2014) software. 

If these comments are taken into account by the authors, the paper should be published by GMD. 
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