Dear editor,
After detailed proofreading, I noticed some discrepancies and incompleteness of the following formulas. I would kindly like to ask you to review the proposed modifications and assess whether it would be possible to implement them in the paper.

Eq. 3 on page 7, line 11 is missing a minus sign. This equation expresses the exponential decay function. In case the minus sign is neglected, the correlation would be exponentially increasing instead of decreasing. The correct formula is:

$$
c\left(x, x^{\prime}\right)=\exp \left\{-\sum_{i=1}^{p}\left(\frac{d_{i}}{\delta_{i}}\right)^{2}\right\}+v I_{x=x}
$$

Connected to this equation, I would like to add a phrase (in bold) what I is on page 6 , line 26 , behind the sentence: "The squared exponential correlation function is chosen with the inclusion of the so-called nugget and correlation length hyperparameters (Eq. 3)." "I is an operator that equals 1 when $x=x$ ' and equals 0 in all other cases. d_{i} is the distance between x and x '."

Formulas 4 and 5 need some extra explanation because not all variables were declared. Could this be added after formula (5) on page 7 line 5 :
"Where $\hat{\beta}=\left(\mathbf{H}^{\mathbf{T}} \mathbf{A}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathbf{T}} \mathbf{A}^{-1} \mathbf{y} . \mathbf{y}$ is the model output, defined by the normal distribution N $\sim\left(\mathbf{H} \boldsymbol{\beta}, \sigma^{2} \mathbf{A}\right)$, with $\mathbf{A i j}=\mathbf{c}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$, and \mathbf{H} the design point regression matrix. $\boldsymbol{t}\left(\boldsymbol{x}_{i}\right)=\mathbf{c}\left(\mathbf{x}, \mathbf{x}_{\mathbf{i}}\right)$ and $\boldsymbol{P}(\boldsymbol{x})=\boldsymbol{h}(\boldsymbol{x})^{\mathrm{T}}-\boldsymbol{t}(\boldsymbol{x})^{\mathrm{T}} \mathrm{A}^{-1} \mathbf{H}^{"}$

Formulas 6-8 (page 14, line 91-93) have the wrong sign for "given that". Could this be changed to:
$m\left(x_{i}\right) \left\lvert\, T_{i-1}=m\left(x_{i}\right)+\frac{V\left(x_{i}, x_{i-1}\right)}{V\left(x_{i-1}, x_{i-1}\right)}\left(T_{i-1}-m\left(x_{i-1}\right)\right)\right.$,
$\sigma^{2}\left(x_{i}\right) \left\lvert\, T_{i-1}=V\left(x_{i}, x_{i}\right)\left(1-\left(\frac{V\left(x_{i}, x_{i-1}\right)^{2}}{V\left(x_{i}, x_{i}\right) \mid\left(x_{i-1}, x_{i-1}\right)}\right)\right)\right.$,
$T_{i} \sim N\left(m\left(x_{i}\right)\left|T_{i-1}, \sigma^{2}\left(x_{i}\right)\right| T_{i-1}\right)$,

