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Abstract 17 

The Comprehensive Automobile Research System (CARS) is an open-source python-based 18 

automobile emissions inventory model designed to efficiently estimate high quality emissions 19 

from motor-vehicle emission sources. It can estimate the criteria air pollutants, greenhouse gases, 20 

and air toxins in any spatial resolution based on the spatiotemporal resolutions of input datasets. 21 

The CARS is designed to utilize local vehicle activity data, such as vehicle travel distance, road 22 

link-level network Geographic Information System (GIS) information, and vehicle-specific 23 

average speed by road type, to generate an automobile emissions inventory for policymakers, 24 

stakeholders, and the air quality modeling community. The CARS model adopted the European 25 

Environment Agency’s (EEA) onroad automobile emissions calculation methodologies to estimate 26 

the hot exhaust, cold start, and evaporative emissions from onroad automobile sources. It can 27 

optionally utilize average speed distribution (ASD) of all road types to reflect more realistic 28 

vehicle speed variations. Also, through utilizing high-resolution road GIS data, the CARS can 29 

estimate the road link-level emissions to improve the inventory's spatial resolution. When we 30 

compared the official 2015 national mobile emissions from Korea’s Clean Air Policy Support 31 

System (CAPSS) against the ones estimated by the CARS, there is a significant  increase in volatile 32 
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organic compounds (VOCs) (33%) and carbon monoxide (CO) (52%) measured, with a slight 33 

increase in fine particulate matter (PM2.5) (15%) emissions. Nitrogen oxides (NOx) and sulfur 34 

oxides (SOx) measurements are reduced by 24% and 17% respectively in the CARS estimates. 35 

The main differences are driven by different vehicle activities and the incorporation of road-36 

specific ASD, which plays a critical role in hot exhaust emission estimates but wasn’t implemented 37 

in Korea’s CAPSS mobile emissions inventory. While 52% of vehicles use gasoline fuel and 35% 38 

use diesel, gasoline vehicles only contribute 7.7% of total NOx emissions while diesel vehicles 39 

contribute 85.3%. But for VOC emissions, gasoline vehicles contribute 52.1% while diesel 40 

vehicles are limited to 23%. Diesel buses comprise of only 0.3% of vehicles and has the largest 41 

contribution to NOx emissions (8.51% of NOx total) per vehicle due to having longest daily vehicle 42 

kilometer travel (VKT). For VOC emissions, Compressed Natural Gas (CNG) buses are the largest 43 

contributor at 19.5% of total VOC emissions. For primary PM2.5, more than 98.5% is from diesel 44 

vehicles. The CARS model's in-depth analysis feature can assist government policymakers and 45 

stakeholders in developing the best emission abatement strategies.  46 

Keywords: inventory: automobile, vehicle emissions, hot exhaust, cold start, evaporative, python 47 

1 Introduction 48 

Globally, ambient pollution causes more than 4.2 million premature deaths every year 49 

(Cohen et al., 2017), and Burnett et al. (2018) estimated the health burden is closer to 9 million 50 

deaths from ambient PM concentrations. To effectively mitigate air pollutants, governments have 51 

been implementing stringent air pollution control policies to reduce harmful regional air pollutants 52 

(Hogrefe et al., 2001a; Hogrefe et al., 2001b; Dennis et al., 2010; Rao et al., 2011; Appel et al., 53 

2013; Luo et al., 2019). The chemical transport model (CTM) simulation results strongly rely on 54 

precise input data, such as emission inventory, meteorology, land surface parameters, and chemical 55 

mechanisms in the atmosphere.  56 

The transportation sector is one of the major anthropogenic emissions in urban areas. The 57 

tailpipe emissions from the vehicle’s combustion process contain many air pollutants, including 58 

nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), ammonia 59 

(NH3), sulfur dioxide (SO2), and primary particulate matter (PM) which participates in the 60 

formation of detrimental secondary pollutants like ozone and PM2.5 in the atmosphere. In the Seoul 61 

Metropolitan Area (SMA) in South Korea, transportation automobile sources contribute the most 62 

to the total NOX and primary PM2.5 emissions across all emission sources (Choi et al., 2014; Kim 63 

et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). Thus, it is critical to understand and better 64 

represent the emission patterns from transportation automobile sources in the CTM model. The 65 

use of process-based automobile emission models is highly recommended to meet the needs in 66 
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CTM model because it can estimate high resolution spatiotemporal automobile emissions 67 

(Moussiopoulos et al., 2009; Russell and Dennis, 2000). 68 

There are two methodologies known in emission inventory development: top-down and 69 

bottom-up. The choice of methods is determined by the input data availability. The top-down 70 

approach primarily relies on the aggregated and generalized country or regional information, and 71 

is typically used in developing countries where only limited datasets and information are available. 72 

It has its limitations on representing the vehicle emission process realistically due to the lack of 73 

detailed activity and ancillary supporting data. However, the bottom-up approach requires higher 74 

quality spatiotemporal activity datasets like road network information, vehicle composition 75 

(vehicle type, engine size, vehicle age, and fuel-technology), pollutant-specific emissions factors, 76 

road segment length, traffic activity data, and fuel consumption (EEA, 2019; Ibarra-Espinosa et 77 

al., 2018b; IEMA, 2017). It can generate more accurate and detailed automobile emissions across 78 

various operating processes, such as hot exhaust, evaporative, idling, and hot soak (Nagpure et al., 79 

2016; Ibarra-Espinosa et al., 2018a). 80 

There are several bottom-up mobile emissions models available, like MOVES (MOtor 81 

Vehicle Emissions Simulator) from the U.S. Environmental Protection Agency (USEPA), the 82 

European Environment Agency’s (EEA) model COPERT (COmputer Programmed to calculate 83 

Emissions from Road Transport), the HERMES (High-Elective Resolution Modelling Emission 84 

System) from Barcelona Supercomputing Center (Guevara et al., 2019), the VEIN (Vehicular 85 

Emissions INventory) model developed by Ibarra-Espinosa et al. (2017), and the VAPI (Vehicular 86 

Air Pollution Inventory) model developed by Nagpure and Gurjar (2012) for India (Nagpure et al., 87 

2016). While these models are all bottom-up emission inventory models, a single model cannot 88 

meet all modelers, policymakers, and stakeholders' needs because each model holds its own pros 89 

and cons. They are developed differently to meet specific user needs based on the types of traffic 90 

activity and emission factors, emission calculation methodologies, and other traffic related inputs 91 

such as average speed distribution and geographical resolution. Each model is developed with 92 

different levels of specificity, underlying data sets, and modeling assumptions. 93 

The MOVES model has the ability to generate high quality emissions for up to 16 different 94 

emission processes (i.e., Running Exhaust, Start Exhaust, Evaporative, Refueling, Extended Idling, 95 

Brake, Tire, etc.). It can simulate not only county-level but also road segment level emissions 96 

depending on data availability. It can also reflect local meteorological conditions, such as ambient 97 

temperature and relative humidity, which can significantly impact both pollutants and emissions 98 

processes (Choi et al., 2017; Perugu et al., 2018). One major disadvantage of this model is that it 99 

is difficult to update and apply to countries outside of the U.S. because it has a high degree of 100 

specificity. The COPERT model, widely used in European countries,  can model emissions in high 101 

resolution, is fully integrated with the EEA’s onroad vehicle emissions factors guidelines, and can 102 

generate a complete quality assurance (QA) and visualization summary (Ntziachristos et al., 2009). 103 

The cons are that it is a proprietary commercial licensed software, limited to EEA guidance, and 104 
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challenging to modify and update with any key input datasets like the latest emission factors from 105 

non-European countries (Lejri et al., 2018; Rey DR, 2021; Li et al., 2019; Lv et al., 2019; Smit et 106 

al., 2019). 107 

The HERMES and VEIN are both recently released bottom-up inventory models. They 108 

have their pros in that they are both open-source models based on open-source computing 109 

languages (Python and R), which provide transparency of the emission calculations with a 110 

considerable amount of data behind them (Ibarra-Espinosa et al., 2018b; Guevara et al., 2019). 111 

Both models are driven by comma-separated value (CSV) formatted input files, making it very 112 

easy for users to modify the input datasets. They are also based on the EEA’s emission calculation 113 

method and equipped with a complete QA and visualization tool based on Python and R libraries. 114 

However, it is not an easy task to develop the emission factors, and other required input datasets 115 

for other countries and implement any control strategy plan feature to generate a responsive 116 

reduced emissions inventory.  117 

Overall, there are multiple shortcomings in incorporating these bottom-up models into 118 

CTM studies. They require strong programming skills to operate, such as collecting and preparing 119 

the input data to fit the model requirements, configuring the model variables, and changing specific 120 

variables that may be embedded in the code. Another downside is that while the geographical 121 

administration-level (e.g., county level) emissions inventory can be estimated by these models, it 122 

requires a 3rd party emissions processor like the SMOKE (Sparse Matrix Operator Kerner 123 

Emissions) modeling system (Baek and Seppanen, 2021) to process and generate spatially and 124 

temporally resolved emissions inputs for CTM. Some detailed information, like link-level hourly 125 

driving patterns, can be lost in the emissions processing steps. 126 

There is no single model capable of meeting all the requirements across various spatial and 127 

temporal scales (Pinto et al., 2020). However, transparency, simplicity, and a user-friendly 128 

interface are requirements for those who mainly work in transportation policy and air quality 129 

modeling development (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Sallis et al., 2016; 130 

Sun et al., 2016; Tominaga and Stathopoulos, 2016). Thus, the ideal motor vehicle emissions 131 

modeling system would be computationally optimized, easy-to-use, and has a user-friendly 132 

interface. Additionally, the model should easily adapt detailed local activity information and the 133 

state-of-art emission factors as inputs to represent them in the highest resolution possible 134 

temporally and spatially.  135 

We have developed the Comprehensive Automobile Research System (CARS) to meet these 136 

requirements, especially for the air quality research community, policymakers, and air quality 137 

modelers. The CARS is a stand-alone, fully modularized, computationally optimized, python-138 

based automobile emission model. The modularization improves the efficiency of processing times 139 

as once district and road link-level annual/monthly/daily total emissions are computed; the rest of 140 

the processes are optional. It can generate chemically speciated, spatially gridded, hourly 141 
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emissions for CTMs without any 3rd party programs to develop the highest quality CTM-ready 142 

emissions inputs. Details on modularization will be discussed later. The CARS model can be easily 143 

adopted and is simple for users to add new functions or modules in the future. The application of 144 

the CARS to South Korea will be described in detail later. 145 

2 CARS Emissions Calculation 146 

The CARS is an open-source Python-based customizable motor vehicle emissions 147 

processor that estimates onroad and offroad emissions for specific criteria and toxic air pollutants. 148 

Figure 1 is a schematic of the CARS overview. It applies vehicle, engine, and fuel specific 149 

emission factors to traffic data to estimate the local level annual, monthly, and daily total emissions 150 

inventory. The emissions inventory calculations require a list of pollutant-specific emissions 151 

factors by vehicle age, local activity data, average speed profile/distribution by road type, and 152 

geographic information system (GIS) road segment shapefiles inputs. The spatial resolution of 153 

vehicle kilometer travel (VKT) determines the CARS geographic scale (i.e. district, county, state, 154 

and country) for emission calculations. Unlike the district-level Korea Clean Air Policy Support 155 

System (CAPSS) automobile emission inventory (Lee et al., 2011a; Lee et al., 2011b), the CARS 156 

applies high resolution annual average daily traffic (AADT) data from the road GIS shapefiles to 157 

distribute the total district emissions into road link-level emissions. Optionally, these road link-158 

level emissions can be used to generate spatially gridded CTM-ready emissions input data once 159 

the output modeling domain is defined. The summary of input files by categories are presented in 160 

Appendix H. How the CARS estimates spatially and temporally enhanced automobile emissions 161 

inventories will be discussed in detail next chapter. 162 

South Korean traffic databases from the Korea National Institute of Environmental 163 

Research (NIER) CAPSS team (Lee et al., 2011b) were used in this study to compute the updated 164 

onroad automobile emissions inventory. The databases include individual vehicle activity data 165 

(daily total VKT), road activity data (average speed distribution by road), vehicle age specific 166 

emission factors, road type information, surface weather data, and GIS road shapefiles.  167 

2.1 Individual Daily Average VKT Activity Data 168 

The individual vehicle VKT data is used to reflect human activity. This study imported the 169 

national registered vehicle-specific daily total VKT from South Korea’s Vehicle Inspection 170 

Management System (VIMS), which belongs to the Korea Transportation Safety Authority 171 

(KTSA). It contains over 50 million records of vehicle-specific daily total VKT from 2013 to 2017. 172 

For the CARS model, we first sorted these records by the vehicle identification number (VIN) to 173 

remove any duplicates and then built vehicle-specific daily total VKT traffic activity data in the 174 

CSV format. The summary of those vehicle numbers and VKTs is presented in Fig. 2. Sedan 175 

vehicles using gasoline fuel comprise the greatest percentage of total vehicles at 47% (~10.4 176 
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million) and have the highest VKT. While most vehicles demonstrate a paired pattern between the 177 

number of vehicles and daily VKT, LPG (liquefied petroleum gas)-fueled taxi shows high VKT 178 

with low vehicle numbers due to their long distance travel daily patterns. 179 

The VIN (vin) information is used to calculate vehicle-specific daily average VKT (VKTvin, 180 

km d-1). In Eq. (1), the individual daily average vehicle VKT (VKTvin) is calculated based on the 181 

cumulative mileage (Mf;vin) between the last inspection date (Df;vin) and registration date (D0;vin). 182 

Each vehicle is categorized with Korea’s NIER based on a combination of vehicle types (e.g., 183 

sedan, truck, bus, etc), engine sizes (e.g., compact, full size, midsize, etc), and fuel types (e.g., 184 

gasoline, diesel, LPG, etc). Full details of vehicle types and daily total VKT are shown in Appendix 185 

A and B.  186 

𝑉𝐾𝑇𝑣𝑖𝑛 =
𝑀𝑓;𝑣𝑖𝑛

𝐷𝑓;𝑣𝑖𝑛 − 𝐷0; 𝑣𝑖𝑛
  (1) 187 

2.2 Emission Calculations 188 

Automobile emission sources include motorized engine sources on the paved road network 189 

and off the road network (e.g., driveway and parking lots). The CARS model doesn’t currently 190 

simulate emissions from nonroad emission sources, such as aviation, railways, construction, 191 

agricultures, lawn mowers, and boats. The CARS model simulates the onroad automobile 192 

emissions from network roads using their local traffic-related datasets. The following section 193 

explains the approach of the onroad automobile emission processes. The onroad emission (Eonroad) 194 

in the CARS is defined in Eq. (2), which includes three major emission processes (Ntziachristos 195 

and Samaras, 2000): 196 

𝐸𝑜𝑛𝑟𝑜𝑎𝑑 = 𝐸ℎ𝑜𝑡 + 𝐸𝑐𝑜𝑙𝑑 + 𝐸𝑣𝑎𝑝  (2) 197 

The hot exhaust emissions (Ehot) are the vehicle’s tailpipe emissions when the internal combustion 198 

engine (ICE) combusts the fuel to generate energy under the average operating temperature. The 199 

cold start emissions (Ecold) are the tailpipe emissions from the ICE when the cold vehicle engine is 200 

ignited and the operational temperature is below average condition. The evaporative VOC 201 

emissions (Evap) are the emissions evaporated/permeated from the fuel systems (fuel tanks, 202 

injection systems, and fuel lines) of vehicles. 203 

The CARS first applies the hot exhaust emission factors by vehicle type, age, fuel, engine, 204 

and pollutants to individual daily total VKT to compute the hot exhaust emissions. The rest of the 205 

processes for cold start and evaporative emissions are calculated afterwards. The emission 206 

calculation methodologies used in the CARS model are based on tier 2 and tier 3 methodologies 207 

from the EEA’s mobile emission inventory guidebook (EEA, 2019) to be consistent with Korea’s 208 

National Emission Inventory System (NEIS) (Lee et al., 2011a). 209 
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2.2.1 Hot Exhaust Emissions 210 

Hot exhaust emissions is the exhaust gas from the combustion process in an ICE. The ICE 211 

combustion cycle generally causes incomplete combustion processes which emit hydrocarbons, 212 

carbon monoxide (CO), and particulate matter (PM). These are not completely controlled by the 213 

after-treatment equipment, such as a three-way catalytic converter, and released into the 214 

atmosphere. The sulfur compounds in the fuel are oxidized and become sulfur oxides (SOx). 215 

Nitrogen oxides (NOx) are produced due to the abundance of nitrogen (N2) and oxygen (O2) during 216 

the combustion process. 217 

Equation 3 represents the calculation of daily individual vehicle hot exhaust emission rate, 218 

Ehot; p,vin,myr (g d-1) of pollutant (p). An individual vehicle-specific daily VKTvin (km d-1) is estimated 219 

by Eq. (1). The EFhot;p,v,myr,s (g/km) is the hot exhaust emission factor of pollutants (p) for the 220 

vehicle type (v), vehicle manufacture year (myr), and average vehicle speed (s). The district's total 221 

emission rate is the total hot exhaust emissions from all individual vehicles within the same district.   222 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × 𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠  (3) 223 

The deterioration factor (DF) in Eq. (3) is an optional function in the CARS. The 224 

deterioration process is caused by vehicle aging and can lead to the increase of vehicle emissions. 225 

The vehicle DF is varied by vehicle type (v), pollutant (p), and vehicle manufacture year (myr). 226 

The CARS model computes vehicle ages based on the vehicle manufacture year and model 227 

simulation year. According to NIER’s guidance on calculating deterioration factors, there is no 228 

deterioration in a new vehicle during their first five years. After five years, the deterioration factors 229 

can range from 5% to 10% depending on the type of vehicle and pollutants. Deterioration processes 230 

can cause up to an 100% increase of emissions in fifteen-year-old vehicles. Currently, the DF is 231 

an empirical coefficient that varies by vehicle age (Lee et al., 2011a).  232 

The hot exhaust emission factor, EFhot;p,v,s (g/km) is a function of vehicle speed (s) with 233 

other empirical coefficients: a, b, c, d, f, k. The emission factor formula and those coefficients 234 

were developed by NIER’s CAPSS (Lee et al., 2011a). These coefficients are varied by 235 

pollutants (p), vehicle type (v), vehicle manufacture year (myr), and vehicle speed (s). The 236 

vehicle speed affects the combustion efficiency of an ICE and impacts the emission rates and its 237 

composition from the tailpipe. 238 

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠 = 𝑘(𝑎 × 𝑠𝑏 + 𝑐 ×  𝑠𝑑 + 𝑓)  (4) 239 

While vehicle speed plays a critical role in hot exhaust emissions from most vehicles, NOx 240 

emissions from some diesel vehicles show sensitivity to local ambient temperature and humidity 241 

due to the atmospheric moisture suppression of high combustion temperatures that lower NOx 242 

emissions at higher humidity (Choi et al., 2017; Ntziachristos and Samaras, 2000). Figure 3 shows 243 
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the dependency of NOx emission factors from compact diesel vehicles to vehicle speed (Fig. 3a) 244 

and ambient temperature (Fig. 3b). Figure 3a shows a significant decrease of NOx emissions when 245 

the speed increases between 0 and 70 km. Figure 3b demonstrates the significance of local 246 

meteorology on NOx emissions from a compact diesel sedan. Based on these NIER’s CAPSS 247 

emission factors, the sensitivity to local ambient temperature is limited to NOx pollutant emissions 248 

from diesel vehicles.  249 

Due to its high sensitivity to the vehicle operating speed, it is important for the CARS to 250 

simulate realistic speed patterns for accurate emissions estimates. When a single speed is assigned 251 

to compute hot exhaust emissions, it won’t reflect the emissions under low-speed circumstances. 252 

To overcome this limitation, the CARS has adopted the 16 average speed bins concepts for a better 253 

representation of vehicle speed distribution that varies by road type (i.e., local, highway, 254 

expressway). We have implemented a feature for the CARS optionally to apply road-specific 255 

average speed distributions (ASD) (Abin,r) by 16  speed bins (bin) (from 0 to 121 km h-1 defined in 256 

Appendix E) for eight different road types (r) (No.101-108, shown in Appendix C) as classified 257 

by CAPSS (Fig. 4a). Although ASD patterns vary by region and time, the current CARS model 258 

version does not support ASD application by region and time of day due to the lack its availability 259 

in South Korea.  260 

We first developed the ASD (Fig. 4a) for eight different road types (No. 101-108) in South 261 

Korea based on the latest road link-specific average speed and the length of link from the SK GIS 262 

road network shapefiles (NIER, 2018). However, the ASD based on the SK GIS road shapefiles 263 

did not capture low speed (<16 km h-1) driving (Fig. 4a). This causes a significantly lower 264 

estimation of NOx and VOC emissions compared to the CAPSS (Appendix G). We believe the 265 

SK average speed distribution is missing low speed driving that can occur due to traffic congestion. 266 

To address this absence of low-speed driving in the SK ASD, we incorporated data from the ASD 267 

(Figure 4b) from the state of Georgia to the low speed ranges (speed bin #1 and #2 for road type 1 268 

to 7). We increased the total fractions of low speed bins (the 2:1 ratio of fractions of bin #1 and 269 

#2) by 2% for interstate expressways, 3% for urban expressways, 7% for all highways, and 15% 270 

for all local roads. The increases in low speed bins lowered the distributions of other higher speed 271 

bins homogeneously due to the renormalization of fractions by road type. Figure 4c shows the 272 

renormalized hybrid-ASDs of all road types based on SK ASD and Georgia ASD. We understand 273 

that the hybrid-ASD approach is not ideal for SK onroad emission inventory development, but it 274 

clearly demonstrates the CARS’s capability and sensitivity to the vehicle speed representation.  275 

 While 16 speed bins ASD application is critical to computing more realistic hot exhaust 276 

emissions, there should be some restrictions on certain road types. Users can adjust the restricted 277 

roads control table input file to limit the vehicle types that are only operated on a particular road 278 

type. For example, motorcycles are limited to local roads (No. 104, 106, and 107), but not on 279 

expressways (No. 101, 102, 103, 105, and 108) due to its traffic regulation rules. Heavy trucks are 280 

only allowed on the highway (No. 101, 102, 103, 105, and 108.) by law. The details of the road 281 
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restriction control table format can be found on the CARS’s user’s guide from the CARS Github 282 

website (https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual). 283 

The 16 speed bins ASD from Eq. (13) are added to the CARS hot exhaust emissions 284 

equation (Eq. 3). The hot exhaust emissions from individual vehicles (Ehot;p,vin,myr) can be 285 

calculated by considering road-specific speed bins distribution (Eq. 5). Although the vehicles may 286 

be operated in different districts from their registered district, this is our best method to estimate 287 

the vehicle speed for hot exhaust emissions. 288 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × ∑ (𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠𝑏𝑖𝑛 × 𝐴𝑏𝑖𝑛,𝑟)  (5) 289 

2.2.2 Cold Start Emissions 290 

The cold start emissions occur when a cold engine vehicle is ignited. Lower temperatures 291 

of the ICE are not optimal conditions for complete fuel combustion. This process lowers the 292 

combustion efficiency (CE) and increases the emissions of hydrocarbon and CO pollutants from 293 

the tailpipe exhaust (Jang et al., 2007). The CARS can estimate the cold start emissions for vehicles 294 

using gasoline, diesel, or liquefied petroleum gas (LPG) fuel. Besides the vehicle and engine type, 295 

road type also plays a critical role in the quantity of cold start emissions because it occurs mostly 296 

in parking lots and rarely on highways.  297 

 The cold start emission, Ecold
 (g d-1), is derived from the hot exhaust emissions, the ratio of 298 

hot to cold exhaust emissions (EFcold/EFhot -1.0), and the percentage of the traveled distance with 299 

a cold engine (Eq. 6).  300 

𝐸𝑐𝑜𝑙𝑑; 𝑝,𝑣 = 𝛽𝑇 × 𝐸ℎ𝑜𝑡; 𝑝,𝑣 × (
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
− 1.0)  (6) 301 

The emission factor of cold start emissions (EFcold) is not directly calculated from 302 

measurement data like hot exhaust emissions (Ehot;p,v), but measured under different ambient 303 

temperatures (T). The CARS model applies linear regression models developed by CAPSS to 304 

estimate the increasing ratio of cold start to hot exhaust emissions (EFcold/EFhot) under different 305 

temperatures (T) (Eq. 7). In this equation, A and B are the empirical coefficients that vary by the 306 

pollutants (p) and vehicle type (v). 307 

(
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
) = 𝐴𝑝,𝑣 + 𝐵𝑝,𝑣 × 𝑇  (7)  308 

 is the percentage of the distance traveled under a cold engine and also depends on the 309 

ambient temperature. Cold ambient temperatures cause a longer distance traveled under a cold 310 

engine due to the slower heating time. According to the CAPSS database for Seoul city (Lee et al., 311 

2011a), the empirical linear equation for  is shown in Eq. (8). This formula represents how 312 
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ambient temperature affects . For example, when the average temperature is -2°C,  is 34.8%. In 313 

summer, the monthly average temperature is 25.7°C, which causes  to drop to 21%.  314 

𝛽 = 0.647 − 0.025 × 12.35 − (0.00974 − 0.000385 × 12.35) × 𝑇  (8) 315 

2.2.3 Evaporative VOC Emissions 316 

 Evaporative emissions are emissions from vehicle fuel that are evaporated into the 317 

atmosphere. This occurs in the fueling system inside the vehicle, such as fuel-tanks, injection 318 

systems, and fuel lines. Diesel vehicles, however, can be exempted due to diesel fuel’s low vapor 319 

pressure. The primary sources of evaporative emissions are breathing losses through tank vents 320 

and fuel permeation/leakage. The CARS model adopted the EEA’s emission inventory guidebook 321 

(EEA, 2019) to account for diurnal emissions from the tank (ed), hot and warm soak emissions by 322 

fuel injection type (Sfi), and running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a 323 

conversion factor (0.075) applied to Evap for motorcycles to prevent an overestimation of VOC. 324 

𝐸𝑣𝑎𝑝; 𝑝,𝑣 = (𝑒𝑑; 𝑝,𝑣 + 𝑆𝑓𝑖; 𝑝,𝑣 + 𝑅𝑙; 𝑝,𝑣)  (9) 325 

Diurnal emissions, ed (g d-1), during the daytime are caused by the ambient temperature 326 

increase and the expansion of fuel vapors inside the fuel tank. Most of the current fuel tank systems 327 

have emission control systems to limit this kind of evaporative VOC emissions. The ed can be 328 

calculated with the empirical Eq. (10), which was developed by CAPSS. Tl is the monthly average 329 

of the daily lowest temperatures and Th is the monthly average of the daily highest temperatures. 330 

The empirical coefficient α is 0.2, which represents how 80% of emissions are eliminated by the 331 

vehicle emission control system. 332 

𝑒𝑑 = 𝛼 × 9.1𝑒𝑥𝑝 [0.3286 + 0.0574 × (𝑇𝑙) + 0.0614 × (𝑇ℎ − 𝑇𝑙 − 11.7)] (10) 333 

Soak emissions (Sfi) occur when a hot ICE is turned off; the remaining heat from the ICE 334 

can increase the fuel temperature in the system which causes the increase of evaporative VOC 335 

emissions. This carburetor float bowls are the major source of the soak emissions. Newer vehicles 336 

with fuel injection and returnless fuel systems do not emit soak emissions. Because most of the 337 

current vehicles in South Korea have a new fuel system, soak emissions (Sfi) in the CARS model 338 

are set to 0.  339 

The running loss emissions (Rl) are from vapors generated in the fuel tank when a vehicle 340 

is in operation (Eq. 11). In some older vehicles, the carburetor and engine operation can increase 341 

the temperature in the fuel tank and carburetor, which can cause a significant increase in 342 

evaporative VOC emissions. VOC emissions from running loss can be greatly increased during 343 

warmer weather. However, newer vehicles with fuel injection and returnless fuel systems are not 344 
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affected by the ambient temperature. Because most vehicles in South Korea do not use carburetor 345 

technology, we expect running loss emissions to have the least impact (Lee et al., 2011b).  346 

𝑅𝑙 = 𝛼 × 𝐿𝑟,𝑣 × [(1 − 𝛽) × 𝑅ℎ + 𝛽 × 𝑅𝑤]  (11) 347 

The empirical coefficient α is 0.1 here, which represents that 90% of the running loss is 348 

avoided by the newer fuel system. L is the distance traveled (km) by road and is the same one used 349 

in hot exhaust emission calculations.  is the same parameter from Eq. (8). The Rh and Rw are the 350 

average emission factors from running loss under hot and warm/cold conditions, respectively.  351 

2.3 Road Link-Level Emissions Calculations 352 

In general, district-level automobile emissions calculations are driven by district-level 353 

averaged vehicle activity and operating data, which do not reflect realistic spatial patterns of 354 

onroad automobile emissions.  The CARS model introduces road link-specific traffic data by 355 

default to develop spatially enhanced road link-specific emissions that are more representative of 356 

the emissions. This high-resolution traffic data is a GIS shapefile that is composed of many 357 

connected segments, which are called “road links.” All road links hold information such as 358 

start/end location coordinates, AADT, road link length, averaged vehicle speed, and road type (No. 359 

101-108).  360 

The CARS model applies link-level AADT (AADTd,r,l., d-1) and road length (Ld,r,l) to 361 

compute the road link-specific VKT (VKTd,r,l, km d-1) in Eq. (12). The road links are identified by 362 

district (d), road type (r), and link (l) labels. The road VKT is a parameter that reflects the traffic 363 

activity of each road link and it is different from individual daily vehicle activity data (VKTv,age) 364 

in Eq. (1).  365 

𝑉𝐾𝑇𝑑,𝑟,𝑙 = 𝐴𝐴𝐷𝑇𝑑,𝑟,𝑙 ×  𝐿𝑑,𝑟,𝑙  (12) 366 

Road link-specific VKT (VKTd,r,l) is used to redistribute the district total emissions (Eonroad) 367 

from Eq. 2 into road link-level emissions. The following three weight factors are computed: the 368 

district weight factors, ωd (Eq. 13), the road type weight factors, ωd,r (Eq. 14), and the road-link 369 

weight factors, ωd,l (Eq. 15). The weight district factors (ωd) are the renormalization of each 370 

district's total VKT over state-level total VKT (N is the number of districts). The main reason we 371 

performed the renormalization over state-level total VKT is to reflect daily traffic patterns from 372 

multiple districts under the assumption that most vehicles travel within the same state. The road 373 

type weight factors by district (ωr,d) are used to compute road-specific emissions, while road-374 

specific averaged speed distributions (ASD; As,r) from Eq. (5) are applied to capture vehicle 375 

operating speeds by road type. The road link weight factors (ωd,l) are then applied to redistribute 376 

the district emissions into road link-level emissions.  377 



 

   

 

12 

 

 378 

𝜔𝑑 =
∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟

1

𝑁
∑ ∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟𝑑

  (13) 379 

𝜔𝑑,𝑟 =
∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (14) 380 

𝜔𝑑,𝑙 =
𝑉𝐾𝑇𝑑,𝑟,𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (15) 381 

3 CARS Configuration 382 

The CARS model is an open-source program based on Python (Guido van Rossum, 2009) 383 

that allows the users to efficiently apply open-source modules to develop programs. Users can 384 

easily install Python development tools and load customized packages and modules to set up the 385 

CARS development environment. All CARS modules are developed using Python v3.6. Other than 386 

the GIS road shapefiles, all input files are based in the ASCII CSV format, which can be easily 387 

handled by both spreadsheet programs and programming languages, making it more accessible for 388 

users of all skillsets. The CARS can not only estimate district-level and spatially enhanced road 389 

link-level emissions, but can also generate hourly chemically speciated gridded emissions for 390 

CTMs. In addition, the CARS also generates various summary reports, graphics, and 391 

georeferenced plots for quality assurance. 392 

The required Python modules for the CARS are: “geopandas,” “shapely.geometry”, and 393 

“csv” modules to read the shapefiles and table data files. The “NumPy” and “pandas” modules 394 

are used to operate the memory arrays and scientific calculations, while the “pyproj” module deals 395 

with converting the projection coordinate systems. “matplotlib” is for generating any type of 396 

figures/plots. Furthermore, the CARS model can also read and write Climate and Forecast (CF)-397 

compliant NetCDF-formatted files using “NetCDF4”.  398 

The first process in the CARS is “Loading_function_path”; it allows users to define and 399 

check the input file paths. Once all input files are checked, there are six process modules in CARS 400 

to process inputs, compute emissions, and generate various output files, including QA reports. 401 

Figure 5 is the schematic of the CARS that consists of six process modules with various functions. 402 

The six process modules are (1) “Process activity data”, (2) “Process emission factors”, (3) 403 

“Process shapefile, (4) “Calculate district emissions”, (5) “Grid4AQM”, and (6) “Plot figures”. 404 

The main purpose of modularizing the CARS is to meet the needs of various communities, such 405 

as policymakers, stakeholders, and air quality modelers. While modules (1) through (4) are 406 

required to develop the district-level and road link-level emissions inventories, module (5) 407 

“Grid4AQM” is optional depending on if users want to develop chemically-speciated gridded 408 

hourly emissions for CTMs. Also, the modularity of the CARS allows users to bypass certain 409 
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modules if it has been previously processed without any changes. For example, if there is no 410 

change in traffic activity, emission factors table, or GIS shapefiles, users do not need to run these 411 

modules and can simply read the data frame outputs and then run “Grid4AQM” for the modeling 412 

dates and domain. The “Grid4AQM” module will not only improve the computational time for 413 

CTMs but also eliminate the need for a 3rd party emissions modeling system like SMOKE (Baek 414 

and Seppanen, 2021). 415 

The rectangle boxes in Fig. 5 represent the data array and the boxes with rounded edges are 416 

the functions in the CARS. Details on the CARS code, input table format, and functions setup 417 

information can be found on the CARS GitHub website (Pedruzzi et al., 2020). 418 

The “Process activity data” module first reads the vehicle activity data, such as an 419 

individual vehicle's daily total VKT based on its registered district. The “Process emission factors” 420 

module reads and stores the emission factors table that holds all pollutant emission factors to 421 

estimate the emissions for all vehicles. Meteorology-sensitive emission factors are only limited to 422 

NOx pollutants. District boundary GIS shapefiles and road network shapefiles are processed 423 

through “Process shape file” to generate the VKT-based redistribution weighting factors from Eq. 424 

(13), (14) and (15) for the “Calculate district emissions” module to compute district-level and 425 

road link-level emission rates (metric tons per year, t yr-1). 426 

The redistributed emission rates (t yr-1) from the “Calculate district emissions” module 427 

present annual total emission rates until district-level VKTs from the “Process activity data” 428 

module are added. Then, the “Grid4AQM” module can generate CTM-ready chemically speciated 429 

emissions. The “Read_chemical” function from the “Grid4AQM” module is designed to process 430 

the chemical speciation profile that can convert the inventory pollutants such as CO, NOX, SO2, 431 

PM10, PM2.5, VOC, and NH3, into the chemically lumped model species that CTM requires for 432 

chemical mechanisms, such as SAPRC (L. and Heo, 2012) and Carbon Bond version 6 (CB6) 433 

(Yarwood and Jung, 2010). The “Read_temporal” function processes the complete set of monthly, 434 

weekly, and hourly temporal allocation profiles that can convert annual total emissions to hourly 435 

emissions. “Read_griddesc” defines the CTM-ready modeling domain and computes the gridding 436 

fractions for all road link-level emissions by overlaying the modeling domain over the GIS 437 

shapefiles. Once annual total emissions are chemically speciated, spatially gridded, and temporally 438 

allocated into hourly emissions, the “Gridded_emis” function will combine emission source-level 439 

conversion fractions from each function (Read_chemical, Read_temporal, and Read_griddesc) to 440 

generate the CTM-ready chemically speciated, gridded hourly emissions in the NetCDF binary 441 

format. The “Plot Figures” module is designed for generating various summary reports and 442 

graphics to assist users in understanding the estimated automobile emissions inventory computed 443 

by the CARS. The following section will describe the detailed processes of the “Grid4AQM” 444 

module, which includes chemical, spatial, and temporal allocations. 445 
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The influence of temperature on emission processes are considered in the CARS model. 446 

There are three temperature parameters in current CARS model such as “temp_max” for maximum 447 

temperature, “temp_mean” for mean temperature, and “temp_min” for minimum temperature. 448 

These temperature parameters will be applied to over the entire modeling domain during the 449 

simulation period. Current CARS model version does not support to process gridded meteorology 450 

data from the 3rd party meteorology models like Meteorology-Chemistry Interface Processor 451 

(MCIP) from U.S. EPA., and Weather Research Forecasting (WRF) model from National Center 452 

for Atmospheric Research (NCAR) yet. However, CARS can easily adopt various temporally 453 

resolved temperature values by adjusting the CARS simulation period (i.e., day, week, month, 454 

season, or annual). 455 

3.1 Chemical Speciation 456 

To support CTMs applications, the CARS needs to be able to convert inventory pollutants 457 

into chemical lumped model species based on the choice of CTM chemical mechanisms. NOx 458 

includes nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO). VOCs can represent 459 

hundreds of different organic carbon species, such as benzene, acetaldehyde, and formaldehyde. 460 

These grouped inventory pollutants cannot be directly imported into the chemical mechanism 461 

modules in the CTM system and require chemical speciation allocation for CTMs to process them 462 

during their chemical reactions. Therefore, the “Grid4AQM” module performs the chemical 463 

species allocation step prior to the temporal and spatial allocations to generate the gridded hourly 464 

emissions. The “Read_chemical” function in “Grid4AQM” module allows users to assign these 465 

emission inventory pollutants to CTM-ready surrogate chemical species (a.k.a lumped chemical 466 

species) by vehicle, engine, and fuel type. For example, VOC emissions from diesel busses can be 467 

converted into the following composition based on its chemical allocation profile: alkanes (68%), 468 

toluene (9%), xylenes (8%), alkenes (4%), ethylene (2%), benzene (1.3%), and unreactive 469 

compounds (7%) when the CB6 chemical mechanism is selected. Further details on the chemical 470 

speciation profile input formats are available in the CARS user’s guide. 471 

3.2 Spatial Allocation 472 

The “Calculate district emissions” module calculates both total district and road link 473 

specific emissions based on road link-specific AADT data from road network GIS shapefiles. The 474 

“Calculate district emissions” module first gets the district total vehicle emissions (Eq. 2) based 475 

on the district-level VKTs, and then the normalized district total emissions by district weight factor, 476 

ωd (Eq. 13). Afterwards, the normalized district total emissions are redistributed into every road 477 

link using road link-level weight factors (ωd,l) (Eq. 15). The district total emissions from Eq. (2) 478 

and from Eq. (15) remain the same. Then the computed road link-level emissions then will be 479 
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converted into grid cell emissions using the modeling domain grid cell fractions computed in the 480 

“Read_griddesc” function in the “Grid4AQM” module. 481 

3.3 Temporal Allocation 482 

Once chemical and spatial allocations are completed, the final step to support CTM 483 

application is a temporal allocation that converts the annual total emissions from the “Calculate 484 

district emissions” module into hourly emissions. The “Read_temporal” temporal allocation 485 

function in the “Grid4AQM” module converts the annual emission rate (t yr-1) to the hourly 486 

emission rate (mol hr-1) using monthly, weekly, and weekday/weekend diurnal temporal profiles. 487 

This module processes these temporal profile inputs, which are the monthly (January - December), 488 

weekly (Monday - Sunday), and weekday/weekend 24-hour profile tables (0:00-23:00 LST). The 489 

users can assign these temporal profiles with a combination of vehicle, engine, fuel, and road types 490 

to enhance their temporal representations in detail. 491 

3.4 Chemical Transport Model Emissions 492 

The main goal of the “Grid4AQM” module is to generate temporally, chemically, and 493 

spatially enhanced CTM-ready gridded hourly emissions. First, it reads the CTM modeling domain 494 

configuration and then overlays it over the road network GIS shapefile and district-boundary 495 

shapefile to define the modeling domain. This overlaying process between the road network, 496 

district boundary GIS shapefiles, and modeling domain allows the “Grid4AQM” module to 497 

compute the fraction of road links that intersects with each grid cell. Figure 6 demonstrates how 498 

the district boundary and road network GIS shapefiles are used to perform the spatial allocation 499 

processes in CARS. Figure 6a is a native road link shapefile of Seoul with AADT, VKT, district 500 

ID, and road type. Figure 6b presents an overlay of two districts’ road links (purple and blue) over 501 

the selected region. State total emissions will be renormalized into weighed district total emission 502 

data and then redistributed into the road link. Figure 6c illustrates how the weighted road link-503 

level emissions get allocated into modeling grid cells for CTMs. The link-level VKT (VKTd,r,l) 504 

from Eq. (12) will be used to compute a total of traffic activity fractions by grid cell and then use 505 

that to assign the link-level emissions from Eq. (2) into each grid cell. When a road link intersects 506 

with multiple grid cells, the “Grid4AQM” module will weigh the emissions by the length of the 507 

link that intersects with each grid cell. It should be noted that current CARS model can only 508 

generate the Community Multiscale Air Quality (CAMQ)-ready gridded hourly emissions in 509 

format of IOAPI (Input/Output Applications Programming Interface) based on NetCDF format.  510 

Through the overlay process, the CARS model can generate various types of output data, 511 

such as total district emissions, link-level emissions, and CTM-ready gridded emissions. For 512 

example, the CO vehicle emissions from the Seoul metropolitan in South Korea are presented in 513 

three different output formats in Fig. 7. Figure 7a shows the annual mobile PM2.5 emissions by 514 
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district. The road link level annual emissions are presented in Fig. 7b. Furthermore, the CARS 515 

applies the link-level emissions from Fig. 7b to generate the hourly grid cell emission data with a 516 

1 km × 1 km resolution for the CTM in Fig. 7c.  517 

3.5 National Control Strategy Application 518 

One of the unique features in the CARS compared to other mobile emissions models is that 519 

it can promptly develop a strategy to control automobile emissions in response to  national 520 

emergency high PM2.5 episodes. It is very common to experience high PM2.5 episodes, especially 521 

during the wintertime in South Korea due to domestic and international primary and secondary air 522 

pollutants emissions. When the 72-hour forecasted PM2.5 concentration exceeds the average 50 523 

µg/m3 (0:00-16:00 LST), the national PM2.5 emergency control strategy is activated for ten days. 524 

It applies a nationwide vehicle restriction policy within 24 hours. It enforces a limit on what kind 525 

of vehicles can be operated on a certain date. The restrictions can be closures of public parks and 526 

government facilities and of certain vehicles based on their fuel type and age, which is a major 527 

factor of engine deterioration. This policy will limit the number of vehicles on the network roads 528 

significantly, which could reduce primary PM2.5 and precursor pollutant (NOx, NH3, and VOC) 529 

emissions, especially from heavily populated metropolitan regions (Choi et al., 2014; Kim et al., 530 

2017a; Kim et al., 2017b; Kim et al., 2017c). 531 

To understand the impacts of an even or odd vehicle number restriction policy in real-time, 532 

we need to quickly develop a rapid controlled response emissions for the air quality forecast 533 

modeling system based on the reduced number of vehicles on the road. The process of generating 534 

the controlled mobile emission inventory can take a long time if we start fresh. Thus, we have 535 

implemented this control strategy as an optional “Control Factors” function in the “Calculate 536 

district emissions” in the module for users to quickly and easily generate the controlled mobile 537 

emission inventory with consideration of the limited number of vehicles based on the vehicle, 538 

engine, fuel, and vehicle manufactured year. A one hundred percent (100%) control factor means 539 

that there are no emissions from those selected vehicles. 540 

Because of the modularization system in the CARS, we can bypass some computationally 541 

expensive data processing modules (i.e., “Process activity data”, “Process emission factors”, 542 

and “Process shape file”) and let the “Calculate district emissions” module quickly apply control 543 

factors while it computes the district-level mobile emission inventory from Eq. (2).  This will allow 544 

users to reduce the computational time to generate the controlled mobile emissions under a specific 545 

control scenario and develop the controlled CTM-ready gridded hourly emissions using the 546 

“Grid4AQM” module.  547 
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3.6 Computational Time 548 

While the CARS can generate a high-quality spatiotemporal emission inventory, it is quite 549 

critical for the CARS to generate them effectively and accurately without being at the expense of 550 

computational time. This is especially important to meet the needs for an air quality forecast 551 

modeling system responding to a national emergency control strategy implementation. 552 

In this section, we will discuss the details of the CARS computational modeling performance.  553 

While the CARS model has been highly optimized, the modularization of CARS has also improved 554 

its modeling performance with its optional module runs. The breakdown of module specific 555 

computational time estimates based on the benchmark CARS runs are listed in Table 1. The 556 

benchmark CARS case includes a total of 24,383,578 daily VKT datasets from KSTA over two 557 

different years, 84,608 emission factors for all pollutants across a combination of vehicle-age-558 

engine-fuel types, 385,795 road links from the GIS road network shapefiles, 5,150 districts/16-559 

states boundary GIS shapefile, and 5,494 grid cells (=82 rows and 67 columns) for CTMs. Without 560 

any computational parallelization, the total processing time of all six modules usually takes around 561 

a half hour to generate a single day CTM-ready gridded hourly emission file. However, it can be 562 

further shortened to 25-30 minutes on a higher performance computer. Because of the modular 563 

system implemented in the CARS, generating one month (31 days) long gridded hourly emissions 564 

from CTMs in 100 minutes on high-performance computers. The maximum usage of RAM can 565 

reach up to 11 GB. Table 1 shows the breakdown of computational time by each module from two 566 

different hardwares (desktop and laptop computers). The numbers in parentheses beside the 567 

“Grid4AQM” module is the computational time for a single day versus 31 days. While the 568 

“Grid4AQM” module takes an average of 4.9 minutes for a single day emissions generation, 569 

processing a consecutive 31 days saves 46% more time, decreasing it from 151.9 minutes (=4.9 570 

minutes * 31 days) to 81.6 minutes.  571 

4 Results 572 

CARS and CAPSS Comparison 573 

The CARS model calculates the 2015 onroad automobile emissions based on the latest 574 

2015 emission factors and the 2015-2017 vehicle activity database in South Korea. The annual 575 

total emissions from CARS are compared against the ones from NIER’s CAPSS in Table 2. The 576 

CARS model estimated the following annual total emissions in units of metric tons per year (t yr-577 
1): NOx (301,794); VOC (61,186); CO (373,864), NH3 (12,453); PM2.5 (10,108), and SOx (172.0). 578 

Compared to NIER’s CAPSS, the CARS underestimated NOx (-18% decrease) and SOx (-17% 579 

decrease), and overestimated the emissions of VOC by 33%, PM2.5 by 15%, CO by 52%, and NH3 580 

by 24%. Both NIER’s CAPSS and CARS shared the same emission factor tables, which hold over 581 
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84,608 emission factors for all pollutants across a combination of vehicle, age, engine, and fuel 582 

types.  583 

The difference in results between CAPSS and CARS are caused by three following reasons. 584 

First, the number of vehicles used in CARS is slightly higher (6%) than CAPSS data (1.3 out of 585 

23 million), as well as other key traffic-related activity inputs (i.e., vehicle age distribution, 586 

averaged speed distribution, etc). Secondly, the vehicle speed information assigned by vehicle and 587 

road type play a critical role. The CAPSS calculation was based on the road-specific a signle 588 

average speed value or 80% of the speed limit of the road as an input of vehicle operating speed 589 

for three road types (rural, urban, and expressway) (Lee et al., 2011b). In other words, CAPSS 590 

only assigns a “single-speed value” for each road type, and does not encounter the variation of 591 

vehicle speed during its operation on roads into the emissions calculation. Most running exhaust 592 

emissions occur during a vehicle’s low-speed operation due to its incomplete combustion of fuel, 593 

and it is critical to accurately represent the emissions across various speed bins in order to compute 594 

the accurate  emissions (Fig. 4). A detailed analysis of the impact of vehicle speed will be discussed 595 

later in this chapter. Lastly, other advanced processes in the CARS, such as link-level AADT and 596 

district-level vehicle data (5,150 districts in South Korea) can reflect more spatial detail and 597 

variation than the CAPSS. The CAPSS only considers state-level data (17 states in South Korea) 598 

and five road types (interstate expressway, urban highway, rural highway, urban local, and rural 599 

local). 600 

Figure 8 illustrates more details about the difference in annual emissions between CARS 601 

and CAPSS by pollutants and vehicle types. Sedan vehicles show the largest increase of VOC 602 

(33%), CO (41%), and NH3 (23%) in the CARS relative to CAPSS because almost 56% of total 603 

vehicle count (13.5 million) is composed of sedan vehicles (Appendix B). In Table 3, sedan 604 

vehicles contribute 51% of total VOC and 61% of total CO annual emissions. The VOC and CO 605 

emissions from sedans are largely affected by the average speed distribution process when 606 

compared to other vehicle types. Similarly, the largest decreases of NOx (-16%) and SOx (-18%) 607 

are from trucks because they are significant NOx (~50%) and SOx contributors (~27%) and their 608 

emission factors are sensitive to vehicle speed.  609 

Onroad Emissions Analysis  610 

 The CARS is a bottom-up emissions model, which utilizes local individual vehicle activity 611 

data, detailed local emission factors for every vehicle and fuel type, and localized inputs such as 612 

average speed distribution by road type and deterioration factor. It allows users to assess a detailed 613 

breakdown of localized emission contributions. Table 3 represents the individual air pollutants 614 

(NOx, VOC, PM2.5, CO, NH3, and SOx) emission contributions (t yr-1), fractions (%), and impact 615 

factors (IF) by the vehicle type and fuel system. The IF is defined by the normalized annual 616 

emissions with vehicle counts of each category (kg yr-1 per vehicle). The CARS also can provide 617 
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the average daily VKT per vehicle, which is the total daily VKT divided by vehicle numbers, to 618 

explain the emission contributions in Appendix D. 619 

Diesel-fueled vehicles contribute the most NOx emissions at over 85.3% (257,305 t yr-1), 620 

although the number of diesel vehicles only amounts to approximately 35% of the total vehicles 621 

(Table 3a). While diesel trucks emitted 49.1% (148,246 t yr-1) of total NOx with an IF value of 622 

47.9 (kg yr-1), the highest impact (IF = 340 kg yr-1) occurred from diesel buses with only an 8.51% 623 

contribution to the total NOx emissions. This is caused by the highest average daily VKT from 624 

diesel buses compared to other vehicles, which is expected in a highly populated metropolitan area 625 

like Seoul, South Korea. A diesel bus generally has a 3-5 times higher daily VKT (180 km d-1) 626 

than other common vehicles (gasoline sedan: 34 km d-1, diesel truck: 57 km d-1). The second-627 

largest vehicle type is the CNG (compressed natural gas) bus (248 kg yr-1), which also has a high 628 

VKT at an average daily of 212 km d-1 with only a 3.1% NOx contribution.  629 

For VOC emissions, over 12 million gasoline vehicles cause 52.1% (31,885 t yr-1) of the 630 

total VOC emissions, with the gasoline sedan as the highest contributor (46.5% at 14,070 t yr-1) 631 

across all vehicle types (Table 3b). Diesel vehicles only contribute 23.0% (14,070 t yr-1) of the 632 

total VOC emissions. The IF values from VOC indicate that CNG buses have the highest, which 633 

is 247 kg yr-1 (19% over total VOC) with a low number of heavy CNG vehicles. The IF of the 634 

CNG bus is the highest which is 320 kg yr-1 and emits 19.5% of the total VOC. Comparing the IFs 635 

of buses across fuel types, the CNG bus emits less NOx but higher VOC than a diesel vehicle. Each 636 

CNG bus has about 33 times higher IF of VOC (320 kg yr-1) than a diesel bus (9.51 kg yr-1), and 637 

CNG buses release slightly lower NOx (248 kg yr-1) than diesel buses (340 kg yr-1) (Table 3a and 638 

3b). 639 

The South Korea NIER currently does not have the PM emission factors from tire and 640 

brake wear, which are the highest contributors of PM2.5 emissions from onroad vehicles (Hugo 641 

A.C. et al., 2013; Fulvio Amato et al., 2014). Once the emission factors of tire and brake wear are 642 

prepared, those emissions can be computed by CARS. For that reason, diesel vehicles become the 643 

major source of PM2.5 emissions, which contributes over 98.5% (9,959 t yr-1) of the PM2.5 644 

emissions based on the CARS 2015 emissions (Table 3c). The diesel truck, SUV, and van are three 645 

major sources of total PM2.5 at 53.6%, 21.4%, and 11.2%, respectively. Although over 52% of the 646 

vehicles are gasoline vehicles, their primary PM2.5 contribution is limited to 1.44%.  The diesel 647 

bus has the highest IF (2.83 kg yr-1), which is caused by the largest average daily VKTs. 648 

Similar to VOC emissions, CO is mostly emitted through the tailpipe due to incomplete 649 

internal combustion of fuel and share similar emissions distributions across vehicle and fuel types 650 

(Table 3d). Gasoline vehicles contribute most of the CO (220,390 t yr-1, 59.0%), and sedan vehicles 651 

are the primary source (178,121 t yr-1, 47.6%) of this out of all gasoline vehicles. Across vehicle 652 

types, buses show the highest IF of CO (81.2 kg yr-1) due to its largest daily VKT. CO is the most 653 

abundant pollutant released from vehicles (373,864 t yr-1) across all pollutants from onroad 654 
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automobile sources. Although CO is much less reactive than other vehicle VOCs (Rinke and 655 

Zetzsch, 1984; Liu and Sander, 2015), CO emissions play a critical role in generating 30% of all 656 

hydroperoxyl radicals (HO2) and cause ozone formation in urban areas (Pfister et al., 2019). Thus, 657 

CO is also another crucial precursor to ozone formation in urban areas. 658 

SOx emissions are related to the sulfur content within the fuel component. Diesel has the 659 

highest sulfur content than any other fuels and consequently most SOx is contributed by diesel 660 

vehicles (93.8 t yr-1, 54.5%) (Table 3e). Within diesel vehicles, trucks provide 26.5% of SOx (45. 661 

t yr-1). Although the SOx from sedan vehicles are slightly higher (~3.3%) than diesel trucks, the 662 

number of diesel trucks is only 29.6% of the number of gasoline sedans. Thus, diesel trucks have 663 

a higher IF than gasoline sedans. Across vehicle types, buses have the highest IF (0.095 kg yr-1) 664 

of SOx, and diesel buses in particular have the largest IF at 0.143 kg yr-1. 665 

The NH3 emissions table (table 3f) indicates that 98.7% of NH3 is from gasoline vehicles 666 

while diesel trucks only contribute 1.13%. The IF result also shows that the gasoline sedan has the 667 

most significant impact per vehicle (1.17 kg yr-1). 668 

According to the vehicle activity and the CARS model results, nearly half of the total 669 

vehicles (24.3 million) are gasoline sedans (10.4 million, 42.8%), and gasoline sedan vehicles 670 

contribute the majority of VOC and CO emissions (46.5% and 47.6%), but only 7.7% of the total 671 

NOx emissions. The number of diesel vehicles is at 8.6 million (35.4%); however, they emit about 672 

85.3% of the total NOx and 98.5% of the primary PM2.5. These results indicate that the annual 673 

traffic-related automobile emissions are not only affected by the number of vehicles, but also by 674 

vehicle and fuel types and age of vehicles. Therefore, this study normalized the annual emissions 675 

by the number of vehicles to confirm the emission composition by individual vehicle types.  676 

Average Speed Impact Study  677 

The CARS can also optionally apply the average speed distribution (ASD) by road type to 678 

compute more realistic mobile emissions on the road network when compared to using a current 679 

single average speed value for each road type (Appendix E). Applying the ASD will generate a 680 

better representation of actual traffic patterns from each road type. To understand the impacts of 681 

ASD application, we performed sensitivity runs between using a single speed to the ASD 682 

application (Appendix F). The ASD data was described in Fig. 4, and the road-specific average 683 

single speed values were developed based on the weighted average method using the same ASD 684 

data. Appendix E and S6 describe the details of ASD as well as road-specific speed values.  685 

Figure 9a shows the differences in total emissions between two scenarios and is organized 686 

by pollutant. The single-speed scenario largely underestimates the emissions across all pollutants 687 

compared to the ones from the ASD scenario. NOx (16%), VOC (40%), and CO (30%) were 688 

especially underestimated. The difference is caused by the lack of low-speed bins (<16 km h-1) 689 

representation when a single average speed approach was used. Higher emissions are emitted while 690 
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vehicles are operated with low-speed bins, which decreases the combustion efficiency of ICE and 691 

releases more pollutants. 692 

Figure 9b shows the road-specific emissions breakdown between the ASD and single speed 693 

approaches to understand the impacts of vehicle operating speeds on onroad automobile emissions. 694 

In this figure, each color indicates the emissions percentage differences by road types. Other than 695 

NH3, the most significant discrepancies are from urban local roads, highways, and urban highways, 696 

respectively. This pattern is caused by a better presentation of low-speed conditions (<16 km h-1) 697 

in CAR simulation (Appendix C). The lower speeds cause the incomplete combustion of ICE and 698 

increase the emission rate. Also, local urban roads, highways, and urban highways have higher 699 

road VKT contributions at 17%, 18%, and 12%, respectively (Appendix C) than rural ones. A 700 

better presentation of low-speed operating vehicles from highly travelled roads (urban local, urban 701 

highway, and highway) caused these significant differences between the ASD and single-speed 702 

approaches. Although the interstate expressway has the largest VKT contribution (41%), it also 703 

has the lowest fraction of low-speed bins (2%). That is why the difference between the ASD and 704 

single speed scenarios on interstate expressways is less than 1%. In general, NH3 emission factors 705 

do not change by vehicle operating speed, so the ASD impact is quite minimal. 706 

5 Conclusions 707 

The CARS is a bottom-up automobile emissions model that utilizes the localized traffic-708 

related activity and emission factors input datasets to generate high quality localized emissions 709 

inventories for policymakers, stakeholders, and research community as well as temporally and 710 

spatially enhanced hourly gridded emissions for CTMs. First, the CARS model employs the daily 711 

VKTs for all registered vehicles and the emission factors function to compute district-level total 712 

daily emissions for each vehicle. To reflect realistic traffic patterns, the CARS model computes 713 

and utilizes link-level VKTs (=link-length×AADT) from the road network GIS shapefiles to 714 

redistribute the original district-level total emissions into spatially enhanced road link-level 715 

emissions. It can also optionally implement a control strategy as well as road restriction rules to 716 

improve the quality of local emission inventories and meet the needs of users.  717 

The CARS model is a fully modularized and computationally optimized python-based 718 

model that can effectively process a huge dataset to calculate high quality spatiotemporal county-719 

level, road link-level, and grid cell-level mobile emissions. We believe that the implementation of 720 

the ASD into the CARS improves the representation of onroad automobile emissions from the 721 

road network when compared to a single speed for each road type. It additionally allows the CARS 722 

to have a better representation of low speed (<16 km h-1) vehicle emissions. We believe that CARS 723 

model's versatile spatiotemporal bottom-up automobile emissions and the in-depth analysis feature 724 

can assist government policymakers and stakeholders to quickly develop responsive emission 725 
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strategies to South Korea’s national PM2.5 emergency control strategy that enforces the nationwide 726 

vehicle restriction policy within 24 hours.  727 

Code Availability: 728 

The source code of the CARS model public release version 1.0 can be downloaded from the 729 

Github release website: 730 

https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0 731 

 732 

 733 

Digital Object Identifier (DOI) for the CARS version 1.0: 734 

https://zenodo.org/record/5033314#.YNzDrC1h001 735 

 736 

 737 

Installation Package for CARS version 1.0: 738 

The CARS version 1.0 installation package comes with the complete inputs and outputs datasets 739 

for users to confirm their proper installation on their computers and can be downloaded from the 740 

Github release website: 741 

https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_742 

package_25June2021.zip 743 

 744 

 745 

User’s Guide Documentation: 746 

The CARS version user’s guide documentation can be accessed through the Github repository: 747 

https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual 748 

 749 

 750 

Data availability: 751 

All the datasets, excel, and python scripts used in this manuscript for the data analysis are 752 

uploaded through GMD website along with a supplemental appendix document. 753 
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Tables 976 

Table 1. Computational processing time by CARS module based on the modeling setup: Total 977 

number of activity data = 24,383,578; Emission Factors = 84,608; GIS road links=385,795; 978 

districts/states=5,150/16; 9km9km grid cells=5,494 (82 columns 67 columns). 979 

No Module 
Desktop i7 

(minutes) 

Laptop i9 

(minutes) 

Averaged Time 

(minutes) 

1 Process activity data 1.8 1.5 1.7 

2 process emission factors 1.1 0.8 1.0 

3 Process shape file 9.9 7.3 8.6 

4 Calculate district emissions 6.4 5.7 6.1 

5 Grid4AQM [31days] 4.8 [75.9] 5.0 [87.2] 4.9 [81.6] 

6 Plot figures 6.2 5.4 5.8 

 Total [31days] 30.2 [101.3] 25.7 [107.9] 28.1[104.8] 

 980 

 981 
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Table 2. The total emissions comparison between CARS and CAPSS for the 2015 emission. 983 

Emission Inventory 
Pollutants (t yr-1) 

NOx VOC PM2.5 CO SOx NH3 

CARS 2015 301,794 61,186 10,108 373,864 172 12,453 

CAPSS 2015 369,585 46,145 8,817 245,516 209 10,079 

 984 

  985 
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Table 3. The summary tables of emissions (t yr-1), contributions (%), and impact factor (IF, kg yr-986 
1) per vehicle for criteria air pollutants (CAPs) by vehicle and fuel types: (a) for NOx; (b) VOC; 987 

(c) for PM2.5; (d) for CO; (e) for SOx; and (f) for NH3.  988 

 989 

(a) NOx  990 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 20,219 (6.70%) 1.94 14,783 (4.90%) 12.8 8,159 (2.77%) 4.49 12 (0.00%) 1.26 65 (0.02%) 0.39 43,239 (14.3%) 3.19 

Truck 23 (0.01%) 5.54 148,246 (49.1%) 47.9 920 (0.31%) 4.55 88 (0.03%) 66.4 - - 149,277 (49.5%) 45.2 

Bus 0 (0.00%) 0.97 25,677 (8.51%) 340 - - 9,260 (3.07%) 248 0 (0.00%) 1.77 34,938 (11.6%) 333 

SUV 159 (0.05%) 1.19 39,565 (13.1%) 11.4 175 (0.06%) 8.54 0 (0.00%) 1.60 1 (0.00%) 0.42 39,900 (13.2%) 11.0 

Van 14 (0.00%) 4.78 16,659 (5.52%) 22.6 1,337 (0.44%) 6.80 0 (0.00%) 1.25 0 (0.00) 0.37 18,012 (6.00%) 19.2 

Taxi - - - - 1,217 (0.40%) 2.11 - - - - 1,217 (0.40%) 2.11 

Special 1 (0.00%) 20.1 12,347 (4.10%) 152 0 (0.00%) 0.52 - - - - 12,375 (4.10%) 151 

Motorcycle 2,836 (0.94%) 1.31 -  - - - - - - 2,836 (0.94%) 1.32 

Total 23,253 (7.70%) 1.83 257,305 (85.3%) 29.9 11,809 (3.91%) 4.20 9,361 (3.10%) 36.7 66 (0.02%) 0.39 301,794 (100%) 13.3 

 991 

(b) VOC  992 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 28,434 (46.5%) 2.73 629 (1.03%) 0.55 2,107 (3.44%) 1.16 3 (0.01%) 0.33 77 (0.13%) 0.47 31,250 (51.1%) 2.30 

Truck 23 (0.04%) 5.44 8,194 (13.4%) 2.65 286 (0.47%) 1.41 102 (0.17%) 77.2 - - 8,605 (14.1%) 2.61 

Bus 0 (0.00%) 1.65 717 (1.17%) 9.51 - - 11,942 (19.5%) 320 0 (0.00%) 0 12,659 (20.7%) 112 

SUV 246 (0.40%) 1.84 2,441 (3.99%) 0.71 46 (0.08%) 2.25 0 (0.00%) 0.75 1 (0.00%) 0.55 2,733 (4.47%) 0.76 

Van 21 (0.03%) 7.04 1,185 (1.94%) 1.61 393 (0.64%) 2.00 0 (0.00%) 0.45 0 (0.00%) 0 1,599 (2.61%) 1.71 

Taxi - - - - 273 (0.45%) 0.47 - - - - 273 (0.45%) 0.47 

Special 1 (0.00%) 25.8 904 (1.48%) 11.1 0 (0.00%) 0.23 - - - - 905 (1.48%) 11.0 

Motorcycle 3,160 (5.16%) 1.46 -  - - - - - - 3,160 (5.16%) 1.46 

Total 31,885 (52.1%) 2.50 14,070 (23.0%) 1.64 3,106 (5.08%) 1.10 12,047 (19.7%) 247 78 (0.13%) 0.47 61,186 (100%) 2.51 

 993 

(c) PM2.5 994 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 144 (1.42%) 0.01 809 (8.00%) 0.70 0 0 0 0 3 (0.03%) 0.02 956 (9.46%) 0.07 

Truck 0 (0.01%) 0 5,415 (53.6%) 1.75 0 0 0 0 - - 5,415 (53.6%) 1.64 

Bus 0 0 214 (2.11%) 2.83 - - 0 0 0 (0.01%) 0.09 214 (2.11%) 1.89 

SUV 2 (0.02%) 0.02 2,165 (21.4%) 0.63 0 0 0 0 0 0.02 2,167 (21.4%) 0.60 

Van 0 0 1,127 (11.2%) 1.53 0 0 0 0 0 0.02 1,127 (11.2%) 1.20 

Taxi - - - - 0 0 - - - - 0 0 

Special 0 0 230 (2.28%) 2.82 0 0 - - - - 230 (2.28%) 2.81 

Motorcycle 0 0 -  - - - - - - 0 0 

Total 146 (1.44%) 0.01 9,959 (98.5%) 1.16 0 0 0 0 3 (0.03%) 0.02 10,108 (100%) 0.41 
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 997 

(d) CO 998 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 178,121 (47.6%) 17.1 3,436 (0.92%) 2.98 42,886 (11.5%) 23.6 29 (0.01%) 2.91 177 (0.05%) 1.07 224,649 (60.1%) 16.6 

Truck 254 (0.07%) 61.1 47,065 (12.6%) 15.2 9,088 (2.43%) 44.9 68 (0.02%) 51.4 - - 56,475 (15.1%) 17.1 

Bus 0 (0.00%) 19.3 7,633 (2.05%) 101 - - 1542 (0.41%) 41.3 1 (0.00%) 4.64 9,176 (2.45%) 81.2 

SUV 2,616 (0.70%) 19.6 13,401 (3.58%) 3.87 791 (0.21%) 38.6 0 (0.00%) 4.09 2 (0.00%) 1.15 16,808 (4.50%) 4.65 

Van 131 (0.04%) 43.4 6,611 (1.77%) 8.97 8,032 (2.15%) 40.9 2 (0.00%) 6.53 0 (0.00%) 1.00 14,777 (3.95%) 15.8 

Taxi - - - - 8,481 (2.27%) 14.7 - - - - 8,481 (2.27%) 14.7 

Special 13 (0.00%) 269 4,224 (1.13%) 51.7 1 (0.00%) 3.69 - - - - 4,239 (1.13%) 51.7 

Motorcycle 39,256 (10.5%) 18.2 -  - - - - - - 39,256 (10.5%) 18.2 

Total 220,390 (59.0%) 17.3 82,372 (22.0%) 9.57 69,281 (18.5%) 24.6 1641 (0.44%) 33.6 180 (0.05%) 1.07  373,864 (100%) 15.4 

 999 

(e) SOx 1000 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 51.3 (29.8%) 0.005 6.5 (3.79%) 0.006 8.28 (4.81%) 0.005 0 0 1.14 (0.67%) 0.007 67.2 (39.1%) 0.005 

Truck 0.03 (0.02%) 0.008 45.5 (26.5%) 0.015 0.97 (0.57%) 0.005 0 0 - - 46.5 (27.1%) 0.014 

Bus 0 (0.00%) 0.003 10.8 (6.26%) 0.143 - - 0 0 0.01 (0.01%) 0.047 10.8 (6.26%) 0.095 

SUV 0 (0.00%) 0.000 18.2 (10.6%) 0.005 0.00 (0.00%) 0.000 0 0 0.01 (0.01%) 0.007 18.2 (10.6%) 0.005 

Van 0.02 (0.01%) 0.006 5.5 (3.20%) 0.007 0.77 (0.45%) 0.004 0 0 0 (0.00%) 0.010 6.30 (3.66%) 0.007 

Taxi - - - - 7.71 (4.49%) 0.013 - - - - 7.71 (4.48%) 0.013 

Special 0 (0.00%) 0.003 7.3 (4.27%) 0.090 0.00 (0.00%) 0.005 - - - - 7.34 (4.27%) 0.090 

Motorcycle 7.94 (4.62%) 0.004 -  - - - - - - 7.94 (4.62%) 0.004 

Total 59.3 (34.5%) 0.006 93.8 (54.5%) 0.011 17.7 (10.3%) 0.006  0 0 1.17 (0.68%) 0.007 172 (100%) 0.007 

 1001 

 1002 

(e) NH3 1003 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 12,225 (98.3%) 1.17 20 (0.16%) 0.02 0 0.00 0 0 19 (0.15%) 0.11 12,284 (98.6%) 0.91 

Truck 0 (0.00%) 0.03 82 (0.66%) 0.03 0 0.00 0 0 - - 82 (0.66%) 0.02 

Bus 0 (0.00%) 0.09 15 (0.12%) 0.19 - - 0 0 0 (0.00%) 0.51 15 (0.12%) 0.13 

SUV 0 (0.00%) 0.00 0 (0.00%) 0.00 0 0.00 0 0 0 (0.00%) 0.16 0 (0.00%) 0.00 

Van 0 (0.00%) 0.02 14 (0.11%) 0.02 0 0.00 0 0 0 (0.00%) 0.09 14 (0.11%) 0.01 

Taxi - - - - 0 0.00 - - - - 0 (0.00%) 0.00 

Special 0 (0.00%) 0.01 10 (0.08%) 0.12 0 0.00 - - - - 10 (0.08%) 0.12 

Motorcycle 49 (0.39%) 0.02 -  - - - - - - 49 (0.39%) 0.02 

Total 12,293 (98.7%) 0.97 141 (1.13%) 0.02 0 0.00  0 0 19 (0.16%) 0.12 12,453 (100%) 0.51 
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Figures 1006 

 1007 

Figure 1. CARS schematic methodology to estimate mobile emissions. 1008 
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 1010 

Figure 2. (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by 1011 

vehicle and fuel types in South Korea. 1012 

 1013 
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 1015 

Figure 3. Variation of NOx emission factors from diesel compact engines by vehicle speed and 1016 

ambient temperatures: (a) NOx emission factors function to vehicle speed; (b) NOx emission 1017 

factors of diesel compact truck function to vehicle speed and ambient temperature. 1018 
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 1020 

 1021 
Figure 4. (a) The South Korea speed distribution by road types. (b) The Georgia state speed 1022 

distribution by road types. (c) The average speed distribution (ASD) by road types used in this 1023 

study for South Korea.  1024 

 1025 
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 1027 
Figure 5. The schematic of modules and their functions in the CARS.  1028 
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 1030 
Figure 6 (a) the road network GIS shapefile of Seoul, South Korea; (b) two districts with different 1031 

colors (purple and blue); (c) the modeling grid cells over road segments. 1032 
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 1034 

Figure 7. Three different formats of CO emissions from CARS, (A) District-level total emissions 1035 

(t yr-1) (B) Link-level total emissions (t yr-1), (C) CTM-ready gridded hourly total emissions (moles 1036 

s-1). 1037 

  1038 

(a)

） 

(b) (c) 



 

   

 

42 

 

 1039 
Figure 8. Comparison between CARS 2015 and CAPSS 2015 onroad mobile emissions 1040 

inventories by vehicle types. The standard line is CAPSS 2015 data. 1041 
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 1044 
Figure 9. The impacts of emissions between the ASD and single-speed approach: (a) the total 1045 

emission differences by pollutant; (b) The road-specific difference (%) by pollutant.  1046 
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Appendices 1048 

 1049 

 1050 

Appendix A: The vehicle types classified by fuel type, vehicle body type, and engine size. The 1051 

emission factors of the diesel vehicle with the star (*) are depended on the ambient temperature 1052 

(T). 1053 

Vehicle 

Types 

Fuel Types 

Gasoline Diesel LPG CNG HYBRID_G HYBRID_D HYBRID_L HYBRID_C 

Sedan 

Supercompact Supercompact* Supercompact - - - - - 

Compact compact* compact compact compact compact compact - 

Fullsize Fullsize* Fullsize Fullsize Fullsize Fullsize Fullsize - 

Midsize Midsize* Midsize Midsize Midsize Midsize Midsize - 

Truck 

Supercompact Supercompact Supercompact - - - - - 

Compact Compact* Compact Compact - - - - 

Fullsize Concrete - Fullsize - - - - 

Midsize Fullsize Midsize Midsize - - - - 

- Midsize - - - - - - 

- Dump - - - - - - 

- Special Special Special - - - - 

Bus 
Urban Urban Urban Urban - Urban - - 

- Rural - Rural - Rural - Rural 

SUV 
Compact Compact* Compact - - - - - 

Midsize Midsize* Midsize Midsize Midsize - - - 

Van 

supercompact supercompact supercompact - - - - - 

Compact Compact Compact Compact - - - - 

- - Fullsize Fullsize Fullsize Fullsize Fullsize Fullsize 

Midsize Midsize Midsize Midsize Midsize Midsize Midsize Midsize 

Taxi 

- - Compact - - - - - 

- - Fullsize - - - - - 

- - Midsize - - - - - 

Special 

- Tow - - - - - - 

Wrecking Wrecking Wrecking Wrecking - - - - 

Others Others Others - - - - - 

Motorcycle 

Compact - - - - - - - 

Midsize - - - - - - - 

Fullsize - - - - - - - 

-  no existence 1054 
* ambient temperature-dependent diesel vehicle  1055 
LPG: Liquefied Petroleum Gas  1056 
CNG: Connecticut Natural Gas 1057 
Hybrid_G: hybrid vehicle with gasoline  1058 
Hybrid_D: hybrid vehicle with diesel 1059 
Hybrid_L: hybrid vehicle with LPG   1060 
Hybrid_C: hybrid vehicle with CNG 1061 

 1062 

  1063 
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Appendix B, The summary of activity data (number of vehicles and daily total VKTs) in South 1064 

Korea by vehicle type with engine size.  1065 

Vehicle 

Types 
Engine sizes 

Fuel Types 

Gasoline Diesel LPG CNG Hybrid 

Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT 

Sedan 

Supercompact 1,792,471 50,197,345 46 1,761 83,226 4,000,067 6 237 - - 

Compact 1,372,317 39,543,668 51,324 2,570,086 8,040 257,060 276 12,115 3,802 137,360 

Fullsize 2,403,327 100,632,702 428,831 20,928,552 292,850 15,910,588 5,296 323,852 21,533 1,086,509 

Midsize 4,858,533 167,454,032 672,960 33,126,318 1,431,970 66,640,378 4,310 625,717 140,527 6,717,856 

Truck 

Supercompact 850 9,595 816 354 111,051 6,550,476 - - - - 

Compact 3,185 143,510 2,655,089 133,480,216 87,650 3,567,109 42 2,694 - - 

Fullsize 3 422 180,991 25,774,819 - - 72 4,676 - - 

Midsize 98 7,430 258,509 17,477,685 1,434 47,870 14 483 - - 

Dump - - - - - - - - - - 

Special 20 970 - - 2,292 99,124 1,194 60,886 - - 

Bus 
Urban 1 126 40,448 7,282,593 1 652 6,543 1,466,854 2 282 

Rural - - 34,997 6,334,278 - - 30,792 6,460,001 216 50,873 

SUV 
Compact 42,348 1,395,153 2,341,397 105,962,626 6,946 275,728 13 551 -   

Midsize 91,002 3,520,552 1,120,128 5,277,861 13,567 595,426 15 706 1,719 88,683 

Van 

supercompact 88 1,645 - - 44,947 2,058,014 - - - - 

Compact 2,937 87,507 685,317 34,781,937 151,654 6,135,138 7 255 - - 

Fullsize - - 19,452 1,318,221 1 14 97 7,598 3 136 

Midsize 2 1,303,795 31,790 1,433,407 15 416 160 15,216 2 85 

Special -   - - -   - - - - 

Taxi 

Compact - - - - 8,380 576,378 - - - - 

Fullsize - - - - 92,861 10,827,756 - - - - 

Midsize - - - - 474,455 69,087,721 - - - - 

Special 

Tow - - 40,807 7,447,773 - - - - - - 

Wrecking 2 138 12,568 813,746 128 6,607 3 94 - - 

Others 47 553 28,275 989,988 180 9,966 - - - - 

Motorcycle 

Compact 184,822 3,507,948 - - - - - - - - 

Fullsize 65,964 3,493,728 - - - - - - - - 

Midsize 1,910,988 61,676,824 - - - - - - - - 

-  no existence 1066 
LPG: Liquefied Petroleum Gas 1067 
CNG: Connecticut Natural Gas 1068 
Hybrid: all hybrid vehicles, electric power mixed with fossil fuel (gasoline, diesel, LPG, or CNG) 1069 

 1070 
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 1073 

Appendix C, Eight road types with assigned average vehicle operating speed and VKT fractions. 1074 

Road 

types 
Description 

Average Speed 

(km h-1) 

Road VKT 

fraction 

101 Interstate Expressway 90 41% 

102 Urban Expressway 60 5% 

103 Highway 58 18% 

104 Urban Highway 36 12% 

105 Rural Highway 55 3% 

106 Rural Local Road 45 4% 

107 Urban Local Road 32 17% 

108 Ramp 50 0.4% 

 1075 

 1076 

Appendix D, The daily average VKT (km d-1) per vehicle by vehicle and fuel types. 1077 

Vehicle types 
Fuel Types 

Gasoline Diesel LPG CNG Hybrid Average 

Sedan 34 49 48 97 48 38 

Truck 39 57 51 52 - 57 

Bus 126 180 - 212 237 191 

SUV 37 46 42 45 52 46 

VAN 29 51 42 87 44 49 

Taxi - - 140 - - 140 

Special 14 113 54 31 - 113 

Motorcycle 32 - - - - 32 
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Appendix E, Average speed distribution (ASD) for each road type: The table columns are 1080 

different road types, and the table rows are average speed of each speed bin. 1081 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 1.50% 2.00% 5.00% 5.00% 5.00% 10.00% 10.00% 0.00% 

2 4 ≤ speed <  8 0.50% 1.00% 2.00% 2.00% 2.00% 5.00% 5.00% 0.00% 

3 8 ≤ speed < 16 0.00% 0.33% 0.40% 3.59% 0.41% 0.30% 2.76% 0.11% 

4 16 ≤ speed < 24 0.00% 1.09% 3.64% 14.35% 1.45% 2.91% 11.75% 5.85% 

5 24 ≤ speed < 32 0.01% 3.04% 6.82% 35.25% 6.85% 6.15% 40.80% 12.80% 

6 32 ≤ speed < 40 0.17% 6.43% 9.28% 17.14% 14.70% 12.00% 12.69% 24.53% 

7 40 ≤ speed < 48 0.52% 14.76% 10.70% 10.86% 16.20% 23.30% 7.49% 23.74% 

8 48 ≤ speed < 56 0.53% 16.66% 12.52% 5.72% 15.42% 20.72% 4.24% 6.60% 

9 56 ≤ speed < 64 1.94% 23.49% 12.83% 2.68% 6.08% 10.06% 2.56% 10.90% 

10 64 ≤ speed < 72 5.05% 16.30% 10.51% 1.90% 13.21% 3.84% 1.45% 5.30% 

11 72 ≤ speed < 80 11.70% 10.19% 12.69% 0.74% 9.98% 2.85% 0.53% 5.30% 

12 80 ≤ speed < 89 28.73% 4.30% 12.21% 1.04% 6.75% 2.21% 0.65% 4.59% 

13 89 ≤ speed < 97 34.24% 0.51% 1.82% 0.15% 1.90% 0.62% 0.08% 0.00% 

14 97 ≤ speed <  105 14.99% 0.00% 0.02% 0.00% 0.04% 0.03% 0.00% 0.30% 

15 105 ≤ speed < 113 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

16 113 ≤ speed <  121 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Appendix F: Single average speed for each road type 1082 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 0% 0% 0% 0% 0% 0% 0% 0% 

2 4 ≤ speed <  8 0% 0% 0% 0% 0% 0% 0% 0% 

3 8 ≤ speed < 16 0% 0% 0% 0% 0% 0% 0% 0% 

4 16 ≤ speed < 24 0% 0% 0% 0% 0% 0% 0% 0% 

5 24 ≤ speed < 32 0% 0% 0% 0% 0% 0% 100% 0% 

6 32 ≤ speed < 40 0% 0% 0% 100% 0% 0% 0% 0% 

7 40 ≤ speed < 48 0% 0% 0% 0% 0% 100% 0% 100% 

8 48 ≤ speed < 56 0% 0% 100% 0% 100% 0% 0% 0% 

9 56 ≤ speed < 64 0% 100% 0% 0% 0% 0% 0% 0% 

10 64 ≤ speed < 72 0% 0% 0% 0% 0% 0% 0% 0% 

11 72 ≤ speed < 80 0% 0% 0% 0% 0% 0% 0% 0% 

12 80 ≤ speed < 89 100% 0% 0% 0% 0% 0% 0% 0% 

13 89 ≤ speed < 97 0% 0% 0% 0% 0% 0% 0% 0% 

14 97 ≤ speed <  105 0% 0% 0% 0% 0% 0% 0% 0% 

15 105 ≤ speed < 113 0% 0% 0% 0% 0% 0% 0% 0% 

16 113 ≤ speed <  121 0% 0% 0% 0% 0% 0% 0% 0% 
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Appendix G:  1084 

 1085 
The annual emission rate between original road type ASD, adjusted road type ASD, and CAPSS 1086 

result for 2015   1087 

Gg/year CO NOx SOx PM10 PM2.5 VOC NH3 

CARS data 2015 org ASD 269.3 258.4 0.2 9.5 8.8 38.9 12.4 

CARS data 2015 adj ASD 373.9 301.8 0.2 11.0 10.1 61.2 12.5 

CAPSS 2015 245.5 369.6 0.2 9.6 8.8 46.1 10.1 

 1088 

 1089 

 1090 
Appendix H:  1091 

 1092 

CARS model input data summary table 1093 

Input data type Parameters Variable Name in CARS File format 

Human activity 

data of each 

vehicle 

Fuel, vehicle, type, daily VKT, region code, 

manufacture data 
activity_file csv 

Emission factor 

table 

Vehicle, engine, fuel, SCC ,Pollutant, year, 

temperature, v,a,b,c,d,f,k 
Emis_factor_list csv 

Link level Shape 

file 

Link ID, region code, region name,  road 

rank, speed, VKT, Link length, geometry 
Link_shape shape file 

County Shape 

File 
Region code, region name county_shape shape file 

Average speed 

distribution 

table 

Speed bins, the distribution of each road type  avg_SPD_Dist_file csv 

road restriction 

table 
Vehicle, engine, fuel, road types road_restriction csv 

Vehicle 

deterioration 

table 

Vehicle, engine, SCC, fuel, Pollutant, 

Manufacture date 
Deterioration_list csv 

Control strategy 

factors table 

Vehicle, engine, fuel, year, data, region code, 

control factor 
control_list csv 

Model domain 

description 

Projection method name, parameters for 

prjection method, domain name, bottum left 

coner X and Y, grid cell size, numbers of 

grid cell in X, Y, and Z-axis 

gridfile_name 

text file in 

griddesc 

format 

Temporal 

profile tables 

Profile reference number, Year to Monthly 

profile (12 columns) 
temporal _monthly_file csv 

Profile reference number, week to daily 

profile (7 columns) 
temporal _week_file csv 
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Profile reference number, week day to hourly 

profile (24 columns) 
temporal_weekday_file csv 

Profile reference number, weekend day to 

hourly profile (24 columns) 
temporal_weekend_file csv 

Vehicle, types, fuel, road type, month 

reference number, week reference number, 

weekday reference number, weekend 

reference number 

temporal_CrossRef csv 

Chemical profile 

table 

Species code, species name, target species 

name, fraction, molecular weight, 
Chemical_profile txt or csv 

Vehicle, engine, fuel, species reference codes speciation_CrossRef csv 

 1094 

 1095 


