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Abstract 17 

The Comprehensive Automobile Research System (CARS) is an open-source python-based 18 

automobile emissions inventory model designed to efficiently estimate high quality emissions 19 

from motor-vehicle emission sources. It can estimate the criteria air pollutants, greenhouse gases, 20 

and air toxics in various temporal resolutions at the national, state, county, and any spatial 21 

resolution based on the spatiotemporal resolutions of input datasets. The CARS is designed to 22 

utilize the local vehicle activity data, such as vehicle travel distance, road link-level network 23 

Geographic Information System (GIS) information, and vehicle-specific average speed by road 24 

type, to generate a temporally and spatially resolved automobile emissions inventory for 25 

policymakers, stakeholders, and the air quality modeling community. The CARS model adopted 26 

the European Environment Agency’s (EEA) onroad automobile emissions calculation 27 

methodologies to estimate the hot exhaust, cold start, and evaporative emissions from onroad 28 

automobile sources. It can optionally utilize average speed distribution (ASD) of all road types to 29 

reflect more realistic vehicle speed variations. Also, utilizing high-resolution road GIS data allows 30 

the CARS to estimate the road link-level emissions to improve the inventory's spatial resolution. 31 

When we compared the official 2015 national mobile emissions from Korea’s Clean Air Policy 32 
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Support System (CAPSS) against the ones estimated by the CARS, there is a moderate increase of 33 

volatile organic compounds (VOCs) (33%), carbon monoxide (CO) (52%), and fine particulate 34 

matter (PM2.5) (15%) emissions while nitrogen oxides (NOx) and sulfur oxides (Sox) are reduced 35 

by 24% and 17% in the CARS estimates. The main differences are driven by the usage of different 36 

vehicle activities and the incorporation of road-specific ASD, which plays a critical role in hot 37 

exhaust emission estimates but wasn’t implemented in Korea’s CAPSS mobile emissions 38 

inventory. While 52% of vehicles use gasoline fuel and 35% use diesel, gasoline vehicles only 39 

contribute 7.7% of total NOx emissions while diesel vehicles contribute 85.3%. But for VOC 40 

emissions, gasoline vehicles contribute 52.1% while diesel vehicles are limited to 23%. While 41 

diesel buses are only 0.3% of vehicles, each vehicle has the largest contribution to NOx emissions 42 

(8.51% of NOx total) due to it having longest daily vehicle kilometer travel (VKT). In VOC 43 

emission part, CNG buses are the largest contributor with 19.5% of total VOC emissions. For 44 

primary PM2.5, more than 98.5% is from diesel vehicles. The CARS model's in-depth analysis 45 

feature can assist government policymakers and stakeholders develop the best emission abatement 46 

strategies.  47 

Keywords: inventory: automobile, vehicle emissions, hot exhaust, cold start, evaporative, python 48 

1 Introduction 49 

Globally, ambient pollution causes more than 4.2 million premature deaths every year 50 

(Cohen et al., 2017), and Burnett et al. estimate the health burden is closer to 9 million deaths from 51 

ambient PM concentrations (Burneet et al, 2018). To effectively mitigate air pollutants, both 52 

developed and developing countries’ governments have been implementing stringent air pollution 53 

abatement control policies to reduce harmful regional air pollutants (Hogrefe et al., 2001a; Hogrefe 54 

et al., 2001b; Dennis et al., 2010; Rao et al., 2011; Appel et al., 2013; Luo et al., 2019). The CTM 55 

simulation results strongly rely on precise input data, such as emission inventory, meteorology, 56 

land surface parameters, and chemical mechanisms in the atmosphere.  57 

The transportation emission sector is one of the major anthropogenic emissions in urban 58 

areas. The tailpipe emissions from the vehicle’s combustion process contain many air pollutants, 59 

including nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), 60 

ammonia (NH3), sulfur dioxide (SO2), and primary particulate matter (PM) which will participate 61 

in the formation of detrimental secondary pollutants like ozone and PM2.5 in the atmosphere. In 62 

the Seoul Metropolitan Area (SMA) in South Korea, transportation automobile sources contribute 63 

the most to the total NOX and primary PM2.5 emissions across all emission sources. (Choi et al., 64 

2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). Thus, it is critical to understand and 65 

represent better on the emission patterns from the transportation automobile sources in the CTM 66 

model. The use of process-based automobile emission models is highly recommended to meet the 67 
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needs in CTM model because it can estimate the highly resolved spatiotemporal automobile 68 

emissions. (Moussiopoulos et al., 2009; Russell and Dennis, 2000). 69 

There are two methodologies known in emission inventory development: top-down and 70 

bottom-up. The choice of methods is determined by the input data availability. The top-down 71 

approach primarily relies on the aggregated and generalized country or regional information, 72 

especially in developing countries where only limited datasets and information are available. It has 73 

its limitations on representing the vehicle emission process realistically due to the lack of detailed 74 

activity and ancillary supporting data. However, the bottom-up approach requires higher-quality 75 

spatiotemporal activity datasets like road network information, vehicle composition (vehicle type, 76 

engine size, vehicle age, and fuel-technology), pollutant-specific emissions factors, road segment 77 

length, traffic activity data, and fuel consumption (EEA, 2019; Ibarra-Espinosa et al., 2018b; 78 

IEMA, 2017). It can generate more accurate and detailed automobile emissions across various 79 

operating processes, such as hot exhaust, evaporative, idling, and hot soak (Nagpure et al., 2016; 80 

Ibarra-Espinosa et al., 2018a). 81 

There are several bottom-up mobile emissions models available, like MOVES (MOtor 82 

Vehicle Emissions Simulator) from the U.S. Environmental Protection Agency (USEPA), the 83 

European Environment Agency’s (EEA) model COPERT (COmputer Programmed to calculate 84 

Emissions from Road Transport), the HERMES (High-Elective Resolution Modelling Emission 85 

System) from Barcelona Supercomputing Center (Guevara et al., 2019), the VEIN (Vehicular 86 

Emissions INventory) model developed by Ibarra-Espinosa et al. (2017), and the VAPI (Vehicular 87 

Air Pollution Inventory) model developed by Nagpure and Gurjar (2012) for India (Nagpure et al., 88 

2016). While these models are all bottom-up emission inventory models, a single model cannot 89 

meet all modelers, policymakers, and stakeholders' needs because each model holds its own pros 90 

and cons. They are developed differently to meet specific user needs based on the types of traffic 91 

activity and emission factors, emission calculation methodologies, and other optional/available 92 

traffic-related inputs such as average speed distribution and geographical resolution. Each model 93 

is developed with different levels of specificity, underlying data set and modeling assumptions. 94 

The MOVES model has the strength to generate high-quality emissions for up to 16 95 

different emission processes (i.e., Running Exhaust, Start Exhaust, Evaporative, Refueling, 96 

Extended Idling, Brake, Tire, etc.). It can simulate not only county-level but also road segment 97 

level depending on data availability. It can also reflect local meteorological conditions, such as 98 

ambient temperature and relative humidity, which can significantly impact both pollutants and 99 

emissions processes (Choi et al., 2017; Perugu et al., 2018). Disadvantage of this model is it 100 

difficult to update and apply to countries outside of the U.S. because MOVES model has a high 101 

degree of specificity. The COPERT model that is widely used in European countries has its 102 

advantages, such as the capability to model emissions in high resolution. Additionally, it is fully 103 

integrated with the EEA’s onroad vehicle emissions factors guidelines and can generate a complete 104 

quality assurance (QA) and visualization summary (Ntziachristos et al., 2009). The cons are that 105 
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it is a proprietary commercial licensed software, limited to EEA guidance, and challenging to 106 

modify and update with any key input datasets like the latest emission factors from non-European 107 

countries (Lejri et al., 2018; Rey DR, 2021; Li et al., 2019; Lv et al., 2019; Smit et al., 2019). 108 

The HERMES and VEIN are both recently released bottom-up inventory models. They 109 

have their pros in that they are both open-source models based on open-source computing 110 

languages (Python and R), which provide transparency of emission calculations with a 111 

considerable amount of data behind it (Ibarra-Espinosa et al., 2018b; Guevara et al., 2019). Both 112 

models are driven by comma-separated value (CSV) formatted input files, making it very easy for 113 

users to modify the input datasets. They are also based on the EEA’s emission calculation method 114 

and equipped with a complete QA and visualization tool based on Python and R libraries. However, 115 

it is not an easy task to update the emission factors, and generate other required input datasets for 116 

other countries, and lacks support for any control strategy plan feature to generate a responsive 117 

reduced emissions inventory for policymakers, stakeholders, and modelers.  118 

The VAPI (Vehicular Air Pollution Inventory) model was developed in India because the 119 

country does not have an extensive and robust traffic-related dataset to run these kinds of vehicular 120 

emissions inventory models (Nagpure et al., 2016; Perugu, 2019). 121 

There are also a few shortcomings of incorporating these bottom-up models into CTM 122 

studies. These models require strong programming skills to operate, such as collecting and 123 

preparing the input data to fit the model requirement, configuring the model variables, and 124 

changing specific variables that may be embedded in the code. Another downside is that while the 125 

administration-level emissions inventory can be estimated by those models, it requires a 3rd party 126 

emissions processor like the SMOKE (Sparse Matrix Operator Kerner Emissions) modeling 127 

system (Baek and Seppanen, 2021) to process and generate spatially and temporally resolved 128 

emissions inputs for CTM. Some detailed information, like link-level hourly driving patterns, can 129 

be lost in the emissions processing steps. 130 

There is no single model capable of meeting all the requirements across various spatial and 131 

temporal scales (Pinto et al., 2020). However, transparency, simplicity, and a user-friendly 132 

interface are requirements for those who mainly work in transportation policy and air quality 133 

modeling development (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Sallis et al., 2016; 134 

Sun et al., 2016; Tominaga and Stathopoulos, 2016). Thus, the ideal mobile emissions modeling 135 

system would be computationally optimized, easy-to-use, and have a user-friendly interface. 136 

Additionally, the model should easily adapt detailed local activity information and the state-of-art 137 

emission factors as an input to represent them in the highest resolution possible in time and space.  138 

We have developed the Comprehensive Automobile Research System (CARS) to meet these 139 

requirements, especially for the air quality research community, policymakers, and air quality 140 

modelers. The CARS is a stand-alone, fully modularized, computationally optimized, python-141 

based automobile emission model. The modularization improves the efficiency of processing times. 142 



 

   

 

5 

 

Once district and road link-level annual/monthly/daily total emissions are computed, the rest of 143 

the processes are optional. It can generate chemically speciated, spatially gridded hourly emissions 144 

for CTMs without any 3rd party emissions modeling system to develop the highest quality CTM-145 

ready emissions inputs. All functions are operated by independent modules and can be enabled by 146 

users. Details on modularization will be discussed later. The CARS model can be easily adopted 147 

and is simple for users to add new functions or modules in the future. The application of the CARS 148 

to South Korea will be described in detail later. 149 

2 CARS Emissions Calculation 150 

The CARS is an open-source Python-based customizable motor vehicle emissions 151 

processor that estimates onroad and offroad emissions for specific criteria and toxic air pollutants. 152 

Figure 1 is a schematic of the CARS overview. It applies vehicle, engine, and fuel specific 153 

emission factors to traffic data to estimate the local level annual, monthly, and daily total emissions 154 

inventory. The emissions inventory calculations require the list of pollutant-specific emissions 155 

factors by vehicle age, local activity data, average speed profile/distribution by road type, and 156 

geographic information system (GIS) road segment shapefiles inputs. The spatial resolution of 157 

vehicle kilometer travel (VKT) defines the CARS geographic scale (i.e. district, county, state, and 158 

country) for emission calculations. Unlike the district-level Korea Clean Air Policy Support 159 

System (CAPSS) automobile emission inventory (Lee et al., 2011a; Lee et al., 2011b), the CARS 160 

applies high-resolution annual average daily traffic (AADT) data from the road GIS shapefiles to 161 

distribute the total district emissions into road link-level emissions. Optionally, these road link-162 

level emissions can be used to generate spatially gridded CTM-ready emissions input data once 163 

the output modeling domain is defined. The summary of input files by categories are presented in 164 

Appendix H. How the CARS estimates spatially and temporally enhanced automobile emissions 165 

inventories will be discussed in detail next chapter. 166 

South Korean traffic databases from the Korea CAPSS team (Lee et al., 2011b) from the 167 

National Institute of Environmental Research (NIER) were used in this study to compute the 168 

updated onroad automobile emissions inventory. The databases include individual vehicle activity 169 

data (daily total VKT), road activity data (average speed distribution by road), vehicle age specific 170 

emission factors, road type information, surface weather data, and GIS road shapefiles.  171 

2.1 Individual Daily Average VKT Activity Data 172 

The individual vehicle VKT data is used to reflect the human activity. This study imported 173 

the national registered vehicle-specific daily total VKT from South Korea’s Vehicle Inspection 174 

Management System (VIMS), which belongs to the Korea Transportation Safety Authority 175 

(KTSA). It contains over 50 million records from 2013 to 2017. For the CARS model, we first 176 

sorted these records by the vehicle identification number (VIN) to remove any duplicates and then 177 
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built vehicle-specific daily total VKT traffic activity data in the CSV format. The summary of 178 

those vehicle numbers and VKTs is presented in Fig. 2. Sedan vehicles using gasoline fuel 179 

comprise the greatest percentage of total vehicles at 47% (~10.4 million) and have the highest 180 

VKT. Most vehicles demonstrate similar patterns between the number of vehicles and daily VKT. 181 

However, as expected, LPG (liquefied petroleum gas)-fueled taxi are high in VKT compared to 182 

the number of vehicles due to their daily long distance travel pattern. 183 

The VIN (vin) information is used to calculate vehicle-specific daily average VKT (VKTvin, 184 

km d-1). In Eq. (1), the individual daily average vehicle VKT (VKTvin) is calculated based on the 185 

cumulative mileage (Mf;vin) between the last inspection date (Df;vin) and registration date (D0;vin). 186 

Each vehicle is categorized with Korea’s NIER which defines the vehicle types (Ryu et al., 2003; 187 

Ryu et al., 2004; Ryu et al., 2005; Lee et al., 2011a) based on a combination of vehicle types (e.g., 188 

sedan, truck, bus, etc), engine sizes (e.g., compact, full size, midsize, etc) and fuel types (e.g., 189 

gasoline, diesel, LPG, etc). Full details of vehicle types and daily total VKT are shown in Appendix 190 

A and B.  191 

𝑉𝐾𝑇𝑣𝑖𝑛 =
𝑀𝑓;𝑣𝑖𝑛

𝐷𝑓;𝑣𝑖𝑛 − 𝐷0; 𝑣𝑖𝑛
  (1) 192 

2.2 Emission Calculations 193 

Automobile emission sources include motorized engine sources on the paved road network 194 

and off the road network (e.g., drive way and parking lots). The CARS model doesn’t simulate 195 

emissions from nonroad emission sources, such as aviation, railways, construction, agricultures, 196 

lawn mower, and boats yet. The CARS model simulates the onroad automobile emissions from 197 

network roads using their local traffic-related datasets. The following section explains the 198 

approach of the onroad automobile emission processes. The onroad emission (Eonroad) in the CARS 199 

is defined in Eq. (2), which includes three major emission processes (Ntziachristos and Samaras, 200 

2000): 201 

𝐸𝑜𝑛𝑟𝑜𝑎𝑑 = 𝐸ℎ𝑜𝑡 + 𝐸𝑐𝑜𝑙𝑑 + 𝐸𝑣𝑎𝑝  (2) 202 

The hot exhaust emissions (Ehot) are the vehicle’s tailpipe emissions when the internal combustion 203 

engine (ICE) combusts the fuel to generate energy under the average operating temperature. The 204 

cold start emissions (Ecold) are the tailpipe emissions from the ICE when the cold vehicle engine is 205 

ignited and the operational temperature is below average condition. The evaporative VOC 206 

emissions (Evap) are the emissions evaporated/permeated from the fuel systems (fuel tanks, 207 

injection systems, and fuel lines) of vehicles. 208 

The CARS first applies the hot exhaust emission factors by vehicle type, age, fuel, engine, 209 

and pollutants to individual daily total VKT to compute the hot exhaust emissions. The rest of the 210 
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processes for cold start and evaporative emissions are calculated afterwards. The emission 211 

calculation methodologies used in the CARS model are based on tier 2 and tier 3 methodologies 212 

from the EEA’s mobile emission inventory guidebook (EEA, 2019) to be consistent with Korea’s 213 

National Emission Inventory System (NEIS) (Lee et al., 2011a). 214 

2.2.1 Hot Exhaust Emissions 215 

Hot exhaust emissions, which is from the vehicle’s tailpipe, is the exhaust gas from the 216 

combustion process in an ICE. The ICE combustion cycle generally causes incomplete combustion 217 

processes which emit hydrocarbons, carbon monoxide (CO), and particulate matter (PM) which 218 

not completely controlled from the aftertreatment equipment, such as three-way catalytic converter 219 

and released into the atmosphere. The sulfur compounds in the fuel are oxidized and become sulfur 220 

oxides (SOx). Nitrogen oxides (NOx) are produced due to the abundance of nitrogen (N2) and 221 

oxygen (O2) during the combustion process. 222 

Equation 3 represents the calculation of daily individual vehicle hot exhaust emission rate, 223 

Ehot; p,vin,myr (g d-1) of pollutant (p). An individual vehicle-specific daily VKTvin (km d-1) is estimated 224 

by Eq. (1). The EFhot;p,v,myr,s (g/km) is the hot exhaust emission factor of pollutants (p) for the 225 

vehicle type (v), vehicle manufacture year (myr), and average vehicle speed (s). The district's total 226 

emission rate is the total hot exhaust emissions from all individual vehicles within the same district.   227 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × 𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠  (3) 228 

The deterioration factor (DF) in Eq. (3) is an optional function in the CARS. The 229 

deterioration process is caused by vehicle aging and can lead to the increase of vehicle emissions. 230 

The vehicle DF is varied by vehicle type (v), pollutant (p), and vehicle manufacture year (myr). 231 

The CARS model computes vehicle ages based on the vehicle manufacture year and model 232 

simulation year. According to the guidance of deterioration factors calculation from NIER, there 233 

is no deterioration in a new vehicle during their first five years. After five years, the deterioration 234 

factors can increase the 5~10% range depending on the type of vehicle and pollutants. 235 

Deterioration processes can cause up to 100% increase of emissions in fifteen-year-old vehicles. 236 

Currently, the DF is an empirical coefficient that varies by vehicle age (Lee et al., 2011a).  237 

The hot exhaust emission factor, EFhot;p,v,s (g/km) is a function of vehicle speed (s) with 238 

other empirical coefficients: a, b, c, d, f, k. The emission factor formula and those coefficients 239 

were developed by NIER CAPSS (Lee et al., 2011a). These coefficients are varied by pollutants 240 

(p), vehicle type (v), vehicle manufacture year (myr), and vehicle speed (s). The vehicle speed 241 

affects the combustion efficiency of an ICE and impacts the emission rates and its composition 242 

from the tailpipe. 243 

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠 = 𝑘(𝑎 × 𝑠𝑏 + 𝑐 ×  𝑠𝑑 + 𝑓)  (4) 244 
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While vehicle speed plays a critical role in hot exhaust emissions from most vehicles, NOx 245 

emissions from some diesel vehicles show sensitivity to local ambient temperature along with 246 

vehicle speed (Ntziachristos and Samaras, 2000). Figure 3 shows the dependency of NOx emission 247 

factors from compact diesel vehicles to vehicle speed (Fig. 3a) and ambient temperature (Fig. 3b). 248 

Figure 3a shows a significant decrease of NOx emissions while speed increases between 0 and 70 249 

km. Figure 3b demonstrates the significance of local meteorology on NOx emissions from a 250 

compact diesel sedan. Based on these NIER’s CAPSS emission factors, the sensitivity to local 251 

ambient temperature is limited to NOx pollutant emissions from diesel vehicles.  252 

Due to its high sensitivity to the vehicle operating speed, it is important for the CARS to 253 

simulate realistic speed patterns for accurate emissions estimates. When a single speed is assigned 254 

to compute hot exhaust emissions, it won’t reflect the emissions under low-speed circumstances. 255 

To overcome this limitation, the CARS has adopted the 16 average speed bins concepts for a better 256 

representation of vehicle speed distribution that varies by road type (i.e., local, highway, 257 

expressway). We have implemented a feature for the CARS optionally to apply road-specific 258 

average speed distributions (ASD) (Abin,r), which represents the fractions of 16-speed bins (bin) 259 

(from 0 to 121 km h-1 defined in Appendix E) for eight different road types (r) (No.101-108, shown 260 

in Appendix C) as classified by CAPSS (Fig. 4a). Although ASD patterns vary by region and time, 261 

current CARS model version does not support ASD application by region and time of day due to 262 

the lack of region and time-dependent ASD availability in South Korea.  263 

We first developed the ASD (Fig. 4a) for eight different road types (No. 101-108) in South 264 

Korea based on the latest road link-specific average speed and the length of link from the SK GIS 265 

road network shapefiles (NIER, 2018). However, the ASD based on the SK GIS road shapefiles 266 

did not capture low-speed range (<16 km h-1) driving (Fig. 4a). This causes a significantly lower 267 

estimation of NOx and VOC emissions compared to the CAPSS (Appendix G). We believe the 268 

SK average speed distribution is missing low-speed driving that can occur on links on different 269 

days due to traffic congestion. To address this absence of low-speed driving in the SK ASD, we 270 

incorporated data from the ASD (Figure 4b) from the state of Georgia developed by U.S. EPA to 271 

the low-speed ranges (speed bin #1 and #2 for road type 1 to 7). We increased the total fractions 272 

of low-speed bins (the 2:1 ratio of fractions of bin #1 and #2) by 2% for interstate expressways, 273 

3% for urban expressways, 7% for all highways, and 15% for all local roads. The increases in low-274 

speed bins lowered the distributions of other higher speed bins homogeneously due to the 275 

renormalization of fractions by road type. Figure 4c shows the renormalized hybrid-ASDs of all 276 

road types based on SK ASD and Georgia ASD. We understand, the hybrid-ASD approach is not 277 

ideal for SK onroad emission inventory development. However, it clearly demonstrates the 278 

CARS’s capability and sensitivity to the vehicle speed representation and the impacts of ASD to 279 

the local onroad mobile inventories.  280 

 While 16-speed bins ASD application is critical to computing more realistic hot exhaust 281 

emissions, there should be some restrictions on certain road types. Users can adjust the restricted 282 
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roads control table input file to limit the vehicle types that can only be operated on a particular 283 

road type. For example, motorcycles are limited to local roads (No. 104, 106, and 107), but not on 284 

expressways (No. 101, 102, 103, 105, and 108) due to its traffic regulation rules. Heavy trucks are 285 

only allowed on the highway (No. 101, 102, 103, 105, and 108.) by law. The details of the road 286 

restriction control table format can be found on the CARS’s user’s guide from the CARS Github 287 

website (https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual). 288 

The 16-speed bins averaged speed distribution calculated by road type (Abin,r) and road type 289 

weight factors (𝜔r,d) in a district (d) from Eq. (13) are added to the CARS hot exhaust emissions 290 

equation (Eq. 3). The hot exhaust emissions from individual vehicles (Ehot;p,vin,myr) can be 291 

calculated by considering road-specific speed bins distribution (Eq. 5). Although the vehicles may 292 

be operated in different districts from their registered district, this is our best method to estimate 293 

the vehicle speed for hot exhaust emissions. 294 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × ∑ (𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠𝑏𝑖𝑛 × 𝐴𝑏𝑖𝑛,𝑟)  (5) 295 

2.2.2 Cold Start Emissions 296 

The cold start emissions occur when a cold-engine vehicle is ignited. The lower 297 

temperature of the ICE is not an optimal condition for complete fuel combustion. This process 298 

lowers the combustion efficiency (CE) and increases the emissions of hydrocarbon and CO 299 

pollutants from the tailpipe exhaust (Jang et al., 2007). The CARS can estimate the cold start 300 

emissions for vehicles using gasoline, diesel, or liquefied petroleum gas (LPG) fuel. Besides the 301 

vehicle and engine type, road type also plays a critical role in the quantity of cold start emissions 302 

because it occurs mostly in parking lots and rarely on highways.  303 

 The cold start emission, Ecold
 (g d-1), is derived from the hot exhaust emissions, the ratio of 304 

hot to cold exhaust emissions (EFcold/EFhot -1.0), and the percentage of the traveled distance with 305 

a cold engine (Eq. 6).  306 

𝐸𝑐𝑜𝑙𝑑; 𝑝,𝑣 = 𝛽𝑇 × 𝐸ℎ𝑜𝑡; 𝑝,𝑣 × (
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
− 1.0)  (6) 307 

The emission factor of cold start emissions (EFcold) is not directly calculated from 308 

measurement data like hot exhaust emissions (Ehot;p,v), but measured under different ambient 309 

temperatures (T). The CARS model applies linear regression models developed by CAPSS to 310 

estimate the increasing ratio of cold start to hot exhaust emissions (EFcold/EFhot) under different 311 

temperatures (T) (Eq. 7). In this equation, A and B are the empirical coefficients that vary by the 312 

pollutants (p) and vehicle type (v). 313 

(
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
) = 𝐴𝑝,𝑣 + 𝐵𝑝,𝑣 × 𝑇  (7)  314 
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 is the percentage of the distance traveled under a cold engine. It also depends on the 315 

ambient temperature. Cold ambient temperatures cause a longer distance traveled under a cold 316 

engine due to the slower heating time. According to the CAPSS database for Seoul city (Lee et al., 317 

2011a), the empirical linear equation for   is shown in Eq. (8). This formula represents how 318 

ambient temperature affects  . For example, when the average temperature is -2°C,   is 34.8%. 319 

In summer, the monthly average temperature is 25.7°C, which causes  to drop to 21%.  320 

𝛽 = 0.647 − 0.025 × 12.35 − (0.00974 − 0.000385 × 12.35) × 𝑇  (8) 321 

2.2.3 Evaporative VOC Emissions 322 

 Evaporative emissions are emissions from vehicle fuel that are evaporated into the 323 

atmosphere. This occurs in the fueling system inside the vehicle, such as fuel-tanks, injection 324 

systems, and fuel lines. Diesel vehicles, however, can be exempted due to diesel fuel’s low vapor 325 

pressure. The primary sources of evaporative emissions are breathing losses through tank vents 326 

and fuel permeation/leakage. The CARS model adopted the EEA’s emission inventory guidebook 327 

(EEA, 2019) to account for three mechanisms to estimate the evaporative VOC emissions (Evap): 328 

diurnal emissions from the tank (ed), hot and warm soak emissions by fuel injection type (Sfi), and 329 

running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a conversion factor (0.075) applied to 330 

Evap for motorcycles to prevent an over-estimation of VOC. 331 

𝐸𝑣𝑎𝑝; 𝑝,𝑣 = (𝑒𝑑; 𝑝,𝑣 + 𝑆𝑓𝑖; 𝑝,𝑣 + 𝑅𝑙; 𝑝,𝑣)  (9) 332 

Diurnal emissions, ed (g d-1), during the daytime are caused by the ambient temperature 333 

increase and the expansion of fuel vapors inside the fuel tank. Most of the current fuel tank systems 334 

have emission control systems to limit this kind of evaporative VOC emissions. The ed can be 335 

calculated with the empirical Eq. (10), which was developed by CAPSS. Tl is the monthly average 336 

of the daily lowest temperatures and Th is the monthly average of the daily highest temperatures. 337 

The empirical coefficient α is 0.2, which represents how 80% of emissions are eliminated by the 338 

vehicle emission control system. 339 

𝑒𝑑 = 𝛼 × 9.1𝑒𝑥𝑝 [0.3286 + 0.0574 × (𝑇𝑙) + 0.0614 × (𝑇ℎ − 𝑇𝑙 − 11.7)] (10) 340 

Soak emissions (Sfi) occur when a hot ICE is turned off; the remaining heat from the ICE 341 

can increase the fuel temperature in the system. The carburetor float bowls are the major source of 342 

the soak emissions. Newer vehicles with fuel injection and return-less fuel systems do not emit 343 

soak emissions. Because most of the current vehicles in South Korea have a new fuel system, soak 344 

emissions (Sfi) in the CARS model are set to 0.  345 

The running loss emissions (Rl) are from vapors generated in the fuel tank when a vehicle 346 

is in operation (Eq. 11). In some older vehicles, the carburetor and engine operation can increase 347 
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the temperature in the fuel tank and carburetor, which can cause a significant increase in 348 

evaporative VOC emissions. VOC emissions from running loss can be greatly increased during 349 

warmer weather. However, newer vehicles with fuel injection and return-less fuel systems are not 350 

affected by the ambient temperature. Because most vehicles in South Korea do not use carburetor 351 

technology, we expect running loss emissions to have the least impact (Lee et al., 2011b).  352 

𝑅𝑙 = 𝛼 × 𝐿𝑟,𝑣 × [(1 − 𝛽) × 𝑅ℎ + 𝛽 × 𝑅𝑤]  (11) 353 

The empirical coefficient α is 0.1 here, which represents that 90% of the running loss is 354 

avoided by the newer fuel system. L is the distance traveled (km) by road and is the same one used 355 

in hot exhaust emission calculations.  is the same parameter from Eq. (8). The Rh and Rw are the 356 

average emission factors from running loss under hot and warm/cold conditions, respectively.  357 

2.3 Road Link-Level Emissions Calculations 358 

In general, district-level automobile emissions calculations are driven by district-level 359 

averaged vehicle activity and operating data, which do not reflect realistic spatial patterns of 360 

onroad automobile emissions.  The CARS model introduces road link-specific traffic data by 361 

default to develop spatially enhanced road link-specific emissions that reflect more representative 362 

emissions by road link. This high-resolution traffic data is a GIS shapefile that is composed of 363 

many connected segments, which are called “road links.” All road links hold information such as 364 

start/end location coordinates, AADT, road link length, averaged vehicle speed, and road type (No. 365 

101-108).  366 

The CARS model applies link-level AADT (AADTd,r,l., d-1) and road length (Ld,r,l) to 367 

compute the road link-specific VKT (VKTd,r,l, km d-1) in Eq. (12). The road links are identified by 368 

district (d), road type (r), and link (l) labels. The road VKT is a parameter that reflects the traffic 369 

activity of each road link and it is different from individual daily vehicle activity data (VKTv,age) 370 

in Eq. (1).  371 

𝑉𝐾𝑇𝑑,𝑟,𝑙 = 𝐴𝐴𝐷𝑇𝑑,𝑟,𝑙 ×  𝐿𝑑,𝑟,𝑙  (12) 372 

Road link-specific VKT (VKTd,r,l) is used to redistribute the district total emissions (Eonroad) 373 

from Eq. 2 into road link-level emissions. The following three weight factors are computed: the 374 

district weight factors, ωd (Eq. 13), the road type weight factors, ωd,r (Eq. 14), and the road-link 375 

weight factors, ωd,l (Eq. 15). The weight district factors (ωd) are the renormalization of each 376 

district's total VKT over state-level total VKT (N is the number of districts). The main reason we 377 

performed the renormalization over state-level total VKT is to reflect daily traffic patterns from 378 

multiple districts under the assumption that most vehicles travel within the same state. The road 379 

type weight factors by district (ωr,d) are used to compute road-specific emissions, while road-380 
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specific averaged speed distributions (ASD; As,r) from Eq. (5) are applied to capture vehicle 381 

operating speeds by road type. The road link weight factors (ωd,l) are then applied to redistribute 382 

the district emissions into road link-level emissions.  383 

 384 

𝜔𝑑 =
∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟

1

𝑁
∑ ∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟𝑑

  (13) 385 

𝜔𝑑,𝑟 =
∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (14) 386 

𝜔𝑑,𝑙 =
𝑉𝐾𝑇𝑑,𝑟,𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (15) 387 

3 CARS Configuration 388 

The CARS model is an open-source program based on Python (Guido van Rossum, 2009) 389 

that allows the users to efficiently apply open-source modules to develop programs. Users can 390 

easily install Python development tools and load customized packages and modules to set up the 391 

CARS development environment. All CARS modules are developed using Python v3.6. Other than 392 

the GIS road shapefiles, all input files are based in the ASCII CSV format, which can be easily 393 

handled by both spreadsheet programs and programming languages, making it more accessible for 394 

users of all skillsets. The CARS can not only estimate district-level and spatially enhanced road 395 

link-level emissions, but can also generate hourly chemically speciated gridded emissions for 396 

CTMs. In addition, the CARS also generates various summary reports, graphics, and 397 

georeferenced plots for quality assurance. 398 

The required Python modules for the CARS are: “geopandas,” “shapely.geometry”, and 399 

“csv” modules to read the shapefiles and table data files. The “NumPy” and “pandas” modules 400 

are used to operate the memory arrays and scientific calculations while the “pyproj” module deals 401 

with converting the projection coordinate systems. “matplotlib” is for generating any type of 402 

figures/plots. Furthermore, the CARS model can also read and write Climate and Forecast (CF)-403 

compliant NetCDF-formatted files using “NetCDF4”.  404 

The first process in the CARS is “Loading_function_path”; it allows users to define and 405 

check the input file paths. Once all input files are checked, there are six process modules in CARS 406 

to process inputs, compute emissions, and generate various output files, including QA reports. 407 

Figure 5 is the schematic of the CARS that consists of six process modules with various functions. 408 

The six process modules are (1) “Process activity data”, (2) “Process emission factors”, (3) 409 

“Process shapefile, (4) “Calculate district emissions”, (5) “Grid4AQM”, and (6) “Plot figures”. 410 

The main purpose of modularizing the CARS is to meet the needs of various communities, such 411 

as policymakers, stakeholders, and air quality modelers. While modules (1) through (4) are 412 
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required to develop the district-level and road link-level emissions inventories, module (5) 413 

“Grid4AQM” is optional depending on if users want to develop chemically-speciated gridded 414 

hourly emissions for CTMs. Also, the modularity system in the CARS allows users to bypass 415 

certain modules if it has been previously processed without any changes. For example, if there is 416 

no change in traffic activity, emission factors table, or GIS shapefiles, users do not need to run 417 

these modules and can simply read the data frame outputs and then run “Grid4AQM” for the 418 

modeling dates and domain. The “Grid4AQM” module will not only improve the computational 419 

time for CTMs but also eliminate the need for a 3rd party emissions modeling system like SMOKE 420 

(Baek and Seppanen, 2021). 421 

The rectangle boxes in Fig. 5 represent the data array and the boxes with rounded edges are 422 

the functions in the CARS. Details on the CARS code, input table format, and functions setup 423 

information can be found on the CARS GitHub website (Pedruzzi et al., 2020). 424 

The “Process activity data” module first reads the vehicle activity data, such as an 425 

individual vehicle's daily total VKT based on its registered district. The “Process emission factors” 426 

module reads and stores the emission factors table that holds all pollutant emission factors to 427 

estimate the emissions for all vehicles. Meteorology-sensitive emission factors are only limited to 428 

NOx pollutants. District boundary GIS shapefiles and road network shapefiles are processed 429 

through “Process shape file” to generate the VKT-based redistribution weighting factors from Eq. 430 

(13), (14) and (15) for the “Calculate district emissions” module to compute district-level and 431 

road link-level emission rates (metric tons per year, t yr-1). 432 

The redistributed emission rates (t yr-1) from the “Calculate district emissions” module 433 

present annual total emission rates until district-level VKTs from the “Process activity data” 434 

module are added. Then, the “Grid4AQM” module can generate CTM-ready chemically speciated 435 

emissions. The “Read_chemical” function from the “Grid4AQM” module is designed to process 436 

the chemical speciation profile that can convert the inventory pollutants such as CO, NOX, SO2, 437 

PM10, PM2.5, VOC, and NH3, into the chemically lumped model species that CTM requires for 438 

chemical mechanisms, such as SAPRC (L. and Heo, 2012) and Carbon Bond version 6 (CB6) 439 

(Yarwood and Jung, 2010). The “Read_temporal” function processes the complete set of monthly, 440 

weekly, and hourly temporal allocation profiles that can convert annual total emissions to hourly 441 

emissions. “Read_griddesc” defines the CTM-ready modeling domain and computes the gridding 442 

fractions for all road link-level emissions by overlaying the modeling domain over the GIS 443 

shapefiles. Once annual total emissions are chemically speciated, spatially gridded, and temporally 444 

allocated into hourly emissions, the “Gridded_emis” function will combine emission source-level 445 

conversion fractions from each function (Read_chemical, Read_temporal, and Read_griddesc) to 446 

generate the CTM-ready chemically speciated, gridded hourly emissions in the NetCDF binary 447 

format. The “Plot Figures” module is designed for generating various summary reports and 448 

graphics to assist users in understanding the estimated automobile emissions inventory computed 449 
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by the CARS. The following section will describe the detailed processes of the “Grid4AQM” 450 

module, which includes chemical, spatial, and temporal allocations. 451 

The influence of temperature on emission processes are considered in the CARS model. 452 

There are three temperature parameters in current CARS model such as “temp_max” for maximum 453 

temperature, “temp_mean” for mean temperature, and “temp_min” for minimum temperature. 454 

These temperature parameters will be applied to over the entire modeling domain during the 455 

simulation period. Current CARS model version does not support to process gridded meteorology 456 

data from the 3rd party meteorology models like Meteorology-Chemistry Interface Processor 457 

(MCIP) from U.S. EPA., and Weather Research Forecasting (WRF) model from National Center 458 

for Atmospheric Research (NCAR) yet. However, CARS can easily adopt various temporally 459 

resolved temperature values by adjusting the CARS simulation period (i.e., day, week, month, 460 

season, or annual). 461 

3.1 Chemical Speciation 462 

To support CTMs applications, the CARS needs to be able to convert inventory pollutants 463 

into chemical lumped model species based on the choice of CTM chemical mechanisms. NOx 464 

includes  nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO). VOCs can represent 465 

hundreds of different organic carbon species, such as benzene, acetaldehyde, and formaldehyde. 466 

These grouped inventory pollutants cannot be directly imported into the chemical mechanism 467 

modules in the CTM system and require chemical speciation allocation for CTMs to process them 468 

during their chemical reactions. Therefore, the “Grid4AQM” module performs the chemical 469 

species allocation step prior to the temporal and spatial allocations to generate the gridded hourly 470 

emissions. The “Read_chemical” function in “Grid4AQM” module allows users to assign these 471 

emission inventory pollutants to CTM-ready surrogate chemical species (a.k.a lumped chemical 472 

species) by vehicle, engine, and fuel type. For example, VOC emissions from diesel busses can be 473 

converted into the following composition based on its chemical allocation profile: alkanes (68%), 474 

toluene (9%), xylenes (8%), alkenes (4%), ethylene (2%), benzene (1.3%), and unreactive 475 

compounds (7%) when CB6 chemical mechanism is selected. Further details on the chemical 476 

speciation profile input formats are available in the CARS user’s guide. 477 

3.2 Spatial Allocation 478 

The “Calculate district emissions” module calculates not only the total district emissions 479 

but also road link-specific emissions based on road link-specific AADT data from road network 480 

GIS shapefiles. The “Calculate district emissions” module first gets the district total vehicle 481 

emissions (Eq. 2) based on the district-level VKTs, and then the normalized district total emissions 482 

by district weight factor, ωd (Eq. 13). Afterwards, the normalized district total emissions are 483 

redistributed into every road link using road link-level weight factors (ωd,l) (Eq. 15). The district 484 
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total emissions from Eq. (2) and from Eq. (15) remain the same. Then the computed road link-485 

level emissions then will be converted into grid cell emissions using the modeling domain grid cell 486 

fractions computed in the “Read_griddesc” function in the “Grid4AQM” module. 487 

3.3 Temporal Allocation 488 

Once chemical and spatial allocations are completed, the final step to support CTM 489 

application is a temporal allocation that converts the annual total emissions from the “Calculate 490 

district emissions” module into hourly emissions. The “Read_temporal” temporal allocation 491 

function in the “Grid4AQM” module converts the annual emission rate (t yr-1) to the hourly 492 

emission rate (mol hr-1) using monthly, weekly, and weekday/weekend diurnal temporal profiles. 493 

This module processes these temporal profile inputs, which are the monthly (January - December), 494 

weekly (Monday - Sunday), and weekday/weekend 24 hour profile tables (0:00-23:00 LST). The 495 

users can assign these temporal profiles with a combination of vehicle, engine, fuel, and road types 496 

to enhance their temporal representations in detail. 497 

3.4 Chemical Transport Model Emissions 498 

The main goal of the “Grid4AQM” module is to generate temporally, chemically, and 499 

spatially enhanced CTM-ready gridded hourly emissions. First, it reads the CTM modeling domain 500 

configuration and then overlays it over the road network GIS shapefile and district-boundary 501 

shapefile to define the modeling domain. This overlaying process between the road network, 502 

district boundary GIS shapefiles, and modeling domain allows the “Grid4AQM” module to 503 

compute the fraction of road links that intersects with each grid cell. Figure 6 demonstrates how 504 

the district boundary and road network GIS shapefiles are used to perform the spatial allocation 505 

processes in CARS. Figure 6a is a native road link shapefile of Seoul with AADT, VKT, district 506 

ID, and road type. Figure 6b presents an overlay of two districts’s road links (purple and blue) over 507 

the selected region. State total emissions will be renormalized into weighed district total emission 508 

data and then redistributed into the road link. Figure 6c illustrates how the weighted road link-509 

level emissions get allocated into modeling grid cells for CTMs. The link-level VKT (VKTd,r,l) 510 

from Eq. (12) will be used to compute a total of traffic activity fractions by grid cell and then use 511 

that to assign the link-level emissions from Eq. (2) into each grid cell. When a road link intersects 512 

with multiple grid cells, the “Grid4AQM” module will weigh the emissions by the length of the 513 

link that intersects with each grid cell. It should be noted that current CARS model can only 514 

generate the Community Multiscale Air Quality (CAMQ)-ready gridded hourly emissions in 515 

format of IOAPI (Input/Output Applications Programming Interface) based on NetCDF format.  516 

Through the overlay process, the CARS model can generate various types of output data, 517 

such as total district emissions, link-level emissions, and CTM-ready gridded emissions. For 518 

example, the CO vehicle emissions from the Seoul metropolitan in South Korea are presented in 519 
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three different output formats in Fig. 7. Figure 7a shows the annual mobile PM2.5 emissions by 520 

district. The road link level annual emissions are presented in Fig. 7b. Furthermore, the CARS 521 

applies the link-level emissions from Fig. 7b to generate the hourly grid cell emission data with a 522 

1 km × 1 km resolution for the CTM in Fig. 7c.  523 

3.5 National Control Strategy Application 524 

One of the unique features in the CARS compared to other mobile emissions models is that 525 

it can promptly develop controlled mobile emissions responding to the national emergency high 526 

PM2.5 episodes. It is very common to experience high PM2.5 episodes, especially during the 527 

wintertime in South Korea due to domestic and international primary and secondary air pollutants 528 

emissions. When the 72 hour forecasted PM2.5 concentration exceeds the average 50 µg/m3 (0:00-529 

16:00 LST), the national PM2.5 emergency control strategy is activated for ten days. It applies a 530 

nationwide vehicle restriction policy within 24 hours. It enforces a limit on what kind of vehicles 531 

can be operated on a certain date. The restrictions can be applied in the following ways: the 532 

closures of public parks and government facilities, and restrictions of certain vehicles based on 533 

their fuel type and age, which is a major factor of engine deterioration. This policy will limit the 534 

number of vehicles on the network roads significantly, which could reduce primary PM2.5 and 535 

precursor pollutant (NOx, NH3, and VOC) emissions, especially from heavily populated 536 

metropolitan regions (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). 537 

To understand the impacts of an even/odd vehicle restriction policy in real-time, we need to 538 

quickly develop a rapid control response emissions for the air quality forecast modeling system. 539 

The process of generating the controlled mobile emissions can take a long time if we start fresh. 540 

Thus, we have implemented this control strategy as an optional “Control Factors” function in the 541 

“Calculate district emissions” in the module for users to quickly and easily generate the 542 

controlled mobile emissions with consideration of the limited number of vehicles based on the 543 

vehicle, engine, fuel, and vehicle manufactured year. A one hundred percent (100%) control factor 544 

means that there are no emissions from those selected vehicles. 545 

Because of the modularization system in the CARS, we can bypass some computationally 546 

expensive data processing modules (i.e., “Process activity data”, “Process emission factors”, 547 

and “Process shape file”) and let the “Calculate district emissions” module quickly apply control 548 

factors while it computes the district-level mobile emission inventory from Eq. (2).  This will allow 549 

users to reduce the computational time to generate the controlled mobile emissions under a specific 550 

control scenario and develop the controlled CTM-ready gridded hourly emissions using the 551 

“Grid4AQM” module.  552 
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3.6 Computational Time 553 

While the CARS can generate a high-quality spatiotemporal emission inventory for 554 

policymakers, stakeholders, and air quality modelers, it is quite critical for the CARS to generate 555 

these complex mobile emissions effectively and accurately without being at the expense of 556 

computational time. This is especially important to meet the needs for an air quality forecast 557 

modeling system responding to a national emergency control strategy implementation. 558 

In this section, we will discuss the details of the CARS computational modeling performance.  559 

While the CARS model has been highly optimized, the modularization of CARS has also improved 560 

its modeling performance with optional module runs. The breakdown of module-specific 561 

computational time estimates based on the benchmark CARS runs are listed in Table 1. The 562 

benchmark CARS case includes a total of 24,383,578 daily VKT datasets from KSTA over two 563 

different years, 84,608 emission factors for all pollutants across a combination of vehicle-age-564 

engine-fuel types, 385,795 road links from the GIS road network shapefiles, 5,150 districts/16-565 

states boundary GIS shapefile, and 5,494 grid cells (=82 rows and 67 columns) for CTMs. Without 566 

any computational parallelization, the total processing time of all six modules usually takes around 567 

a half hour to generate a single day CTM-ready gridded hourly emission file. However, it can be 568 

further shortened to 25-30 minutes on a higher performance computer. Because of the modular 569 

system implemented in the CARS, generating one month (31 days) long gridded hourly emissions 570 

from CTMs do not require over 15 computational hours, but only around 100 minutes on high-571 

performance computers. The maximum usage of RAM can reach up to 11 GB. Table 1 shows the 572 

breakdown of computational time by each module from two different hardwares (desktop and 573 

laptop computers). The numbers in parentheses beside the “Grid4AQM” module is the 574 

computational time for a single day versus 31 days. While the “Grid4AQM” module takes an 575 

average of 4.9 minutes for a single day emissions generation, processing a consecutive 31 days 576 

saves 46% more time, decreasing from 151.9 minutes (=4.9 minutes * 31 days) to 81.6 minutes.  577 

4 Results 578 

CARS and CAPSS Comparison 579 

The CARS model calculates the 2015 onroad automobile emissions based on the latest 580 

2015 emission factors and the 2015-2017 vehicle activity database in South Korea. The annual 581 

total emissions from CARS are compared against the ones from NIER CAPSS in Table 2. The 582 

CARS model estimated the following annual total emissions in units of metric tons per year (t yr-583 
1): NOx (301,794); VOC (61,186); CO (373,864), NH3 (12,453); PM2.5 (10,108), and SOx (172.0). 584 

Compared to NIER CAPSS, the CARS overestimated all pollutants except for NOx (-18% decrease) 585 

and SOx (-17% decrease). It overestimated the emissions of VOC by 33%, PM2.5 by 15%, CO by 586 

52%, and NH3 by 24%. Both NIER CAPSS and CARS shared the same emission factor tables, 587 
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which hold over 84,608 emission factors for all pollutants across a combination of vehicle, age, 588 

engine, and fuel types.  589 

The difference between CAPSS and CARS approaches are caused by three reasons: First, 590 

the number of vehicles used in CARS is slightly higher (6%) than CAPSS data (1.3 out of 23 591 

million), as well as other key traffic-related activity inputs (i.e., vehicle age distribution, averaged 592 

speed distribution, etc). Secondly, the vehicle speed information assigned by vehicle and road type 593 

play a critical role in the differences between CAPSS and CARS. The CAPSS calculation was 594 

based on the road-specific mean speed value or 80% of the speed limit as an input of vehicle 595 

operating speed by three road types (rural, urban, and expressway). In other words, CAPSS only 596 

assigns a “single-speed value” for each road type, and does not encounter the variation of vehicle 597 

speed during its operation on roads into the emissions calculation. Most running exhaust emissions 598 

occur during a vehicle’s low-speed operation due to its incomplete combustion of fuel, and it is 599 

critical to accurately represent the emissions across various speed bins in order to compute the 600 

correct emissions. The CARS model has an option to apply the average speed distribution (ASD) 601 

over 16 speed bins for eight road types (Fig. 4). The CARS speed distribution process can better 602 

represent the speed variations of vehicle speeds for each road type. A detailed analysis of the 603 

impact of vehicle speed will be discussed later in this chapter. Lastly, other advanced processes in 604 

the CARS, such as link-level AADT and district-level vehicle data (5,150 districts in South Korea), 605 

can reflect more spatial detail and variation than the CAPSS. The CAPSS only considers state-606 

level data (17 states in South Korea) and five road types (interstate expressway, urban highway, 607 

rural highway, urban local, and rural local). 608 

Figure 8 illustrates more details about the difference between the annual emissions from 609 

CARS to the CAPSS by pollutants and vehicle types. Sedan vehicles show the largest increase of 610 

VOC (33%), CO (41%), and NH3 (23%) in the CARS relative to CAPSS because almost 56% of 611 

total vehicle count (13.5 million) is composed of sedan vehicles. Also, sedan vehicles contribute 612 

51% of total VOC and 61% of total CO annual emissions. The VOC and CO emissions from sedans 613 

are largely affected by the average speed distribution process when compared to other vehicle 614 

types. Similarly, the largest decreases of NOx (-16%) and SOx (-18%) are from trucks because they 615 

are significant NOx (~50%) and SOx contributors (~27%) and their emission factors are sensitive 616 

to vehicle speed.  617 

Onroad Emissions Analysis  618 

 The CARS is a bottom-up emissions model, which utilizes local individual vehicle activity 619 

data, detailed local emission factors for every vehicle and fuel type, and localized inputs such as 620 

average speed distribution by road type and deterioration factor. It allows users to assess the 621 

detailed breakdown of localized emission contributions. Table 3 represents the individual air 622 

pollutants (NOx, VOC, PM2.5, CO, NH3, and SOx) emission contributions (t yr-1), fractions (%), 623 



 

   

 

19 

 

and impact factors (IF) by the vehicle type and fuel system. The IF is defined by the normalized 624 

annual emissions with vehicle counts of each category (kg yr-1 per vehicle). The CARS also can 625 

provide the average daily VKT per vehicle, which is the total daily VKT divided by vehicle 626 

numbers, to explain the emission contributions in Appendix D. 627 

Diesel-fueled vehicles contribute the most of NOx emissions, which is over 85.3% (257,305 628 

t yr-1), although the number of diesel vehicles only amounts to approximately 35% of the total 629 

vehicles (Table 3a). While the diesel trucks emitted 49.1% (148,246 t yr-1) of total NOx with an IF 630 

value of 47.9 (kg yr-1), the highest impact (IF = 340 kg yr-1) occurred from diesel buses with only 631 

a 8.51% contribution to the total NOx emissions. This is caused by the highest average daily VKT 632 

from diesel buses compared to other vehicles, which is expected in a highly populated metropolitan 633 

area like Seoul, South Korea. A diesel bus generally has a 3-5 times higher daily VKT (180 km d-634 
1) than other common vehicles (gasoline sedan: 34 km d-1, diesel truck: 57 km d-1). The second-635 

largest vehicle type is the CNG (compressed natural gas) bus (248 kg yr-1), which also has a higher 636 

VKT. Their average daily VKT is 212 km d-1, with only a 3.1% NOx contribution.  637 

For VOC emissions, over 12 million gasoline vehicles cause 52.1% (31,885 t yr-1) of the 638 

total VOC emissions, and the gasoline sedan is the highest contributor across all vehicle types, 639 

which is over 28,434 t yr-1 (46.5%) (Table 3b). Unlike NOx emissions, diesel vehicles only 640 

contribute 23.0% (14,070 t yr-1) of the total VOC emissions. Across the vehicle fuel types, the IF 641 

outcome indicates that CNG vehicles have the highest IF values for VOC, which is 247 kg yr-1 due 642 

to the relatively high VOC contribution (19% over total VOC) and a low number of heavy CNG 643 

vehicles. The IF of CNG trucks are 77.2 kg yr-1, but only contribute 0.2% to total VOC emissions. 644 

The IF of the CNG bus is 320 kg yr-1 and emits 19.5% of the total VOC. Comparing the IFs of 645 

buses across fuel types, the CNG bus emits less NOx but higher VOC than a diesel vehicle. Each 646 

CNG bus has about 33 times higher IF of VOC (320 kg yr-1) than a diesel bus (9.51 kg yr-1), and 647 

CNG buses released slightly lower NOx (248 kg yr-1) than diesel buses (340 kg yr-1) (Table 3a and 648 

3b). 649 

The current South Korea NIER currently does not have the PM emission factors from tire 650 

and brake wear, which are the highest contributors of PM2.5 emissions from onroad vehicles (Hugo 651 

A.C. et al., 2013; Fulvio Amato et al., 2014). Once the emission factors of tire and brake wear are 652 

prepared, those emissions can be computed by CARS. For that reason, diesel vehicles become the 653 

major source of PM2.5 emissions, which contributes over 98.5% (9,959 t yr-1) of the PM2.5 654 

emissions based on the CARS 2015 emissions (Table 3c). The diesel truck, SUV, and van are the 655 

three major sources, and their contributions of total PM2.5 are 53.6%, 21.4%, and 11.2%, 656 

respectively. Although over 52% of the vehicles are gasoline vehicles, their primary PM2.5 657 

contribution is limited to 1.44%.  The diesel bus has the highest IF (2.83 kg yr-1), which is caused 658 

by the largest average daily VKTs. 659 
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Similar to VOC emissions, CO is mostly emitted through the tailpipe due to incomplete 660 

internal combustion of fuel and share similar emissions distributions across vehicle and fuel types 661 

(Table 3d). Gasoline vehicles contribute most of the CO (220,390 t yr-1, 59.0%), and sedan vehicles 662 

are the primary source (178,121 t yr-1, 47.6%) of this out of all gasoline vehicles. Across vehicle 663 

types, bus shows the highest IF of CO (81.2 kg yr-1) due to its largest daily VKT. CO is the most 664 

abundant pollutant released from vehicles (373,864 t yr-1) across all pollutants from onroad 665 

automobile sources. Although CO is much less reactive than other vehicle VOCs (Rinke and 666 

Zetzsch, 1984; Liu and Sander, 2015), the majority of CO emissions from onroad automobile 667 

sources plays a critical role in generating 30% of hydroperoxyl radicals (HO2) and causing ozone 668 

formation in urban areas (Pfister et al., 2019). Thus, CO is also another crucial precursor to ozone 669 

formation in urban areas. 670 

SOx emissions are related to the sulfur content within the fuel component; diesel has a 671 

higher sulfur content than any other fuels. Most SOx is contributed by diesel vehicles (93.8 t yr-1, 672 

54.5%) (Table 3e). Within diesel vehicles, trucks provide 26.5% of SOx (45. t yr-1). Although the 673 

SOx from sedan vehicles are slightly higher (~3.3%) than diesel trucks, the number of diesel trucks 674 

is only 29.6% of the number of gasoline sedans. Thus, diesel trucks have a higher IF than gasoline 675 

sedans. Across vehicle types, buses have the highest IF (0.095 kg yr-1) of SOx, and diesel buses in 676 

particular have the largest IF at 0.143 kg yr-1. 677 

The NH3 emissions table (table 3f) indicates that 98.7% of NH3 is from gasoline vehicles 678 

while diesel trucks only contribute 1.13%. The IF result also shows that the gasoline sedan has the 679 

most significant impact per vehicle (1.17 kg yr-1). 680 

According to the vehicle activity and the CARS model results, nearly half of the total 681 

vehicles (24.3 million) are gasoline sedans (10.4 million, 42.8%), and gasoline sedan vehicles 682 

contributed most of the VOC and CO emissions (46.5% and 47.6%), but only 7.7% of the total 683 

NOx emissions. The number of diesel vehicles is 8.6 million (35.4%); however, they emitted about 684 

85.3% of the total NOx and 98.5% of the primary PM2.5. These results indicated that the annual 685 

traffic-related mobile emissions are not only affected by the number of vehicles, but also by 686 

different vehicle and fuel types. Therefore, this study normalized the annual emissions by the 687 

number of vehicles to confirm the emission composition by individual vehicle types.  688 

Average Speed Impact Study  689 

The CARS can also optionally apply the average speed distribution (ASD) by road type to 690 

compute more realistic mobile emissions on the road network when compared to using a current 691 

single average speed value for each road type (Appendix E). Applying the ASD will generate a 692 

better representation of actual traffic patterns from each road type. To understand the impacts of 693 

ASD application, we performed sensitivity runs between using a single-speed to the ASD 694 

application (Appendix F). The ASD data was described in Fig. 4, and the road-specific average 695 
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single-speed values were developed based on the weighted average method using the same ASD 696 

data. Appendix E and S6 describe the details of ASD as well as road-specific speed values.  697 

Figure 9a shows the differences in total emissions between two scenarios and is organized 698 

by pollutant. The single-speed scenario largely underestimates the emissions across all pollutants 699 

compared to the ones from the ASD scenario. NOx (16%), VOC (40%), and CO (30%) were 700 

especially underestimated. The difference is caused by the lack of low-speed bins (<16 km h-1) 701 

representation when a single average speed approach was used. Higher emissions are emitted while 702 

vehicles are operated with low-speed bins, which decreases the combustion efficiency of ICE and 703 

releases more pollutants. 704 

Figure 9b shows the road-specific breakdown between the ASD and single speed scenarios 705 

to understand the impacts of vehicle operating speeds on onroad automobile emissions. In this 706 

figure, each color indicates the emissions percentage differences by road types. Other than NH3, 707 

significant discrepancies happened between local urban roads (5.8%), highways (3.9%), and urban 708 

highways (3.0%). Other pollutants, VOC, PM2.5, CO, and SOx, have similar fractions of road types. 709 

This phenomenon is caused by low-speed conditions (<16 km h-1) and the fractions of road VKT 710 

contributions (Appendix C). The lower speeds cause the incomplete combustion of ICE and 711 

increase the emission rate. Also, local urban roads, highways, and urban highways have higher 712 

road VKT contributions at 17%, 18%, and 12%, respectively (Appendix C) than rural roads. 713 

Higher emissions from low speed conditions from these high contribution roads (urban local, urban 714 

highway, and highway) caused these significant differences between the ASD and single-speed 715 

approaches. Although the interstate expressway has the largest VKT contribution (41%), it also 716 

has the lowest fraction of low-speed bins (2%). That is why the difference between the ASD and 717 

single speed scenarios on interstate expressways is less than 1%. In general, NH3 emission factors 718 

do not change by vehicle operating speed, so the ASD impact is quite minimal. 719 

5 Conclusions 720 

The CARS is a bottom-up automobile emissions model that utilizes the localized traffic-721 

related activity and emission factors input datasets to generate high quality localized bottom-up 722 

emissions inventories for policymakers, stakeholders, and research community as well as 723 

temporally and spatially enhanced hourly gridded emissions for CTMs. First, the CARS model 724 

employs the daily VKTs for all registered vehicles and the emission factors function to compute 725 

district-level total daily emissions for each vehicle. To reflect realistic traffic patterns, the CARS 726 

model computes and utilizes link-level VKTs (=link-length×AADT) from the road network GIS 727 

shapefiles to redistribute the original district-level total emissions into spatially enhanced road 728 

link-level emissions. It can also optionally implement a control strategy as well as road restriction 729 

rules to improve the quality of local emission inventories and meet the needs of users.  730 
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The CARS model is a fully modularized and computationally optimized python-based 731 

bottom-up mobile emissions model that can effectively process a huge dataset to calculate high 732 

quality spatiotemporal county-level, road link-level and grid cell-level mobile emissions. We 733 

believe that the implementation of the ASD into the CARS improves the representation of onroad 734 

automobile emissions from the road network when compared to a single-speed for each road type 735 

approach. It allows the CARS to have a better representation of low speed (<16 km h-1) vehicle 736 

emissions. We believe that CARS model's versatile spatiotemporal bottom-up automobile 737 

emissions and the in-depth analysis feature can assist government policymakers and stakeholders 738 

to develop the rapid responsive emission abatement strategies as a response to the South Korea’s 739 

national PM2.5 emergency control strategy that enforces the nationwide vehicle restriction policy 740 

within 24 hours.  741 

Code Availability: 742 

The source code of the CARS model public release version 1.0 can be downloaded from the 743 

Github release website: 744 

https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0 745 

 746 

 747 

Digital Object Identifier (DOI) for the CARS version 1.0: 748 

https://zenodo.org/record/5033314#.YNzDrC1h001 749 

 750 

 751 

Installation Package for CARS version 1.0: 752 

The CARS version 1.0 installation package comes with the complete inputs and outputs datasets 753 

for users to confirm their proper installation on their computers and can be downloaded from the 754 

Github release website: 755 

https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_756 

package_25June2021.zip 757 

 758 

 759 

User’s Guide Documentation: 760 

The CARS version user’s guide documentation can be accessed through the Github repository: 761 

https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual 762 

 763 

 764 

https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0
https://zenodo.org/record/5033314#.YNzDrC1h001
https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_package_25June2021.zip
https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_package_25June2021.zip
https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual
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Data availability: 765 

All the datasets, excel and python scripts used in this manuscript for the data analysis are 766 

uploaded through GMD website along with a supplemental appendix document. 767 
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Tables 989 

Table 1. Computational processing time by CARS module based on the modeling setup: Total 990 

number of activity data = 24,383,578; Emission Factors = 84,608; GIS road links=385,795; 991 

districts/states=5,150/16; 9km9km grid cells=5,494 (82 columns 67 columns). 992 

No Module 
Desktop i7 

(minutes) 

Laptop i9 

(minutes) 

Averaged Time 

(minutes) 

1 Process activity data 1.8 1.5 1.7 

2 process emission factors 1.1 0.8 1.0 

3 Process shape file 9.9 7.3 8.6 

4 Calculate district emissions 6.4 5.7 6.1 

5 Grid4AQM [31days] 4.8 [75.9] 5.0 [87.2] 4.9 [81.6] 

6 Plot figures 6.2 5.4 5.8 

 Total [31days] 30.2 [101.3] 25.7 [107.9] 28.1[104.8] 

 993 

 994 
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Table 2. The total emissions comparison between CARS and CAPSS for the 2015 emission. 996 

Emission Inventory 
Pollutants (t yr-1) 

NOx VOC PM2.5 CO SOx NH3 

CARS 2015 301,794 61,186 10,108 373,864 172 12,453 

CAPSS 2015 369,585 46,145 8,817 245,516 209 10,079 

 997 

  998 
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Table 3. The summary tables of emissions (t yr-1), contributions (%), and impact factor (IF, kg yr-999 
1) per vehicle for criteria air pollutants (CAPs) by vehicle and fuel types: (a) for NOx; (b) VOC; 1000 

(c) for PM2.5; (d) for CO; (e) for SOx; and (f) for NH3.  1001 

 1002 

(a) NOx  1003 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 20,219 (6.70%) 1.94 14,783 (4.90%) 12.8 8,159 (2.77%) 4.49 12 (0.00%) 1.26 65 (0.02%) 0.39 43,239 (14.3%) 3.19 

Truck 23 (0.01%) 5.54 148,246 (49.1%) 47.9 920 (0.31%) 4.55 88 (0.03%) 66.4 - - 149,277 (49.5%) 45.2 

Bus 0 (0.00%) 0.97 25,677 (8.51%) 340 - - 9,260 (3.07%) 248 0 (0.00%) 1.77 34,938 (11.6%) 333 

SUV 159 (0.05%) 1.19 39,565 (13.1%) 11.4 175 (0.06%) 8.54 0 (0.00%) 1.60 1 (0.00%) 0.42 39,900 (13.2%) 11.0 

Van 14 (0.00%) 4.78 16,659 (5.52%) 22.6 1,337 (0.44%) 6.80 0 (0.00%) 1.25 0 (0.00) 0.37 18,012 (6.00%) 19.2 

Taxi - - - - 1,217 (0.40%) 2.11 - - - - 1,217 (0.40%) 2.11 

Special 1 (0.00%) 20.1 12,347 (4.10%) 152 0 (0.00%) 0.52 - - - - 12,375 (4.10%) 151 

Motorcycle 2,836 (0.94%) 1.31 -  - - - - - - 2,836 (0.94%) 1.32 

Total 23,253 (7.70%) 1.83 257,305 (85.3%) 29.9 11,809 (3.91%) 4.20 9,361 (3.10%) 36.7 66 (0.02%) 0.39 301,794 (100%) 13.3 

 1004 

(b) VOC  1005 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 28,434 (46.5%) 2.73 629 (1.03%) 0.55 2,107 (3.44%) 1.16 3 (0.01%) 0.33 77 (0.13%) 0.47 31,250 (51.1%) 2.30 

Truck 23 (0.04%) 5.44 8,194 (13.4%) 2.65 286 (0.47%) 1.41 102 (0.17%) 77.2 - - 8,605 (14.1%) 2.61 

Bus 0 (0.00%) 1.65 717 (1.17%) 9.51 - - 11,942 (19.5%) 320 0 (0.00%) 0 12,659 (20.7%) 112 

SUV 246 (0.40%) 1.84 2,441 (3.99%) 0.71 46 (0.08%) 2.25 0 (0.00%) 0.75 1 (0.00%) 0.55 2,733 (4.47%) 0.76 

Van 21 (0.03%) 7.04 1,185 (1.94%) 1.61 393 (0.64%) 2.00 0 (0.00%) 0.45 0 (0.00%) 0 1,599 (2.61%) 1.71 

Taxi - - - - 273 (0.45%) 0.47 - - - - 273 (0.45%) 0.47 

Special 1 (0.00%) 25.8 904 (1.48%) 11.1 0 (0.00%) 0.23 - - - - 905 (1.48%) 11.0 

Motorcycle 3,160 (5.16%) 1.46 -  - - - - - - 3,160 (5.16%) 1.46 

Total 31,885 (52.1%) 2.50 14,070 (23.0%) 1.64 3,106 (5.08%) 1.10 12,047 (19.7%) 247 78 (0.13%) 0.47 61,186 (100%) 2.51 

 1006 

(c) PM2.5 1007 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 144 (1.42%) 0.01 809 (8.00%) 0.70 0 0 0 0 3 (0.03%) 0.02 956 (9.46%) 0.07 

Truck 0 (0.01%) 0 5,415 (53.6%) 1.75 0 0 0 0 - - 5,415 (53.6%) 1.64 

Bus 0 0 214 (2.11%) 2.83 - - 0 0 0 (0.01%) 0.09 214 (2.11%) 1.89 

SUV 2 (0.02%) 0.02 2,165 (21.4%) 0.63 0 0 0 0 0 0.02 2,167 (21.4%) 0.60 

Van 0 0 1,127 (11.2%) 1.53 0 0 0 0 0 0.02 1,127 (11.2%) 1.20 

Taxi - - - - 0 0 - - - - 0 0 

Special 0 0 230 (2.28%) 2.82 0 0 - - - - 230 (2.28%) 2.81 

Motorcycle 0 0 -  - - - - - - 0 0 

Total 146 (1.44%) 0.01 9,959 (98.5%) 1.16 0 0 0 0 3 (0.03%) 0.02 10,108 (100%) 0.41 

 1008 

  1009 
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 1010 

(d) CO 1011 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 178,121 (47.6%) 17.1 3,436 (0.92%) 2.98 42,886 (11.5%) 23.6 29 (0.01%) 2.91 177 (0.05%) 1.07 224,649 (60.1%) 16.6 

Truck 254 (0.07%) 61.1 47,065 (12.6%) 15.2 9,088 (2.43%) 44.9 68 (0.02%) 51.4 - - 56,475 (15.1%) 17.1 

Bus 0 (0.00%) 19.3 7,633 (2.05%) 101 - - 1542 (0.41%) 41.3 1 (0.00%) 4.64 9,176 (2.45%) 81.2 

SUV 2,616 (0.70%) 19.6 13,401 (3.58%) 3.87 791 (0.21%) 38.6 0 (0.00%) 4.09 2 (0.00%) 1.15 16,808 (4.50%) 4.65 

Van 131 (0.04%) 43.4 6,611 (1.77%) 8.97 8,032 (2.15%) 40.9 2 (0.00%) 6.53 0 (0.00%) 1.00 14,777 (3.95%) 15.8 

Taxi - - - - 8,481 (2.27%) 14.7 - - - - 8,481 (2.27%) 14.7 

Special 13 (0.00%) 269 4,224 (1.13%) 51.7 1 (0.00%) 3.69 - - - - 4,239 (1.13%) 51.7 

Motorcycle 39,256 (10.5%) 18.2 -  - - - - - - 39,256 (10.5%) 18.2 

Total 220,390 (59.0%) 17.3 82,372 (22.0%) 9.57 69,281 (18.5%) 24.6 1641 (0.44%) 33.6 180 (0.05%) 1.07  373,864 (100%) 15.4 

 1012 

(e) SOx 1013 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 51.3 (29.8%) 0.005 6.5 (3.79%) 0.006 8.28 (4.81%) 0.005 0 0 1.14 (0.67%) 0.007 67.2 (39.1%) 0.005 

Truck 0.03 (0.02%) 0.008 45.5 (26.5%) 0.015 0.97 (0.57%) 0.005 0 0 - - 46.5 (27.1%) 0.014 

Bus 0 (0.00%) 0.003 10.8 (6.26%) 0.143 - - 0 0 0.01 (0.01%) 0.047 10.8 (6.26%) 0.095 

SUV 0 (0.00%) 0.000 18.2 (10.6%) 0.005 0.00 (0.00%) 0.000 0 0 0.01 (0.01%) 0.007 18.2 (10.6%) 0.005 

Van 0.02 (0.01%) 0.006 5.5 (3.20%) 0.007 0.77 (0.45%) 0.004 0 0 0 (0.00%) 0.010 6.30 (3.66%) 0.007 

Taxi - - - - 7.71 (4.49%) 0.013 - - - - 7.71 (4.48%) 0.013 

Special 0 (0.00%) 0.003 7.3 (4.27%) 0.090 0.00 (0.00%) 0.005 - - - - 7.34 (4.27%) 0.090 

Motorcycle 7.94 (4.62%) 0.004 -  - - - - - - 7.94 (4.62%) 0.004 

Total 59.3 (34.5%) 0.006 93.8 (54.5%) 0.011 17.7 (10.3%) 0.006  0 0 1.17 (0.68%) 0.007 172 (100%) 0.007 

 1014 

 1015 

(e) NH3 1016 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 12,225 (98.3%) 1.17 20 (0.16%) 0.02 0 0.00 0 0 19 (0.15%) 0.11 12,284 (98.6%) 0.91 

Truck 0 (0.00%) 0.03 82 (0.66%) 0.03 0 0.00 0 0 - - 82 (0.66%) 0.02 

Bus 0 (0.00%) 0.09 15 (0.12%) 0.19 - - 0 0 0 (0.00%) 0.51 15 (0.12%) 0.13 

SUV 0 (0.00%) 0.00 0 (0.00%) 0.00 0 0.00 0 0 0 (0.00%) 0.16 0 (0.00%) 0.00 

Van 0 (0.00%) 0.02 14 (0.11%) 0.02 0 0.00 0 0 0 (0.00%) 0.09 14 (0.11%) 0.01 

Taxi - - - - 0 0.00 - - - - 0 (0.00%) 0.00 

Special 0 (0.00%) 0.01 10 (0.08%) 0.12 0 0.00 - - - - 10 (0.08%) 0.12 

Motorcycle 49 (0.39%) 0.02 -  - - - - - - 49 (0.39%) 0.02 

Total 12,293 (98.7%) 0.97 141 (1.13%) 0.02 0 0.00  0 0 19 (0.16%) 0.12 12,453 (100%) 0.51 

 1017 

  1018 
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Figures 1019 

 1020 

Figure 1. CARS schematic methodology to estimate mobile emissions. 1021 

  1022 
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 1023 

Figure 2. (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by 1024 

vehicle and fuel types in South Korea. 1025 
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 1028 

Figure 3. Variation of NOx emission factors from diesel compact engines by vehicle speed and 1029 

ambient temperatures: (a) NOx emission factors function to vehicle speed; (b) NOx emission 1030 

factors of diesel compact truck function to vehicle speed and ambient temperature. 1031 
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 1033 

 1034 
Figure 4. (a) The South Korea speed distribution by road types. (b) The Georgia state speed 1035 

distribution by road types. (c) The average speed distribution (ASD) by road types used in this 1036 

study for South Korea.  1037 
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 1040 
Figure 5. The schematic of modules and their functions in the CARS.  1041 
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 1043 
Figure 6 (a) the road network GIS shapefile of Seoul, South Korea; (b) two districts with different 1044 

colors (purple and blue); (c) the modeling grid cells over road segments. 1045 
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 1047 

Figure 7. Three different formats of CO emissions from CARS, (A) District-level total emissions 1048 

(t yr-1) (B) Link-level total emissions (t yr-1), (C) CTM-ready gridded hourly total emissions (moles 1049 

s-1). 1050 
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 1052 
Figure 8. Comparison between CARS 2015 and CAPSS 2015 onroad mobile emissions 1053 

inventories by vehicle types. The standard line is CAPSS 2015 data. 1054 
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 1056 

 1057 
Figure 9. The impacts of emissions between the ASD and single-speed approach: (a) the total 1058 

emission differences by pollutant; (b) The road-specific difference (%) by pollutant.  1059 
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Appendices 1061 

 1062 

 1063 

Appendix A: The vehicle types classified by fuel type, vehicle body type, and engine size. The 1064 

emission factors of the diesel vehicle with the star (*) are depended on the ambient temperature 1065 

(T). 1066 

Vehicle 

Types 

Fuel Types 

Gasoline Diesel LPG CNG HYBRID_G HYBRID_D HYBRID_L HYBRID_C 

Sedan 

Supercompact Supercompact* Supercompact - - - - - 

Compact compact* compact compact compact compact compact - 

Fullsize Fullsize* Fullsize Fullsize Fullsize Fullsize Fullsize - 

Midsize Midsize* Midsize Midsize Midsize Midsize Midsize - 

Truck 

Supercompact Supercompact Supercompact - - - - - 

Compact Compact* Compact Compact - - - - 

Fullsize Concrete - Fullsize - - - - 

Midsize Fullsize Midsize Midsize - - - - 

- Midsize - - - - - - 

- Dump - - - - - - 

- Special Special Special - - - - 

Bus 
Urban Urban Urban Urban - Urban - - 

- Rural - Rural - Rural - Rural 

SUV 
Compact Compact* Compact - - - - - 

Midsize Midsize* Midsize Midsize Midsize - - - 

Van 

supercompact supercompact supercompact - - - - - 

Compact Compact Compact Compact - - - - 

- - Fullsize Fullsize Fullsize Fullsize Fullsize Fullsize 

Midsize Midsize Midsize Midsize Midsize Midsize Midsize Midsize 

Taxi 

- - Compact - - - - - 

- - Fullsize - - - - - 

- - Midsize - - - - - 

Special 

- Tow - - - - - - 

Wrecking Wrecking Wrecking Wrecking - - - - 

Others Others Others - - - - - 

Motorcycle 

Compact - - - - - - - 

Midsize - - - - - - - 

Fullsize - - - - - - - 

-  no existence 1067 
* ambient temperature-dependent diesel vehicle  1068 
LPG: Liquefied Petroleum Gas  1069 
CNG: Connecticut Natural Gas 1070 
Hybrid_G: hybrid vehicle with gasoline  1071 
Hybrid_D: hybrid vehicle with diesel 1072 
Hybrid_L: hybrid vehicle with LPG   1073 
Hybrid_C: hybrid vehicle with CNG 1074 

 1075 

  1076 
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Appendix B, The summary of activity data (number of vehicles and daily total VKTs) in South 1077 

Korea by vehicle type with engine size.  1078 

Vehicle 

Types 
Engine sizes 

Fuel Types 

Gasoline Diesel LPG CNG Hybrid 

Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT 

Sedan 

Supercompact 1,792,471 50,197,345 46 1,761 83,226 4,000,067 6 237 - - 

Compact 1,372,317 39,543,668 51,324 2,570,086 8,040 257,060 276 12,115 3,802 137,360 

Fullsize 2,403,327 100,632,702 428,831 20,928,552 292,850 15,910,588 5,296 323,852 21,533 1,086,509 

Midsize 4,858,533 167,454,032 672,960 33,126,318 1,431,970 66,640,378 4,310 625,717 140,527 6,717,856 

Truck 

Supercompact 850 9,595 816 354 111,051 6,550,476 - - - - 

Compact 3,185 143,510 2,655,089 133,480,216 87,650 3,567,109 42 2,694 - - 

Fullsize 3 422 180,991 25,774,819 - - 72 4,676 - - 

Midsize 98 7,430 258,509 17,477,685 1,434 47,870 14 483 - - 

Dump - - - - - - - - - - 

Special 20 970 - - 2,292 99,124 1,194 60,886 - - 

Bus 
Urban 1 126 40,448 7,282,593 1 652 6,543 1,466,854 2 282 

Rural - - 34,997 6,334,278 - - 30,792 6,460,001 216 50,873 

SUV 
Compact 42,348 1,395,153 2,341,397 105,962,626 6,946 275,728 13 551 -   

Midsize 91,002 3,520,552 1,120,128 5,277,861 13,567 595,426 15 706 1,719 88,683 

Van 

supercompact 88 1,645 - - 44,947 2,058,014 - - - - 

Compact 2,937 87,507 685,317 34,781,937 151,654 6,135,138 7 255 - - 

Fullsize - - 19,452 1,318,221 1 14 97 7,598 3 136 

Midsize 2 1,303,795 31,790 1,433,407 15 416 160 15,216 2 85 

Special -   - - -   - - - - 

Taxi 

Compact - - - - 8,380 576,378 - - - - 

Fullsize - - - - 92,861 10,827,756 - - - - 

Midsize - - - - 474,455 69,087,721 - - - - 

Special 

Tow - - 40,807 7,447,773 - - - - - - 

Wrecking 2 138 12,568 813,746 128 6,607 3 94 - - 

Others 47 553 28,275 989,988 180 9,966 - - - - 

Motorcycle 

Compact 184,822 3,507,948 - - - - - - - - 

Fullsize 65,964 3,493,728 - - - - - - - - 

Midsize 1,910,988 61,676,824 - - - - - - - - 

-  no existence 1079 
LPG: Liquefied Petroleum Gas 1080 
CNG: Connecticut Natural Gas 1081 
Hybrid: all hybrid vehicles, electric power mixed with fossil fuel (gasoline, diesel, LPG, or CNG) 1082 
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 1086 

Appendix C, Eight road types with assigned average vehicle operating speed and VKT fractions. 1087 

Road 

types 
Description 

Average Speed 

(km h-1) 

Road VKT 

fraction 

101 Interstate Expressway 90 41% 

102 Urban Expressway 60 5% 

103 Highway 58 18% 

104 Urban Highway 36 12% 

105 Rural Highway 55 3% 

106 Rural Local Road 45 4% 

107 Urban Local Road 32 17% 

108 Ramp 50 0.4% 

 1088 

 1089 

Appendix D, The daily average VKT (km d-1) per vehicle by vehicle and fuel types. 1090 

Vehicle types 
Fuel Types 

Gasoline Diesel LPG CNG Hybrid Average 

Sedan 34 49 48 97 48 38 

Truck 39 57 51 52 - 57 

Bus 126 180 - 212 237 191 

SUV 37 46 42 45 52 46 

VAN 29 51 42 87 44 49 

Taxi - - 140 - - 140 

Special 14 113 54 31 - 113 

Motorcycle 32 - - - - 32 

 1091 
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Appendix E, Average speed distribution (ASD) for each road type: The table columns are 1093 

different road types, and the table rows are average speed of each speed bin. 1094 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 1.50% 2.00% 5.00% 5.00% 5.00% 10.00% 10.00% 0.00% 

2 4 ≤ speed <  8 0.50% 1.00% 2.00% 2.00% 2.00% 5.00% 5.00% 0.00% 

3 8 ≤ speed < 16 0.00% 0.33% 0.40% 3.59% 0.41% 0.30% 2.76% 0.11% 

4 16 ≤ speed < 24 0.00% 1.09% 3.64% 14.35% 1.45% 2.91% 11.75% 5.85% 

5 24 ≤ speed < 32 0.01% 3.04% 6.82% 35.25% 6.85% 6.15% 40.80% 12.80% 

6 32 ≤ speed < 40 0.17% 6.43% 9.28% 17.14% 14.70% 12.00% 12.69% 24.53% 

7 40 ≤ speed < 48 0.52% 14.76% 10.70% 10.86% 16.20% 23.30% 7.49% 23.74% 

8 48 ≤ speed < 56 0.53% 16.66% 12.52% 5.72% 15.42% 20.72% 4.24% 6.60% 

9 56 ≤ speed < 64 1.94% 23.49% 12.83% 2.68% 6.08% 10.06% 2.56% 10.90% 

10 64 ≤ speed < 72 5.05% 16.30% 10.51% 1.90% 13.21% 3.84% 1.45% 5.30% 

11 72 ≤ speed < 80 11.70% 10.19% 12.69% 0.74% 9.98% 2.85% 0.53% 5.30% 

12 80 ≤ speed < 89 28.73% 4.30% 12.21% 1.04% 6.75% 2.21% 0.65% 4.59% 

13 89 ≤ speed < 97 34.24% 0.51% 1.82% 0.15% 1.90% 0.62% 0.08% 0.00% 

14 97 ≤ speed <  105 14.99% 0.00% 0.02% 0.00% 0.04% 0.03% 0.00% 0.30% 

15 105 ≤ speed < 113 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

16 113 ≤ speed <  121 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Appendix F: Single average speed for each road type 1095 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 0% 0% 0% 0% 0% 0% 0% 0% 

2 4 ≤ speed <  8 0% 0% 0% 0% 0% 0% 0% 0% 

3 8 ≤ speed < 16 0% 0% 0% 0% 0% 0% 0% 0% 

4 16 ≤ speed < 24 0% 0% 0% 0% 0% 0% 0% 0% 

5 24 ≤ speed < 32 0% 0% 0% 0% 0% 0% 100% 0% 

6 32 ≤ speed < 40 0% 0% 0% 100% 0% 0% 0% 0% 

7 40 ≤ speed < 48 0% 0% 0% 0% 0% 100% 0% 100% 

8 48 ≤ speed < 56 0% 0% 100% 0% 100% 0% 0% 0% 

9 56 ≤ speed < 64 0% 100% 0% 0% 0% 0% 0% 0% 

10 64 ≤ speed < 72 0% 0% 0% 0% 0% 0% 0% 0% 

11 72 ≤ speed < 80 0% 0% 0% 0% 0% 0% 0% 0% 

12 80 ≤ speed < 89 100% 0% 0% 0% 0% 0% 0% 0% 

13 89 ≤ speed < 97 0% 0% 0% 0% 0% 0% 0% 0% 

14 97 ≤ speed <  105 0% 0% 0% 0% 0% 0% 0% 0% 

15 105 ≤ speed < 113 0% 0% 0% 0% 0% 0% 0% 0% 

16 113 ≤ speed <  121 0% 0% 0% 0% 0% 0% 0% 0% 
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Appendix G:  1097 

 1098 
The annual emission rate between original road type ASD, adjusted road type ASD, and CAPSS 1099 

result for 2015   1100 

Gg/year CO NOx SOx PM10 PM2.5 VOC NH3 

CARS data 2015 org ASD 269.3 258.4 0.2 9.5 8.8 38.9 12.4 

CARS data 2015 adj ASD 373.9 301.8 0.2 11.0 10.1 61.2 12.5 

CAPSS 2015 245.5 369.6 0.2 9.6 8.8 46.1 10.1 

 1101 

 1102 

 1103 
Appendix H:  1104 

 1105 

CARS model input data summary table 1106 

Input data type Parameters Variable Name in CARS File format 

Human activity 

data of each 

vehicle 

Fuel, vehicle, type, daily VKT, region code, 

manufacture data 
activity_file csv 

Emission factor 

table 

Vehicle, engine, fuel, SCC ,Pollutant, year, 

temperature, v,a,b,c,d,f,k 
Emis_factor_list csv 

Link level Shape 

file 

Link ID, region code, region name,  road 

rank, speed, VKT, Link length, geometry 
Link_shape shape file 

County Shape 

File 
Region code, region name county_shape shape file 

Average speed 

distribution 

table 

Speed bins, the distribution of each road type  avg_SPD_Dist_file csv 

road restriction 

table 
Vehicle, engine, fuel, road types road_restriction csv 

Vehicle 

deterioration 

table 

Vehicle, engine, SCC, fuel, Pollutant, 

Manufacture date 
Deterioration_list csv 

Control strategy 

factors table 

Vehicle, engine, fuel, year, data, region code, 

control factor 
control_list csv 

Model domain 

description 

Projection method name, parameters for 

prjection method, domain name, bottum left 

coner X and Y, grid cell size, numbers of 

grid cell in X, Y, and Z-axis 

gridfile_name 

text file in 

griddesc 

format 

Temporal 

profile tables 

Profile reference number, Year to Monthly 

profile (12 columns) 
temporal _monthly_file csv 

Profile reference number, week to daily 

profile (7 columns) 
temporal _week_file csv 
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Profile reference number, week day to hourly 

profile (24 columns) 
temporal_weekday_file csv 

Profile reference number, weekend day to 

hourly profile (24 columns) 
temporal_weekend_file csv 

Vehicle, types, fuel, road type, month 

reference number, week reference number, 

weekday reference number, weekend 

reference number 

temporal_CrossRef csv 

Chemical profile 

table 

Species code, species name, target species 

name, fraction, molecular weight, 
Chemical_profile txt or csv 

Vehicle, engine, fuel, species reference codes speciation_CrossRef csv 

 1107 

 1108 


