

1 **Comprehensive Automobile Research System (CARS) – a**

2 **Python-based Automobile Emissions Inventory Model**

3 Bok H. Baek¹, Rizzieri Pedruzzi², Minwoo Park³, Chi-Tsan Wang¹, Younha Kim⁴, Chul-Han
4 Song⁵, and Jung-Hun Woo^{3,6}

5 ¹Center for Spatial Information Science and Systems – George Mason University, Fairfax, VA, USA.

6 ²Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte,
7 Brazil.

8 ³Department of Technology Fusion Engineering, College of Engineering, Konkuk University, Seoul, Republic of
9 Korea

10 ⁴Energy, Climate, and Environment program, International Institute for Applied Systems Analysis, Laxenburg,
11 Austria

12 ⁵School of Earth and Environmental Engineering, Gwangju Institute Science and Technology, Gwangju, Republic of
13 Korea

14 ⁶Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea

15 *corresponding to: Jung-Hun Woo (jwoo@konkuk.ac.kr)*

16 **Abstract**

17 The Comprehensive Automobile Research System (CARS) is an open-source python-based
18 automobile emissions inventory model designed to efficiently estimate high quality emissions
19 from motor-vehicle emission sources. It can estimate the criteria air pollutants, greenhouse gases,
20 and air ~~toxiestoxins~~ in ~~various temporal resolutions at the national, state, county, and~~ any spatial
21 resolution based on the spatiotemporal resolutions of input datasets. The CARS is designed to
22 utilize ~~the~~ local vehicle activity data, such as vehicle travel distance, road link-level network
23 Geographic Information System (GIS) information, and vehicle-specific average speed by road
24 type, to generate ~~a temporally and spatially resolved~~^{an} automobile emissions inventory for
25 policymakers, stakeholders, and the air quality modeling community. The CARS model adopted
26 the European Environment Agency's (EEA) onroad automobile emissions calculation
27 methodologies to estimate the hot exhaust, cold start, and evaporative emissions from onroad
28 automobile sources. It can optionally utilize average speed distribution (ASD) of all road types to
29 reflect more realistic vehicle speed variations. Also, ~~through~~ utilizing high-resolution road GIS
30 data ~~allows~~, the CARS ~~to~~ can estimate the road link-level emissions to improve the inventory's
31 spatial resolution. When we compared the official 2015 national mobile emissions from Korea's
32

33 Clean Air Policy Support System (CAPSS) against the ones estimated by the CARS, there is a
34 ~~moderate~~significant increase ~~of~~in volatile organic compounds (VOCs) (33%)~~;~~and carbon
35 monoxide (CO) (52%), ~~and~~and measured, with a slight increase in fine particulate matter (PM_{2.5})
36 (15%) emissions ~~while~~and ~~nitrogen~~Nitrogen oxides (NOx) and sulfur oxides (~~SOx~~SOx)
37 measurements are reduced by 24% and 17% respectively in the CARS estimates. The main
38 differences are driven by ~~the usage of~~ different vehicle activities and the incorporation of road-
39 specific ASD, which plays a critical role in hot exhaust emission estimates but wasn't implemented
40 in Korea's CAPSS mobile emissions inventory. While 52% of vehicles use gasoline fuel and 35%
41 use diesel, gasoline vehicles only contribute 7.7% of total NOx emissions while diesel vehicles
42 contribute 85.3%. But for VOC emissions, gasoline vehicles contribute 52.1% while diesel
43 vehicles are limited to 23%. ~~While diesel~~Diesel buses ~~are~~comprise of only 0.3% of vehicles, ~~each~~each
44 ~~vehicle and~~ has the largest contribution to NO_x emissions (8.51% of NO_x total) ~~per vehicle~~ due to
45 ~~it~~ having longest daily vehicle kilometer travel (VKT). ~~In~~For VOC ~~emission part, emissions,~~
46 ~~Compressed Natural Gas (CNG)~~ buses are the largest contributor ~~with~~at 19.5% of total VOC
47 emissions. For primary PM_{2.5}, more than 98.5% is from diesel vehicles. The CARS model's in-
48 depth analysis feature can assist government policymakers and stakeholders ~~develop~~in developing
49 the best emission abatement strategies.

50 Keywords: inventory: automobile, vehicle emissions, hot exhaust, cold start, evaporative, python

51 1 Introduction

52 Globally, ambient pollution causes more than 4.2 million premature deaths every year
53 (Cohen et al., 2017), and Burnett et al. ~~estimate(2018)~~estimated the health burden is closer to 9
54 million deaths from ambient PM concentrations (~~Burneet et al, 2018~~). To effectively mitigate air
55 pollutants, ~~both developed and developing countries'~~ governments have been
56 implementing stringent air pollution ~~abatement~~ control policies to reduce harmful regional air
57 pollutants (Hogrefe et al., 2001a; Hogrefe et al., 2001b; Dennis et al., 2010; Rao et al., 2011; Appel
58 et al., 2013; Luo et al., 2019). The ~~chemical transport model~~ (CTM) simulation results strongly
59 rely on precise input data, such as emission inventory, meteorology, land surface parameters, and
60 chemical mechanisms in the atmosphere.

61 The transportation ~~emission~~ sector is one of the major anthropogenic emissions in urban
62 areas. The tailpipe emissions from the vehicle's combustion process contain many air pollutants,
63 including nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO),
64 ammonia (NH₃), sulfur dioxide (SO₂), and primary particulate matter (PM) which ~~will~~
65 ~~participate~~participates in the formation of detrimental secondary pollutants like ozone and PM_{2.5}
66 in the atmosphere. In the Seoul Metropolitan Area (SMA) in South Korea, transportation
67 automobile sources contribute the most to the total NOx and primary PM_{2.5} emissions across all

68 emission sources- (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). Thus,
69 it is critical to understand and better represent better on the emission patterns from the
70 transportation automobile sources in the CTM model. The use of process-based automobile
71 emission models is highly recommended to meet the needs in CTM model because it can estimate
72 the highly resolved high resolution spatiotemporal automobile emissions- (Moussiopoulos et al.,
73 2009; Russell and Dennis, 2000).

74 There are two methodologies known in emission inventory development: top-down and
75 bottom-up. The choice of methods is determined by the input data availability. The top-down
76 approach primarily relies on the aggregated and generalized country or regional information,
77 especially and is typically used in developing countries where only limited datasets and information
78 are available. It has its limitations on representing the vehicle emission process realistically due to
79 the lack of detailed activity and ancillary supporting data. However, the bottom-up approach
80 requires higher- quality spatiotemporal activity datasets like road network information, vehicle
81 composition (vehicle type, engine size, vehicle age, and fuel-technology), pollutant-specific
82 emissions factors, road segment length, traffic activity data, and fuel consumption (EEA, 2019;
83 Ibarra-Espinosa et al., 2018b; IEMA, 2017). It can generate more accurate and detailed automobile
84 emissions across various operating processes, such as hot exhaust, evaporative, idling, and hot
85 soak (Nagpure et al., 2016; Ibarra-Espinosa et al., 2018a).

86 There are several bottom-up mobile emissions models available, like MOVES (MOtor
87 Vehicle Emissions Simulator) from the U.S. Environmental Protection Agency (USEPA), the
88 European Environment Agency's (EEA) model COPERT (COnputer Programmed to calculate
89 Emissions from Road Transport), the HERMES (High-Elective Resolution Modelling Emission
90 System) from Barcelona Supercomputing Center (Guevara et al., 2019), the VEIN (Vehicular
91 Emissions INventory) model developed by Ibarra-Espinosa et al. (2017), and the VAPI (Vehicular
92 Air Pollution Inventory) model developed by Nagpure and Gurjar (2012) for India (Nagpure et al.,
93 2016). While these models are all bottom-up emission inventory models, a single model cannot
94 meet all modelers, policymakers, and stakeholders' needs because each model holds its own pros
95 and cons. They are developed differently to meet specific user needs based on the types of traffic
96 activity and emission factors, emission calculation methodologies, and other optional/available
97 traffic- related inputs such as average speed distribution and geographical resolution. Each model
98 is developed with different levels of specificity, underlying data sets, and modeling assumptions.

99 The MOVES model has the strengthability to generate high- quality emissions for up to 16
100 different emission processes (i.e., Running Exhaust, Start Exhaust, Evaporative, Refueling,
101 Extended Idling, Brake, Tire, etc.). It can simulate not only county-level but also road segment
102 level emissions depending on data availability. It can also reflect local meteorological conditions,
103 such as ambient temperature and relative humidity, which can significantly impact both pollutants
104 and emissions processes (Choi et al., 2017; Perugu et al., 2018). DisadvantageOne major
105 disadvantage of this model is that it is difficult to update and apply to countries outside of the U.S.

106 because ~~MOVES model~~ it has a high degree of specificity. The COPERT model ~~that is,~~ widely
107 used in European countries ~~has its advantages, such as the capability to, can~~ model emissions in
108 high resolution. ~~Additionally, it,~~ is fully integrated with the EEA's onroad vehicle emissions
109 factors guidelines, and can generate a complete quality assurance (QA) and visualization summary
(Ntziachristos et al., 2009). The cons are that it is a proprietary commercial licensed software,
111 limited to EEA guidance, and challenging to modify and update with any key input datasets like
112 the latest emission factors from non-European countries (Lejri et al., 2018; Rey DR, 2021; Li et
113 al., 2019; Lv et al., 2019; Smit et al., 2019).

114 The HERMES and VEIN are both recently released bottom-up inventory models. They
115 have their pros in that they are both open-source models based on open-source computing
116 languages (Python and R), which provide transparency of ~~the~~ emission calculations with a
117 considerable amount of data behind ~~it~~them (Ibarra-Espinosa et al., 2018b; Guevara et al., 2019).
118 Both models are driven by comma-separated value (CSV) formatted input files, making it very
119 easy for users to modify the input datasets. They are also based on the EEA's emission calculation
120 method and equipped with a complete QA and visualization tool based on Python and R libraries.
121 However, it is not an easy task to ~~updatedevelop~~ the emission factors, and ~~generate~~ other required
122 input datasets for other countries, and ~~lacks support for implement~~ any control strategy plan feature
123 to generate a responsive reduced emissions inventory ~~for policymakers, stakeholders, and~~
124 ~~modelers~~.

125 ~~The VAPI (Vehicular Air Pollution Inventory) model was developed in India because the~~
126 ~~country does not have an extensive and robust traffic related dataset to run these kinds of vehicular~~
127 ~~emissions inventory models (Nagpure et al., 2016; Perugu, 2019).~~

128 ~~There~~Overall, there are ~~also a few~~multiple shortcomings ~~of~~in incorporating these bottom-
129 up models into CTM studies. ~~These models~~They require strong programming skills to operate,
130 such as collecting and preparing the input data to fit the model ~~requirement~~requirements,
131 configuring the model variables, and changing specific variables that may be embedded in the
132 code. Another downside is that while the ~~geographical~~ administration-level ~~(e.g., county level)~~
133 emissions inventory can be estimated by ~~the~~these models, it requires a 3rd party emissions
134 processor like the SMOKE (Sparse Matrix Operator Kerner Emissions) modeling system (Baek
135 and Seppanen, 2021) to process and generate spatially and temporally resolved emissions inputs
136 for CTM. Some detailed information, like link-level hourly driving patterns, can be lost in the
137 emissions processing steps.

138 There is no single model capable of meeting all the requirements across various spatial and
139 temporal scales (Pinto et al., 2020). However, transparency, simplicity, and a user-friendly
140 interface are requirements for those who mainly work in transportation policy and air quality
141 modeling development (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Sallis et al., 2016;
142 Sun et al., 2016; Tominaga and Stathopoulos, 2016). Thus, the ideal ~~mobile~~motor vehicle

143 emissions modeling system would be computationally optimized, easy-to-use, and ~~have~~has a user-
144 friendly interface. Additionally, the model should easily adapt detailed local activity information
145 and the state-of-art emission factors as ~~an input~~inputs to represent them in the highest resolution
146 possible ~~in time temporally~~ and ~~space spatially~~.

147 We have developed the Comprehensive Automobile Research System (CARS) to meet these
148 requirements, especially for the air quality research community, policymakers, and air quality
149 modelers. The CARS is a stand-alone, fully modularized, computationally optimized, python-
150 based automobile emission model. The modularization improves the efficiency of processing times.
151 ~~Once as once~~ district and road link-level annual/monthly/daily total emissions are computed;
152 the rest of the processes are optional. It can generate chemically speciated, spatially gridded, hourly
153 emissions for CTMs without any 3rd party ~~emissions modeling system~~programs to develop the
154 highest quality CTM-ready emissions inputs.~~All functions are operated by independent modules~~
155 ~~and can be enabled by users~~. Details on modularization will be discussed later. The CARS model
156 can be easily adopted and is simple for users to add new functions or modules in the future. The
157 application of the CARS to South Korea will be described in detail later.

158 2 CARS Emissions Calculation

159 The CARS is an open-source Python-based customizable motor vehicle emissions
160 processor that estimates onroad and offroad emissions for specific criteria and toxic air pollutants.
161 Figure 1 is a schematic of the CARS overview. It applies vehicle, engine, and fuel specific
162 emission factors to traffic data to estimate the local level annual, monthly, and daily total emissions
163 inventory. The emissions inventory calculations require ~~the~~a list of pollutant-specific emissions
164 factors by vehicle age, local activity data, average speed profile/distribution by road type, and
165 geographic information system (GIS) road segment shapefiles inputs. The spatial resolution of
166 vehicle kilometer travel (VKT) ~~defines~~determines the CARS geographic scale (i.e. district, county,
167 state, and country) for emission calculations. Unlike the district-level Korea Clean Air Policy
168 Support System (CAPSS) automobile emission inventory (Lee et al., 2011a; Lee et al., 2011b), the
169 CARS applies high-resolution annual average daily traffic (AADT) data from the road GIS
170 shapefiles to distribute the total district emissions into road link-level emissions. Optionally, these
171 road link-level emissions can be used to generate spatially gridded CTM-ready emissions input
172 data once the output modeling domain is defined. The summary of input files by categories are
173 presented in Appendix H. How the CARS estimates spatially and temporally enhanced automobile
174 emissions inventories will be discussed in detail next chapter.

175 South Korean traffic databases from the Korea ~~CAPSS team~~(Lee et al., 2011b) from the
176 National Institute of Environmental Research (NIER) ~~CAPSS team~~(Lee et al., 2011b) were used
177 in this study to compute the updated onroad automobile emissions inventory. The databases
178 include individual vehicle activity data (daily total VKT), road activity data (average speed

179 distribution by road), vehicle age specific emission factors, road type information, surface weather
180 data, and GIS road shapefiles.

181 **2.1 Individual Daily Average VKT Activity Data**

182 The individual vehicle VKT data is used to reflect ~~the~~ human activity. This study imported
183 the national registered vehicle-specific daily total VKT from South Korea's Vehicle Inspection
184 Management System (VIMS), which belongs to the Korea Transportation Safety Authority
185 (KTSA). It contains over 50 million records of vehicle-specific daily total VKT from 2013 to 2017.
186 For the CARS model, we first sorted these records by the vehicle identification number (VIN) to
187 remove any duplicates and then built vehicle-specific daily total VKT traffic activity data in the
188 CSV format. The summary of those vehicle numbers and VKTs is presented in Fig. 2. Sedan
189 vehicles using gasoline fuel comprise the greatest percentage of total vehicles at 47% (~10.4
190 million) and have the highest VKT. ~~Most~~While ~~most~~ vehicles demonstrate ~~similar patterns~~a paired
191 pattern between the number of vehicles and daily VKT. ~~However, as expected,~~ LPG (liquefied
192 petroleum gas)-fueled taxi ~~are shows~~ high ~~in~~ VKT ~~compared to the number of vehicles with~~
193 vehicle numbers due to their daily long distance travel ~~pattern~~daily patterns.

194 The VIN (*vin*) information is used to calculate vehicle-specific daily average VKT (VKT_{vin} ,
195 km d^{-1}). In Eq. (1), the individual daily average vehicle VKT (VKT_{vin}) is calculated based on the
196 cumulative mileage ($M_{f;vin}$) between the last inspection date ($D_{f;vin}$) and registration date ($D_{0;vin}$).
197 Each vehicle is categorized with Korea's NIER ~~which defines the vehicle types (Ryu et al., 2003;~~
198 ~~Ryu et al., 2004; Ryu et al., 2005; Lee et al., 2011a)~~ based on a combination of vehicle types (e.g.,
199 sedan, truck, bus, etc), engine sizes (e.g., compact, full size, midsize, etc), and fuel types (e.g.,
200 gasoline, diesel, LPG, etc). Full details of vehicle types and daily total VKT are shown in Appendix
201 A and B.

202

$$VKT_{vin} = \frac{M_{f;vin}}{D_{f;vin} - D_{0;vin}} \quad (1)$$

203 **2.2 Emission Calculations**

204 Automobile emission sources include motorized engine sources on the paved road network
205 and off the road network (e.g., ~~drive way~~driveway and parking lots). The CARS model doesn't
206 currently simulate emissions from nonroad emission sources, such as aviation, railways,
207 construction, agricultures, lawn ~~mower~~mowers, and boats ~~yet~~. The CARS model simulates the
208 onroad automobile emissions from network roads using their local traffic-related datasets. The
209 following section explains the approach of the onroad automobile emission processes. The onroad
210 emission (E_{onroad}) in the CARS is defined in Eq. (2), which includes three major emission processes
211 (Ntziachristos and Samaras, 2000):

212
$$E_{onroad} = E_{hot} + E_{cold} + E_{vap} \quad (2)$$

213 The hot exhaust emissions (E_{hot}) are the vehicle's tailpipe emissions when the internal combustion
 214 engine (ICE) combusts the fuel to generate energy under the average operating temperature. The
 215 cold start emissions (E_{cold}) are the tailpipe emissions from the ICE when the cold vehicle engine is
 216 ignited and the operational temperature is below average condition. The evaporative VOC
 217 emissions (E_{vap}) are the emissions evaporated/permeated from the fuel systems (fuel tanks,
 218 injection systems, and fuel lines) of vehicles.

219 The CARS first applies the hot exhaust emission factors by vehicle type, age, fuel, engine,
 220 and pollutants to individual daily total VKT to compute the hot exhaust emissions. The rest of the
 221 processes for cold start and evaporative emissions are calculated afterwards. The emission
 222 calculation methodologies used in the CARS model are based on tier 2 and tier 3 methodologies
 223 from the EEA's mobile emission inventory guidebook (EEA, 2019) to be consistent with Korea's
 224 National Emission Inventory System (NEIS) (Lee et al., 2011a).

225 **2.2.1 Hot Exhaust Emissions**

226 Hot exhaust emissions, ~~which is from the vehicle's tailpipe~~, is the exhaust gas from the
 227 combustion process in an ICE. The ICE combustion cycle generally causes incomplete combustion
 228 processes which emit hydrocarbons, carbon monoxide (CO), and particulate matter (PM) ~~which~~.
 229 These are not completely controlled ~~from by~~ the aftertreatment~~after-treatment~~ equipment, such as
 230 a three-way catalytic converter, ~~a~~ and released into the atmosphere. The sulfur compounds in the
 231 fuel are oxidized and become sulfur oxides (SO_x). Nitrogen oxides (NO_x) are produced due to the
 232 abundance of nitrogen (N_2) and oxygen (O_2) during the combustion process.

233 Equation 3 represents the calculation of daily individual vehicle hot exhaust emission rate,
 234 $E_{hot; p, vin, myr}$ ($g d^{-1}$) of pollutant (p). An individual vehicle-specific daily VKT_{vin} ($km d^{-1}$) is estimated
 235 by Eq. (1). The $EF_{hot; p, v, myr, s}$ (g/km) is the hot exhaust emission factor of pollutants (p) for the
 236 vehicle type (v), vehicle manufacture year (myr), and average vehicle speed (s). The district's total
 237 emission rate is the total hot exhaust emissions from all individual vehicles within the same district.

238
$$E_{hot; p, vin, myr} = DF_{p, v, myr} \times VKT_{vin} \times EF_{hot; p, v, myr, s} \quad (3)$$

239 The deterioration factor (DF) in Eq. (3) is an optional function in the CARS. The
 240 deterioration process is caused by vehicle aging and can lead to the increase of vehicle emissions.
 241 The vehicle DF is varied by vehicle type (v), pollutant (p), and vehicle manufacture year (myr).
 242 The CARS model computes vehicle ages based on the vehicle manufacture year and model
 243 simulation year. According to the NIER's guidance ~~on calculating~~ deterioration factors
 244 ~~calculation from NIER~~, there is no deterioration in a new vehicle during their first five years. After
 245 five years, the deterioration factors can increase the 5~10% range ~~from 5% to 10%~~ depending on

246 the type of vehicle and pollutants. Deterioration processes can cause up to an 100% increase of
247 emissions in fifteen-year-old vehicles. Currently, the *DF* is an empirical coefficient that varies by
248 vehicle age (Lee et al., 2011a).

249 The hot exhaust emission factor, $EF_{hot;p,v,s}$ (g/km) is a function of vehicle speed (s) with
250 other empirical coefficients: a, b, c, d, f, k . The emission factor formula and those coefficients
251 were developed by NIER's CAPSS (Lee et al., 2011a). These coefficients are varied by
252 pollutants (p), vehicle type (v), vehicle manufacture year (myr), and vehicle speed (s). The
253 vehicle speed affects the combustion efficiency of an ICE and impacts the emission rates and its
254 composition from the tailpipe.

255
$$EF_{hot;p,v,myr,s} = k(a \times s^b + c \times s^d + f) \quad (4)$$

256 While vehicle speed plays a critical role in hot exhaust emissions from most vehicles, NO_x
257 emissions from some diesel vehicles show sensitivity to local ambient temperature along with
258 vehicle speed (and humidity due to the atmospheric moisture suppression of high combustion
259 temperatures that lower NO_x emissions at higher humidity (Choi et al., 2017; Ntziachristos and
260 Samaras, 2000). Figure 3 shows the dependency of NO_x emission factors from compact diesel
261 vehicles to vehicle speed (Fig. 3a) and ambient temperature (Fig. 3b). Figure 3a shows a significant
262 decrease of NO_x emissions while when the speed increases between 0 and 70 km. Figure 3b
263 demonstrates the significance of local meteorology on NO_x emissions from a compact diesel sedan.
264 Based on these NIER's CAPSS emission factors, the sensitivity to local ambient temperature is
265 limited to NO_x pollutant emissions from diesel vehicles.

266 Due to its high sensitivity to the vehicle operating speed, it is important for the CARS to
267 simulate realistic speed patterns for accurate emissions estimates. When a single speed is assigned
268 to compute hot exhaust emissions, it won't reflect the emissions under low-speed circumstances.
269 To overcome this limitation, the CARS has adopted the 16 average speed bins concepts for a better
270 representation of vehicle speed distribution that varies by road type (i.e., local, highway,
271 expressway). We have implemented a feature for the CARS optionally to apply road-specific
272 average speed distributions (ASD) ($A_{bin,r}$), which represents the fractions of 16- by 16 speed bins
273 (bin) (from 0 to 121 km h⁻¹ defined in Appendix E) for eight different road types (r) (No.101-108,
274 shown in Appendix C) as classified by CAPSS (Fig. 4a). Although ASD patterns vary by region
275 and time, the current CARS model version does not support ASD application by region and time
276 of day due to the lack of region and time dependent ASDs availability in South Korea.

277 We first developed the ASD (Fig. 4a) for eight different road types (No. 101-108) in South
278 Korea based on the latest road link-specific average speed and the length of link from the SK GIS
279 road network shapefiles (NIER, 2018). However, the ASD based on the SK GIS road shapefiles
280 did not capture low-speed range (<16 km h⁻¹) driving (Fig. 4a). This causes a significantly lower
281 estimation of NO_x and VOC emissions compared to the CAPSS (Appendix G). We believe the

282 SK average speed distribution is missing low-speed driving that can occur ~~on links on different~~
 283 ~~days~~ due to traffic congestion. To address this absence of low-speed driving in the SK ASD, we
 284 incorporated data from the ASD (Figure 4b) from the state of Georgia ~~developed by U.S. EPA~~ to
 285 the low-speed ranges (speed bin #1 and #2 for road type 1 to 7). We increased the total fractions
 286 of low-speed bins (the 2:1 ratio of fractions of bin #1 and #2) by 2% for interstate expressways,
 287 3% for urban expressways, 7% for all highways, and 15% for all local roads. The increases in low-
 288 speed bins lowered the distributions of other higher speed bins homogeneously due to the
 289 renormalization of fractions by road type. Figure 4c shows the renormalized hybrid-ASDs of all
 290 road types based on SK ASD and Georgia ASD. We understand, ~~that~~ the hybrid-ASD approach is
 291 not ideal for SK onroad emission inventory development. ~~However, but~~ it clearly demonstrates
 292 the CARS's capability and sensitivity to the vehicle speed representation ~~and the impacts of ASD~~
 293 ~~to the local onroad mobile inventories.~~

294 While 16-speed bins ASD application is critical to computing more realistic hot exhaust
 295 emissions, there should be some restrictions on certain road types. Users can adjust the restricted
 296 roads control table input file to limit the vehicle types that ~~can~~ are only ~~be~~ operated on a particular
 297 road type. For example, motorcycles are limited to local roads (No. 104, 106, and 107), but not on
 298 expressways (No. 101, 102, 103, 105, and 108) due to its traffic regulation rules. Heavy trucks are
 299 only allowed on the highway (No. 101, 102, 103, 105, and 108.) by law. The details of the road
 300 restriction control table format can be found on the CARS's user's guide from the CARS Github
 301 website (https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual).

302 The 16-speed bins ~~averaged speed distribution calculated by road type ($A_{bin,r}$) and road~~
 303 ~~type weight factors ($\omega_{r,d}$) in a district (d)~~ ASD from Eq. (13) are added to the CARS hot exhaust
 304 emissions equation (Eq. 3). The hot exhaust emissions from individual vehicles ($E_{hot,p,vin,myr}$) can
 305 be calculated by considering road-specific speed bins distribution (Eq. 5). Although the vehicles
 306 may be operated in different districts from their registered district, this is our best method to
 307 estimate the vehicle speed for hot exhaust emissions.

$$308 \quad E_{hot,p,vin,myr} = DF_{p,v,myr} \times \sum_{bin} (VKT_{vin} \times EF_{hot,p,v,myr,s} \times A_{bin,r}) \quad (5)$$

309 2.2.2 Cold Start Emissions

310 The cold start emissions occur when a cold-engine vehicle is ignited. ~~The lower~~
 311 ~~temperature~~ ~~Lower temperatures~~ of the ICE ~~is~~ are not ~~an~~ optimal ~~condition~~ ~~conditions~~ for complete
 312 fuel combustion. This process lowers the combustion efficiency (CE) and increases the emissions
 313 of hydrocarbon and CO pollutants from the tailpipe exhaust (Jang et al., 2007). The CARS can
 314 estimate the cold start emissions for vehicles using gasoline, diesel, or liquefied petroleum gas
 315 (LPG) fuel. Besides the vehicle and engine type, road type also plays a critical role in the quantity
 316 of cold start emissions because it occurs mostly in parking lots and rarely on highways.

317 The cold start emission, E_{cold} (g d⁻¹), is derived from the hot exhaust emissions, the ratio of
 318 hot to cold exhaust emissions (EF_{cold}/EF_{hot} -1.0), and the percentage of the traveled distance with
 319 a cold engine (Eq. 6).

320
$$E_{cold; p,v} = \beta_T \times E_{hot; p,v} \times \left(\frac{EF_{cold; p,v}}{EF_{hot; p,v}} - 1.0 \right) \quad (6)$$

321 The emission factor of cold start emissions (EF_{cold}) is not directly calculated from
 322 measurement data like hot exhaust emissions ($E_{hot; p,v}$), but measured under different ambient
 323 temperatures (T). The CARS model applies linear regression models developed by CAPSS to
 324 estimate the increasing ratio of cold start to hot exhaust emissions (EF_{cold}/EF_{hot}) under different
 325 temperatures (T) (Eq. 7). In this equation, A and B are the empirical coefficients that vary by the
 326 pollutants (p) and vehicle type (v).

327
$$\left(\frac{EF_{cold; p,v}}{EF_{hot; p,v}} \right) = A_{p,v} + B_{p,v} \times T \quad (7)$$

328 β is the percentage of the distance traveled under a cold engine. ~~It and~~ also depends on the
 329 ambient temperature. Cold ambient temperatures cause a longer distance traveled under a cold
 330 engine due to the slower heating time. According to the CAPSS database for Seoul city (Lee et al.,
 331 2011a), the empirical linear equation for β is shown in Eq. (8). This formula represents how
 332 ambient temperature affects ~~β~~ . For example, when the average temperature is -2°C, β is 34.8%.
 333 In summer, the monthly average temperature is 25.7°C, which causes β to drop to 21%.

334
$$\beta = 0.647 - 0.025 \times 12.35 - (0.00974 - 0.000385 \times 12.35) \times T \quad (8)$$

335 **2.2.3 Evaporative VOC Emissions**

336 Evaporative emissions are emissions from vehicle fuel that are evaporated into the
 337 atmosphere. This occurs in the fueling system inside the vehicle, such as fuel-tanks, injection
 338 systems, and fuel lines. Diesel vehicles, however, can be exempted due to diesel fuel's low vapor
 339 pressure. The primary sources of evaporative emissions are breathing losses through tank vents
 340 and fuel permeation/leakage. The CARS model adopted the EEA's emission inventory guidebook
 341 (EEA, 2019) to account for ~~three mechanisms to estimate the evaporative VOC emissions (E_{vap})~~:
 342 diurnal emissions from the tank (e_d), hot and warm soak emissions by fuel injection type (S_{fi}), and
 343 running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a conversion factor (0.075) applied to
 344 E_{vap} for motorcycles to prevent an ~~over-estimation~~ overestimation of VOC.

345
$$E_{vap; p,v} = (e_{d; p,v} + S_{fi; p,v} + R_{l; p,v}) \quad (9)$$

346 Diurnal emissions, e_d (g d⁻¹), during the daytime are caused by the ambient temperature
347 increase and the expansion of fuel vapors inside the fuel tank. Most of the current fuel tank systems
348 have emission control systems to limit this kind of evaporative VOC emissions. The e_d can be
349 calculated with the empirical Eq. (10), which was developed by CAPSS. T_l is the monthly average
350 of the daily lowest temperatures and T_h is the monthly average of the daily highest temperatures.
351 The empirical coefficient α is 0.2, which represents how 80% of emissions are eliminated by the
352 vehicle emission control system.

353
$$e_d = \alpha \times 9.1 \exp[0.3286 + 0.0574 \times (T_l) + 0.0614 \times (T_h - T_l - 11.7)] \quad (10)$$

354 Soak emissions (S_{fi}) occur when a hot ICE is turned off; the remaining heat from the ICE
355 can increase the fuel temperature in the system. ~~The which causes the increase of evaporative VOC~~
356 ~~emissions. This~~ carburetor float bowls are the major source of the soak emissions. Newer vehicles
357 with fuel injection and ~~return-less~~
~~returnless~~ fuel systems do not emit soak emissions. Because most
358 of the current vehicles in South Korea have a new fuel system, soak emissions (S_{fi}) in the CARS
359 model are set to 0.

360 The running loss emissions (R_l) are from vapors generated in the fuel tank when a vehicle
361 is in operation (Eq. 11). In some older vehicles, the carburetor and engine operation can increase
362 the temperature in the fuel tank and carburetor, which can cause a significant increase in
363 evaporative VOC emissions. VOC emissions from running loss can be greatly increased during
364 warmer weather. However, newer vehicles with fuel injection and ~~return-less~~
~~returnless~~ fuel
365 systems are not affected by the ambient temperature. Because most vehicles in South Korea do not
366 use carburetor technology, we expect running loss emissions to have the least impact (Lee et al.,
367 2011b).

368
$$R_l = \alpha \times L_{r,v} \times [(1 - \beta) \times R_h + \beta \times R_w] \quad (11)$$

369 The empirical coefficient α is 0.1 here, which represents that 90% of the running loss is
370 avoided by the newer fuel system. L is the distance traveled (km) by road and is the same one used
371 in hot exhaust emission calculations. β is the same parameter from Eq. (8). The R_h and R_w are the
372 average emission factors from running loss under hot and warm/cold conditions, respectively.

373 **2.3 Road Link-Level Emissions Calculations**

374 In general, district-level automobile emissions calculations are driven by district-level
375 averaged vehicle activity and operating data, which do not reflect realistic spatial patterns of
376 onroad automobile emissions. The CARS model introduces road link-specific traffic data by
377 default to develop spatially enhanced road link-specific emissions that ~~reflectare~~ more
378 representative ~~of the~~ emissions ~~by road link~~. This high-resolution traffic data is a GIS shapefile

379 that is composed of many connected segments, which are called “road links.” All road links hold
 380 information such as start/end location coordinates, AADT, road link length, averaged vehicle
 381 speed, and road type (No. 101-108).

382 The CARS model applies link-level AADT ($AADT_{d,r,l}$, d^{-1}) and road length ($L_{d,r,l}$) to
 383 compute the road link-specific VKT ($VKT_{d,r,l}$, km d^{-1}) in Eq. (12). The road links are identified by
 384 district (d), road type (r), and link (l) labels. The road VKT is a parameter that reflects the traffic
 385 activity of each road link and it is different from individual daily vehicle activity data ($VKT_{v,age}$)
 386 in Eq. (1).

387
$$VKT_{d,r,l} = AADT_{d,r,l} \times L_{d,r,l} \quad (12)$$

388 Road link-specific VKT ($VKT_{d,r,l}$) is used to redistribute the district total emissions (E_{onroad})
 389 from Eq. 2 into road link-level emissions. The following three weight factors are computed: the
 390 district weight factors, ω_d (Eq. 13), the road type weight factors, $\omega_{d,r}$ (Eq. 14), and the road-link
 391 weight factors, $\omega_{d,l}$ (Eq. 15). The weight district factors (ω_d) are the renormalization of each
 392 district's total VKT over state-level total VKT (N is the number of districts). The main reason we
 393 performed the renormalization over state-level total VKT is to reflect daily traffic patterns from
 394 multiple districts under the assumption that most vehicles travel within the same state. The road
 395 type weight factors by district ($\omega_{r,d}$) are used to compute road-specific emissions, while road-
 396 specific averaged speed distributions (ASD; $A_{s,r}$) from Eq. (5) are applied to capture vehicle
 397 operating speeds by road type. The road link weight factors ($\omega_{d,l}$) are then applied to redistribute
 398 the district emissions into road link-level emissions.

399

400
$$\omega_d = \frac{\sum_r \sum_l VKT_{d,r,l}}{\frac{1}{N} \sum_d \sum_r \sum_l VKT_{d,r,l}} \quad (13)$$

401
$$\omega_{d,r} = \frac{\sum_l VKT_{d,r,l}}{\sum_r \sum_l VKT_{d,r,l}} \quad (14)$$

402
$$\omega_{d,l} = \frac{VKT_{d,r,l}}{\sum_r \sum_l VKT_{d,r,l}} \quad (15)$$

403 **3 CARS Configuration**

404 The CARS model is an open-source program based on Python (Guido van Rossum, 2009)
 405 that allows the users to efficiently apply open-source modules to develop programs. Users can
 406 easily install Python development tools and load customized packages and modules to set up the
 407 CARS development environment. All CARS modules are developed using Python v3.6. Other than
 408 the GIS road shapefiles, all input files are based in the ASCII CSV format, which can be easily

409 handled by both spreadsheet programs and programming languages, making it more accessible for
410 users of all skillsets. The CARS can not only estimate district-level and spatially enhanced road
411 link-level emissions, but can also generate hourly chemically speciated gridded emissions for
412 CTMs. In addition, the CARS also generates various summary reports, graphics, and
413 georeferenced plots for quality assurance.

414 The required Python modules for the CARS are: “*geopandas*,” “*shapely.geometry*”, and
415 “*csv*” modules to read the shapefiles and table data files. The “*NumPy*” and “*pandas*” modules
416 are used to operate the memory arrays and scientific calculations, while the “*pyproj*” module deals
417 with converting the projection coordinate systems. “*matplotlib*” is for generating any type of
418 figures/plots. Furthermore, the CARS model can also read and write Climate and Forecast (CF)-
419 compliant NetCDF-formatted files using “*NetCDF4*”.

420 The first process in the CARS is “*Loading_function_path*”; it allows users to define and
421 check the input file paths. Once all input files are checked, there are six process modules in CARS
422 to process inputs, compute emissions, and generate various output files, including QA reports.
423 Figure 5 is the schematic of the CARS that consists of six process modules with various functions.
424 The six process modules are (1) “**Process activity data**”, (2) “**Process emission factors**”, (3)
425 “**Process shapefile**”, (4) “**Calculate district emissions**”, (5) “**Grid4AQM**”, and (6) “**Plot figures**”.
426 The main purpose of modularizing the CARS is to meet the needs of various communities, such
427 as policymakers, stakeholders, and air quality modelers. While modules (1) through (4) are
428 required to develop the district-level and road link-level emissions inventories, module (5)
429 “**Grid4AQM**” is optional depending on if users want to develop chemically-speciated gridded
430 hourly emissions for CTMs. Also, the modularity ~~system in of~~ the CARS allows users to bypass
431 certain modules if it has been previously processed without any changes. For example, if there is
432 no change in traffic activity, emission factors table, or GIS shapefiles, users do not need to run
433 these modules and can simply read the data frame outputs and then run “**Grid4AQM**” for the
434 modeling dates and domain. The “**Grid4AQM**” module will not only improve the computational
435 time for CTMs but also eliminate the need for a 3rd party emissions modeling system like SMOKE
436 (Baek and Seppanen, 2021).

437 The rectangle boxes in Fig. 5 represent the data array and the boxes with rounded edges are
438 the functions in the CARS. Details on the CARS code, input table format, and functions setup
439 information can be found on the CARS GitHub website (Pedruzzi *et al.*, 2020).

440 The “**Process activity data**” module first reads the vehicle activity data, such as an
441 individual vehicle's daily total VKT based on its registered district. The “**Process emission factors**”
442 module reads and stores the emission factors table that holds all pollutant emission factors to
443 estimate the emissions for all vehicles. Meteorology-sensitive emission factors are only limited to
444 NO_x pollutants. District boundary GIS shapefiles and road network shapefiles are processed
445 through “**Process shape file**” to generate the VKT-based redistribution weighting factors from Eq.

446 (13), (14) and (15) for the “**Calculate district emissions**” module to compute district-level and
447 road link-level emission rates (metric tons per year, t yr⁻¹).

448 The redistributed emission rates (t yr⁻¹) from the “**Calculate district emissions**” module
449 present annual total emission rates until district-level VKTs from the “**Process activity data**”
450 module are added. Then, the “**Grid4AQM**” module can generate CTM-ready chemically speciated
451 emissions. The “**Read_chemical**” function from the “**Grid4AQM**” module is designed to process
452 the chemical speciation profile that can convert the inventory pollutants such as CO, NO_x, SO₂,
453 PM₁₀, PM_{2.5}, VOC, and NH₃, into the chemically lumped model species that CTM requires for
454 chemical mechanisms, such as SAPRC (L. and Heo, 2012) and Carbon Bond version 6 (CB6)
455 (Yarwood and Jung, 2010). The “**Read_temporal**” function processes the complete set of monthly,
456 weekly, and hourly temporal allocation profiles that can convert annual total emissions to hourly
457 emissions. “**Read_griddesc**” defines the CTM-ready modeling domain and computes the gridding
458 fractions for all road link-level emissions by overlaying the modeling domain over the GIS
459 shapefiles. Once annual total emissions are chemically speciated, spatially gridded, and temporally
460 allocated into hourly emissions, the “**Gridded_emis**” function will combine emission source-level
461 conversion fractions from each function (**Read_chemical**, **Read_temporal**, and **Read_griddesc**) to
462 generate the CTM-ready chemically speciated, gridded hourly emissions in the NetCDF binary
463 format. The “**Plot Figures**” module is designed for generating various summary reports and
464 graphics to assist users in understanding the estimated automobile emissions inventory computed
465 by the CARS. The following section will describe the detailed processes of the “**Grid4AQM**”
466 module, which includes chemical, spatial, and temporal allocations.

467 The influence of temperature on emission processes are considered in the CARS model.
468 There are three temperature parameters in current CARS model such as “temp_max” for maximum
469 temperature, “temp_mean” for mean temperature, and “temp_min” for minimum temperature.
470 These temperature parameters will be applied to over the entire modeling domain during the
471 simulation period. Current CARS model version does not support to process gridded meteorology
472 data from the 3rd party meteorology models like Meteorology-Chemistry Interface Processor
473 (MCIP) from U.S. EPA., and Weather Research Forecasting (WRF) model from National Center
474 for Atmospheric Research (NCAR) yet. However, CARS can easily adopt various temporally
475 resolved temperature values by adjusting the CARS simulation period (i.e., day, week, month,
476 season, or annual).

477 3.1 Chemical Speciation

478 To support CTMs applications, the CARS needs to be able to convert inventory pollutants
479 into chemical lumped model species based on the choice of CTM chemical mechanisms. NO_x
480 includes- nitric oxide (NO), nitrogen dioxide (NO₂), and nitrous acid (HONO). VOCs can represent
481 hundreds of different organic carbon species, such as benzene, acetaldehyde, and formaldehyde.

482 These grouped inventory pollutants cannot be directly imported into the chemical mechanism
483 modules in the CTM system and require chemical speciation allocation for CTMs to process them
484 during their chemical reactions. Therefore, the “**Grid4AQM**” module performs the chemical
485 species allocation step prior to the temporal and spatial allocations to generate the gridded hourly
486 emissions. The “**Read_chemical**” function in “**Grid4AQM**” module allows users to assign these
487 emission inventory pollutants to CTM-ready surrogate chemical species (a.k.a lumped chemical
488 species) by vehicle, engine, and fuel type. For example, VOC emissions from diesel busses can be
489 converted into the following composition based on its chemical allocation profile: alkanes (68%),
490 toluene (9%), xylenes (8%), alkenes (4%), ethylene (2%), benzene (1.3%), and unreactive
491 compounds (7%) when the CB6 chemical mechanism is selected. Further details on the chemical
492 speciation profile input formats are available in the CARS user’s guide.

493 3.2 Spatial Allocation

494 The “**Calculate district emissions**” module calculates ~~not only the both~~ total district
495 ~~emissions but also and~~ road link-specific emissions based on road link-specific AADT data from
496 road network GIS shapefiles. The “**Calculate district emissions**” module first gets the district
497 total vehicle emissions (Eq. 2) based on the district-level VKTs, and then the normalized district total
498 emissions by district weight factor, ω_d (Eq. 13). Afterwards, the normalized district total
499 emissions are redistributed into every road link using road link-level weight factors ($\omega_{d,i}$) (Eq. 15).
500 The district total emissions from Eq. (2) and from Eq. (15) remain the same. Then the computed
501 road link-level emissions then will be converted into grid cell emissions using the modeling
502 domain grid cell fractions computed in the “**Read_griddesc**” function in the “**Grid4AQM**” module.

503 3.3 Temporal Allocation

504 Once chemical and spatial allocations are completed, the final step to support CTM
505 application is a temporal allocation that converts the annual total emissions from the “**Calculate**
506 **district emissions**” module into hourly emissions. The “**Read_temporal**” temporal allocation
507 function in the “**Grid4AQM**” module converts the annual emission rate ($t \text{ yr}^{-1}$) to the hourly
508 emission rate (mol hr^{-1}) using monthly, weekly, and weekday/weekend diurnal temporal profiles.
509 This module processes these temporal profile inputs, which are the monthly (January - December),
510 weekly (Monday - Sunday), and weekday/weekend 24-hour profile tables (0:00-23:00 LST). The
511 users can assign these temporal profiles with a combination of vehicle, engine, fuel, and road types
512 to enhance their temporal representations in detail.

513 **3.4 Chemical Transport Model Emissions**

514 The main goal of the “**Grid4AQM**” module is to generate temporally, chemically, and
515 spatially enhanced CTM-ready gridded hourly emissions. First, it reads the CTM modeling domain
516 configuration and then overlays it over the road network GIS shapefile and district-boundary
517 shapefile to define the modeling domain. This overlaying process between the road network,
518 district boundary GIS shapefiles, and modeling domain allows the “**Grid4AQM**” module to
519 compute the fraction of road links that intersects with each grid cell. Figure 6 demonstrates how
520 the district boundary and road network GIS shapefiles are used to perform the spatial allocation
521 processes in CARS. Figure 6a is a native road link shapefile of Seoul with AADT, VKT, district
522 ID, and road type. Figure 6b presents an overlay of two districts’ road links (purple and blue) over
523 the selected region. State total emissions will be renormalized into weighed district total emission
524 data and then redistributed into the road link. Figure 6c illustrates how the weighted road link-
525 level emissions get allocated into modeling grid cells for CTMs. The link-level VKT ($VKT_{d,r,l}$)
526 from Eq. (12) will be used to compute a total of traffic activity fractions by grid cell and then use
527 that to assign the link-level emissions from Eq. (2) into each grid cell. When a road link intersects
528 with multiple grid cells, the “**Grid4AQM**” module will weigh the emissions by the length of the
529 link that intersects with each grid cell. It should be noted that current CARS model can only
530 generate the Community Multiscale Air Quality (CAMQ)-ready gridded hourly emissions in
531 format of IOAPI (Input/Output Applications Programming Interface) based on NetCDF format.

532 Through the overlay process, the CARS model can generate various types of output data,
533 such as total district emissions, link-level emissions, and CTM-ready gridded emissions. For
534 example, the CO vehicle emissions from the Seoul metropolitan in South Korea are presented in
535 three different output formats in Fig. 7. Figure 7a shows the annual mobile PM_{2.5} emissions by
536 district. The road link level annual emissions are presented in Fig. 7b. Furthermore, the CARS
537 applies the link-level emissions from Fig. 7b to generate the hourly grid cell emission data with a
538 1 km × 1 km resolution for the CTM in Fig. 7c.

539 **3.5 National Control Strategy Application**

540 One of the unique features in the CARS compared to other mobile emissions models is that
541 it can promptly develop controlled mobilea strategy to control automobile emissions respondingin
542 response to the national emergency high PM_{2.5} episodes. It is very common to experience high
543 PM_{2.5} episodes, especially during the wintertime in South Korea due to domestic and international
544 primary and secondary air pollutants emissions. When the 72-hour forecasted PM_{2.5} concentration
545 exceeds the average 50 $\mu\text{g}/\text{m}^3$ (0:00-16:00 LST), the national PM_{2.5} emergency control strategy is
546 activated for ten days. It applies a nationwide vehicle restriction policy within 24 hours. It enforces
547 a limit on what kind of vehicles can be operated on a certain date. The restrictions can be applied
548 inthe following ways: the closures of public parks and government facilities, and restrictions of

549 certain vehicles based on their fuel type and age, which is a major factor of engine deterioration.
550 This policy will limit the number of vehicles on the network roads significantly, which could
551 reduce primary PM_{2.5} and precursor pollutant (NO_x, NH₃, and VOC) emissions, especially from
552 heavily populated metropolitan regions (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b;
553 Kim et al., 2017c).

554 To understand the impacts of an even/~~or~~ odd vehicle number restriction policy in real-time,
555 we need to quickly develop a rapid ~~controlled~~controlled response emissions for the air quality forecast
556 modeling system-based on the reduced number of vehicles on the road. The process of generating
557 the controlled mobile ~~emission~~emission inventory can take a long time if we start fresh. Thus, we
558 have implemented this control strategy as an optional “**Control Factors**” function in the
559 “**Calculate district emissions**” in the module for users to quickly and easily generate the
560 controlled mobile ~~emission~~emission inventory with consideration of the limited number of
561 vehicles based on the vehicle, engine, fuel, and vehicle manufactured year. A one hundred percent
562 (100%) control factor means that there are no emissions from those selected vehicles.

563 Because of the modularization system in the CARS, we can bypass some computationally
564 expensive data processing modules (i.e., “**Process activity data**”, “**Process emission factors**”,
565 and “**Process shape file**”) and let the “**Calculate district emissions**” module quickly apply control
566 factors while it computes the district-level mobile emission inventory from Eq. (2). This will allow
567 users to reduce the computational time to generate the controlled mobile emissions under a specific
568 control scenario and develop the controlled CTM-ready gridded hourly emissions using the
569 “**Grid4AQM**” module.

570 3.6 Computational Time

571 While the CARS can generate a high-quality spatiotemporal emission inventory-~~for~~
572 ~~policymakers, stakeholders, and air quality modelers~~, it is quite critical for the CARS to generate
573 ~~these complex mobile emissions~~them effectively and accurately without being at the expense of
574 computational time. This is especially important to meet the needs for an air quality forecast
575 modeling system responding to a national emergency control strategy implementation.

576 In this section, we will discuss the details of the CARS computational modeling performance.
577 While the CARS model has been highly optimized, the modularization of CARS has also improved
578 its modeling performance with its optional module runs. The breakdown of module-specific
579 computational time estimates based on the benchmark CARS runs are listed in Table 1. The
580 benchmark CARS case includes a total of 24,383,578 daily VKT datasets from KSTA over two
581 different years, 84,608 emission factors for all pollutants across a combination of vehicle-age-
582 engine-fuel types, 385,795 road links from the GIS road network shapefiles, 5,150 districts/16-
583 states boundary GIS shapefile, and 5,494 grid cells (=82 rows and 67 columns) for CTMs. Without
584 any computational parallelization, the total processing time of all six modules usually takes around

585 a half hour to generate a single day CTM-ready gridded hourly emission file. However, it can be
586 further shortened to 25-30 minutes on a higher performance computer. Because of the modular
587 system implemented in the CARS, generating one month (31 days) long gridded hourly emissions
588 from CTMs ~~do not require over 15 computational hours, but only around~~ⁱⁿ 100 minutes on high-
589 performance computers. The maximum usage of RAM can reach up to 11 GB. Table 1 shows the
590 breakdown of computational time by each module from two different hardwares (desktop and
591 laptop computers). The numbers in parentheses beside the “**Grid4AQM**” module is the
592 computational time for a single day versus 31 days. While the “**Grid4AQM**” module takes an
593 average of 4.9 minutes for a single day emissions generation, processing a consecutive 31 days
594 saves 46% more time, decreasing it from 151.9 minutes (=4.9 minutes * 31 days) to 81.6 minutes.

595 4 Results

596 CARS and CAPSS Comparison

597 The CARS model calculates the 2015 onroad automobile emissions based on the latest
598 2015 emission factors and the 2015-2017 vehicle activity database in South Korea. The annual
599 total emissions from CARS are compared against the ones from NIER’s CAPSS in Table 2. The
600 CARS model estimated the following annual total emissions in units of metric tons per year (t yr⁻¹):
601 NO_x (301,794); VOC (61,186); CO (373,864), NH₃ (12,453); PM_{2.5} (10,108), and SO_x (172.0).
602 Compared to NIER’s CAPSS, the CARS ~~overestimated all pollutants except for underestimated~~
603 NO_x (-18% decrease) and SO_x (-17% decrease). ~~It~~, and overestimated the emissions of VOC by
604 33%, PM_{2.5} by 15%, CO by 52%, and NH₃ by 24%. Both NIER’s CAPSS and CARS shared the
605 same emission factor tables, which hold over 84,608 emission factors for all pollutants across a
606 combination of vehicle, age, engine, and fuel types.

607 The difference in results between CAPSS and CARS ~~approaches~~ are caused by three
608 following reasons: ~~1~~. First, the number of vehicles used in CARS is slightly higher (6%) than CAPSS
609 data (1.3 out of 23 million), as well as other key traffic-related activity inputs (i.e., vehicle age
610 distribution, averaged speed distribution, etc). Secondly, the vehicle speed information assigned
611 by vehicle and road type play a critical role ~~in the differences between CAPSS and CARS.~~ The
612 CAPSS calculation was based on the road-specific ~~mean a signle average~~ speed value or 80% of
613 the speed limit of the road as an input of vehicle operating speed ~~by for~~ three road types (rural,
614 urban, and expressway) (Lee et al., 2011b). In other words, CAPSS only assigns a “single-speed
615 value” for each road type, and does not encounter the variation of vehicle speed during its operation
616 on roads into the emissions calculation. Most running exhaust emissions occur during a vehicle’s
617 low-speed operation due to its incomplete combustion of fuel, and it is critical to accurately
618 represent the emissions across various speed bins in order to compute the ~~correct emissions~~. ~~The~~
619 ~~CARS model has an option to apply the average speed distribution (ASD) over 16 speed bins for~~
620 ~~eight road types (Fig. 4). The CARS speed distribution process can better represent the speed~~

621 ~~variations of vehicle speeds for each road type-accurate emissions (Fig. 4).~~ A detailed analysis of
622 the impact of vehicle speed will be discussed later in this chapter. Lastly, other advanced processes
623 in the CARS, such as link-level AADT and district-level vehicle data (5,150 districts in South
624 Korea~~),~~) can reflect more spatial detail and variation than the CAPSS. The CAPSS only considers
625 state-level data (17 states in South Korea) and five road types (interstate expressway, urban
626 highway, rural highway, urban local, and rural local).

627 Figure 8 illustrates more details about the difference ~~between the in~~ annual emissions
628 ~~from~~~~between~~ CARS ~~to the and~~ CAPSS by pollutants and vehicle types. Sedan vehicles show the
629 largest increase of VOC (33%), CO (41%), and NH₃ (23%) in the CARS relative to CAPSS
630 because almost 56% of total vehicle count (13.5 million) is composed of sedan vehicles.~~Also~~
631 (Appendix B). In Table 3, sedan vehicles contribute 51% of total VOC and 61% of total CO annual
632 emissions. The VOC and CO emissions from sedans are largely affected by the average speed
633 distribution process when compared to other vehicle types. Similarly, the largest decreases of NO_x
634 (-16%) and SO_x (-18%) are from trucks because they are significant NO_x (~50%) and SO_x
635 contributors (~27%) and their emission factors are sensitive to vehicle speed.

636 Onroad Emissions Analysis

637 The CARS is a bottom-up emissions model, which utilizes local individual vehicle activity
638 data, detailed local emission factors for every vehicle and fuel type, and localized inputs such as
639 average speed distribution by road type and deterioration factor. It allows users to assess ~~the a~~
640 detailed breakdown of localized emission contributions. Table 3 represents the individual air
641 pollutants (NO_x, VOC, PM_{2.5}, CO, NH₃, and SO_x) emission contributions (t yr⁻¹), fractions (%),
642 and impact factors (IF) by the vehicle type and fuel system. The IF is defined by the normalized
643 annual emissions with vehicle counts of each category (kg yr⁻¹ per vehicle). The CARS also can
644 provide the average daily VKT per vehicle, which is the total daily VKT divided by vehicle
645 numbers, to explain the emission contributions in Appendix D.

646 Diesel-fueled vehicles contribute the most ~~of~~ NO_x emissions, ~~which is at~~ over 85.3%
647 (257,305 t yr⁻¹), although the number of diesel vehicles only amounts to approximately 35% of the
648 total vehicles (Table 3a). While ~~the~~ diesel trucks emitted 49.1% (148,246 t yr⁻¹) of total NO_x with
649 an IF value of 47.9 (kg yr⁻¹), the highest impact (IF = 340 kg yr⁻¹) occurred from diesel buses with
650 only ~~a an~~ 8.51% contribution to the total NO_x emissions. This is caused by the highest average
651 daily VKT from diesel buses compared to other vehicles, which is expected in a highly populated
652 metropolitan area like Seoul, South Korea. A diesel bus generally has a 3-5 times higher daily
653 VKT (180 km d⁻¹) than other common vehicles (gasoline sedan: 34 km d⁻¹, diesel truck: 57 km d⁻¹).
654 The second-largest vehicle type is the CNG (compressed natural gas) bus (248 kg yr⁻¹), which
655 also has a ~~higher high~~ VKT. ~~Their at an~~ average daily ~~VKT is of~~ 212 km d⁻¹, with only a 3.1% NO_x
656 contribution.

657 For VOC emissions, over 12 million gasoline vehicles cause 52.1% (31,885 t yr⁻¹) of the
658 total VOC emissions, andwith the gasoline sedan ~~is as~~ the highest contributor (46.5% at 14,070 t
659 yr-1) across all vehicle types, ~~which is over 28,434 t yr⁻¹ (46.5%)~~ (Table 3b). ~~Unlike NOx~~
660 ~~emissions, diesel~~Diesel vehicles only contribute 23.0% (14,070 t yr⁻¹) of the total VOC emissions.
661 ~~Across the vehicle fuel types, the IF outcome indicates~~The IF values from VOC indicate that CNG
662 ~~vehicles~~buses have the highest ~~IF values for VOC~~, which is 247 kg yr⁻¹ ~~due to the relatively high~~
663 ~~VOC contribution~~ (19% over total VOC) andwith a low number of heavy CNG vehicles. ~~The IF~~
664 ~~of CNG trucks are 77.2 kg yr⁻¹, but only contribute 0.2% to total VOC emissions.~~ The IF of the
665 CNG bus is the highest which is 320 kg yr⁻¹ and emits 19.5% of the total VOC. Comparing the IFs
666 of buses across fuel types, the CNG bus emits less NO_x but higher VOC than a diesel vehicle. Each
667 CNG bus has about 33 times higher IF of VOC (320 kg yr⁻¹) than a diesel bus (9.51 kg yr⁻¹), and
668 CNG buses ~~released~~release slightly lower NO_x (248 kg yr⁻¹) than diesel buses (340 kg yr⁻¹) (Table
669 3a and 3b).

670 The ~~current~~ South Korea NIER currently does not have the PM emission factors from tire
671 and brake wear, which are the highest contributors of PM_{2.5} emissions from onroad vehicles (Hugo
672 A.C. et al., 2013; Fulvio Amato et al., 2014). Once the emission factors of tire and brake wear are
673 prepared, those emissions can be computed by CARS. For that reason, diesel vehicles become the
674 major source of PM_{2.5} emissions, which contributes over 98.5% (9,959 t yr⁻¹) of the PM_{2.5}
675 emissions based on the CARS 2015 emissions (Table 3c). The diesel truck, SUV, and van are ~~the~~
676 ~~three major sources, and their contributions~~ of total PM_{2.5} ~~are at~~ 53.6%, 21.4%, and 11.2%,
677 respectively. Although over 52% of the vehicles are gasoline vehicles, their primary PM_{2.5}
678 contribution is limited to 1.44%. The diesel bus has the highest IF (2.83 kg yr⁻¹), which is caused
679 by the largest average daily VKTs.

680 Similar to VOC emissions, CO is mostly emitted through the tailpipe due to incomplete
681 internal combustion of fuel and share similar emissions distributions across vehicle and fuel types
682 (Table 3d). Gasoline vehicles contribute most of the CO (220,390 t yr⁻¹, 59.0%), and sedan vehicles
683 are the primary source (178,121 t yr⁻¹, 47.6%) of this out of all gasoline vehicles. Across vehicle
684 types, ~~bus shows~~buses show the highest IF of CO (81.2 kg yr⁻¹) due to its largest daily VKT. CO
685 is the most abundant pollutant released from vehicles (373,864 t yr⁻¹) across all pollutants from
686 onroad automobile sources. Although CO is much less reactive than other vehicle VOCs (Rinke
687 and Zetzsch, 1984; Liu and Sander, 2015), ~~the majority of~~ CO emissions ~~from onroad automobile~~
688 ~~sources plays~~play a critical role in generating 30% of all hydroperoxy radicals (HO₂) and
689 ~~causing~~cause ozone formation in urban areas (Pfister et al., 2019). Thus, CO is also another crucial
690 precursor to ozone formation in urban areas.

691 SO_x emissions are related to the sulfur content within the fuel component; ~~diesel.~~Diesel
692 has ~~a higher~~the highest sulfur content than any other fuels. ~~Most and consequently most~~ SO_x is
693 contributed by diesel vehicles (93.8 t yr⁻¹, 54.5%) (Table 3e). Within diesel vehicles, trucks provide
694 26.5% of SO_x (45. t yr⁻¹). Although the SO_x from sedan vehicles are slightly higher (~3.3%) than

695 diesel trucks, the number of diesel trucks is only 29.6% of the number of gasoline sedans. Thus,
696 diesel trucks have a higher IF than gasoline sedans. Across vehicle types, buses have the highest
697 IF (0.095 kg yr⁻¹) of SO_x, and diesel buses in particular have the largest IF at 0.143 kg yr⁻¹.

700 The NH₃ emissions table (table 3f) indicates that 98.7% of NH₃ is from gasoline vehicles
701 while diesel trucks only contribute 1.13%. The IF result also shows that the gasoline sedan has the
702 most significant impact per vehicle (1.17 kg yr⁻¹).

703 According to the vehicle activity and the CARS model results, nearly half of the total
704 vehicles (24.3 million) are gasoline sedans (10.4 million, 42.8%), and gasoline sedan vehicles
705 ~~contributed most of contribute~~ the majority of VOC and CO emissions (46.5% and 47.6%), but
706 only 7.7% of the total NO_x emissions. The number of diesel vehicles is at 8.6 million (35.4%);
707 however, they ~~emitted emit~~ about 85.3% of the total NO_x and 98.5% of the primary PM_{2.5}. These
708 results ~~indicated indicate~~ that the annual traffic-related ~~mobile automobile~~ emissions are not only
709 affected by the number of vehicles, but also by ~~different~~ vehicle and fuel types and age of vehicles.
710 Therefore, this study normalized the annual emissions by the number of vehicles to confirm the
711 emission composition by individual vehicle types.

710 **Average Speed Impact Study**

711 The CARS can also optionally apply the average speed distribution (ASD) by road type to
712 compute more realistic mobile emissions on the road network when compared to using a current
713 single average speed value for each road type (Appendix E). Applying the ASD will generate a
714 better representation of actual traffic patterns from each road type. To understand the impacts of
715 ASD application, we performed sensitivity runs between using a single-speed to the ASD
716 application (Appendix F). The ASD data was described in Fig. 4, and the road-specific average
717 single-speed values were developed based on the weighted average method using the same ASD
718 data. Appendix E and S6 describe the details of ASD as well as road-specific speed values.

719 Figure 9a shows the differences in total emissions between two scenarios and is organized
720 by pollutant. The single-speed scenario largely underestimates the emissions across all pollutants
721 compared to the ones from the ASD scenario. NO_x (16%), VOC (40%), and CO (30%) were
722 especially underestimated. The difference is caused by the lack of low-speed bins (<16 km h⁻¹)
723 representation when a single average speed approach was used. Higher emissions are emitted while
724 vehicles are operated with low-speed bins, which decreases the combustion efficiency of ICE and
725 releases more pollutants.

726 Figure 9b shows the road-specific emissions breakdown between the ASD and single speed
727 scenarios approaches to understand the impacts of vehicle operating speeds on onroad automobile
728 emissions. In this figure, each color indicates the emissions percentage differences by road types.
729 Other than NH₃, the most significant discrepancies happened between are from urban local urban
730 roads (5.8%), highways (3.9%), and urban highways (3.0%). Other pollutants, VOC, PM_{2.5}, CO,
731 and SO_x, have similar fractions of road types, respectively. This phenomenon pattern is caused by

732 ~~a better presentation of~~ low-speed conditions ($<16 \text{ km h}^{-1}$) ~~and the fractions of road VKT~~
733 ~~contributions in CAR simulation~~ (Appendix C). The lower speeds cause the incomplete combustion
734 of ICE and increase the emission rate. Also, local urban roads, highways, and urban highways have
735 higher road VKT contributions at 17%, 18%, and 12%, respectively (Appendix C) than rural ~~roads~~.
736 ~~Higher emissions from low speed conditions from these high contribution ones. A better~~
737 ~~presentation of low-speed operating vehicles from highly travelled~~ roads (urban local, urban
738 highway, and highway) caused these significant differences between the ASD and single-speed
739 approaches. Although the interstate expressway has the largest VKT contribution (41%), it also
740 has the lowest fraction of low-speed bins (2%). That is why the difference between the ASD and
741 single speed scenarios on interstate expressways is less than 1%. In general, NH_3 emission factors
742 do not change by vehicle operating speed, so the ASD impact is quite minimal.

743 5 Conclusions

744 The CARS is a bottom-up automobile emissions model that utilizes the localized traffic-
745 related activity and emission factors input datasets to generate high quality localized ~~bottom-up~~
746 emissions inventories for policymakers, stakeholders, and research community as well as
747 temporally and spatially enhanced hourly gridded emissions for CTMs. First, the CARS model
748 employs the daily VKTs for all registered vehicles and the emission factors function to compute
749 district-level total daily emissions for each vehicle. To reflect realistic traffic patterns, the CARS
750 model computes and utilizes link-level VKTs (=link-length \times AADT) from the road network GIS
751 shapefiles to redistribute the original district-level total emissions into spatially enhanced road
752 link-level emissions. It can also optionally implement a control strategy as well as road restriction
753 rules to improve the quality of local emission inventories and meet the needs of users.

754 The CARS model is a fully modularized and computationally optimized python-based
755 ~~bottom-up mobile emissions~~ model that can effectively process a huge dataset to calculate high
756 quality spatiotemporal county-level, road link-level, and grid cell-level mobile emissions. We
757 believe that the implementation of the ASD into the CARS improves the representation of onroad
758 automobile emissions from the road network when compared to a ~~single-speed~~ for each road type
759 ~~approach~~. It ~~additionally~~ allows the CARS to have a better representation of low speed ($<16 \text{ km h}^{-1}$)
760 vehicle emissions. We believe that CARS model's versatile spatiotemporal bottom-up
761 automobile emissions and the in-depth analysis feature can assist government policymakers and
762 stakeholders to ~~quickly~~ develop ~~the rapid~~ responsive emission ~~abatement~~ strategies ~~as a response~~
763 to ~~the~~ South Korea's national $\text{PM}_{2.5}$ emergency control strategy that enforces the nationwide
764 vehicle restriction policy within 24 hours.

765 **Code Availability:**

766 The source code of the CARS model public release version 1.0 can be downloaded from the
767 Github release website:

768 <https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0>

769

770

771 **Digital Object Identifier (DOI) for the CARS version 1.0:**

772 <https://zenodo.org/record/5033314#.YNzDrC1h001>

773

774

775 **Installation Package for CARS version 1.0:**

776 The CARS version 1.0 installation package comes with the complete inputs and outputs datasets
777 for users to confirm their proper installation on their computers and can be downloaded from the
778 Github release website:

779 https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_
780 [package_25June2021.zip](https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_package_25June2021.zip)

781

782

783 **User's Guide Documentation:**

784 The CARS version user's guide documentation can be accessed through the Github repository:

785 https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual

786

787

788 **Data availability:**

789 All the datasets, excel, and python scripts used in this manuscript for the data analysis are
790 uploaded through GMD website along with a supplemental appendix document.

791

792 **Author contribution**

793 Dr. B.H. Baek and Dr. Jung-Hun Woo are the lead researchers in this study. Dr. Rizzieri
794 Pedruzzi developed the source code of CARS model, Dr. Minwoo Park tested the model
795 and provided the model input data. Dr. Chi-Tsan Wang analyzed the model resultresults and
796 prepared the manuscript. Younha Kim, and Chul-Han Song, also analyzed the model
797 resultresults and provided comments.

798

799

800 **Competing interests**

801 The Authors declare that they have no conflict of interest.

802 **Acknowledgments**

803 This research was funded by the National Strategic Project-Fine Particle of the National Research
804 Foundation (NRF) of Korea funded by the Ministry of Science and ICT (MSIT), the Ministry of
805 Environment (ME), the Ministry of Health and Welfare (MOHW) (NRF-2017M3D8A1092022),
806 and by the Korea Environmental Industry & Technology Institute (KEITI) through the Public
807 Technology Program based on Environmental Policy Program, funded by Korea Ministry of
808 Environment (MOE) (2019000160007).

809

810 **References**

- 811 Safety flare for burning combustible gas - has tangential inlet for non-flammable gas between
812 housing and stack, in, Shell Oil Co (Shel-C).
- 813 Anaconda, Anaconda python: <https://www.anaconda.com/products/individual>, last access: May,
814 1st, 2020.
- 815 Appel, W., Chemel, C., Roselle, S., Francis, X., Hu, R.-M., Sokhi, R., Rao, S. T., and Galmarini,
816 S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the
817 North American and European domains, *Atmospheric Environment*, 53, 142–155,
818 10.1016/j.atmosenv.2011.11.016, 2013.
- 819 Baek, B. H., and Seppanen, C., SMOKE v4.8.1 Public Release (January 29, 2021) (Version
820 SMOKEv481_Jan2021): <http://doi.org/10.5281/zenodo.4480334> last 2021.
- 821 Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer,
822 M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan,
823 H., Walker, K. D., Thurston, G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M.,
824 Krewski, D., Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V.,
825 Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve, P. J., Miller, A. B., Yin, P.,
826 Zhou, M., Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T.,
827 Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G.,
828 Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality associated
829 with long-term exposure to outdoor fine particulate matter, *Proceedings of the National
830 Academy of Sciences*, 115, 9592, 10.1073/pnas.1803222115, 2018.
831
- 832 Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., and Warila, J.: MOVES Sensitivity
833 Analysis: The Impacts of Temperature and Humidity on Emissions
834 , available at: <https://www3.epa.gov/ttn/chief/conference/ei19/session6/choi.pdf> 2017.
- 835 Choi, K.-C., Lee, J.-J., Bae, C. H., Kim, C.-H., Kim, S., Chang, L.-S., Ban, S.-J., Lee, S.-J., Kim,
836 J., and Woo, J.-H.: Assessment of transboundary ozone contribution toward South Korea using
837 multiple source–receptor modeling techniques, *Atmospheric Environment*, 92, 118-129,
838 <https://doi.org/10.1016/j.atmosenv.2014.03.055>, 2014.
- 839 Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K.,
840 Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A.,

- 841 Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., III, Shin, H., Straif, K.,
842 Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and
843 Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to
844 ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, The
845 Lancet, 389, 1907-1918, 10.1016/S0140-6736(17)30505-6, 2017.
846
- 847 Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S. T.,
848 Scheffe, R., Schere, K., Steyn, D., and Venkatram, A.: A FRAMEWORK FOR EVALUATING
849 REGIONAL-SCALE NUMERICAL PHOTOCHEMICAL MODELING SYSTEMS, Environ
850 Fluid Mech (Dordr), 10, 471-489, 10.1007/s10652-009-9163-2, 2010.
- 851 EEA: EMEP/EEO air pollutant emission inventory guidebook 2016, 2019.
- 852 Enthought, Enthought Canopy Python: <https://assets.enthought.com/downloads/edm/>, last
853 access: May, 1st, 2020.
- 854 Fallahshorshani, M., André, M., Bonhomme, C., and Seigneur, C.: Coupling Traffic, Pollutant
855 Emission, Air and Water Quality Models: Technical Review and Perspectives, Procedia - Social
856 and Behavioral Sciences, 48, 1794-1804, <https://doi.org/10.1016/j.sbspro.2012.06.1154>, 2012.
- 857 Fulvio Amato, Flemming R. Cassee, Hugo A.C. Denier van der Gon, Robert Gehrig, Mats
858 Gustafsson, Wolfgang Hafner, Roy M. Harrison, Magdalena Jozwicka, Frank J. Kelly,
859 TeresaMoreno, Andre S.H. Prevot, Martijn Schaap, Jordi Sunyer, Xavier Querol, Urban air
860 quality: The challenge of traffic non-exhaust emissions, Journal of Hazardous Materials, 275, 31-
861 36, <https://doi.org/10.1016/j.jhazmat.2014.04.053>, 2014.
862
- 863 Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a
864 stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional
865 module, Geosci. Model Dev., 12, 1885-1907, 10.5194/gmd-12-1885-2019, 2019.
- 866 Hogrefe, C., Rao, S. T., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., and McHenry, J.:
867 Evaluating the performance of regional-scale photochemical modeling systems: Part II—ozone
868 predictions, Atmospheric Environment, 35, 4175-4188, [https://doi.org/10.1016/S1352-2310\(01\)00183-2](https://doi.org/10.1016/S1352-2310(01)00183-2), 2001a.
- 870 Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao, W., Olerud, D., Xiu,
871 A., McHenry, J., and Alapaty, K.: Evaluating the performance of regional-scale photochemical

- 872 modeling systems: Part I—meteorological predictions, Atmospheric Environment, 35, 4159-
873 4174, [https://doi.org/10.1016/S1352-2310\(01\)00182-0](https://doi.org/10.1016/S1352-2310(01)00182-0), 2001b.
- 874 Hugo A.C. Denier van der Gon, Miriam E. Gerlofs-Nijland, Robert Gehrig, Mats Gustafsson,
875 Nicole Janssen, Roy M. Harrison, Jan Hulskotte, Christer Johansson, Magdalena Jozwicka,
876 Menno Keuken, Klaas Krijgsheld, Leonidas Ntziachristos, Michael Riediker & Flemming R.
877 Cassee: The Policy Relevance of Wear Emissions from Road Transport, Now and in the
878 Future—An International Workshop Report and Consensus Statement, Journal of the Air &
879 Waste Management Association, 63:2, 136-149, DOI: 10.1080/10962247.2012.741055, 2013
880
- 881 Ibarra-Espinosa, S., Ynoue, R., amp, apos, Sullivan, S., Pebesma, E., Andrade, M. d. F., and
882 Osses, M.: VEIN v0.2.2: an R package for bottom-up vehicular emissions inventories, Geosci.
883 Model Dev., 11, 2209-2229, 10.5194/gmd-11-2209-2018, 2018a.
- 884 Ibarra-Espinosa, S., Ynoue, R., O'Sullivan, S., Pebesma, E., Andrade, M. D. F., and Osses, M.:
885 VEIN v0.2.2: an R package for bottom-up vehicular emissions inventories, Geosci. Model Dev.,
886 11, 2209-2229, 10.5194/gmd-11-2209-2018, 2018b.
- 887 IEMA, Inventário de Emissões Atmosféricas do Transporte Rodoviário de Passageiros no
888 Município de São Paulo.: <http://emissoes.energiaeambiente.org.br>, last access: May,1st, 2017.
- 889 Jang, Y. K., Cho, K. L., Kim, K., Kim, H. J., and Kim, J.: Development of methodology for
890 esimation of air pollutants emissions and future emissions from on-road mobile sources.,
891 National Institute of Environmental Research, Incheon, Korea., available at: 2007.
- 892 Kaewunruen, S., Sussman, J. M., and Matsumoto, A.: Grand Challenges in Transportation and
893 Transit Systems, Frontiers in Built Environment, 2, 10.3389/fbuil.2016.00004, 2016.
- 894 Kim, B.-U., Bae, C., Kim, H. C., Kim, E., and Kim, S.: Spatially and chemically resolved source
895 apportionment analysis: Case study of high particulate matter event, Atmospheric Environment,
896 162, 55-70, <https://doi.org/10.1016/j.atmosenv.2017.05.006>, 2017a.
- 897 Kim, H. C., Kim, E., Bae, C., Cho, J. H., Kim, B. U., and Kim, S.: Regional contributions to
898 particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation
899 and sensitivity to meteorology and emissions inventory, Atmos. Chem. Phys., 17, 10315-10332,
900 10.5194/acp-17-10315-2017, 2017b.

- 901 Kim, H. C., Kim, S., Kim, B.-U., Jin, C.-S., Hong, S., Park, R., Son, S.-W., Bae, C., Bae, M.,
902 Song, C.-K., and Stein, A.: Recent increase of surface particulate matter concentrations in the
903 Seoul Metropolitan Area, Korea, *Scientific Reports*, 7, 4710, 10.1038/s41598-017-05092-8,
904 2017c.
- 905 L., W. P., and Heo, G.: Development of revised SAPRC aromatics mechanism, available at:
906 <https://www.engr.ucr.edu/~carter/SAPRC/saprc11.pdf> 2012.
- 907 Lee, D., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M.,
908 Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.: Korean National Emissions Inventory System
909 and 2007 Air Pollutant Emissions, *Asian Journal of Atmospheric Environment*, 5-4, 278-291,
910 2011a.
- 911 Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M.,
912 Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.: Korean National Emissions Inventory System
913 and 2007 Air Pollutant Emissions, *Asian Journal of Atmospheric Environment*, 5,
914 10.5572/ajae.2011.5.4.278, 2011b.
- 915 Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic speed dynamics when
916 calculating COPERT and PHEM pollutant emissions at the urban scale, *Transportation Research*
917 Part D: Transport and Environment
- 918 63, 588-603, <https://doi.org/10.1016/j.trd.2018.06.023>, 2018.
- 919 Li, F., Zhuang, J., Cheng, X., Li, M., Wang, J., and Yan, Z.: Investigation and Prediction of
920 Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model, *Atmosphere*,
921 10, 106, 10.3390/atmos10030106, 2019.
- 922 Li, Q., Qiao, F., and yu, L.: Vehicle Emission Implications of Drivers Smart Advisory System
923 for Traffic Operations in Work Zones, *Journal of the Air & Waste Management Association*, 11,
924 10.1080/10962247.2016.1140095, 2016.
- 925 Liu, H., Guensler, R., Lu, H., Xu, Y., Xu, X., and Rodgers, M.: MOVES-Matrix for High-
926 Performance On-Road Energy and Running Emission Rate Modeling Applications, *Journal of*
927 *the Air & Waste Management Association*, 69, 10.1080/10962247.2019.1640806, 2019.
- 928 Liu, Y., and Sander, S. P.: Rate Constant for the OH + CO Reaction at Low Temperatures, *The*
929 *Journal of Physical Chemistry A*, 119, 10060-10066, 10.1021/acs.jpca.5b07220, 2015.

- 930 Luo, H., Astitha, M., Hogrefe, C., Mathur, R., and Rao, S. T.: A new method for assessing the
931 efficacy of emission control strategies, *Atmospheric Environment*, 199, 233-243,
932 <https://doi.org/10.1016/j.atmosenv.2018.11.010>, 2019.
- 933 Lv, W., Hu, Y., Li, E., Liu, H., Pan, H., Ji, S., Hayat, T., Alsaedi, A., and Ahmad, B.: Evaluation
934 of vehicle emission in Yunnan province from 2003 to 2015, *J. Clean Prod.*, 207, 814-825,
935 <https://doi.org/10.1016/j.jclepro.2018.09.227>, 2019.
- 936 Moussiopoulos, N., Vlachokostas, C., Tsilingiridis, G., Douros, I., Hourdakis, E., Naneris, C.,
937 and Sidiropoulos, C.: Air quality status in Greater Thessaloniki Area and the emission reductions
938 needed for attaining the EU air quality legislation, *Sci. Total Environ.*, 407, 1268-1285,
939 <https://doi.org/10.1016/j.scitotenv.2008.10.034>, 2009.
- 940 Nagpure, A. S., Gurjar, B. R., Kumar, V., and Kumar, P.: Estimation of exhaust and non-exhaust
941 gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi, *Atmospheric
942 Environment*, 127, 118-124, 10.1016/j.atmosenv.2015.12.026, 2016.
- 943 NIER: Study on Air Pollutant Emission Estimation Method in Transportation section(II) 11-
944 1480523-003573-01, National Archives of Korea, available at:
945 https://www.archives.go.kr/next/manager/publishmentSubscriptionDetail.do?prt_seq=114054&page=1554&prt_arc_title=&prt_pub_kikwan=&prt_no 2018.
- 947 Ntziachristos, L., and Samaras, Z.: Speed-dependent representative emission factors for catalyst
948 passenger cars and influencing parameters, *Atmospheric Environment*, 34, 4611-4619,
949 [https://doi.org/10.1016/S1352-2310\(00\)00180-1](https://doi.org/10.1016/S1352-2310(00)00180-1), 2000.
- 950 Ntziachristos, L., Gkatzoflias, D., Kouridis, C., and Samaras, Z.: COPERT: A European road
951 transport emission inventory model, 491-504 pp., 2009.
- 952 Peduzzi, R., Baek, B. H., and Wang, C.-T., CARS: <https://github.com/CMASCenter/CARS>,
953 last access: MAy, 1st, 2020.
- 954 Perugu, H., Ramirez, L., and DaMassa, J.: Incorporating temperature effects in California's on-
955 road emission gridding process for air quality model inputs, *Environ Pollut*, 239, 1-12,
956 10.1016/j.envpol.2018.03.094, 2018.

- 957 Perugu, H.: Emission modelling of light-duty vehicles in India using the revamped VSP-based
958 MOVES model: The case study of Hyderabad, *Transportation Research Part D: Transport and*
959 *Environment*, 68, 150-163, <https://doi.org/10.1016/j.trd.2018.01.031>, 2019.
- 960 Pfister, G., Wang, C.-t., Barth, M., Flocke, F., Vizuete, W., and Walters, S.: Chemical
961 Characteristics and Ozone Production in the Northern Colorado Front Range, *JGR*, 2019.
- 962 Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R., dos Santos, F. S., Moreira,
963 D. M., and Albuquerque, T. T. d. A.: Traffic data in air quality modeling: A review of key
964 variables, improvements in results, open problems and challenges in current research,
965 *Atmospheric Pollution Research*, 11, 454-468, <https://doi.org/10.1016/j.apr.2019.11.018>, 2020.
- 966 Rao, S. T., Galmarini, S., and Puckett, K.: Air Quality Model Evaluation International Initiative
967 (AQMEII): Advancing the State of the Science in Regional Photochemical Modeling and Its
968 Applications, *Bulletin of the American Meteorological Society*, 92, 23-30,
969 10.1175/2010BAMS3069.1, 2011.
- 970 Rodriguez-Rey et al. (2021): Rodriguez-Rey, D., Guevara, M., Linares, MP., Casanovas, J.,
971 Salmerón, J., Soret, A., Jorba, O., Tena, C., Pérez García-Pando, C.: A coupled macroscopic
972 traffic and pollutant emission modelling system for Barcelona, *Transportation Research Part D*,
973 92, <https://doi.org/10.1016/j.trd.2021.102725>, 2021.
- 974 Rinke, M., and Zetzsch, C.: Rate Constants for the Reactions of OH Radicals with Aromatics:
975 Benzene, Phenol, Aniline, and 1,2,4-Trichlorobenzene, *Berichte der Bunsengesellschaft für*
976 *physikalische Chemie*, 88, 55-62, 10.1002/bbpc.19840880114, 1984.
- 977 Russell, A., and Dennis, R.: NARSTO critical review of photochemical models and modeling,
978 *Atmospheric Environment*, 34, 2283-2324, [https://doi.org/10.1016/S1352-2310\(99\)00468-9](https://doi.org/10.1016/S1352-2310(99)00468-9),
979 2000.
- 980 Ryu, J. H., Han, J. S., Lim, C. S., Eom, M. D., Hwang, J. W., Yu, S. H., Lee, T. W., Yu, Y. S.,
981 and Kim, G. H.: The Study on the Estimation of Air Pollutants from Auto- mobiles (I) -
982 Emission Factor of Air Pollutants from Middle and Full sized Buses., in, *Transportation*
983 *Pollution Research Center*, National Institute of Environmental Research, Incheon, Korea., 2003.
- 984 Ryu, J. H., Lim, C. S., Yu, Y. S., Han, J. S., Kim, S. M., Hwang, J. W., Eom, M. D., Kim, G. Y.,
985 Jeon, M. S., Kim, Y. H., Lee, J. T., and Lim, Y. S.: The Study on the Esti- mation of Air
986 Pollutants from Automobiles (II) - Emis- sion Factor of Air Pollutants from Diesel Truck., in,

- 987 Trans- portation Pollution Research Center, National Institute of Environmental Research,
988 Incheon, Korea., 2004.
- 989 Ryu, J. H., Yu, Y. S., Lim, C. S., Kim, S. M., Kim, J. C., Gwon, S. I., Jeong, S. W., and Kim, D.
990 W.: The Study on the Estimation of Air Pollutants from Automobiles (III) - Emission Factor of
991 Air Pollutants from Small sized Light-duty Vehicles., in, Transportation Pollution Research
992 Center, National Institute of Environmental Research, Korea., 2005.
- 993 Sallis, P., Bull, F., Burdett, P., Frank, P., Griffiths, P., Giles-Corti, P., and Stevenson, M.: Use of
994 science to guide city planning policy and practice: How to achieve healthy and sustainable future
995 cities, *The Lancet*, 388, 10.1016/S0140-6736(16)30068-X, 2016.
- 996 Smit, R., Kingston, P., Neale, D. W., Brown, M. K., Verran, B., and Nolan, T.: Monitoring on-
997 road air quality and measuring vehicle emissions with remote sensing in an urban area,
998 *Atmospheric Environment*, 218, 116978, <https://doi.org/10.1016/j.atmosenv.2019.116978>, 2019.
- 999 Sun, W., Duan, N., Yao, R., Huang, J., and Hu, F.: Intelligent in-vehicle air quality
1000 management : a smart mobility application dealing with air pollution in the traffic, 2016.
- 1001 Tominaga, Y., and Stathopoulos, T.: Ten questions concerning modeling of near-field pollutant
1002 dispersion in the built environment, *Build. Environ.*, 105, 390-402,
1003 <https://doi.org/10.1016/j.buildenv.2016.06.027>, 2016.
- 1004 USEPA: Population and Activity of Onroad Vehicles in MOVES3, in, edited by: USEPA, 2020.
- 1005 WHO, Ambient air pollution- a major threat to health and climate:
1006 <https://www.who.int/airpollution/ambient/en/>, last 2019.
- 1007 Xu, X., Liu, H., Anderson, J. M., Xu, Y., Hunter, M. P., Rodgers, M. O., and Guensler, R. L.:
1008 Estimating Project-Level Vehicle Emissions with Vissim and MOVES-Matrix, *Transportation*
1009 *Research Record*, 2570, 107-117, 10.3141/2570-12, 2016.
- 1010 Yarwood, G., and Jung, J.: UPDATES TO THE CARBON BOND MECHANISM FOR
1011 VERSION 6 (CB6), 2010.
1012

1013 **Tables**

1014 **Table 1.** Computational processing time by CARS module based on the modeling setup: Total
 1015 number of activity data = 24,383,578; Emission Factors = 84,608; GIS road links=385,795;
 1016 districts/states=5,150/16; 9km×9km grid cells=5,494 (82 columns× 67 columns).

No	Module	Desktop i7 (minutes)	Laptop i9 (minutes)	Averaged Time (minutes)
1	Process activity data	1.8	1.5	1.7
2	process emission factors	1.1	0.8	1.0
3	Process shape file	9.9	7.3	8.6
4	Calculate district emissions	6.4	5.7	6.1
5	Grid4AQM [31days]	4.8 [75.9]	5.0 [87.2]	4.9 [81.6]
6	Plot figures	6.2	5.4	5.8
Total [31days]		30.2 [101.3]	25.7 [107.9]	28.1[104.8]

1017

1018

1019

1020

Table 2. The total emissions comparison between CARS and CAPSS for the 2015 emission.

Emission Inventory	Pollutants (t yr ⁻¹)					
	NO _x	VOC	PM2.5	CO	SO _x	NH ₃
CARS 2015	301,794	61,186	10,108	373,864	172	12,453
CAPSS 2015	369,585	46,145	8,817	245,516	209	10,079

1021

1022

1023 **Table 3.** The summary tables of emissions (t yr⁻¹), contributions (%), and impact factor (IF, kg yr⁻¹)
1024 per vehicle for criteria air pollutants (CAPs) by vehicle and fuel types: (a) for NO_x; (b) VOC;
1025 (c) for PM_{2.5}; (d) for CO; (e) for SO_x; and (f) for NH₃.

1026
1027 (a) NO_x

Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	20,219 (6.70%)	1.94	14,783 (4.90%)	12.8	8,159 (2.77%)	4.49	12 (0.00%)	1.26	65 (0.02%)	0.39	43,239 (14.3%)	3.19
Truck	23 (0.01%)	5.54	148,246 (49.1%)	47.9	920 (0.31%)	4.55	88 (0.03%)	66.4	-	-	149,277 (49.5%)	45.2
Bus	0 (0.00%)	0.97	25,677 (8.51%)	340	-	-	9,260 (3.07%)	248	0 (0.00%)	1.77	34,938 (11.6%)	333
SUV	159 (0.05%)	1.19	39,565 (13.19%)	11.4	175 (0.06%)	8.54	0 (0.00%)	1.60	1 (0.00%)	0.42	39,900 (13.2%)	11.0
Van	14 (0.00%)	4.78	16,659 (5.52%)	22.6	1,337 (0.44%)	6.80	0 (0.00%)	1.25	0 (0.00%)	0.37	18,012 (6.00%)	19.2
Taxi	-	-	-	-	1,217 (0.40%)	2.11	-	-	-	-	1,217 (0.40%)	2.11
Special	1 (0.00%)	20.1	12,347 (4.10%)	152	0 (0.00%)	0.52	-	-	-	-	12,375 (4.10%)	151
Motorcycle	2,836 (0.94%)	1.31	-	-	-	-	-	-	-	-	2,836 (0.94%)	1.32
Total	23,253 (7.70%)	1.83	257,305 (85.3%)	29.9	11,809 (3.91%)	4.20	9,361 (3.10%)	36.7	66 (0.02%)	0.39	301,794 (100%)	13.3

1028 (b) VOC

Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	28,434 (46.5%)	2.73	629 (1.03%)	0.55	2,107 (3.44%)	1.16	3 (0.01%)	0.33	77 (0.13%)	0.47	31,250 (51.1%)	2.30
Truck	23 (0.04%)	5.44	8,194 (13.4%)	2.65	286 (0.47%)	1.41	102 (0.17%)	77.2	-	-	8,605 (14.1%)	2.61
Bus	0 (0.00%)	1.65	717 (1.17%)	9.51	-	-	11,942 (19.5%)	320	0 (0.00%)	0	12,659 (20.7%)	112
SUV	246 (0.40%)	1.84	2,441 (3.99%)	0.71	46 (0.08%)	2.25	0 (0.00%)	0.75	1 (0.00%)	0.55	2,733 (4.47%)	0.76
Van	21 (0.03%)	7.04	1,185 (1.94%)	1.61	393 (0.64%)	2.00	0 (0.00%)	0.45	0 (0.00%)	0	1,599 (2.61%)	1.71
Taxi	-	-	-	-	273 (0.45%)	0.47	-	-	-	-	273 (0.45%)	0.47
Special	1 (0.00%)	25.8	904 (1.48%)	11.1	0 (0.00%)	0.23	-	-	-	-	905 (1.48%)	11.0
Motorcycle	3,160 (5.16%)	1.46	-	-	-	-	-	-	-	-	3,160 (5.16%)	1.46
Total	31,885 (52.1%)	2.50	14,070 (23.0%)	1.64	3,106 (5.08%)	1.10	12,047 (19.7%)	247	78 (0.13%)	0.47	61,186 (100%)	2.51

1030 (c) PM_{2.5}

Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	144 (1.42%)	0.01	809 (8.00%)	0.70	0	0	0	0	3 (0.03%)	0.02	956 (9.46%)	0.07
Truck	0 (0.01%)	0	5,415 (53.6%)	1.75	0	0	0	0	-	-	5,415 (53.6%)	1.64
Bus	0	0	214 (2.11%)	2.83	-	-	0	0	0 (0.01%)	0.09	214 (2.11%)	1.89
SUV	2 (0.02%)	0.02	2,165 (21.4%)	0.63	0	0	0	0	0	0.02	2,167 (21.4%)	0.60
Van	0	0	1,127 (11.2%)	1.53	0	0	0	0	0	0.02	1,127 (11.2%)	1.20
Taxi	-	-	-	-	0	0	-	-	-	-	0	0
Special	0	0	230 (2.28%)	2.82	0	0	-	-	-	-	230 (2.28%)	2.81
Motorcycle	0	0	-	-	-	-	-	-	-	-	0	0
Total	146 (1.44%)	0.01	9,959 (98.5%)	1.16	0	0	0	0	3 (0.03%)	0.02	10,108 (100%)	0.41

1034
1035

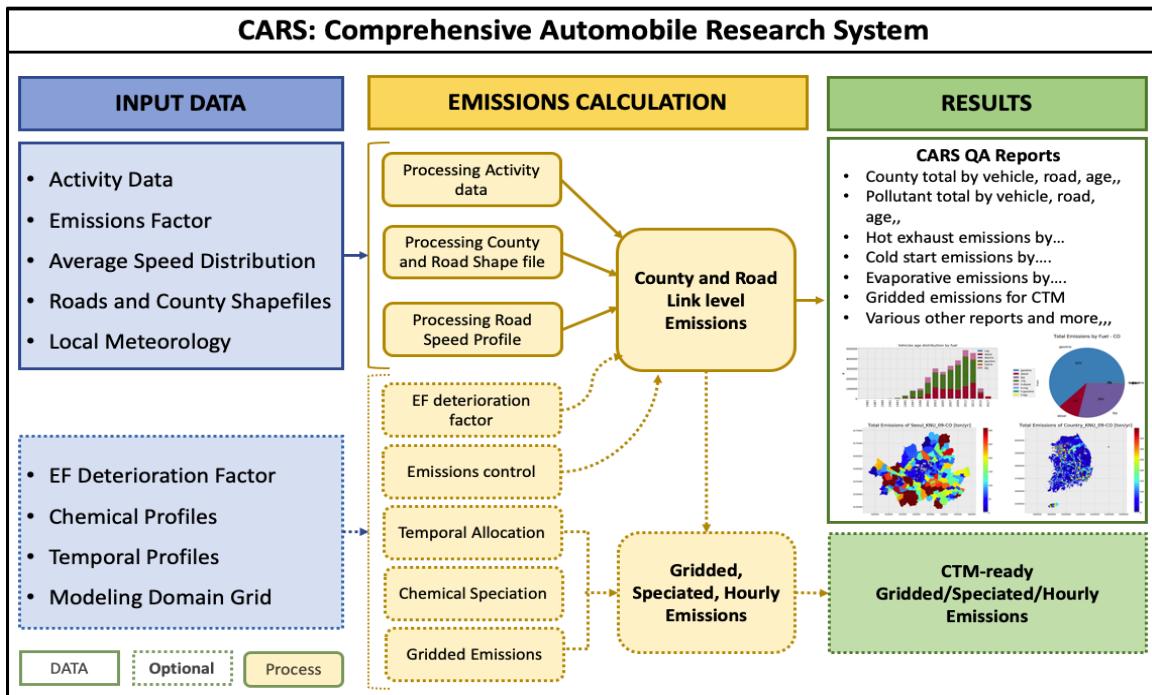
(d) CO

Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	178,121 (47.6%)	17.1	3,436 (0.92%)	2.98	42,886 (11.5%)	23.6	29 (0.01%)	2.91	177 (0.05%)	1.07	224,649 (60.1%)	16.6
Truck	254 (0.07%)	61.1	47,065 (12.6%)	15.2	9,088 (2.43%)	44.9	68 (0.02%)	51.4	-	-	56,475 (15.1%)	17.1
Bus	0 (0.00%)	19.3	7,633 (2.05%)	101	-	-	1542 (0.41%)	41.3	1 (0.00%)	4.64	9,176 (2.45%)	81.2
SUV	2,616 (0.70%)	19.6	13,401 (3.58%)	3.87	791 (0.21%)	38.6	0 (0.00%)	4.09	2 (0.00%)	1.15	16,808 (4.50%)	4.65
Van	131 (0.04%)	43.4	6,611 (1.77%)	8.97	8,032 (2.15%)	40.9	2 (0.00%)	6.53	0 (0.00%)	1.00	14,777 (3.95%)	15.8
Taxi	-	-	-	-	8,481 (2.27%)	14.7	-	-	-	-	8,481 (2.27%)	14.7
Special	13 (0.00%)	269	4,224 (1.13%)	51.7	1 (0.00%)	3.69	-	-	-	-	4,239 (1.13%)	51.7
Motorcycle	39,256 (10.5%)	18.2	-	-	-	-	-	-	-	-	39,256 (10.5%)	18.2
Total	220,390 (59.0%)	17.3	82,372 (22.0%)	9.57	69,281 (18.5%)	24.6	1641 (0.44%)	33.6	180 (0.05%)	1.07	373,864 (100%)	15.4

1036
1037

(e) SO_x

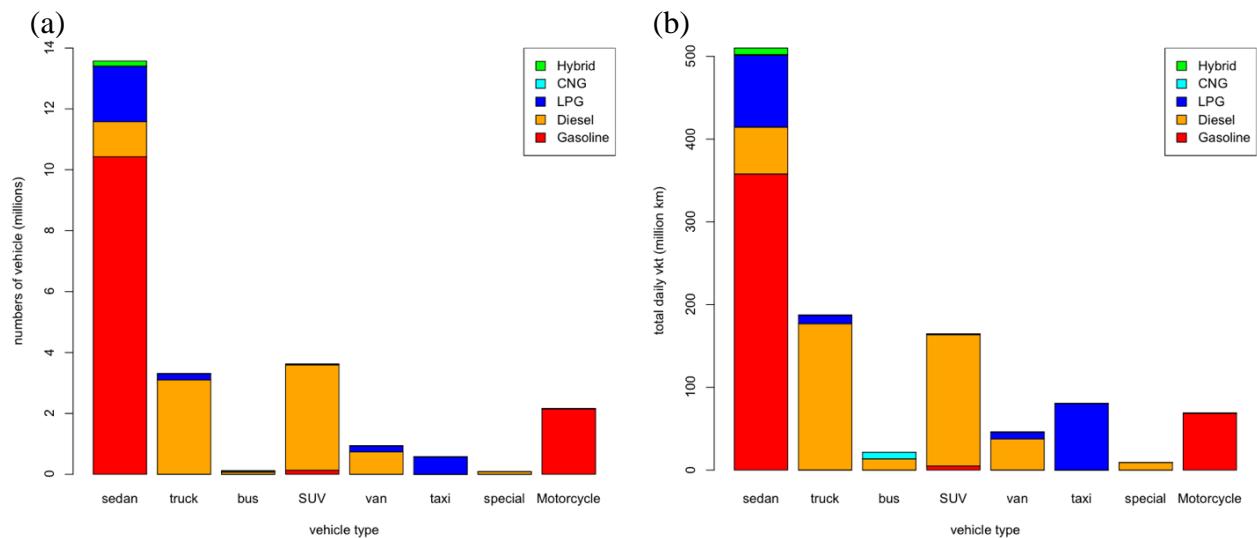
Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	51.3 (29.8%)	0.005	6.5 (3.79%)	0.006	8.28 (4.81%)	0.005	0	0	1.14 (0.67%)	0.007	67.2 (39.1%)	0.005
Truck	0.03 (0.02%)	0.008	45.5 (26.5%)	0.015	0.97 (0.57%)	0.005	0	0	-	-	46.5 (27.1%)	0.014
Bus	0 (0.00%)	0.003	10.8 (6.26%)	0.143	-	-	0	0	0.01 (0.01%)	0.047	10.8 (6.26%)	0.095
SUV	0 (0.00%)	0.000	18.2 (10.6%)	0.005	0.00 (0.00%)	0.000	0	0	0.01 (0.01%)	0.007	18.2 (10.6%)	0.005
Van	0.02 (0.01%)	0.006	5.5 (3.20%)	0.007	0.77 (0.45%)	0.004	0	0	0 (0.00%)	0.010	6.30 (3.66%)	0.007
Taxi	-	-	-	-	7.71 (4.49%)	0.013	-	-	-	-	7.71 (4.48%)	0.013
Special	0 (0.00%)	0.003	7.3 (4.27%)	0.090	0.00 (0.00%)	0.005	-	-	-	-	7.34 (4.27%)	0.090
Motorcycle	7.94 (4.62%)	0.004	-	-	-	-	-	-	-	-	7.94 (4.62%)	0.004
Total	59.3 (34.5%)	0.006	93.8 (54.5%)	0.011	17.7 (10.3%)	0.006	0	0	1.17 (0.68%)	0.007	172 (100%)	0.007


1038
1039
1040

(e) NH₃

Vehicle	Gasoline		Diesel		LPG		CNG		Hybrid		Total	
	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF	Emission	IF
Sedan	12,225 (98.3%)	1.17	20 (0.16%)	0.02	0	0.00	0	0	19 (0.15%)	0.11	12,284 (98.6%)	0.91
Truck	0 (0.00%)	0.03	82 (0.66%)	0.03	0	0.00	0	0	-	-	82 (0.66%)	0.02
Bus	0 (0.00%)	0.09	15 (0.12%)	0.19	-	-	0	0	0 (0.00%)	0.51	15 (0.12%)	0.13
SUV	0 (0.00%)	0.00	0 (0.00%)	0.00	0	0.00	0	0	0 (0.00%)	0.16	0 (0.00%)	0.00
Van	0 (0.00%)	0.02	14 (0.11%)	0.02	0	0.00	0	0	0 (0.00%)	0.09	14 (0.11%)	0.01
Taxi	-	-	-	-	0	0.00	-	-	-	-	0 (0.00%)	0.00
Special	0 (0.00%)	0.01	10 (0.08%)	0.12	0	0.00	-	-	-	-	10 (0.08%)	0.12
Motorcycle	49 (0.39%)	0.02	-	-	-	-	-	-	-	-	49 (0.39%)	0.02
Total	12,293 (98.7%)	0.97	141 (1.13%)	0.02	0	0.00	0	0	19 (0.16%)	0.12	12,453 (100%)	0.51

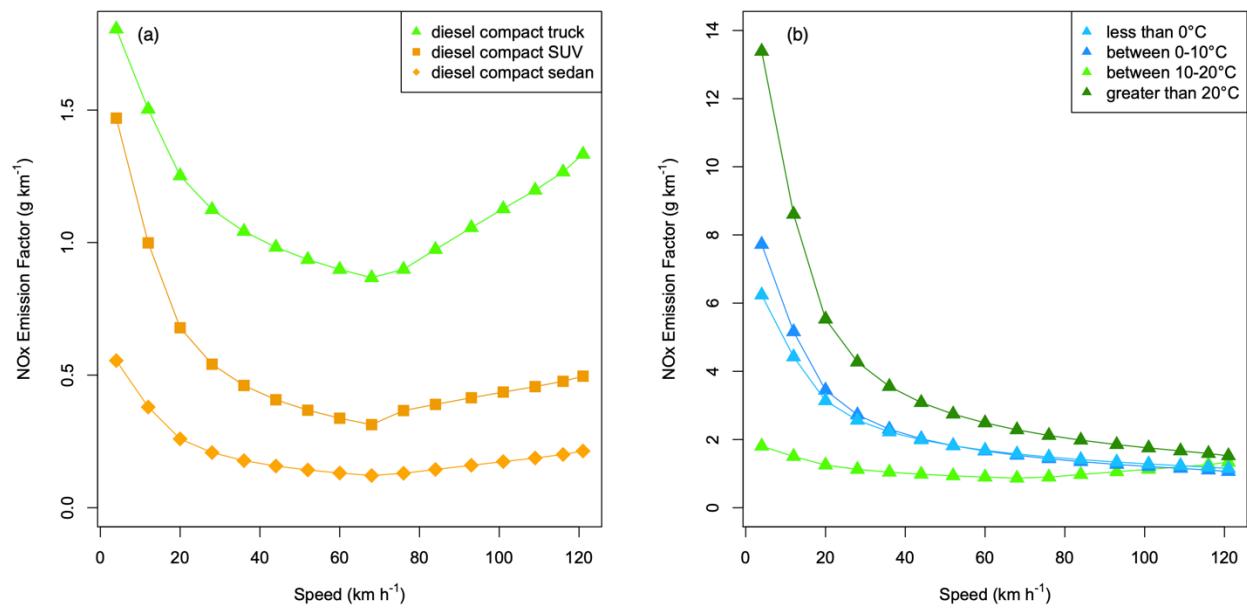
1041
1042


1043 **Figures**

1044

1045 **Figure 1.** CARS schematic methodology to estimate mobile emissions.

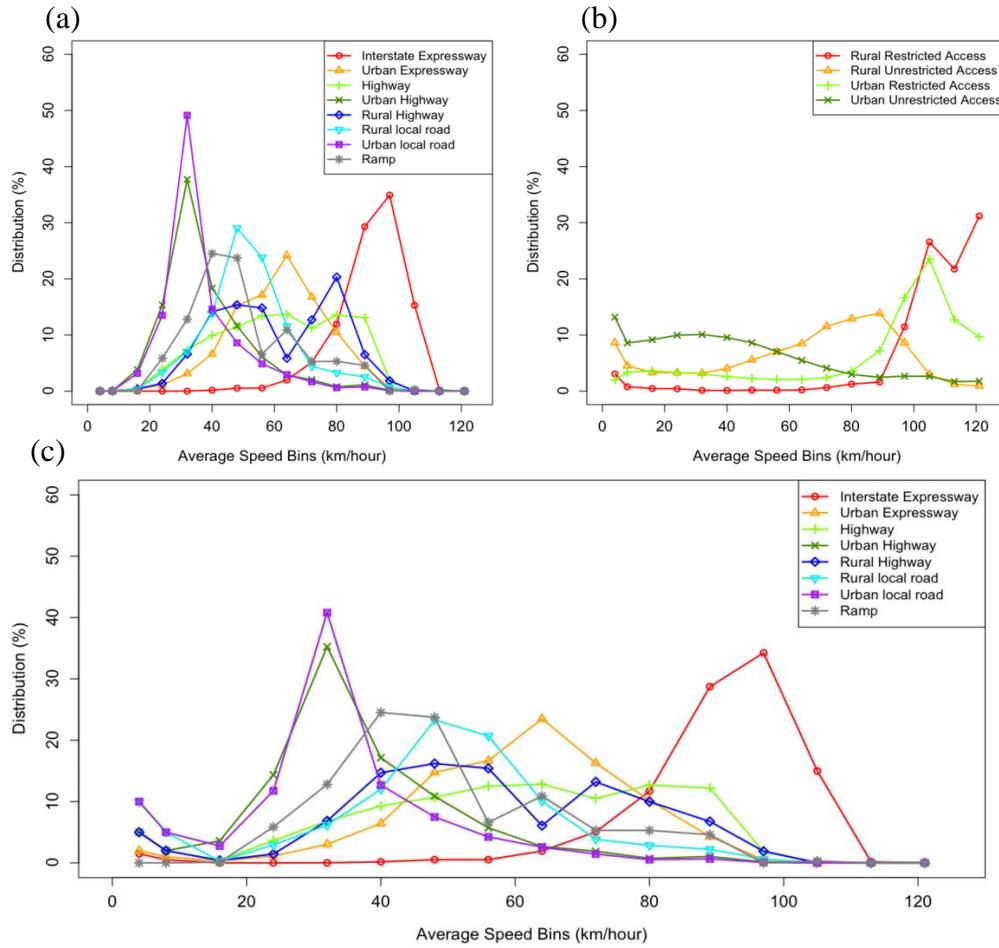
1046



1047

1048 **Figure 2.** (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by
1049 vehicle and fuel types in South Korea.

1050


1051

1052

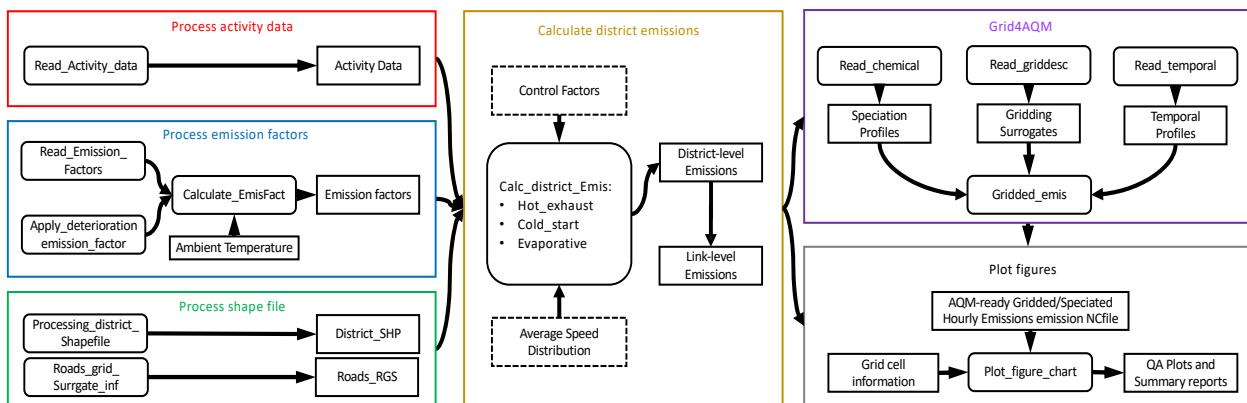
1053 **Figure 3.** Variation of NO_x emission factors from diesel compact engines by vehicle speed and
1054 ambient temperatures: (a) NO_x emission factors function to vehicle speed; (b) NO_x emission
1055 factors of diesel compact truck function to vehicle speed and ambient temperature.

1056

1057

1058

1059


1060

1061

1062

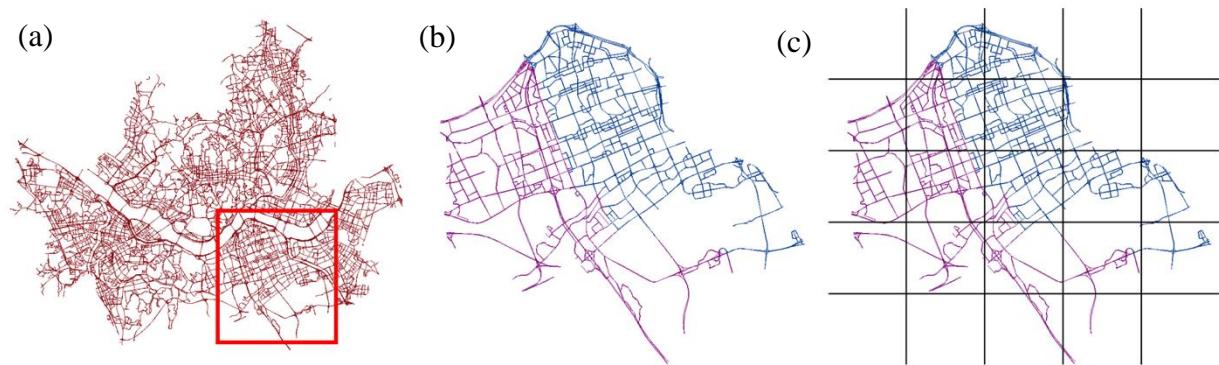
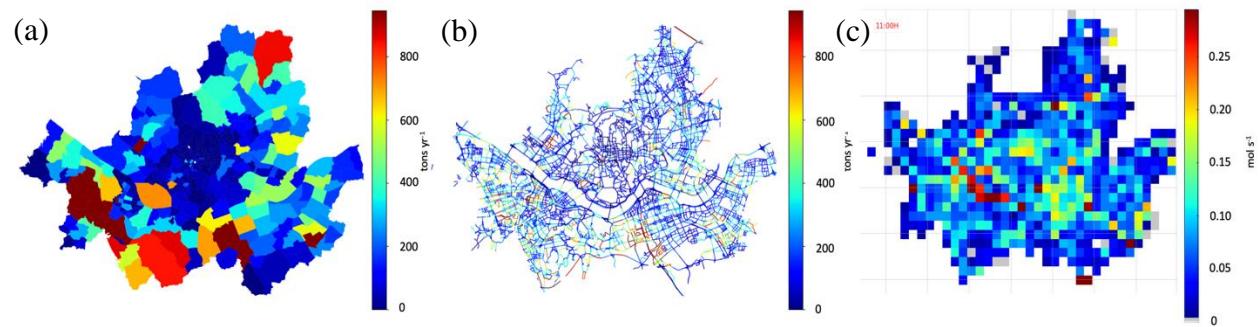
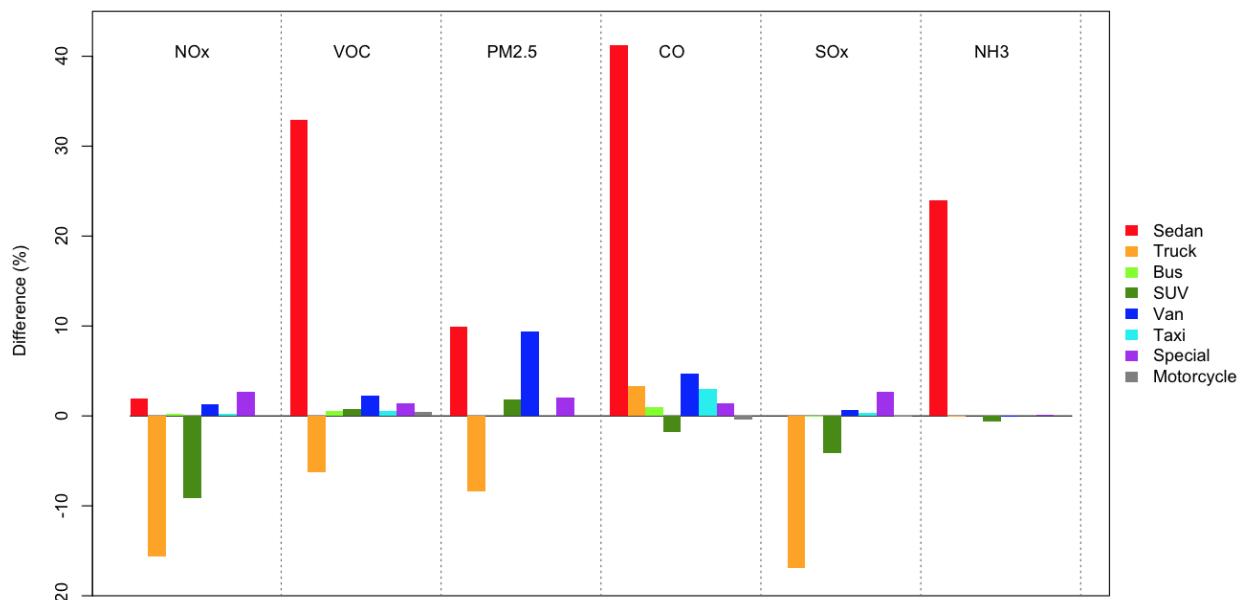

1063

Figure 4. (a) The South Korea speed distribution by road types. (b) The Georgia state speed distribution by road types. (c) The average speed distribution (ASD) by road types used in this study for South Korea.

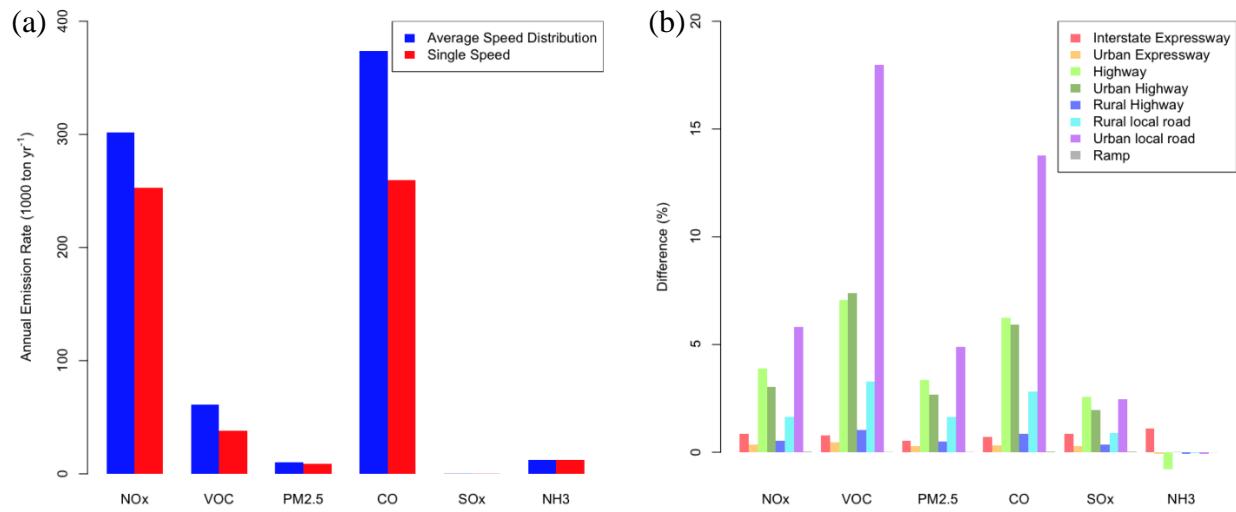

Figure 5. The schematic of modules and their functions in the CARS.

1064
1065
1066

1067
1068
1069
1070


Figure 6 (a) the road network GIS shapefile of Seoul, South Korea; (b) two districts with different colors (purple and blue); (c) the modeling grid cells over road segments.

1071


1072 **Figure 7.** Three different formats of CO emissions from CARS, (A) District-level total emissions
 1073 (t yr^{-1}) (B) Link-level total emissions (t yr^{-1}), (C) CTM-ready gridded hourly total emissions (moles
 1074 s^{-1}).

1075

Figure 8. Comparison between CARS 2015 and CAPSS 2015 onroad mobile emissions inventories by vehicle types. The standard line is CAPSS 2015 data.

1080

1081

1082 **Figure 9.** The impacts of emissions between the ASD and single-speed approach: (a) the total
 1083 emission differences by pollutant; (b) The road-specific difference (%) by pollutant.

1084

1085 **Appendices**

1086

1087

1088 **Appendix A:** The vehicle types classified by fuel type, vehicle body type, and engine size. The
 1089 emission factors of the diesel vehicle with the star (*) are depended on the ambient temperature
 1090 (T).

Vehicle Types	Fuel Types							
	Gasoline	Diesel	LPG	CNG	HYBRID_G	HYBRID_D	HYBRID_L	HYBRID_C
Sedan	Supercompact	Supercompact*	Supercompact	-	-	-	-	-
	Compact	compact*	compact	compact	compact	compact	compact	-
	Fullsize	Fullsize*	Fullsize	Fullsize	Fullsize	Fullsize	Fullsize	-
	Midsize	Midsize*	Midsize	Midsize	Midsize	Midsize	Midsize	-
Truck	Supercompact	Supercompact	Supercompact	-	-	-	-	-
	Compact	Compact*	Compact	Compact	-	-	-	-
	Fullsize	Concrete	Midsize	Midsize	-	-	-	-
	Midsize	Fullsize	Midsize	Midsize	-	-	-	-
	-	Midsize	-	-	-	-	-	-
	-	Dump	-	-	-	-	-	-
	-	Special	Special	-	-	-	-	-
Bus	Urban	Urban	Urban	Urban	Urban	Urban	-	-
	-	Rural	-	Rural	-	Rural	-	Rural
SUV	Compact	Compact*	Compact	-	-	-	-	-
	Midsize	Midsize*	Midsize	Midsize	Midsize	Midsize	-	-
Van	supercompact	supercompact	supercompact	-	-	-	-	-
	Compact	Compact	Compact	Compact	-	-	-	-
	-	-	Fullsize	Fullsize	Fullsize	Fullsize	Fullsize	Fullsize
	Midsize	Midsize	Midsize	Midsize	Midsize	Midsize	Midsize	Midsize
Taxi	-	-	Compact	-	-	-	-	-
	-	-	Fullsize	-	-	-	-	-
	-	-	Midsize	-	-	-	-	-
Special	-	Tow	-	-	-	-	-	-
	Wrecking	Wrecking	Wrecking	Wrecking	-	-	-	-
	Others	Others	Others	-	-	-	-	-
Motorcycle	Compact	-	-	-	-	-	-	-
	Midsize	-	-	-	-	-	-	-
	Fullsize	-	-	-	-	-	-	-

1091 - no existence

1092 * ambient temperature-dependent diesel vehicle

1093 LPG: Liquefied Petroleum Gas

1094 CNG: Connecticut Natural Gas

1095 Hybrid_G: hybrid vehicle with gasoline

1096 Hybrid_D: hybrid vehicle with diesel

1097 Hybrid_L: hybrid vehicle with LPG

1098 Hybrid_C: hybrid vehicle with CNG

1099

1100

1101
1102

Appendix B, The summary of activity data (number of vehicles and daily total VKTs) in South Korea by vehicle type with engine size.

Vehicle Types	Engine sizes	Fuel Types							
		Gasoline		Diesel		LPG		CNG	
		Numbers	Daily VKT	Numbers	Daily VKT	Numbers	Daily VKT	Numbers	Daily VKT
Sedan	Supercompact	1,792,471	50,197,345	46	1,761	83,226	4,000,067	6	237
	Compact	1,372,317	39,543,668	51,324	2,570,086	8,040	257,060	276	12,115
	Fullsize	2,403,327	100,632,702	428,831	20,928,552	292,850	15,910,588	5,296	323,852
	Midsize	4,858,533	167,454,032	672,960	33,126,318	1,431,970	66,640,378	4,310	625,717
Truck	Supercompact	850	9,595	816	354	111,051	6,550,476	-	-
	Compact	3,185	143,510	2,655,089	133,480,216	87,650	3,567,109	42	2,694
	Fullsize	3	422	180,991	25,774,819	-	-	72	4,676
	Midsize	98	7,430	258,509	17,477,685	1,434	47,870	14	483
	Dump	-	-	-	-	-	-	-	-
Bus	Special	20	970	-	-	2,292	99,124	1,194	60,886
	Urban	1	126	40,448	7,282,593	1	652	6,543	1,466,854
	Rural	-	-	34,997	6,334,278	-	-	30,792	6,460,001
SUV	Compact	42,348	1,395,153	2,341,397	105,962,626	6,946	275,728	13	551
	Midsize	91,002	3,520,552	1,120,128	5,277,861	13,567	595,426	15	706
Van	supercompact	88	1,645	-	-	44,947	2,058,014	-	-
	Compact	2,937	87,507	685,317	34,781,937	151,654	6,135,138	7	255
	Fullsize	-	-	19,452	1,318,221	1	14	97	7,598
	Midsize	2	1,303,795	31,790	1,433,407	15	416	160	15,216
	Special	-	-	-	-	-	-	-	-
Taxi	Compact	-	-	-	-	8,380	576,378	-	-
	Fullsize	-	-	-	-	92,861	10,827,756	-	-
	Midsize	-	-	-	-	474,455	69,087,721	-	-
Special	Tow	-	-	40,807	7,447,773	-	-	-	-
	Wrecking	2	138	12,568	813,746	128	6,607	3	94
	Others	47	553	28,275	989,988	180	9,966	-	-
Motorcycle	Compact	184,822	3,507,948	-	-	-	-	-	-
	Fullsize	65,964	3,493,728	-	-	-	-	-	-
	Midsize	1,910,988	61,676,824	-	-	-	-	-	-

1103

- no existence

1104

LPG: Liquefied Petroleum Gas

1105

CNG: Connecticut Natural Gas

1106

Hybrid: all hybrid vehicles, electric power mixed with fossil fuel (gasoline, diesel, LPG, or CNG)

1107

1108

1109

1110
1111

Appendix C, Eight road types with assigned average vehicle operating speed and VKT fractions.

Road types	Description	Average Speed (km h ⁻¹)	Road VKT fraction
101	Interstate Expressway	90	41%
102	Urban Expressway	60	5%
103	Highway	58	18%
104	Urban Highway	36	12%
105	Rural Highway	55	3%
106	Rural Local Road	45	4%
107	Urban Local Road	32	17%
108	Ramp	50	0.4%

1112
1113

1114 **Appendix D, The daily average VKT (km d⁻¹) per vehicle by vehicle and fuel types.**

Vehicle types	Fuel Types					
	Gasoline	Diesel	LPG	CNG	Hybrid	Average
Sedan	34	49	48	97	48	38
Truck	39	57	51	52	-	57
Bus	126	180	-	212	237	191
SUV	37	46	42	45	52	46
VAN	29	51	42	87	44	49
Taxi	-	-	140	-	-	140
Special	14	113	54	31	-	113
Motorcycle	32	-	-	-	-	32

1115
1116

1117
1118

Appendix E: Average speed distribution (ASD) for each road type: The table columns are different road types, and the table rows are average speed of each speed bin.

Speed bins	Speed (km/h)	Road Types						
		101	102	103	104	105	106	108
1	speed < 4	1.50%	2.00%	5.00%	5.00%	5.00%	10.00%	10.00%
2	4 ≤ speed < 8	0.50%	1.00%	2.00%	2.00%	2.00%	5.00%	5.00%
3	8 ≤ speed < 16	0.00%	0.33%	0.40%	3.59%	0.41%	0.30%	2.76%
4	16 ≤ speed < 24	0.00%	1.09%	3.64%	14.35%	1.45%	2.91%	11.75%
5	24 ≤ speed < 32	0.01%	3.04%	6.82%	35.25%	6.85%	6.15%	40.80%
6	32 ≤ speed < 40	0.17%	6.43%	9.28%	17.14%	14.70%	12.00%	24.53%
7	40 ≤ speed < 48	0.52%	14.76%	10.70%	10.86%	16.20%	23.30%	7.49%
8	48 ≤ speed < 56	0.53%	16.66%	12.52%	5.72%	15.42%	20.72%	4.24%
9	56 ≤ speed < 64	1.94%	23.49%	12.83%	2.68%	6.08%	10.06%	2.56%
10	64 ≤ speed < 72	5.05%	16.30%	10.51%	1.90%	13.21%	3.84%	1.45%
11	72 ≤ speed < 80	11.70%	10.19%	12.69%	0.74%	9.98%	2.85%	0.53%
12	80 ≤ speed < 89	28.73%	4.30%	12.21%	1.04%	6.75%	2.21%	0.65%
13	89 ≤ speed < 97	34.24%	0.51%	1.82%	0.15%	1.90%	0.62%	0.08%
14	97 ≤ speed < 105	14.99%	0.00%	0.02%	0.00%	0.04%	0.03%	0.00%
15	105 ≤ speed < 113	0.18%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
16	113 ≤ speed < 121	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

1119

Appendix F: Single average speed for each road type

Speed bins	Speed (km/h)	Road Types						
		101	102	103	104	105	106	108
1	speed < 4	0%	0%	0%	0%	0%	0%	0%
2	4 ≤ speed < 8	0%	0%	0%	0%	0%	0%	0%
3	8 ≤ speed < 16	0%	0%	0%	0%	0%	0%	0%
4	16 ≤ speed < 24	0%	0%	0%	0%	0%	0%	0%
5	24 ≤ speed < 32	0%	0%	0%	0%	0%	0%	0%
6	32 ≤ speed < 40	0%	0%	0%	100%	0%	0%	0%
7	40 ≤ speed < 48	0%	0%	0%	0%	0%	100%	0%
8	48 ≤ speed < 56	0%	0%	100%	0%	100%	0%	0%
9	56 ≤ speed < 64	0%	100%	0%	0%	0%	0%	0%
10	64 ≤ speed < 72	0%	0%	0%	0%	0%	0%	0%
11	72 ≤ speed < 80	0%	0%	0%	0%	0%	0%	0%
12	80 ≤ speed < 89	100%	0%	0%	0%	0%	0%	0%
13	89 ≤ speed < 97	0%	0%	0%	0%	0%	0%	0%
14	97 ≤ speed < 105	0%	0%	0%	0%	0%	0%	0%
15	105 ≤ speed < 113	0%	0%	0%	0%	0%	0%	0%
16	113 ≤ speed < 121	0%	0%	0%	0%	0%	0%	0%

1120

1121 **Appendix G:**

1122
1123 The annual emission rate between original road type ASD, adjusted road type ASD, and CAPSS
1124 result for 2015

Gg/year	CO	NOx	SOx	PM10	PM2.5	VOC	NH3
CARS data 2015 org ASD	269.3	258.4	0.2	9.5	8.8	38.9	12.4
CARS data 2015 adj ASD	373.9	301.8	0.2	11.0	10.1	61.2	12.5
CAPSS 2015	245.5	369.6	0.2	9.6	8.8	46.1	10.1

1125
1126 **Appendix H:**
1127
1128
1129

1130 CARS model input data summary table

Input data type	Parameters	Variable Name in CARS	File format
Human activity data of each vehicle	Fuel, vehicle, type, daily VKT, region code, manufacture data	activity_file	csv
Emission factor table	Vehicle, engine, fuel, SCC ,Pollutant, year, temperature, v,a,b,c,d,f,k	Emis_factor_list	csv
Link level Shape file	Link ID, region code, region name, road rank, speed, VKT, Link length, geometry	Link_shape	shape file
County Shape File	Region code, region name	county_shape	shape file
Average speed distribution table	Speed bins, the distribution of each road type	avg_SPD_Dist_file	csv
road restriction table	Vehicle, engine, fuel, road types	road_restriction	csv
Vehicle deterioration table	Vehicle, engine, SCC, fuel, Pollutant, Manufacture date	Deterioration_list	csv
Control strategy factors table	Vehicle, engine, fuel, year, data, region code, control factor	control_list	csv
Model domain description	Projection method name, parameters for projection method, domain name, bottum left corner X and Y, grid cell size, numbers of grid cell in X, Y, and Z-axis	gridfile_name	text file in griddesc format
Temporal profile tables	Profile reference number, Year to Monthly profile (12 columns)	temporal_monthly_file	csv
	Profile reference number, week to daily profile (7 columns)	temporal_week_file	csv

	Profile reference number, week day to hourly profile (24 columns)	temporal_weekday_file	csv
	Profile reference number, weekend day to hourly profile (24 columns)	temporal_weekend_file	csv
	Vehicle, types, fuel, road type, month reference number, week reference number, weekday reference number, weekend reference number	temporal_CrossRef	csv
Chemical profile table	Species code, species name, target species name, fraction, molecular weight,	Chemical_profile	txt or csv
	Vehicle, engine, fuel, species reference codes	speciation_CrossRef	csv

1131

1132