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Abstract 17 

The Comprehensive Automobile Research System (CARS) is an open-source python-based 18 

automobile emissions inventory model designed to efficiently estimate high quality emissions 19 

from motor-vehicle emission sources. It can estimate the criteria air pollutants, greenhouse gases, 20 

and air toxicstoxins in various temporal resolutions at the national, state, county, and any spatial 21 

resolution based on the spatiotemporal resolutions of input datasets. The CARS is designed to 22 

utilize the local vehicle activity data, such as vehicle travel distance, road link-level network 23 

Geographic Information System (GIS) information, and vehicle-specific average speed by road 24 

type, to generate a temporally and spatially resolvedan automobile emissions inventory for 25 

policymakers, stakeholders, and the air quality modeling community. The CARS model adopted 26 

the European Environment Agency’s (EEA) onroad automobile emissions calculation 27 

methodologies to estimate the hot exhaust, cold start, and evaporative emissions from onroad 28 

automobile sources. It can optionally utilize average speed distribution (ASD) of all road types to 29 

reflect more realistic vehicle speed variations. Also, through utilizing high-resolution road GIS 30 

data allows, the CARS tocan estimate the road link-level emissions to improve the inventory's 31 

spatial resolution. When we compared the official 2015 national mobile emissions from Korea’s 32 
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Clean Air Policy Support System (CAPSS) against the ones estimated by the CARS, there is a 33 

moderatesignificant  increase ofin volatile organic compounds (VOCs) (33%),%) and carbon 34 

monoxide (CO) (52%), and %) measured, with a slight increase in fine particulate matter (PM2.5) 35 

(15%) emissions while nitrogen. Nitrogen oxides (NOx) and sulfur oxides (Sox)SOx) 36 

measurements are reduced by 24% and 17% respectively in the CARS estimates. The main 37 

differences are driven by the usage of different vehicle activities and the incorporation of road-38 

specific ASD, which plays a critical role in hot exhaust emission estimates but wasn’t implemented 39 

in Korea’s CAPSS mobile emissions inventory. While 52% of vehicles use gasoline fuel and 35% 40 

use diesel, gasoline vehicles only contribute 7.7% of total NOx emissions while diesel vehicles 41 

contribute 85.3%. But for VOC emissions, gasoline vehicles contribute 52.1% while diesel 42 

vehicles are limited to 23%. While dieselDiesel buses arecomprise of only 0.3% of vehicles, each 43 

vehicle  and has the largest contribution to NOx emissions (8.51% of NOx total) per vehicle due to 44 

it having longest daily vehicle kilometer travel (VKT). InFor VOC emission part, emissions, 45 

Compressed Natural Gas (CNG) buses are the largest contributor withat 19.5% of total VOC 46 

emissions. For primary PM2.5, more than 98.5% is from diesel vehicles. The CARS model's in-47 

depth analysis feature can assist government policymakers and stakeholders developin developing 48 

the best emission abatement strategies.  49 

Keywords: inventory: automobile, vehicle emissions, hot exhaust, cold start, evaporative, python 50 

1 Introduction 51 

Globally, ambient pollution causes more than 4.2 million premature deaths every year 52 

(Cohen et al., 2017), and Burnett et al. estimate(2018) estimated the health burden is closer to 9 53 

million deaths from ambient PM concentrations (Burneet et al, 2018).. To effectively mitigate air 54 

pollutants, both developed and developing countries’ governments have been 55 

implementing stringent air pollution abatement control policies to reduce harmful regional air 56 

pollutants (Hogrefe et al., 2001a; Hogrefe et al., 2001b; Dennis et al., 2010; Rao et al., 2011; Appel 57 

et al., 2013; Luo et al., 2019). The chemical transport model (CTM) simulation results strongly 58 

rely on precise input data, such as emission inventory, meteorology, land surface parameters, and 59 

chemical mechanisms in the atmosphere.  60 

The transportation emission sector is one of the major anthropogenic emissions in urban 61 

areas. The tailpipe emissions from the vehicle’s combustion process contain many air pollutants, 62 

including nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), 63 

ammonia (NH3), sulfur dioxide (SO2), and primary particulate matter (PM) which will 64 

participateparticipates in the formation of detrimental secondary pollutants like ozone and PM2.5 65 

in the atmosphere. In the Seoul Metropolitan Area (SMA) in South Korea, transportation 66 

automobile sources contribute the most to the total NOX and primary PM2.5 emissions across all 67 
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emission sources. (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b; Kim et al., 2017c). Thus, 68 

it is critical to understand and better represent better on the emission patterns from the 69 

transportation automobile sources in the CTM model. The use of process-based automobile 70 

emission models is highly recommended to meet the needs in CTM model because it can estimate 71 

the highly resolvedhigh resolution spatiotemporal automobile emissions. (Moussiopoulos et al., 72 

2009; Russell and Dennis, 2000). 73 

There are two methodologies known in emission inventory development: top-down and 74 

bottom-up. The choice of methods is determined by the input data availability. The top-down 75 

approach primarily relies on the aggregated and generalized country or regional information, 76 

especiallyand is typically used in developing countries where only limited datasets and information 77 

are available. It has its limitations on representing the vehicle emission process realistically due to 78 

the lack of detailed activity and ancillary supporting data. However, the bottom-up approach 79 

requires higher- quality spatiotemporal activity datasets like road network information, vehicle 80 

composition (vehicle type, engine size, vehicle age, and fuel-technology), pollutant-specific 81 

emissions factors, road segment length, traffic activity data, and fuel consumption (EEA, 2019; 82 

Ibarra-Espinosa et al., 2018b; IEMA, 2017). It can generate more accurate and detailed automobile 83 

emissions across various operating processes, such as hot exhaust, evaporative, idling, and hot 84 

soak (Nagpure et al., 2016; Ibarra-Espinosa et al., 2018a). 85 

There are several bottom-up mobile emissions models available, like MOVES (MOtor 86 

Vehicle Emissions Simulator) from the U.S. Environmental Protection Agency (USEPA), the 87 

European Environment Agency’s (EEA) model COPERT (COmputer Programmed to calculate 88 

Emissions from Road Transport), the HERMES (High-Elective Resolution Modelling Emission 89 

System) from Barcelona Supercomputing Center (Guevara et al., 2019), the VEIN (Vehicular 90 

Emissions INventory) model developed by Ibarra-Espinosa et al. (2017), and the VAPI (Vehicular 91 

Air Pollution Inventory) model developed by Nagpure and Gurjar (2012) for India (Nagpure et al., 92 

2016). While these models are all bottom-up emission inventory models, a single model cannot 93 

meet all modelers, policymakers, and stakeholders' needs because each model holds its own pros 94 

and cons. They are developed differently to meet specific user needs based on the types of traffic 95 

activity and emission factors, emission calculation methodologies, and other optional/available 96 

traffic- related inputs such as average speed distribution and geographical resolution. Each model 97 

is developed with different levels of specificity, underlying data setsets, and modeling assumptions. 98 

The MOVES model has the strengthability to generate high- quality emissions for up to 16 99 

different emission processes (i.e., Running Exhaust, Start Exhaust, Evaporative, Refueling, 100 

Extended Idling, Brake, Tire, etc.). It can simulate not only county-level but also road segment 101 

level emissions depending on data availability. It can also reflect local meteorological conditions, 102 

such as ambient temperature and relative humidity, which can significantly impact both pollutants 103 

and emissions processes (Choi et al., 2017; Perugu et al., 2018). DisadvantageOne major 104 

disadvantage of this model is that it is difficult to update and apply to countries outside of the U.S. 105 
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because MOVES modelit has a high degree of specificity. The COPERT model that is, widely 106 

used in European countries has its advantages, such as the capability to,  can model emissions in 107 

high resolution. Additionally, it, is fully integrated with the EEA’s onroad vehicle emissions 108 

factors guidelines, and can generate a complete quality assurance (QA) and visualization summary 109 

(Ntziachristos et al., 2009). The cons are that it is a proprietary commercial licensed software, 110 

limited to EEA guidance, and challenging to modify and update with any key input datasets like 111 

the latest emission factors from non-European countries (Lejri et al., 2018; Rey DR, 2021; Li et 112 

al., 2019; Lv et al., 2019; Smit et al., 2019). 113 

The HERMES and VEIN are both recently released bottom-up inventory models. They 114 

have their pros in that they are both open-source models based on open-source computing 115 

languages (Python and R), which provide transparency of the emission calculations with a 116 

considerable amount of data behind itthem (Ibarra-Espinosa et al., 2018b; Guevara et al., 2019). 117 

Both models are driven by comma-separated value (CSV) formatted input files, making it very 118 

easy for users to modify the input datasets. They are also based on the EEA’s emission calculation 119 

method and equipped with a complete QA and visualization tool based on Python and R libraries. 120 

However, it is not an easy task to updatedevelop the emission factors, and generate other required 121 

input datasets for other countries, and lacks support forimplement any control strategy plan feature 122 

to generate a responsive reduced emissions inventory for policymakers, stakeholders, and 123 

modelers.  124 

The VAPI (Vehicular Air Pollution Inventory) model was developed in India because the 125 

country does not have an extensive and robust traffic-related dataset to run these kinds of vehicular 126 

emissions inventory models (Nagpure et al., 2016; Perugu, 2019). 127 

ThereOverall, there are also a fewmultiple shortcomings ofin incorporating these bottom-128 

up models into CTM studies. These modelsThey require strong programming skills to operate, 129 

such as collecting and preparing the input data to fit the model requirementrequirements, 130 

configuring the model variables, and changing specific variables that may be embedded in the 131 

code. Another downside is that while the geographical administration-level (e.g., county level) 132 

emissions inventory can be estimated by thosethese models, it requires a 3rd party emissions 133 

processor like the SMOKE (Sparse Matrix Operator Kerner Emissions) modeling system (Baek 134 

and Seppanen, 2021) to process and generate spatially and temporally resolved emissions inputs 135 

for CTM. Some detailed information, like link-level hourly driving patterns, can be lost in the 136 

emissions processing steps. 137 

There is no single model capable of meeting all the requirements across various spatial and 138 

temporal scales (Pinto et al., 2020). However, transparency, simplicity, and a user-friendly 139 

interface are requirements for those who mainly work in transportation policy and air quality 140 

modeling development (Fallahshorshani et al., 2012; Kaewunruen et al., 2016; Sallis et al., 2016; 141 

Sun et al., 2016; Tominaga and Stathopoulos, 2016). Thus, the ideal mobilemotor vehicle 142 
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emissions modeling system would be computationally optimized, easy-to-use, and havehas a user-143 

friendly interface. Additionally, the model should easily adapt detailed local activity information 144 

and the state-of-art emission factors as an inputinputs to represent them in the highest resolution 145 

possible in timetemporally and spacespatially.  146 

We have developed the Comprehensive Automobile Research System (CARS) to meet these 147 

requirements, especially for the air quality research community, policymakers, and air quality 148 

modelers. The CARS is a stand-alone, fully modularized, computationally optimized, python-149 

based automobile emission model. The modularization improves the efficiency of processing times. 150 

Once as once district and road link-level annual/monthly/daily total emissions are computed,; the 151 

rest of the processes are optional. It can generate chemically speciated, spatially gridded, hourly 152 

emissions for CTMs without any 3rd party emissions modeling systemprograms to develop the 153 

highest quality CTM-ready emissions inputs. All functions are operated by independent modules 154 

and can be enabled by users. Details on modularization will be discussed later. The CARS model 155 

can be easily adopted and is simple for users to add new functions or modules in the future. The 156 

application of the CARS to South Korea will be described in detail later. 157 

2 CARS Emissions Calculation 158 

The CARS is an open-source Python-based customizable motor vehicle emissions 159 

processor that estimates onroad and offroad emissions for specific criteria and toxic air pollutants. 160 

Figure 1 is a schematic of the CARS overview. It applies vehicle, engine, and fuel specific 161 

emission factors to traffic data to estimate the local level annual, monthly, and daily total emissions 162 

inventory. The emissions inventory calculations require thea list of pollutant-specific emissions 163 

factors by vehicle age, local activity data, average speed profile/distribution by road type, and 164 

geographic information system (GIS) road segment shapefiles inputs. The spatial resolution of 165 

vehicle kilometer travel (VKT) definesdetermines the CARS geographic scale (i.e. district, county, 166 

state, and country) for emission calculations. Unlike the district-level Korea Clean Air Policy 167 

Support System (CAPSS) automobile emission inventory (Lee et al., 2011a; Lee et al., 2011b), the 168 

CARS applies high- resolution annual average daily traffic (AADT) data from the road GIS 169 

shapefiles to distribute the total district emissions into road link-level emissions. Optionally, these 170 

road link-level emissions can be used to generate spatially gridded CTM-ready emissions input 171 

data once the output modeling domain is defined. The summary of input files by categories are 172 

presented in Appendix H. How the CARS estimates spatially and temporally enhanced automobile 173 

emissions inventories will be discussed in detail next chapter. 174 

South Korean traffic databases from the Korea CAPSS team (Lee et al., 2011b) from the 175 

National Institute of Environmental Research (NIER) CAPSS team (Lee et al., 2011b) were used 176 

in this study to compute the updated onroad automobile emissions inventory. The databases 177 

include individual vehicle activity data (daily total VKT), road activity data (average speed 178 
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distribution by road), vehicle age specific emission factors, road type information, surface weather 179 

data, and GIS road shapefiles.  180 

2.1 Individual Daily Average VKT Activity Data 181 

The individual vehicle VKT data is used to reflect the human activity. This study imported 182 

the national registered vehicle-specific daily total VKT from South Korea’s Vehicle Inspection 183 

Management System (VIMS), which belongs to the Korea Transportation Safety Authority 184 

(KTSA). It contains over 50 million records of vehicle-specific daily total VKT from 2013 to 2017. 185 

For the CARS model, we first sorted these records by the vehicle identification number (VIN) to 186 

remove any duplicates and then built vehicle-specific daily total VKT traffic activity data in the 187 

CSV format. The summary of those vehicle numbers and VKTs is presented in Fig. 2. Sedan 188 

vehicles using gasoline fuel comprise the greatest percentage of total vehicles at 47% (~10.4 189 

million) and have the highest VKT. MostWhile most vehicles demonstrate similar patternsa paired 190 

pattern between the number of vehicles and daily VKT. However, as expected, LPG (liquefied 191 

petroleum gas)-fueled taxi areshows high in VKT compared to the number of vehicleswith low 192 

vehicle numbers due to their daily long distance travel patterndaily patterns. 193 

The VIN (vin) information is used to calculate vehicle-specific daily average VKT (VKTvin, 194 

km d-1). In Eq. (1), the individual daily average vehicle VKT (VKTvin) is calculated based on the 195 

cumulative mileage (Mf;vin) between the last inspection date (Df;vin) and registration date (D0;vin). 196 

Each vehicle is categorized with Korea’s NIER which defines the vehicle types (Ryu et al., 2003; 197 

Ryu et al., 2004; Ryu et al., 2005; Lee et al., 2011a) based on a combination of vehicle types (e.g., 198 

sedan, truck, bus, etc), engine sizes (e.g., compact, full size, midsize, etc)), and fuel types (e.g., 199 

gasoline, diesel, LPG, etc). Full details of vehicle types and daily total VKT are shown in Appendix 200 

A and B.  201 

𝑉𝐾𝑇𝑣𝑖𝑛 =
𝑀𝑓;𝑣𝑖𝑛

𝐷𝑓;𝑣𝑖𝑛 − 𝐷0; 𝑣𝑖𝑛
  (1) 202 

2.2 Emission Calculations 203 

Automobile emission sources include motorized engine sources on the paved road network 204 

and off the road network (e.g., drive waydriveway and parking lots). The CARS model doesn’t 205 

currently simulate emissions from nonroad emission sources, such as aviation, railways, 206 

construction, agricultures, lawn mowermowers, and boats yet. The CARS model simulates the 207 

onroad automobile emissions from network roads using their local traffic-related datasets. The 208 

following section explains the approach of the onroad automobile emission processes. The onroad 209 

emission (Eonroad) in the CARS is defined in Eq. (2), which includes three major emission processes 210 

(Ntziachristos and Samaras, 2000): 211 
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𝐸𝑜𝑛𝑟𝑜𝑎𝑑 = 𝐸ℎ𝑜𝑡 + 𝐸𝑐𝑜𝑙𝑑 + 𝐸𝑣𝑎𝑝  (2) 212 

The hot exhaust emissions (Ehot) are the vehicle’s tailpipe emissions when the internal combustion 213 

engine (ICE) combusts the fuel to generate energy under the average operating temperature. The 214 

cold start emissions (Ecold) are the tailpipe emissions from the ICE when the cold vehicle engine is 215 

ignited and the operational temperature is below average condition. The evaporative VOC 216 

emissions (Evap) are the emissions evaporated/permeated from the fuel systems (fuel tanks, 217 

injection systems, and fuel lines) of vehicles. 218 

The CARS first applies the hot exhaust emission factors by vehicle type, age, fuel, engine, 219 

and pollutants to individual daily total VKT to compute the hot exhaust emissions. The rest of the 220 

processes for cold start and evaporative emissions are calculated afterwards. The emission 221 

calculation methodologies used in the CARS model are based on tier 2 and tier 3 methodologies 222 

from the EEA’s mobile emission inventory guidebook (EEA, 2019) to be consistent with Korea’s 223 

National Emission Inventory System (NEIS) (Lee et al., 2011a). 224 

2.2.1 Hot Exhaust Emissions 225 

Hot exhaust emissions, which is from the vehicle’s tailpipe, is the exhaust gas from the 226 

combustion process in an ICE. The ICE combustion cycle generally causes incomplete combustion 227 

processes which emit hydrocarbons, carbon monoxide (CO), and particulate matter (PM) which). 228 

These are not completely controlled fromby the aftertreatmentafter-treatment equipment, such as 229 

a three-way catalytic converter, and released into the atmosphere. The sulfur compounds in the 230 

fuel are oxidized and become sulfur oxides (SOx). Nitrogen oxides (NOx) are produced due to the 231 

abundance of nitrogen (N2) and oxygen (O2) during the combustion process. 232 

Equation 3 represents the calculation of daily individual vehicle hot exhaust emission rate, 233 

Ehot; p,vin,myr (g d-1) of pollutant (p). An individual vehicle-specific daily VKTvin (km d-1) is estimated 234 

by Eq. (1). The EFhot;p,v,myr,s (g/km) is the hot exhaust emission factor of pollutants (p) for the 235 

vehicle type (v), vehicle manufacture year (myr), and average vehicle speed (s). The district's total 236 

emission rate is the total hot exhaust emissions from all individual vehicles within the same district.   237 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × 𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠  (3) 238 

The deterioration factor (DF) in Eq. (3) is an optional function in the CARS. The 239 

deterioration process is caused by vehicle aging and can lead to the increase of vehicle emissions. 240 

The vehicle DF is varied by vehicle type (v), pollutant (p), and vehicle manufacture year (myr). 241 

The CARS model computes vehicle ages based on the vehicle manufacture year and model 242 

simulation year. According to theNIER’s guidance ofon calculating deterioration factors 243 

calculation from NIER, there is no deterioration in a new vehicle during their first five years. After 244 

five years, the deterioration factors can increase the 5~10% range from 5% to 10% depending on 245 
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the type of vehicle and pollutants. Deterioration processes can cause up to an 100% increase of 246 

emissions in fifteen-year-old vehicles. Currently, the DF is an empirical coefficient that varies by 247 

vehicle age (Lee et al., 2011a).  248 

The hot exhaust emission factor, EFhot;p,v,s (g/km) is a function of vehicle speed (s) with 249 

other empirical coefficients: a, b, c, d, f, k. The emission factor formula and those coefficients 250 

were developed by NIER’s CAPSS (Lee et al., 2011a). These coefficients are varied by 251 

pollutants (p), vehicle type (v), vehicle manufacture year (myr), and vehicle speed (s). The 252 

vehicle speed affects the combustion efficiency of an ICE and impacts the emission rates and its 253 

composition from the tailpipe. 254 

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠 = 𝑘(𝑎 × 𝑠𝑏 + 𝑐 ×  𝑠𝑑 + 𝑓)  (4) 255 

While vehicle speed plays a critical role in hot exhaust emissions from most vehicles, NOx 256 

emissions from some diesel vehicles show sensitivity to local ambient temperature along with 257 

vehicle speed (and humidity due to the atmospheric moisture suppression of high combustion 258 

temperatures that lower NOx emissions at higher humidity (Choi et al., 2017; Ntziachristos and 259 

Samaras, 2000). Figure 3 shows the dependency of NOx emission factors from compact diesel 260 

vehicles to vehicle speed (Fig. 3a) and ambient temperature (Fig. 3b). Figure 3a shows a significant 261 

decrease of NOx emissions whilewhen the speed increases between 0 and 70 km. Figure 3b 262 

demonstrates the significance of local meteorology on NOx emissions from a compact diesel sedan. 263 

Based on these NIER’s CAPSS emission factors, the sensitivity to local ambient temperature is 264 

limited to NOx pollutant emissions from diesel vehicles.  265 

Due to its high sensitivity to the vehicle operating speed, it is important for the CARS to 266 

simulate realistic speed patterns for accurate emissions estimates. When a single speed is assigned 267 

to compute hot exhaust emissions, it won’t reflect the emissions under low-speed circumstances. 268 

To overcome this limitation, the CARS has adopted the 16 average speed bins concepts for a better 269 

representation of vehicle speed distribution that varies by road type (i.e., local, highway, 270 

expressway). We have implemented a feature for the CARS optionally to apply road-specific 271 

average speed distributions (ASD) (Abin,r), which represents the fractions of 16-) by 16  speed bins 272 

(bin) (from 0 to 121 km h-1 defined in Appendix E) for eight different road types (r) (No.101-108, 273 

shown in Appendix C) as classified by CAPSS (Fig. 4a). Although ASD patterns vary by region 274 

and time, the current CARS model version does not support ASD application by region and time 275 

of day due to the lack of region and time-dependent ASDits availability in South Korea.  276 

We first developed the ASD (Fig. 4a) for eight different road types (No. 101-108) in South 277 

Korea based on the latest road link-specific average speed and the length of link from the SK GIS 278 

road network shapefiles (NIER, 2018). However, the ASD based on the SK GIS road shapefiles 279 

did not capture low- speed range (<16 km h-1) driving (Fig. 4a). This causes a significantly lower 280 

estimation of NOx and VOC emissions compared to the CAPSS (Appendix G). We believe the 281 
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SK average speed distribution is missing low- speed driving that can occur on links on different 282 

days due to traffic congestion. To address this absence of low-speed driving in the SK ASD, we 283 

incorporated data from the ASD (Figure 4b) from the state of Georgia developed by U.S. EPA to 284 

the low- speed ranges (speed bin #1 and #2 for road type 1 to 7). We increased the total fractions 285 

of low- speed bins (the 2:1 ratio of fractions of bin #1 and #2) by 2% for interstate expressways, 286 

3% for urban expressways, 7% for all highways, and 15% for all local roads. The increases in low- 287 

speed bins lowered the distributions of other higher speed bins homogeneously due to the 288 

renormalization of fractions by road type. Figure 4c shows the renormalized hybrid-ASDs of all 289 

road types based on SK ASD and Georgia ASD. We understand, that the hybrid-ASD approach is 290 

not ideal for SK onroad emission inventory development. However,, but it clearly demonstrates 291 

the CARS’s capability and sensitivity to the vehicle speed representation and the impacts of ASD 292 

to the local onroad mobile inventories.  293 

 While 16- speed bins ASD application is critical to computing more realistic hot exhaust 294 

emissions, there should be some restrictions on certain road types. Users can adjust the restricted 295 

roads control table input file to limit the vehicle types that canare only be operated on a particular 296 

road type. For example, motorcycles are limited to local roads (No. 104, 106, and 107), but not on 297 

expressways (No. 101, 102, 103, 105, and 108) due to its traffic regulation rules. Heavy trucks are 298 

only allowed on the highway (No. 101, 102, 103, 105, and 108.) by law. The details of the road 299 

restriction control table format can be found on the CARS’s user’s guide from the CARS Github 300 

website (https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual). 301 

The 16- speed bins averaged speed distribution calculated by road type (Abin,r) and road 302 

type weight factors (𝜔r,d) in a district (d)ASD from Eq. (13) are added to the CARS hot exhaust 303 

emissions equation (Eq. 3). The hot exhaust emissions from individual vehicles (Ehot;p,vin,myr) can 304 

be calculated by considering road-specific speed bins distribution (Eq. 5). Although the vehicles 305 

may be operated in different districts from their registered district, this is our best method to 306 

estimate the vehicle speed for hot exhaust emissions. 307 

𝐸ℎ𝑜𝑡; 𝑝,𝑣𝑖𝑛,𝑚𝑦𝑟 = 𝐷𝐹𝑝,𝑣,𝑚𝑦𝑟 × ∑ (𝑉𝐾𝑇𝑣𝑖𝑛 × 𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣,𝑚𝑦𝑟,𝑠𝑏𝑖𝑛 × 𝐴𝑏𝑖𝑛,𝑟)  (5) 308 

2.2.2 Cold Start Emissions 309 

The cold start emissions occur when a cold- engine vehicle is ignited. The lower 310 

temperatureLower temperatures of the ICE isare not an optimal conditionconditions for complete 311 

fuel combustion. This process lowers the combustion efficiency (CE) and increases the emissions 312 

of hydrocarbon and CO pollutants from the tailpipe exhaust (Jang et al., 2007). The CARS can 313 

estimate the cold start emissions for vehicles using gasoline, diesel, or liquefied petroleum gas 314 

(LPG) fuel. Besides the vehicle and engine type, road type also plays a critical role in the quantity 315 

of cold start emissions because it occurs mostly in parking lots and rarely on highways.  316 
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 The cold start emission, Ecold
 (g d-1), is derived from the hot exhaust emissions, the ratio of 317 

hot to cold exhaust emissions (EFcold/EFhot -1.0), and the percentage of the traveled distance with 318 

a cold engine (Eq. 6).  319 

𝐸𝑐𝑜𝑙𝑑; 𝑝,𝑣 = 𝛽𝑇 × 𝐸ℎ𝑜𝑡; 𝑝,𝑣 × (
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
− 1.0)  (6) 320 

The emission factor of cold start emissions (EFcold) is not directly calculated from 321 

measurement data like hot exhaust emissions (Ehot;p,v), but measured under different ambient 322 

temperatures (T). The CARS model applies linear regression models developed by CAPSS to 323 

estimate the increasing ratio of cold start to hot exhaust emissions (EFcold/EFhot) under different 324 

temperatures (T) (Eq. 7). In this equation, A and B are the empirical coefficients that vary by the 325 

pollutants (p) and vehicle type (v). 326 

(
𝐸𝐹𝑐𝑜𝑙𝑑; 𝑝,𝑣

𝐸𝐹ℎ𝑜𝑡; 𝑝,𝑣
) = 𝐴𝑝,𝑣 + 𝐵𝑝,𝑣 × 𝑇  (7)  327 

 is the percentage of the distance traveled under a cold engine. It and also depends on the 328 

ambient temperature. Cold ambient temperatures cause a longer distance traveled under a cold 329 

engine due to the slower heating time. According to the CAPSS database for Seoul city (Lee et al., 330 

2011a), the empirical linear equation for   is shown in Eq. (8). This formula represents how 331 

ambient temperature affects  .. For example, when the average temperature is -2°C,   is 34.8%. 332 

In summer, the monthly average temperature is 25.7°C, which causes  to drop to 21%.  333 

𝛽 = 0.647 − 0.025 × 12.35 − (0.00974 − 0.000385 × 12.35) × 𝑇  (8) 334 

2.2.3 Evaporative VOC Emissions 335 

 Evaporative emissions are emissions from vehicle fuel that are evaporated into the 336 

atmosphere. This occurs in the fueling system inside the vehicle, such as fuel-tanks, injection 337 

systems, and fuel lines. Diesel vehicles, however, can be exempted due to diesel fuel’s low vapor 338 

pressure. The primary sources of evaporative emissions are breathing losses through tank vents 339 

and fuel permeation/leakage. The CARS model adopted the EEA’s emission inventory guidebook 340 

(EEA, 2019) to account for three mechanisms to estimate the evaporative VOC emissions (Evap): 341 

diurnal emissions from the tank (ed), hot and warm soak emissions by fuel injection type (Sfi), and 342 

running loss emissions (R) (Eq. 9). Unlike CAPSS, there is a conversion factor (0.075) applied to 343 

Evap for motorcycles to prevent an over-estimationoverestimation of VOC. 344 

𝐸𝑣𝑎𝑝; 𝑝,𝑣 = (𝑒𝑑; 𝑝,𝑣 + 𝑆𝑓𝑖; 𝑝,𝑣 + 𝑅𝑙; 𝑝,𝑣)  (9) 345 
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Diurnal emissions, ed (g d-1), during the daytime are caused by the ambient temperature 346 

increase and the expansion of fuel vapors inside the fuel tank. Most of the current fuel tank systems 347 

have emission control systems to limit this kind of evaporative VOC emissions. The ed can be 348 

calculated with the empirical Eq. (10), which was developed by CAPSS. Tl is the monthly average 349 

of the daily lowest temperatures and Th is the monthly average of the daily highest temperatures. 350 

The empirical coefficient α is 0.2, which represents how 80% of emissions are eliminated by the 351 

vehicle emission control system. 352 

𝑒𝑑 = 𝛼 × 9.1𝑒𝑥𝑝 [0.3286 + 0.0574 × (𝑇𝑙) + 0.0614 × (𝑇ℎ − 𝑇𝑙 − 11.7)] (10) 353 

Soak emissions (Sfi) occur when a hot ICE is turned off; the remaining heat from the ICE 354 

can increase the fuel temperature in the system. The which causes the increase of evaporative VOC 355 

emissions. This carburetor float bowls are the major source of the soak emissions. Newer vehicles 356 

with fuel injection and return-lessreturnless fuel systems do not emit soak emissions. Because most 357 

of the current vehicles in South Korea have a new fuel system, soak emissions (Sfi) in the CARS 358 

model are set to 0.  359 

The running loss emissions (Rl) are from vapors generated in the fuel tank when a vehicle 360 

is in operation (Eq. 11). In some older vehicles, the carburetor and engine operation can increase 361 

the temperature in the fuel tank and carburetor, which can cause a significant increase in 362 

evaporative VOC emissions. VOC emissions from running loss can be greatly increased during 363 

warmer weather. However, newer vehicles with fuel injection and return-lessreturnless fuel 364 

systems are not affected by the ambient temperature. Because most vehicles in South Korea do not 365 

use carburetor technology, we expect running loss emissions to have the least impact (Lee et al., 366 

2011b).  367 

𝑅𝑙 = 𝛼 × 𝐿𝑟,𝑣 × [(1 − 𝛽) × 𝑅ℎ + 𝛽 × 𝑅𝑤]  (11) 368 

The empirical coefficient α is 0.1 here, which represents that 90% of the running loss is 369 

avoided by the newer fuel system. L is the distance traveled (km) by road and is the same one used 370 

in hot exhaust emission calculations.  is the same parameter from Eq. (8). The Rh and Rw are the 371 

average emission factors from running loss under hot and warm/cold conditions, respectively.  372 

2.3 Road Link-Level Emissions Calculations 373 

In general, district-level automobile emissions calculations are driven by district-level 374 

averaged vehicle activity and operating data, which do not reflect realistic spatial patterns of 375 

onroad automobile emissions.  The CARS model introduces road link-specific traffic data by 376 

default to develop spatially enhanced road link-specific emissions that reflectare more 377 

representative of the emissions by road link. This high-resolution traffic data is a GIS shapefile 378 
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that is composed of many connected segments, which are called “road links.” All road links hold 379 

information such as start/end location coordinates, AADT, road link length, averaged vehicle 380 

speed, and road type (No. 101-108).  381 

The CARS model applies link-level AADT (AADTd,r,l., d-1) and road length (Ld,r,l) to 382 

compute the road link-specific VKT (VKTd,r,l, km d-1) in Eq. (12). The road links are identified by 383 

district (d), road type (r), and link (l) labels. The road VKT is a parameter that reflects the traffic 384 

activity of each road link and it is different from individual daily vehicle activity data (VKTv,age) 385 

in Eq. (1).  386 

𝑉𝐾𝑇𝑑,𝑟,𝑙 = 𝐴𝐴𝐷𝑇𝑑,𝑟,𝑙 ×  𝐿𝑑,𝑟,𝑙  (12) 387 

Road link-specific VKT (VKTd,r,l) is used to redistribute the district total emissions (Eonroad) 388 

from Eq. 2 into road link-level emissions. The following three weight factors are computed: the 389 

district weight factors, ωd (Eq. 13), the road type weight factors, ωd,r (Eq. 14), and the road-link 390 

weight factors, ωd,l (Eq. 15). The weight district factors (ωd) are the renormalization of each 391 

district's total VKT over state-level total VKT (N is the number of districts). The main reason we 392 

performed the renormalization over state-level total VKT is to reflect daily traffic patterns from 393 

multiple districts under the assumption that most vehicles travel within the same state. The road 394 

type weight factors by district (ωr,d) are used to compute road-specific emissions, while road-395 

specific averaged speed distributions (ASD; As,r) from Eq. (5) are applied to capture vehicle 396 

operating speeds by road type. The road link weight factors (ωd,l) are then applied to redistribute 397 

the district emissions into road link-level emissions.  398 

 399 

𝜔𝑑 =
∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟

1

𝑁
∑ ∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟𝑑

  (13) 400 

𝜔𝑑,𝑟 =
∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (14) 401 

𝜔𝑑,𝑙 =
𝑉𝐾𝑇𝑑,𝑟,𝑙

∑ ∑ 𝑉𝐾𝑇𝑑,𝑟,𝑙𝑙𝑟
  (15) 402 

3 CARS Configuration 403 

The CARS model is an open-source program based on Python (Guido van Rossum, 2009) 404 

that allows the users to efficiently apply open-source modules to develop programs. Users can 405 

easily install Python development tools and load customized packages and modules to set up the 406 

CARS development environment. All CARS modules are developed using Python v3.6. Other than 407 

the GIS road shapefiles, all input files are based in the ASCII CSV format, which can be easily 408 
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handled by both spreadsheet programs and programming languages, making it more accessible for 409 

users of all skillsets. The CARS can not only estimate district-level and spatially enhanced road 410 

link-level emissions, but can also generate hourly chemically speciated gridded emissions for 411 

CTMs. In addition, the CARS also generates various summary reports, graphics, and 412 

georeferenced plots for quality assurance. 413 

The required Python modules for the CARS are: “geopandas,” “shapely.geometry”, and 414 

“csv” modules to read the shapefiles and table data files. The “NumPy” and “pandas” modules 415 

are used to operate the memory arrays and scientific calculations, while the “pyproj” module deals 416 

with converting the projection coordinate systems. “matplotlib” is for generating any type of 417 

figures/plots. Furthermore, the CARS model can also read and write Climate and Forecast (CF)-418 

compliant NetCDF-formatted files using “NetCDF4”.  419 

The first process in the CARS is “Loading_function_path”; it allows users to define and 420 

check the input file paths. Once all input files are checked, there are six process modules in CARS 421 

to process inputs, compute emissions, and generate various output files, including QA reports. 422 

Figure 5 is the schematic of the CARS that consists of six process modules with various functions. 423 

The six process modules are (1) “Process activity data”, (2) “Process emission factors”, (3) 424 

“Process shapefile, (4) “Calculate district emissions”, (5) “Grid4AQM”, and (6) “Plot figures”. 425 

The main purpose of modularizing the CARS is to meet the needs of various communities, such 426 

as policymakers, stakeholders, and air quality modelers. While modules (1) through (4) are 427 

required to develop the district-level and road link-level emissions inventories, module (5) 428 

“Grid4AQM” is optional depending on if users want to develop chemically-speciated gridded 429 

hourly emissions for CTMs. Also, the modularity system inof the CARS allows users to bypass 430 

certain modules if it has been previously processed without any changes. For example, if there is 431 

no change in traffic activity, emission factors table, or GIS shapefiles, users do not need to run 432 

these modules and can simply read the data frame outputs and then run “Grid4AQM” for the 433 

modeling dates and domain. The “Grid4AQM” module will not only improve the computational 434 

time for CTMs but also eliminate the need for a 3rd party emissions modeling system like SMOKE 435 

(Baek and Seppanen, 2021). 436 

The rectangle boxes in Fig. 5 represent the data array and the boxes with rounded edges are 437 

the functions in the CARS. Details on the CARS code, input table format, and functions setup 438 

information can be found on the CARS GitHub website (Pedruzzi et al., 2020). 439 

The “Process activity data” module first reads the vehicle activity data, such as an 440 

individual vehicle's daily total VKT based on its registered district. The “Process emission factors” 441 

module reads and stores the emission factors table that holds all pollutant emission factors to 442 

estimate the emissions for all vehicles. Meteorology-sensitive emission factors are only limited to 443 

NOx pollutants. District boundary GIS shapefiles and road network shapefiles are processed 444 

through “Process shape file” to generate the VKT-based redistribution weighting factors from Eq. 445 
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(13), (14) and (15) for the “Calculate district emissions” module to compute district-level and 446 

road link-level emission rates (metric tons per year, t yr-1). 447 

The redistributed emission rates (t yr-1) from the “Calculate district emissions” module 448 

present annual total emission rates until district-level VKTs from the “Process activity data” 449 

module are added. Then, the “Grid4AQM” module can generate CTM-ready chemically speciated 450 

emissions. The “Read_chemical” function from the “Grid4AQM” module is designed to process 451 

the chemical speciation profile that can convert the inventory pollutants such as CO, NOX, SO2, 452 

PM10, PM2.5, VOC, and NH3, into the chemically lumped model species that CTM requires for 453 

chemical mechanisms, such as SAPRC (L. and Heo, 2012) and Carbon Bond version 6 (CB6) 454 

(Yarwood and Jung, 2010). The “Read_temporal” function processes the complete set of monthly, 455 

weekly, and hourly temporal allocation profiles that can convert annual total emissions to hourly 456 

emissions. “Read_griddesc” defines the CTM-ready modeling domain and computes the gridding 457 

fractions for all road link-level emissions by overlaying the modeling domain over the GIS 458 

shapefiles. Once annual total emissions are chemically speciated, spatially gridded, and temporally 459 

allocated into hourly emissions, the “Gridded_emis” function will combine emission source-level 460 

conversion fractions from each function (Read_chemical, Read_temporal, and Read_griddesc) to 461 

generate the CTM-ready chemically speciated, gridded hourly emissions in the NetCDF binary 462 

format. The “Plot Figures” module is designed for generating various summary reports and 463 

graphics to assist users in understanding the estimated automobile emissions inventory computed 464 

by the CARS. The following section will describe the detailed processes of the “Grid4AQM” 465 

module, which includes chemical, spatial, and temporal allocations. 466 

The influence of temperature on emission processes are considered in the CARS model. 467 

There are three temperature parameters in current CARS model such as “temp_max” for maximum 468 

temperature, “temp_mean” for mean temperature, and “temp_min” for minimum temperature. 469 

These temperature parameters will be applied to over the entire modeling domain during the 470 

simulation period. Current CARS model version does not support to process gridded meteorology 471 

data from the 3rd party meteorology models like Meteorology-Chemistry Interface Processor 472 

(MCIP) from U.S. EPA., and Weather Research Forecasting (WRF) model from National Center 473 

for Atmospheric Research (NCAR) yet. However, CARS can easily adopt various temporally 474 

resolved temperature values by adjusting the CARS simulation period (i.e., day, week, month, 475 

season, or annual). 476 

3.1 Chemical Speciation 477 

To support CTMs applications, the CARS needs to be able to convert inventory pollutants 478 

into chemical lumped model species based on the choice of CTM chemical mechanisms. NOx 479 

includes  nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO). VOCs can represent 480 

hundreds of different organic carbon species, such as benzene, acetaldehyde, and formaldehyde. 481 
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These grouped inventory pollutants cannot be directly imported into the chemical mechanism 482 

modules in the CTM system and require chemical speciation allocation for CTMs to process them 483 

during their chemical reactions. Therefore, the “Grid4AQM” module performs the chemical 484 

species allocation step prior to the temporal and spatial allocations to generate the gridded hourly 485 

emissions. The “Read_chemical” function in “Grid4AQM” module allows users to assign these 486 

emission inventory pollutants to CTM-ready surrogate chemical species (a.k.a lumped chemical 487 

species) by vehicle, engine, and fuel type. For example, VOC emissions from diesel busses can be 488 

converted into the following composition based on its chemical allocation profile: alkanes (68%), 489 

toluene (9%), xylenes (8%), alkenes (4%), ethylene (2%), benzene (1.3%), and unreactive 490 

compounds (7%) when the CB6 chemical mechanism is selected. Further details on the chemical 491 

speciation profile input formats are available in the CARS user’s guide. 492 

3.2 Spatial Allocation 493 

The “Calculate district emissions” module calculates not only theboth total district 494 

emissions but alsoand road link- specific emissions based on road link-specific AADT data from 495 

road network GIS shapefiles. The “Calculate district emissions” module first gets the district 496 

total vehicle emissions (Eq. 2) based on the district-level VKTs, and then the normalized district 497 

total emissions by district weight factor, ωd (Eq. 13). Afterwards, the normalized district total 498 

emissions are redistributed into every road link using road link-level weight factors (ωd,l) (Eq. 15). 499 

The district total emissions from Eq. (2) and from Eq. (15) remain the same. Then the computed 500 

road link-level emissions then will be converted into grid cell emissions using the modeling 501 

domain grid cell fractions computed in the “Read_griddesc” function in the “Grid4AQM” module. 502 

3.3 Temporal Allocation 503 

Once chemical and spatial allocations are completed, the final step to support CTM 504 

application is a temporal allocation that converts the annual total emissions from the “Calculate 505 

district emissions” module into hourly emissions. The “Read_temporal” temporal allocation 506 

function in the “Grid4AQM” module converts the annual emission rate (t yr-1) to the hourly 507 

emission rate (mol hr-1) using monthly, weekly, and weekday/weekend diurnal temporal profiles. 508 

This module processes these temporal profile inputs, which are the monthly (January - December), 509 

weekly (Monday - Sunday), and weekday/weekend 24 -hour profile tables (0:00-23:00 LST). The 510 

users can assign these temporal profiles with a combination of vehicle, engine, fuel, and road types 511 

to enhance their temporal representations in detail. 512 
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3.4 Chemical Transport Model Emissions 513 

The main goal of the “Grid4AQM” module is to generate temporally, chemically, and 514 

spatially enhanced CTM-ready gridded hourly emissions. First, it reads the CTM modeling domain 515 

configuration and then overlays it over the road network GIS shapefile and district-boundary 516 

shapefile to define the modeling domain. This overlaying process between the road network, 517 

district boundary GIS shapefiles, and modeling domain allows the “Grid4AQM” module to 518 

compute the fraction of road links that intersects with each grid cell. Figure 6 demonstrates how 519 

the district boundary and road network GIS shapefiles are used to perform the spatial allocation 520 

processes in CARS. Figure 6a is a native road link shapefile of Seoul with AADT, VKT, district 521 

ID, and road type. Figure 6b presents an overlay of two districts’s road links (purple and blue) over 522 

the selected region. State total emissions will be renormalized into weighed district total emission 523 

data and then redistributed into the road link. Figure 6c illustrates how the weighted road link-524 

level emissions get allocated into modeling grid cells for CTMs. The link-level VKT (VKTd,r,l) 525 

from Eq. (12) will be used to compute a total of traffic activity fractions by grid cell and then use 526 

that to assign the link-level emissions from Eq. (2) into each grid cell. When a road link intersects 527 

with multiple grid cells, the “Grid4AQM” module will weigh the emissions by the length of the 528 

link that intersects with each grid cell. It should be noted that current CARS model can only 529 

generate the Community Multiscale Air Quality (CAMQ)-ready gridded hourly emissions in 530 

format of IOAPI (Input/Output Applications Programming Interface) based on NetCDF format.  531 

Through the overlay process, the CARS model can generate various types of output data, 532 

such as total district emissions, link-level emissions, and CTM-ready gridded emissions. For 533 

example, the CO vehicle emissions from the Seoul metropolitan in South Korea are presented in 534 

three different output formats in Fig. 7. Figure 7a shows the annual mobile PM2.5 emissions by 535 

district. The road link level annual emissions are presented in Fig. 7b. Furthermore, the CARS 536 

applies the link-level emissions from Fig. 7b to generate the hourly grid cell emission data with a 537 

1 km × 1 km resolution for the CTM in Fig. 7c.  538 

3.5 National Control Strategy Application 539 

One of the unique features in the CARS compared to other mobile emissions models is that 540 

it can promptly develop controlled mobilea strategy to control automobile emissions respondingin 541 

response to the national emergency high PM2.5 episodes. It is very common to experience high 542 

PM2.5 episodes, especially during the wintertime in South Korea due to domestic and international 543 

primary and secondary air pollutants emissions. When the 72 -hour forecasted PM2.5 concentration 544 

exceeds the average 50 µg/m3 (0:00-16:00 LST), the national PM2.5 emergency control strategy is 545 

activated for ten days. It applies a nationwide vehicle restriction policy within 24 hours. It enforces 546 

a limit on what kind of vehicles can be operated on a certain date. The restrictions can be applied 547 

in the following ways: the closures of public parks and government facilities, and restrictions of 548 
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certain vehicles based on their fuel type and age, which is a major factor of engine deterioration. 549 

This policy will limit the number of vehicles on the network roads significantly, which could 550 

reduce primary PM2.5 and precursor pollutant (NOx, NH3, and VOC) emissions, especially from 551 

heavily populated metropolitan regions (Choi et al., 2014; Kim et al., 2017a; Kim et al., 2017b; 552 

Kim et al., 2017c). 553 

To understand the impacts of an even/ or odd vehicle number restriction policy in real-time, 554 

we need to quickly develop a rapid controlcontrolled response emissions for the air quality forecast 555 

modeling system. based on the reduced number of vehicles on the road. The process of generating 556 

the controlled mobile emissionsemission inventory can take a long time if we start fresh. Thus, we 557 

have implemented this control strategy as an optional “Control Factors” function in the 558 

“Calculate district emissions” in the module for users to quickly and easily generate the 559 

controlled mobile emissionsemission inventory with consideration of the limited number of 560 

vehicles based on the vehicle, engine, fuel, and vehicle manufactured year. A one hundred percent 561 

(100%) control factor means that there are no emissions from those selected vehicles. 562 

Because of the modularization system in the CARS, we can bypass some computationally 563 

expensive data processing modules (i.e., “Process activity data”, “Process emission factors”, 564 

and “Process shape file”) and let the “Calculate district emissions” module quickly apply control 565 

factors while it computes the district-level mobile emission inventory from Eq. (2).  This will allow 566 

users to reduce the computational time to generate the controlled mobile emissions under a specific 567 

control scenario and develop the controlled CTM-ready gridded hourly emissions using the 568 

“Grid4AQM” module.  569 

3.6 Computational Time 570 

While the CARS can generate a high-quality spatiotemporal emission inventory for 571 

policymakers, stakeholders, and air quality modelers, it is quite critical for the CARS to generate 572 

these complex mobile emissionsthem effectively and accurately without being at the expense of 573 

computational time. This is especially important to meet the needs for an air quality forecast 574 

modeling system responding to a national emergency control strategy implementation. 575 

In this section, we will discuss the details of the CARS computational modeling performance.  576 

While the CARS model has been highly optimized, the modularization of CARS has also improved 577 

its modeling performance with its optional module runs. The breakdown of module- specific 578 

computational time estimates based on the benchmark CARS runs are listed in Table 1. The 579 

benchmark CARS case includes a total of 24,383,578 daily VKT datasets from KSTA over two 580 

different years, 84,608 emission factors for all pollutants across a combination of vehicle-age-581 

engine-fuel types, 385,795 road links from the GIS road network shapefiles, 5,150 districts/16-582 

states boundary GIS shapefile, and 5,494 grid cells (=82 rows and 67 columns) for CTMs. Without 583 

any computational parallelization, the total processing time of all six modules usually takes around 584 



 

   

 

18 

 

a half hour to generate a single day CTM-ready gridded hourly emission file. However, it can be 585 

further shortened to 25-30 minutes on a higher performance computer. Because of the modular 586 

system implemented in the CARS, generating one month (31 days) long gridded hourly emissions 587 

from CTMs do not require over 15 computational hours, but only aroundin 100 minutes on high-588 

performance computers. The maximum usage of RAM can reach up to 11 GB. Table 1 shows the 589 

breakdown of computational time by each module from two different hardwares (desktop and 590 

laptop computers). The numbers in parentheses beside the “Grid4AQM” module is the 591 

computational time for a single day versus 31 days. While the “Grid4AQM” module takes an 592 

average of 4.9 minutes for a single day emissions generation, processing a consecutive 31 days 593 

saves 46% more time, decreasing it from 151.9 minutes (=4.9 minutes * 31 days) to 81.6 minutes.  594 

4 Results 595 

CARS and CAPSS Comparison 596 

The CARS model calculates the 2015 onroad automobile emissions based on the latest 597 

2015 emission factors and the 2015-2017 vehicle activity database in South Korea. The annual 598 

total emissions from CARS are compared against the ones from NIER’s CAPSS in Table 2. The 599 

CARS model estimated the following annual total emissions in units of metric tons per year (t yr-600 
1): NOx (301,794); VOC (61,186); CO (373,864), NH3 (12,453); PM2.5 (10,108), and SOx (172.0). 601 

Compared to NIER’s CAPSS, the CARS overestimated all pollutants except forunderestimated 602 

NOx (-18% decrease) and SOx (-17% decrease). It), and overestimated the emissions of VOC by 603 

33%, PM2.5 by 15%, CO by 52%, and NH3 by 24%. Both NIER’s CAPSS and CARS shared the 604 

same emission factor tables, which hold over 84,608 emission factors for all pollutants across a 605 

combination of vehicle, age, engine, and fuel types.  606 

The difference in results between CAPSS and CARS approaches are caused by three 607 

following reasons:. First, the number of vehicles used in CARS is slightly higher (6%) than CAPSS 608 

data (1.3 out of 23 million), as well as other key traffic-related activity inputs (i.e., vehicle age 609 

distribution, averaged speed distribution, etc). Secondly, the vehicle speed information assigned 610 

by vehicle and road type play a critical role in the differences between CAPSS and CARS.. The 611 

CAPSS calculation was based on the road-specific meana signle average speed value or 80% of 612 

the speed limit of the road as an input of vehicle operating speed byfor three road types (rural, 613 

urban, and expressway) (Lee et al., 2011b). In other words, CAPSS only assigns a “single-speed 614 

value” for each road type, and does not encounter the variation of vehicle speed during its operation 615 

on roads into the emissions calculation. Most running exhaust emissions occur during a vehicle’s 616 

low-speed operation due to its incomplete combustion of fuel, and it is critical to accurately 617 

represent the emissions across various speed bins in order to compute the correct emissions. The 618 

CARS model has an option to apply the average speed distribution (ASD) over 16 speed bins for 619 

eight road types (Fig. 4). The CARS speed distribution process can better represent the speed 620 
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variations of vehicle speeds for each road type.accurate  emissions (Fig. 4). A detailed analysis of 621 

the impact of vehicle speed will be discussed later in this chapter. Lastly, other advanced processes 622 

in the CARS, such as link-level AADT and district-level vehicle data (5,150 districts in South 623 

Korea),) can reflect more spatial detail and variation than the CAPSS. The CAPSS only considers 624 

state-level data (17 states in South Korea) and five road types (interstate expressway, urban 625 

highway, rural highway, urban local, and rural local). 626 

Figure 8 illustrates more details about the difference between thein annual emissions 627 

frombetween CARS to theand CAPSS by pollutants and vehicle types. Sedan vehicles show the 628 

largest increase of VOC (33%), CO (41%), and NH3 (23%) in the CARS relative to CAPSS 629 

because almost 56% of total vehicle count (13.5 million) is composed of sedan vehicles. Also 630 

(Appendix B). In Table 3, sedan vehicles contribute 51% of total VOC and 61% of total CO annual 631 

emissions. The VOC and CO emissions from sedans are largely affected by the average speed 632 

distribution process when compared to other vehicle types. Similarly, the largest decreases of NOx 633 

(-16%) and SOx (-18%) are from trucks because they are significant NOx (~50%) and SOx 634 

contributors (~27%) and their emission factors are sensitive to vehicle speed.  635 

Onroad Emissions Analysis  636 

 The CARS is a bottom-up emissions model, which utilizes local individual vehicle activity 637 

data, detailed local emission factors for every vehicle and fuel type, and localized inputs such as 638 

average speed distribution by road type and deterioration factor. It allows users to assess thea 639 

detailed breakdown of localized emission contributions. Table 3 represents the individual air 640 

pollutants (NOx, VOC, PM2.5, CO, NH3, and SOx) emission contributions (t yr-1), fractions (%), 641 

and impact factors (IF) by the vehicle type and fuel system. The IF is defined by the normalized 642 

annual emissions with vehicle counts of each category (kg yr-1 per vehicle). The CARS also can 643 

provide the average daily VKT per vehicle, which is the total daily VKT divided by vehicle 644 

numbers, to explain the emission contributions in Appendix D. 645 

Diesel-fueled vehicles contribute the most of NOx emissions, which is at over 85.3% 646 

(257,305 t yr-1), although the number of diesel vehicles only amounts to approximately 35% of the 647 

total vehicles (Table 3a). While the diesel trucks emitted 49.1% (148,246 t yr-1) of total NOx with 648 

an IF value of 47.9 (kg yr-1), the highest impact (IF = 340 kg yr-1) occurred from diesel buses with 649 

only aan 8.51% contribution to the total NOx emissions. This is caused by the highest average 650 

daily VKT from diesel buses compared to other vehicles, which is expected in a highly populated 651 

metropolitan area like Seoul, South Korea. A diesel bus generally has a 3-5 times higher daily 652 

VKT (180 km d-1) than other common vehicles (gasoline sedan: 34 km d-1, diesel truck: 57 km d-653 
1). The second-largest vehicle type is the CNG (compressed natural gas) bus (248 kg yr-1), which 654 

also has a higherhigh VKT. Their at an average daily VKT isof 212 km d-1, with only a 3.1% NOx 655 

contribution.  656 
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For VOC emissions, over 12 million gasoline vehicles cause 52.1% (31,885 t yr-1) of the 657 

total VOC emissions, andwith the gasoline sedan isas the highest contributor (46.5% at 14,070 t 658 

yr-1) across all vehicle types, which is over 28,434 t yr-1 (46.5%) (Table 3b). Unlike NOx 659 

emissions, dieselDiesel vehicles only contribute 23.0% (14,070 t yr-1) of the total VOC emissions. 660 

Across the vehicle fuel types, the IF outcome indicatesThe IF values from VOC indicate that CNG 661 

vehiclesbuses have the highest IF values for VOC, which is 247 kg yr-1 due to the relatively high 662 

VOC contribution (19% over total VOC) andwith a low number of heavy CNG vehicles. The IF 663 

of CNG trucks are 77.2 kg yr-1, but only contribute 0.2% to total VOC emissions. The IF of the 664 

CNG bus is the highest which is 320 kg yr-1 and emits 19.5% of the total VOC. Comparing the IFs 665 

of buses across fuel types, the CNG bus emits less NOx but higher VOC than a diesel vehicle. Each 666 

CNG bus has about 33 times higher IF of VOC (320 kg yr-1) than a diesel bus (9.51 kg yr-1), and 667 

CNG buses releasedrelease slightly lower NOx (248 kg yr-1) than diesel buses (340 kg yr-1) (Table 668 

3a and 3b). 669 

The current South Korea NIER currently does not have the PM emission factors from tire 670 

and brake wear, which are the highest contributors of PM2.5 emissions from onroad vehicles (Hugo 671 

A.C. et al., 2013; Fulvio Amato et al., 2014). Once the emission factors of tire and brake wear are 672 

prepared, those emissions can be computed by CARS. For that reason, diesel vehicles become the 673 

major source of PM2.5 emissions, which contributes over 98.5% (9,959 t yr-1) of the PM2.5 674 

emissions based on the CARS 2015 emissions (Table 3c). The diesel truck, SUV, and van are the 675 

three major sources, and their contributions of total PM2.5 areat 53.6%, 21.4%, and 11.2%, 676 

respectively. Although over 52% of the vehicles are gasoline vehicles, their primary PM2.5 677 

contribution is limited to 1.44%.  The diesel bus has the highest IF (2.83 kg yr-1), which is caused 678 

by the largest average daily VKTs. 679 

Similar to VOC emissions, CO is mostly emitted through the tailpipe due to incomplete 680 

internal combustion of fuel and share similar emissions distributions across vehicle and fuel types 681 

(Table 3d). Gasoline vehicles contribute most of the CO (220,390 t yr-1, 59.0%), and sedan vehicles 682 

are the primary source (178,121 t yr-1, 47.6%) of this out of all gasoline vehicles. Across vehicle 683 

types, bus showsbuses show the highest IF of CO (81.2 kg yr-1) due to its largest daily VKT. CO 684 

is the most abundant pollutant released from vehicles (373,864 t yr-1) across all pollutants from 685 

onroad automobile sources. Although CO is much less reactive than other vehicle VOCs (Rinke 686 

and Zetzsch, 1984; Liu and Sander, 2015), the majority of CO emissions from onroad automobile 687 

sources playsplay a critical role in generating 30% of all hydroperoxyl radicals (HO2) and 688 

causingcause ozone formation in urban areas (Pfister et al., 2019). Thus, CO is also another crucial 689 

precursor to ozone formation in urban areas. 690 

SOx emissions are related to the sulfur content within the fuel component; diesel. Diesel 691 

has a higherthe highest sulfur content than any other fuels. Most and consequently most SOx is 692 

contributed by diesel vehicles (93.8 t yr-1, 54.5%) (Table 3e). Within diesel vehicles, trucks provide 693 

26.5% of SOx (45. t yr-1). Although the SOx from sedan vehicles are slightly higher (~3.3%) than 694 
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diesel trucks, the number of diesel trucks is only 29.6% of the number of gasoline sedans. Thus, 695 

diesel trucks have a higher IF than gasoline sedans. Across vehicle types, buses have the highest 696 

IF (0.095 kg yr-1) of SOx, and diesel buses in particular have the largest IF at 0.143 kg yr-1. 697 

The NH3 emissions table (table 3f) indicates that 98.7% of NH3 is from gasoline vehicles 698 

while diesel trucks only contribute 1.13%. The IF result also shows that the gasoline sedan has the 699 

most significant impact per vehicle (1.17 kg yr-1). 700 

According to the vehicle activity and the CARS model results, nearly half of the total 701 

vehicles (24.3 million) are gasoline sedans (10.4 million, 42.8%), and gasoline sedan vehicles 702 

contributed most ofcontribute the majority of VOC and CO emissions (46.5% and 47.6%), but 703 

only 7.7% of the total NOx emissions. The number of diesel vehicles is at 8.6 million (35.4%); 704 

however, they emittedemit about 85.3% of the total NOx and 98.5% of the primary PM2.5. These 705 

results indicatedindicate that the annual traffic-related mobileautomobile emissions are not only 706 

affected by the number of vehicles, but also by different vehicle and fuel types and age of vehicles. 707 

Therefore, this study normalized the annual emissions by the number of vehicles to confirm the 708 

emission composition by individual vehicle types.  709 

Average Speed Impact Study  710 

The CARS can also optionally apply the average speed distribution (ASD) by road type to 711 

compute more realistic mobile emissions on the road network when compared to using a current 712 

single average speed value for each road type (Appendix E). Applying the ASD will generate a 713 

better representation of actual traffic patterns from each road type. To understand the impacts of 714 

ASD application, we performed sensitivity runs between using a single- speed to the ASD 715 

application (Appendix F). The ASD data was described in Fig. 4, and the road-specific average 716 

single- speed values were developed based on the weighted average method using the same ASD 717 

data. Appendix E and S6 describe the details of ASD as well as road-specific speed values.  718 

Figure 9a shows the differences in total emissions between two scenarios and is organized 719 

by pollutant. The single-speed scenario largely underestimates the emissions across all pollutants 720 

compared to the ones from the ASD scenario. NOx (16%), VOC (40%), and CO (30%) were 721 

especially underestimated. The difference is caused by the lack of low-speed bins (<16 km h-1) 722 

representation when a single average speed approach was used. Higher emissions are emitted while 723 

vehicles are operated with low-speed bins, which decreases the combustion efficiency of ICE and 724 

releases more pollutants. 725 

Figure 9b shows the road-specific emissions breakdown between the ASD and single speed 726 

scenariosapproaches to understand the impacts of vehicle operating speeds on onroad automobile 727 

emissions. In this figure, each color indicates the emissions percentage differences by road types. 728 

Other than NH3, the most significant discrepancies happened between are from urban local urban 729 

roads (5.8%),, highways (3.9%),, and urban highways (3.0%). Other pollutants, VOC, PM2.5, CO, 730 

and SOx, have similar fractions of road types., respectively. This phenomenonpattern is caused by 731 



 

   

 

22 

 

a better presentation of low-speed conditions (<16 km h-1) and the fractions of road VKT 732 

contributionsin CAR simulation (Appendix C). The lower speeds cause the incomplete combustion 733 

of ICE and increase the emission rate. Also, local urban roads, highways, and urban highways have 734 

higher road VKT contributions at 17%, 18%, and 12%, respectively (Appendix C) than rural roads. 735 

Higher emissions from low speed conditions from these high contributionones. A better 736 

presentation of low-speed operating vehicles from highly travelled roads (urban local, urban 737 

highway, and highway) caused these significant differences between the ASD and single-speed 738 

approaches. Although the interstate expressway has the largest VKT contribution (41%), it also 739 

has the lowest fraction of low-speed bins (2%). That is why the difference between the ASD and 740 

single speed scenarios on interstate expressways is less than 1%. In general, NH3 emission factors 741 

do not change by vehicle operating speed, so the ASD impact is quite minimal. 742 

5 Conclusions 743 

The CARS is a bottom-up automobile emissions model that utilizes the localized traffic-744 

related activity and emission factors input datasets to generate high quality localized bottom-up 745 

emissions inventories for policymakers, stakeholders, and research community as well as 746 

temporally and spatially enhanced hourly gridded emissions for CTMs. First, the CARS model 747 

employs the daily VKTs for all registered vehicles and the emission factors function to compute 748 

district-level total daily emissions for each vehicle. To reflect realistic traffic patterns, the CARS 749 

model computes and utilizes link-level VKTs (=link-length×AADT) from the road network GIS 750 

shapefiles to redistribute the original district-level total emissions into spatially enhanced road 751 

link-level emissions. It can also optionally implement a control strategy as well as road restriction 752 

rules to improve the quality of local emission inventories and meet the needs of users.  753 

The CARS model is a fully modularized and computationally optimized python-based 754 

bottom-up mobile emissions model that can effectively process a huge dataset to calculate high 755 

quality spatiotemporal county-level, road link-level, and grid cell-level mobile emissions. We 756 

believe that the implementation of the ASD into the CARS improves the representation of onroad 757 

automobile emissions from the road network when compared to a single- speed for each road type 758 

approach. It additionally allows the CARS to have a better representation of low speed (<16 km 759 

h-1) vehicle emissions. We believe that CARS model's versatile spatiotemporal bottom-up 760 

automobile emissions and the in-depth analysis feature can assist government policymakers and 761 

stakeholders to quickly develop the rapid responsive emission abatement strategies as a response 762 

to the South Korea’s national PM2.5 emergency control strategy that enforces the nationwide 763 

vehicle restriction policy within 24 hours.  764 
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Code Availability: 765 

The source code of the CARS model public release version 1.0 can be downloaded from the 766 

Github release website: 767 

https://github.com/bokhaeng/CARS/releases/tag/CARSv1.0 768 

 769 

 770 

Digital Object Identifier (DOI) for the CARS version 1.0: 771 

https://zenodo.org/record/5033314#.YNzDrC1h001 772 

 773 

 774 

Installation Package for CARS version 1.0: 775 

The CARS version 1.0 installation package comes with the complete inputs and outputs datasets 776 

for users to confirm their proper installation on their computers and can be downloaded from the 777 

Github release website: 778 

https://github.com/bokhaeng/CARS/releases/download/CARSv1.0/CARS_v1.0_public_release_779 

package_25June2021.zip 780 

 781 

 782 

User’s Guide Documentation: 783 

The CARS version user’s guide documentation can be accessed through the Github repository: 784 

https://github.com/bokhaeng/CARS/tree/master/docs/User_Manual 785 

 786 

 787 

Data availability: 788 

All the datasets, excel, and python scripts used in this manuscript for the data analysis are 789 

uploaded through GMD website along with a supplemental appendix document. 790 
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Tables 1013 

Table 1. Computational processing time by CARS module based on the modeling setup: Total 1014 

number of activity data = 24,383,578; Emission Factors = 84,608; GIS road links=385,795; 1015 

districts/states=5,150/16; 9km9km grid cells=5,494 (82 columns 67 columns). 1016 

No Module 
Desktop i7 

(minutes) 

Laptop i9 

(minutes) 

Averaged Time 

(minutes) 

1 Process activity data 1.8 1.5 1.7 

2 process emission factors 1.1 0.8 1.0 

3 Process shape file 9.9 7.3 8.6 

4 Calculate district emissions 6.4 5.7 6.1 

5 Grid4AQM [31days] 4.8 [75.9] 5.0 [87.2] 4.9 [81.6] 

6 Plot figures 6.2 5.4 5.8 

 Total [31days] 30.2 [101.3] 25.7 [107.9] 28.1[104.8] 

 1017 

 1018 

  1019 
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Table 2. The total emissions comparison between CARS and CAPSS for the 2015 emission. 1020 

Emission Inventory 
Pollutants (t yr-1) 

NOx VOC PM2.5 CO SOx NH3 

CARS 2015 301,794 61,186 10,108 373,864 172 12,453 

CAPSS 2015 369,585 46,145 8,817 245,516 209 10,079 

 1021 

  1022 
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Table 3. The summary tables of emissions (t yr-1), contributions (%), and impact factor (IF, kg yr-1023 
1) per vehicle for criteria air pollutants (CAPs) by vehicle and fuel types: (a) for NOx; (b) VOC; 1024 

(c) for PM2.5; (d) for CO; (e) for SOx; and (f) for NH3.  1025 

 1026 

(a) NOx  1027 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 20,219 (6.70%) 1.94 14,783 (4.90%) 12.8 8,159 (2.77%) 4.49 12 (0.00%) 1.26 65 (0.02%) 0.39 43,239 (14.3%) 3.19 

Truck 23 (0.01%) 5.54 148,246 (49.1%) 47.9 920 (0.31%) 4.55 88 (0.03%) 66.4 - - 149,277 (49.5%) 45.2 

Bus 0 (0.00%) 0.97 25,677 (8.51%) 340 - - 9,260 (3.07%) 248 0 (0.00%) 1.77 34,938 (11.6%) 333 

SUV 159 (0.05%) 1.19 39,565 (13.1%) 11.4 175 (0.06%) 8.54 0 (0.00%) 1.60 1 (0.00%) 0.42 39,900 (13.2%) 11.0 

Van 14 (0.00%) 4.78 16,659 (5.52%) 22.6 1,337 (0.44%) 6.80 0 (0.00%) 1.25 0 (0.00) 0.37 18,012 (6.00%) 19.2 

Taxi - - - - 1,217 (0.40%) 2.11 - - - - 1,217 (0.40%) 2.11 

Special 1 (0.00%) 20.1 12,347 (4.10%) 152 0 (0.00%) 0.52 - - - - 12,375 (4.10%) 151 

Motorcycle 2,836 (0.94%) 1.31 -  - - - - - - 2,836 (0.94%) 1.32 

Total 23,253 (7.70%) 1.83 257,305 (85.3%) 29.9 11,809 (3.91%) 4.20 9,361 (3.10%) 36.7 66 (0.02%) 0.39 301,794 (100%) 13.3 

 1028 

(b) VOC  1029 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 28,434 (46.5%) 2.73 629 (1.03%) 0.55 2,107 (3.44%) 1.16 3 (0.01%) 0.33 77 (0.13%) 0.47 31,250 (51.1%) 2.30 

Truck 23 (0.04%) 5.44 8,194 (13.4%) 2.65 286 (0.47%) 1.41 102 (0.17%) 77.2 - - 8,605 (14.1%) 2.61 

Bus 0 (0.00%) 1.65 717 (1.17%) 9.51 - - 11,942 (19.5%) 320 0 (0.00%) 0 12,659 (20.7%) 112 

SUV 246 (0.40%) 1.84 2,441 (3.99%) 0.71 46 (0.08%) 2.25 0 (0.00%) 0.75 1 (0.00%) 0.55 2,733 (4.47%) 0.76 

Van 21 (0.03%) 7.04 1,185 (1.94%) 1.61 393 (0.64%) 2.00 0 (0.00%) 0.45 0 (0.00%) 0 1,599 (2.61%) 1.71 

Taxi - - - - 273 (0.45%) 0.47 - - - - 273 (0.45%) 0.47 

Special 1 (0.00%) 25.8 904 (1.48%) 11.1 0 (0.00%) 0.23 - - - - 905 (1.48%) 11.0 

Motorcycle 3,160 (5.16%) 1.46 -  - - - - - - 3,160 (5.16%) 1.46 

Total 31,885 (52.1%) 2.50 14,070 (23.0%) 1.64 3,106 (5.08%) 1.10 12,047 (19.7%) 247 78 (0.13%) 0.47 61,186 (100%) 2.51 

 1030 

(c) PM2.5 1031 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 144 (1.42%) 0.01 809 (8.00%) 0.70 0 0 0 0 3 (0.03%) 0.02 956 (9.46%) 0.07 

Truck 0 (0.01%) 0 5,415 (53.6%) 1.75 0 0 0 0 - - 5,415 (53.6%) 1.64 

Bus 0 0 214 (2.11%) 2.83 - - 0 0 0 (0.01%) 0.09 214 (2.11%) 1.89 

SUV 2 (0.02%) 0.02 2,165 (21.4%) 0.63 0 0 0 0 0 0.02 2,167 (21.4%) 0.60 

Van 0 0 1,127 (11.2%) 1.53 0 0 0 0 0 0.02 1,127 (11.2%) 1.20 

Taxi - - - - 0 0 - - - - 0 0 

Special 0 0 230 (2.28%) 2.82 0 0 - - - - 230 (2.28%) 2.81 

Motorcycle 0 0 -  - - - - - - 0 0 

Total 146 (1.44%) 0.01 9,959 (98.5%) 1.16 0 0 0 0 3 (0.03%) 0.02 10,108 (100%) 0.41 

 1032 

  1033 
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 1034 

(d) CO 1035 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 178,121 (47.6%) 17.1 3,436 (0.92%) 2.98 42,886 (11.5%) 23.6 29 (0.01%) 2.91 177 (0.05%) 1.07 224,649 (60.1%) 16.6 

Truck 254 (0.07%) 61.1 47,065 (12.6%) 15.2 9,088 (2.43%) 44.9 68 (0.02%) 51.4 - - 56,475 (15.1%) 17.1 

Bus 0 (0.00%) 19.3 7,633 (2.05%) 101 - - 1542 (0.41%) 41.3 1 (0.00%) 4.64 9,176 (2.45%) 81.2 

SUV 2,616 (0.70%) 19.6 13,401 (3.58%) 3.87 791 (0.21%) 38.6 0 (0.00%) 4.09 2 (0.00%) 1.15 16,808 (4.50%) 4.65 

Van 131 (0.04%) 43.4 6,611 (1.77%) 8.97 8,032 (2.15%) 40.9 2 (0.00%) 6.53 0 (0.00%) 1.00 14,777 (3.95%) 15.8 

Taxi - - - - 8,481 (2.27%) 14.7 - - - - 8,481 (2.27%) 14.7 

Special 13 (0.00%) 269 4,224 (1.13%) 51.7 1 (0.00%) 3.69 - - - - 4,239 (1.13%) 51.7 

Motorcycle 39,256 (10.5%) 18.2 -  - - - - - - 39,256 (10.5%) 18.2 

Total 220,390 (59.0%) 17.3 82,372 (22.0%) 9.57 69,281 (18.5%) 24.6 1641 (0.44%) 33.6 180 (0.05%) 1.07  373,864 (100%) 15.4 

 1036 

(e) SOx 1037 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 51.3 (29.8%) 0.005 6.5 (3.79%) 0.006 8.28 (4.81%) 0.005 0 0 1.14 (0.67%) 0.007 67.2 (39.1%) 0.005 

Truck 0.03 (0.02%) 0.008 45.5 (26.5%) 0.015 0.97 (0.57%) 0.005 0 0 - - 46.5 (27.1%) 0.014 

Bus 0 (0.00%) 0.003 10.8 (6.26%) 0.143 - - 0 0 0.01 (0.01%) 0.047 10.8 (6.26%) 0.095 

SUV 0 (0.00%) 0.000 18.2 (10.6%) 0.005 0.00 (0.00%) 0.000 0 0 0.01 (0.01%) 0.007 18.2 (10.6%) 0.005 

Van 0.02 (0.01%) 0.006 5.5 (3.20%) 0.007 0.77 (0.45%) 0.004 0 0 0 (0.00%) 0.010 6.30 (3.66%) 0.007 

Taxi - - - - 7.71 (4.49%) 0.013 - - - - 7.71 (4.48%) 0.013 

Special 0 (0.00%) 0.003 7.3 (4.27%) 0.090 0.00 (0.00%) 0.005 - - - - 7.34 (4.27%) 0.090 

Motorcycle 7.94 (4.62%) 0.004 -  - - - - - - 7.94 (4.62%) 0.004 

Total 59.3 (34.5%) 0.006 93.8 (54.5%) 0.011 17.7 (10.3%) 0.006  0 0 1.17 (0.68%) 0.007 172 (100%) 0.007 

 1038 

 1039 

(e) NH3 1040 
Vehicle Gasoline Diesel LPG CNG Hybrid Total  

 Emission IF Emission IF Emission IF Emission IF Emission IF Emission IF 

Sedan 12,225 (98.3%) 1.17 20 (0.16%) 0.02 0 0.00 0 0 19 (0.15%) 0.11 12,284 (98.6%) 0.91 

Truck 0 (0.00%) 0.03 82 (0.66%) 0.03 0 0.00 0 0 - - 82 (0.66%) 0.02 

Bus 0 (0.00%) 0.09 15 (0.12%) 0.19 - - 0 0 0 (0.00%) 0.51 15 (0.12%) 0.13 

SUV 0 (0.00%) 0.00 0 (0.00%) 0.00 0 0.00 0 0 0 (0.00%) 0.16 0 (0.00%) 0.00 

Van 0 (0.00%) 0.02 14 (0.11%) 0.02 0 0.00 0 0 0 (0.00%) 0.09 14 (0.11%) 0.01 

Taxi - - - - 0 0.00 - - - - 0 (0.00%) 0.00 

Special 0 (0.00%) 0.01 10 (0.08%) 0.12 0 0.00 - - - - 10 (0.08%) 0.12 

Motorcycle 49 (0.39%) 0.02 -  - - - - - - 49 (0.39%) 0.02 

Total 12,293 (98.7%) 0.97 141 (1.13%) 0.02 0 0.00  0 0 19 (0.16%) 0.12 12,453 (100%) 0.51 

 1041 

  1042 
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Figures 1043 

 1044 

Figure 1. CARS schematic methodology to estimate mobile emissions. 1045 

  1046 
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 1047 

Figure 2. (a) The number of vehicles by vehicle and fuel types and (b) the total daily VKT by 1048 

vehicle and fuel types in South Korea. 1049 

 1050 
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 1052 

Figure 3. Variation of NOx emission factors from diesel compact engines by vehicle speed and 1053 

ambient temperatures: (a) NOx emission factors function to vehicle speed; (b) NOx emission 1054 

factors of diesel compact truck function to vehicle speed and ambient temperature. 1055 
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 1057 

 1058 
Figure 4. (a) The South Korea speed distribution by road types. (b) The Georgia state speed 1059 

distribution by road types. (c) The average speed distribution (ASD) by road types used in this 1060 

study for South Korea.  1061 

 1062 
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 1064 
Figure 5. The schematic of modules and their functions in the CARS.  1065 

  1066 
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 1067 
Figure 6 (a) the road network GIS shapefile of Seoul, South Korea; (b) two districts with different 1068 

colors (purple and blue); (c) the modeling grid cells over road segments. 1069 
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 1071 

Figure 7. Three different formats of CO emissions from CARS, (A) District-level total emissions 1072 

(t yr-1) (B) Link-level total emissions (t yr-1), (C) CTM-ready gridded hourly total emissions (moles 1073 

s-1). 1074 
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 1076 
Figure 8. Comparison between CARS 2015 and CAPSS 2015 onroad mobile emissions 1077 

inventories by vehicle types. The standard line is CAPSS 2015 data. 1078 
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 1080 

 1081 
Figure 9. The impacts of emissions between the ASD and single-speed approach: (a) the total 1082 

emission differences by pollutant; (b) The road-specific difference (%) by pollutant.  1083 
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Appendices 1085 

 1086 

 1087 

Appendix A: The vehicle types classified by fuel type, vehicle body type, and engine size. The 1088 

emission factors of the diesel vehicle with the star (*) are depended on the ambient temperature 1089 

(T). 1090 

Vehicle 

Types 

Fuel Types 

Gasoline Diesel LPG CNG HYBRID_G HYBRID_D HYBRID_L HYBRID_C 

Sedan 

Supercompact Supercompact* Supercompact - - - - - 

Compact compact* compact compact compact compact compact - 

Fullsize Fullsize* Fullsize Fullsize Fullsize Fullsize Fullsize - 

Midsize Midsize* Midsize Midsize Midsize Midsize Midsize - 

Truck 

Supercompact Supercompact Supercompact - - - - - 

Compact Compact* Compact Compact - - - - 

Fullsize Concrete - Fullsize - - - - 

Midsize Fullsize Midsize Midsize - - - - 

- Midsize - - - - - - 

- Dump - - - - - - 

- Special Special Special - - - - 

Bus 
Urban Urban Urban Urban - Urban - - 

- Rural - Rural - Rural - Rural 

SUV 
Compact Compact* Compact - - - - - 

Midsize Midsize* Midsize Midsize Midsize - - - 

Van 

supercompact supercompact supercompact - - - - - 

Compact Compact Compact Compact - - - - 

- - Fullsize Fullsize Fullsize Fullsize Fullsize Fullsize 

Midsize Midsize Midsize Midsize Midsize Midsize Midsize Midsize 

Taxi 

- - Compact - - - - - 

- - Fullsize - - - - - 

- - Midsize - - - - - 

Special 

- Tow - - - - - - 

Wrecking Wrecking Wrecking Wrecking - - - - 

Others Others Others - - - - - 

Motorcycle 

Compact - - - - - - - 

Midsize - - - - - - - 

Fullsize - - - - - - - 

-  no existence 1091 
* ambient temperature-dependent diesel vehicle  1092 
LPG: Liquefied Petroleum Gas  1093 
CNG: Connecticut Natural Gas 1094 
Hybrid_G: hybrid vehicle with gasoline  1095 
Hybrid_D: hybrid vehicle with diesel 1096 
Hybrid_L: hybrid vehicle with LPG   1097 
Hybrid_C: hybrid vehicle with CNG 1098 

 1099 

  1100 
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Appendix B, The summary of activity data (number of vehicles and daily total VKTs) in South 1101 

Korea by vehicle type with engine size.  1102 

Vehicle 

Types 
Engine sizes 

Fuel Types 

Gasoline Diesel LPG CNG Hybrid 

Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT Numbers Daily VKT 

Sedan 

Supercompact 1,792,471 50,197,345 46 1,761 83,226 4,000,067 6 237 - - 

Compact 1,372,317 39,543,668 51,324 2,570,086 8,040 257,060 276 12,115 3,802 137,360 

Fullsize 2,403,327 100,632,702 428,831 20,928,552 292,850 15,910,588 5,296 323,852 21,533 1,086,509 

Midsize 4,858,533 167,454,032 672,960 33,126,318 1,431,970 66,640,378 4,310 625,717 140,527 6,717,856 

Truck 

Supercompact 850 9,595 816 354 111,051 6,550,476 - - - - 

Compact 3,185 143,510 2,655,089 133,480,216 87,650 3,567,109 42 2,694 - - 

Fullsize 3 422 180,991 25,774,819 - - 72 4,676 - - 

Midsize 98 7,430 258,509 17,477,685 1,434 47,870 14 483 - - 

Dump - - - - - - - - - - 

Special 20 970 - - 2,292 99,124 1,194 60,886 - - 

Bus 
Urban 1 126 40,448 7,282,593 1 652 6,543 1,466,854 2 282 

Rural - - 34,997 6,334,278 - - 30,792 6,460,001 216 50,873 

SUV 
Compact 42,348 1,395,153 2,341,397 105,962,626 6,946 275,728 13 551 -   

Midsize 91,002 3,520,552 1,120,128 5,277,861 13,567 595,426 15 706 1,719 88,683 

Van 

supercompact 88 1,645 - - 44,947 2,058,014 - - - - 

Compact 2,937 87,507 685,317 34,781,937 151,654 6,135,138 7 255 - - 

Fullsize - - 19,452 1,318,221 1 14 97 7,598 3 136 

Midsize 2 1,303,795 31,790 1,433,407 15 416 160 15,216 2 85 

Special -   - - -   - - - - 

Taxi 

Compact - - - - 8,380 576,378 - - - - 

Fullsize - - - - 92,861 10,827,756 - - - - 

Midsize - - - - 474,455 69,087,721 - - - - 

Special 

Tow - - 40,807 7,447,773 - - - - - - 

Wrecking 2 138 12,568 813,746 128 6,607 3 94 - - 

Others 47 553 28,275 989,988 180 9,966 - - - - 

Motorcycle 

Compact 184,822 3,507,948 - - - - - - - - 

Fullsize 65,964 3,493,728 - - - - - - - - 

Midsize 1,910,988 61,676,824 - - - - - - - - 

-  no existence 1103 
LPG: Liquefied Petroleum Gas 1104 
CNG: Connecticut Natural Gas 1105 
Hybrid: all hybrid vehicles, electric power mixed with fossil fuel (gasoline, diesel, LPG, or CNG) 1106 

 1107 

 1108 

  1109 
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 1110 

Appendix C, Eight road types with assigned average vehicle operating speed and VKT fractions. 1111 

Road 

types 
Description 

Average Speed 

(km h-1) 

Road VKT 

fraction 

101 Interstate Expressway 90 41% 

102 Urban Expressway 60 5% 

103 Highway 58 18% 

104 Urban Highway 36 12% 

105 Rural Highway 55 3% 

106 Rural Local Road 45 4% 

107 Urban Local Road 32 17% 

108 Ramp 50 0.4% 

 1112 

 1113 

Appendix D, The daily average VKT (km d-1) per vehicle by vehicle and fuel types. 1114 

Vehicle types 
Fuel Types 

Gasoline Diesel LPG CNG Hybrid Average 

Sedan 34 49 48 97 48 38 

Truck 39 57 51 52 - 57 

Bus 126 180 - 212 237 191 

SUV 37 46 42 45 52 46 

VAN 29 51 42 87 44 49 

Taxi - - 140 - - 140 

Special 14 113 54 31 - 113 

Motorcycle 32 - - - - 32 

 1115 

  1116 
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Appendix E, Average speed distribution (ASD) for each road type: The table columns are 1117 

different road types, and the table rows are average speed of each speed bin. 1118 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 1.50% 2.00% 5.00% 5.00% 5.00% 10.00% 10.00% 0.00% 

2 4 ≤ speed <  8 0.50% 1.00% 2.00% 2.00% 2.00% 5.00% 5.00% 0.00% 

3 8 ≤ speed < 16 0.00% 0.33% 0.40% 3.59% 0.41% 0.30% 2.76% 0.11% 

4 16 ≤ speed < 24 0.00% 1.09% 3.64% 14.35% 1.45% 2.91% 11.75% 5.85% 

5 24 ≤ speed < 32 0.01% 3.04% 6.82% 35.25% 6.85% 6.15% 40.80% 12.80% 

6 32 ≤ speed < 40 0.17% 6.43% 9.28% 17.14% 14.70% 12.00% 12.69% 24.53% 

7 40 ≤ speed < 48 0.52% 14.76% 10.70% 10.86% 16.20% 23.30% 7.49% 23.74% 

8 48 ≤ speed < 56 0.53% 16.66% 12.52% 5.72% 15.42% 20.72% 4.24% 6.60% 

9 56 ≤ speed < 64 1.94% 23.49% 12.83% 2.68% 6.08% 10.06% 2.56% 10.90% 

10 64 ≤ speed < 72 5.05% 16.30% 10.51% 1.90% 13.21% 3.84% 1.45% 5.30% 

11 72 ≤ speed < 80 11.70% 10.19% 12.69% 0.74% 9.98% 2.85% 0.53% 5.30% 

12 80 ≤ speed < 89 28.73% 4.30% 12.21% 1.04% 6.75% 2.21% 0.65% 4.59% 

13 89 ≤ speed < 97 34.24% 0.51% 1.82% 0.15% 1.90% 0.62% 0.08% 0.00% 

14 97 ≤ speed <  105 14.99% 0.00% 0.02% 0.00% 0.04% 0.03% 0.00% 0.30% 

15 105 ≤ speed < 113 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

16 113 ≤ speed <  121 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Appendix F: Single average speed for each road type 1119 
Speed Speed 

(km/h) 

Road Types 

bins 101 102 103 104 105 106 107 108 

1 speed < 4 0% 0% 0% 0% 0% 0% 0% 0% 

2 4 ≤ speed <  8 0% 0% 0% 0% 0% 0% 0% 0% 

3 8 ≤ speed < 16 0% 0% 0% 0% 0% 0% 0% 0% 

4 16 ≤ speed < 24 0% 0% 0% 0% 0% 0% 0% 0% 

5 24 ≤ speed < 32 0% 0% 0% 0% 0% 0% 100% 0% 

6 32 ≤ speed < 40 0% 0% 0% 100% 0% 0% 0% 0% 

7 40 ≤ speed < 48 0% 0% 0% 0% 0% 100% 0% 100% 

8 48 ≤ speed < 56 0% 0% 100% 0% 100% 0% 0% 0% 

9 56 ≤ speed < 64 0% 100% 0% 0% 0% 0% 0% 0% 

10 64 ≤ speed < 72 0% 0% 0% 0% 0% 0% 0% 0% 

11 72 ≤ speed < 80 0% 0% 0% 0% 0% 0% 0% 0% 

12 80 ≤ speed < 89 100% 0% 0% 0% 0% 0% 0% 0% 

13 89 ≤ speed < 97 0% 0% 0% 0% 0% 0% 0% 0% 

14 97 ≤ speed <  105 0% 0% 0% 0% 0% 0% 0% 0% 

15 105 ≤ speed < 113 0% 0% 0% 0% 0% 0% 0% 0% 

16 113 ≤ speed <  121 0% 0% 0% 0% 0% 0% 0% 0% 

 1120 
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Appendix G:  1121 

 1122 
The annual emission rate between original road type ASD, adjusted road type ASD, and CAPSS 1123 

result for 2015   1124 

Gg/year CO NOx SOx PM10 PM2.5 VOC NH3 

CARS data 2015 org ASD 269.3 258.4 0.2 9.5 8.8 38.9 12.4 

CARS data 2015 adj ASD 373.9 301.8 0.2 11.0 10.1 61.2 12.5 

CAPSS 2015 245.5 369.6 0.2 9.6 8.8 46.1 10.1 

 1125 

 1126 

 1127 
Appendix H:  1128 

 1129 

CARS model input data summary table 1130 

Input data type Parameters Variable Name in CARS File format 

Human activity 

data of each 

vehicle 

Fuel, vehicle, type, daily VKT, region code, 

manufacture data 
activity_file csv 

Emission factor 

table 

Vehicle, engine, fuel, SCC ,Pollutant, year, 

temperature, v,a,b,c,d,f,k 
Emis_factor_list csv 

Link level Shape 

file 

Link ID, region code, region name,  road 

rank, speed, VKT, Link length, geometry 
Link_shape shape file 

County Shape 

File 
Region code, region name county_shape shape file 

Average speed 

distribution 

table 

Speed bins, the distribution of each road type  avg_SPD_Dist_file csv 

road restriction 

table 
Vehicle, engine, fuel, road types road_restriction csv 

Vehicle 

deterioration 

table 

Vehicle, engine, SCC, fuel, Pollutant, 

Manufacture date 
Deterioration_list csv 

Control strategy 

factors table 

Vehicle, engine, fuel, year, data, region code, 

control factor 
control_list csv 

Model domain 

description 

Projection method name, parameters for 

prjection method, domain name, bottum left 

coner X and Y, grid cell size, numbers of 

grid cell in X, Y, and Z-axis 

gridfile_name 

text file in 

griddesc 

format 

Temporal 

profile tables 

Profile reference number, Year to Monthly 

profile (12 columns) 
temporal _monthly_file csv 

Profile reference number, week to daily 

profile (7 columns) 
temporal _week_file csv 
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Profile reference number, week day to hourly 

profile (24 columns) 
temporal_weekday_file csv 

Profile reference number, weekend day to 

hourly profile (24 columns) 
temporal_weekend_file csv 

Vehicle, types, fuel, road type, month 

reference number, week reference number, 

weekday reference number, weekend 

reference number 

temporal_CrossRef csv 

Chemical profile 

table 

Species code, species name, target species 

name, fraction, molecular weight, 
Chemical_profile txt or csv 

Vehicle, engine, fuel, species reference codes speciation_CrossRef csv 

 1131 

 1132 


