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Text S1 

Figure S1 shows the analysis increments (assimilation minus control) of the 6 species 

averaged over all initializations. It could be found that the impact of 3DVAR is not only 

concentrated around the measurement sites, but also transported to downwind areas as 

discussed in Feng et al. (2018). The longer a species lives, the farther the assimilation 

benefits are transmitted (e.g., CO). The positive (negative) increments indicate 

underestimated (overestimated) emissions in local or upwind areas. Specifically, the 

positive increments of CO and PMC are generally distributed nationwide, especially in 

the northern part of China, indicating that the emissions of CO and PMC over the whole 

mainland China were estimated, which may be related to the underestimated residential 

sources (e.g., coal heating) (Zhi et al., 2017) and local dust caused by higher wind 

speeds, respectively. For SO2, NO2 and PM2.5, the negative increments are mainly 

located in the North China Plain (NCP), the Yangtze River Delta (YRD), and the 

Sichuan Basin (SCB), as well as Central China, and the significant positive increments 

mainly correspond with resource-abundant northern regions (e.g., Northeast China, 

Northwest China, etc.). The increments of PM2.5 are related not only to inaccurate 

emissions but also to the concentration biases of its precursor, which can affect the 

biases of PM2.5 in downwind areas to some extent. The increments of O3 are negatively 

correlated with those of NO2 in terms of their spatial distribution because of strong NO-

titration during the winter (Huang et al., 2020; Shi and Brasseur, 2020).  

 

Text S2 

Figure S2 shows the time series of the observed daily concentrations in the independent 

sites and the corresponding simulated ones in the CEP and VEP experiments. 

Meanwhile, the time series of daily RMSEs are also shown in Fig. S2. Clearly, the 

concentrations simulated using the posterior emissions are more consistent with the 

observations. The temporal variation of pollution concentrations is well grasped in the 

VEPs, even in the heavy pollution stage (16-21 December). Noticeable discrepancies 



in the simulated CO and PMC between the two experiments are related to the increase 

in their emissions across mainland China. Benefitting from greater uncertainty settings, 

rapid convergence of CO and PMC can be found in the first few windows. Similarly, 

the VEPs show lower RMSEs than those of CEPs throughout the study period.  

 

Figure S1. Mean differences of the background and analysis fields of (a) CO, (b) 

SO2, (C) NO2, (d) O3, (e) PM2.5 and (f) PMC at the lowest model level (analysis fields 

minus background fields). All data are averaged using the fields at 0000, 0600, 1200, 

and 1800 UTC during the period of 27 to 01 December, 2016. 

 

 

 



 

 

Figure S2. Time series of the daily concentrations (CONC, left, μg m-3) and root mean 

square error (RMSE, right, μg m-3) obtained from CEP, VEP, VEP1, and VEP2. The 

simulations were verified against the independent sites. 

 

 

 



 

Figure S3. Time series of the daily PM2.5 concentrations (CONC, μg m-3) averaged 

over the whole domain obtained from the observations and simulations. CEP2 and 

VEP2 represent simulations using prior emissions taken from MEIC 2012 and posterior 

emissions inferred by EMS2 experiment, respectively. 

 

 

 

 

 



 

Figure S4. Spatial distribution of the time-averaged posterior emissions of EMDA and 

EMS7, and differences among prior emissions (MEIC) and posterior emissions of 

EMDA and EMS7.  

 



 

 

Figure S5. Changes of the (a) BIAS (μg m-3) and (b) RMSE (μg m-3) of the simulated 

NO2 between VEP and VEP7 experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Estimation of posterior emissions (kton/day) and relative changes (%) 

compared to prior emissions in each province and the whole mainland China. 

Region 
CO SO2 NOX PPM2.5 PMC 

Post. Diff. Post. Diff. Post. Diff. Post. Diff. Post. Diff. 

Mainland 1141.9 129.4 54.7 19.7 69.4 5.1 55.4 95.4 97.6 1044.8 

Shanghai 4.75 12.5 0.25 -59.5 0.74 -44.0 0.11 -40.8 0.22 249.1 

Jiangsu 37.27 30.9 1.10 -23.9 2.90 -38.6 0.96 -34.3 2.46 529.6 

Zhejiang 20.15 80.3 0.59 -30.0 2.68 1.9 0.86 77.9 2.15 876.9 

Anhui 32.88 69.6 0.79 21.3 2.79 1.5 1.28 -3.0 2.50 495.6 

Shandong 93.11 115.9 3.33 -17.5 4.26 -32.7 3.07 19.3 6.11 742.6 

Beijing 6.34 108.4 0.06 -15.7 0.35 22.0 0.23 80.7 0.19 544.3 

Tianjin 13.40 372.2 0.11 -33.6 0.59 53.3 0.23 73.7 0.35 933.0 

Hebei 125.45 158.4 3.47 10.9 5.49 1.1 6.00 176.3 8.23 1176.7 

Shanxi 82.17 210.9 9.93 86.9 2.88 -15.4 5.66 236.1 7.20 1274.8 

Neimenggu 59.12 231.2 5.48 135.8 3.92 29.0 2.73 163.7 7.11 2144.3 

Henan 69.99 120.2 1.14 -39.6 3.09 -22.7 3.05 66.6 6.26 1008.4 

Hunan 40.59 56.8 1.52 -40.3 2.36 -5.2 0.69 -52.9 2.98 481.5 

Hubei 38.80 73.1 0.57 -76.5 2.27 -1.9 1.17 -12.1 2.32 498.7 

Jiangxi 28.71 112.3 1.63 83.0 1.78 19.0 1.52 110.3 2.65 777.5 

Guangdong 52.97 175.3 1.19 -32.7 4.66 31.1 1.91 89.4 2.65 565.6 

Guangxi 24.81 120.8 1.18 -1.5 2.30 52.2 1.70 103.6 1.75 512.5 

Fujian 12.22 113.8 0.81 60.3 1.91 57.8 0.75 99.0 1.35 904.3 

Hainan 1.94 20.5 0.14 -10.0 0.31 6.6 0.09 -17.0 0.07 106.9 

Liaoning 49.69 175.2 4.04 178.8 2.71 -5.9 1.99 94.7 3.93 1377.3 

Heilongjiang 38.64 90.2 1.10 25.7 1.82 -2.6 1.40 25.6 0.99 345.6 

Jilin 35.61 176.2 3.36 376.2 2.46 69.2 1.72 132.1 0.87 437.8 

Shaanxi 49.30 212.9 1.62 -9.5 2.40 37.7 3.64 294.2 7.25 2750.2 

Gansu 49.41 423.7 1.51 118.6 1.97 100.1 3.27 521.4 9.64 8264.2 

Xinjiang 39.94 383.4 1.48 21.0 2.69 48.2 4.29 720.3 2.69 1523.5 

Qinghai 7.15 236.0 0.31 128.4 0.36 23.4 0.36 147.3 1.27 2948.9 

Ningxia 14.34 523.8 1.96 129.6 1.06 16.6 1.14 478.6 2.95 3603.5 

Sichuan 36.88 46.3 1.11 -43.2 3.20 7.4 1.66 8.1 4.54 1073.8 

Chongqing 9.75 24.2 0.48 -69.2 1.11 4.6 0.26 -51.4 0.77 385.1 

Guizhou 29.82 28.9 2.78 -8.6 2.13 68.9 1.99 60.3 3.26 739.0 

Yunnan 35.65 129.2 1.70 15.5 1.96 32.2 1.52 56.9 2.49 728.5 

Xizang 1.07 235.3 0.004 23.1 0.26 95.7 0.13 888.7 0.46 15960.2 
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