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Abstract 30 

Top-down atmospheric inversion infers surface-atmosphere fluxes from spatially 31 

distributed observations of atmospheric compositions, which is a vital means for 32 

quantifying anthropogenic and natural emissions. In this study, we developed a 33 

Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) based on the Weather 34 

Research and Forecasting/Community Multiscale Air Quality Modelling System 35 

(WRF/CMAQ) model, the three-dimensional variational (3DVAR) algorithm, and the 36 

ensemble square root filter (EnSRF) algorithm. This system can simultaneously 37 

assimilate hourly in situ CO, SO2, NO2, PM2.5 and PM10 observations to infer gridded 38 

emissions of CO, SO2, NOx, primary PM2.5 (PPM2.5), and coarse PM10 (PMC) on a 39 

regional scale. In each data assimilation window, we use a “two-step” scheme, in which 40 

the emission is inferred first, and then input into the CMAQ model to simulate initial 41 

condition (IC) of the next window. The posterior emission is transferred to the next 42 

window as the prior emission, and the original emission inventory is only used in the 43 

first window. Additionally, a “super-observation” approach is implemented to decrease 44 

the computational costs, observation error correlations, and influence of representative 45 

errors. Using this system, we estimated the emissions of CO, SO2, NOx, PPM2.5, and 46 

PMC in December and July 2016 over China using nationwide surface observations. 47 

The results showed that compared to the prior emissions (MEIC 2016), the posterior 48 

emissions of CO, SO2, NOx, PPM2.5, and PMC in December 2016 increased by 129%, 49 

20%, 5%, 95%, and 1045%, respectively, and the emission uncertainties decreased by 50 

44%, 45%, 34%, 52%, and 56%, respectively. With the inverted emissions, the RMSE 51 

of simulated concentrations decreased by 40–56%. Sensitivity tests were conducted 52 

with different prior emissions, prior uncertainties, and observation errors. The results 53 

showed that the “two-step” scheme employed in RAPAS is robust in estimating 54 

emissions using nationwide surface observations over China. This study offers a useful 55 

tool for accurately quantifying multi-species anthropogenic emissions at large scales 56 

and in near real time. 57 

 58 
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1. Introduction 59 

Owing to rapid economic development and pollution control legislation, there is an 60 

increasing demand to provide updated emission estimates, especially in areas where 61 

anthropogenic emissions are intensive. Accurately estimating source emission 62 

quantities and spatiotemporal changes resulting from various regulations is imperative 63 

and valuable for understanding air quality responses and is crucial for providing timely 64 

instructions for the design of future emission regulations. However, most inventories 65 

were developed based on a bottom-up approach and are usually updated with a delay 66 

of a few years owing to the complexity of gathering statistical information on activity 67 

levels and sector-specific emission factors (Ding et al., 2015). The large uncertainty 68 

associated with the low temporal and spatial resolutions of these datasets also greatly 69 

limits the assessment of emission changes. Some studies (Bauwens et al., 2020; Shi and 70 

Brasseur, 2020) evaluated emission changes indirectly through concentration 71 

measurements; however, air pollution changes are not only dominated by emission 72 

changes, but also highly affected by meteorological conditions (Shen et al., 2021).  73 

Top-down atmospheric inversion infers surface-atmosphere fluxes from spatially 74 

distributed observations of atmospheric compositions. Recent efforts have focused on 75 

developing air pollution data assimilation (DA) systems to conduct top-down 76 

inversions, which can integrate model and multi-source observational information to 77 

constrain emission sources. Two major methods are widely used in those DA systems: 78 

4D-variational data assimilation (4DVAR) and ensemble Kalman filter (EnKF). 79 

4DVAR provides a global optimal analysis by minimizing a cost function. It shows an 80 

implicit flow-dependent background error covariance and can reflect complex 81 

nonlinear constraint relationships (Lorenc, 2003). Additionally, a weak constraint 82 

4DVAR method can partly account for the model error by defining a systematic error 83 

term in a cost function (Derber, 1989). For example, the GEOS-Chem and TM5 4DVAR 84 

frameworks have been used to estimate CH4 (Alexe et al., 2015; Monteil et al., 2013; 85 

Schneising et al., 2009; Stanevich et al., 2021; Wecht et al., 2014) and CO2 fluxes (Basu 86 

et al., 2013; Nassar et al., 2011; Wang et al., 2019a) from different satellite retrieval 87 
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products. Additionally, Jiang et al. (2017) and Stavrakou et al. (2008) also used the 88 

4DVAR algorithm to estimate global CO and NOx emission trends using MOPITT and 89 

GOME/SCIAMACHY retrievals, respectively. Using NIES LiDAR observations, 90 

Yumimoto et al. (2008) applied the 4DVAR DA to infer dust emissions over eastern 91 

Asia and the results agreed well with various satellite data and surface observations. 92 

Based on surface observations, Meirink et al. (2008) developed a 4DVAR system to 93 

optimize monthly methane emissions, which showed a high degree of consistency in 94 

posterior emissions and uncertainties when compared with an analogous inversion 95 

based on the traditional synthesis approach.  96 

Although considerable progress has been made to reduce large uncertainties in emission 97 

inventories, the drawback of the 4DVAR method is the additional development of 98 

adjoint models, which are technically difficult and cumbersome for complex chemical 99 

transport models (Bocquet and Sakov, 2013). Instead, EnKF uses flow-dependent 100 

background error covariance generated by ensemble simulations to map deviations in 101 

concentrations to increments of emissions, which is more flexible and easier to 102 

implement. Many previous studies used EnKF techniques to assimilate single- or dual- 103 

species observations to optimize the corresponding emission species (Chen et al., 2019; 104 

Peng et al., 2017; Schwartz et al., 2014; Sekiyama et al., 2010). Miyazaki et al. (2017) 105 

improved NOx emission estimates using multi-constituent satellite observations, and 106 

further estimated global surface NOx emissions from 2005 to 2014. Feng et al., (2020b) 107 

used surface observations of NO2 to infer the NOx emission changes in China during 108 

the COVID-19, and quantitatively evaluate the impact of the epidemic on economic 109 

activities from the perspective of emission change. Tang et al. (2011) adjusted the 110 

emissions of NOx and VOCs through assimilating surface O3 observations and achieved 111 

an better performance in O3 forecasts. However, such a revision may encounter the 112 

problem of model error compensation rather than a retrieval of physically meaningful 113 

quantities, which should be avoided from overfitting for emission inversion purposes 114 

(Bocquet, 2012; Navon, 1998; Tang et al., 2011). The EnKF has also been widely 115 

applied to optimize emissions of carbon dioxide (Jiang et al., 2021; Liu et al., 2019), 116 
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carbon monoxide (Feng et al., 2020a; Mizzi et al., 2018), sulfur dioxide (Chen et al., 117 

2019), ammonia (Kong et al., 2019), etc. 118 

Multi-species data assimilation can efficiently reduce the uncertainty in emission 119 

inventories and has led to improvements in air quality forecasting (Ma et al., 2019; 120 

Miyazaki et al., 2012b) as it offers additional constraints on emission estimates through 121 

improvements in related atmospheric fields, chemical reactions, and gas-particle 122 

transformations (Miyazaki and Eskes, 2013). Barbu et al. (2009) updated sulfur oxide 123 

(SOx) emissions with SO2 and sulfate aerosol observations and found that the 124 

simultaneous assimilation of both species performed better than assimilating them 125 

separately. Muller and Stavrakou (2005) also found that the simultaneous optimization 126 

of the sources of CO and NOx led to better agreement between simulations and 127 

observations compared to the case where only CO observations are used.  128 

The deviation in the chemical initial condition (IC) is an important source of error that 129 

affects the accuracy of emission inversion because atmospheric inversion fully 130 

attributes the biases in simulated and observed concentrations to deviations in 131 

emissions (Meirink et al., 2006; Peylin et al., 2005). The biases of concentrations would 132 

be compensated by the unreasonable adjustment of pollution emissions without the 133 

optimization of ICs (Tang et al., 2013). Simultaneously optimizing chemical ICs and 134 

emissions has been applied to constrain emissions in many previous studies (Ma et al., 135 

2019; Miyazaki et al., 2012a; Peng et al., 2018). For example, Elbern et al. (2007) 136 

adjusted O3 ICs, NOx ICs and emissions, VOCs ICs and emissions jointly through 137 

assimilating surface O3 and NOx observations. Although the forecast skills of O3 were 138 

improved, due to the coarse model resolution and the strong nonlinear relationship 139 

between O3 and NOx, the assimilation of O3 observation worsened emission inversion 140 

and forecast of NOx. Peng et al. (2018) assimilated near-surface observations to 141 

simultaneously optimize the ICs and emissions. In the 72-hr forecast evaluation, their 142 

resultant emission succeeded in improving SO2 forecast while having little influence 143 

on CO and aerosol forecast and even degrading the forecast of NO2. Ma et al. (2019) 144 

also found that the DA benefits for forecast almost disappeared after 72 hr using 145 
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optimized ICs and emissions. Although a large improvement has been achieved, this 146 

method has significant limitations in emission inversion as the contributions from the 147 

emissions and chemical ICs to the model’s biases are difficult to distinguish (Jiang et 148 

al., 2017). In addition, the constraints of the chemical ICs with observations in each 149 

assimilation window make the emission inversions between the windows independent. 150 

This means that if the emission in one window is overestimated or underestimated, it 151 

cannot be transferred to the next window for further correction and compensation. 152 

Considering the importance of emissions in chemical field prediction (Bocquet et al., 153 

2015), the rapid disappearance of the DA benefits seems unrealistic, indicating that 154 

simultaneously optimizing chemical ICs and emissions may result in a systematic bias 155 

in the inverted emissions (Jiang et al., 2021). 156 

Since 2013, China has deployed an air pollution monitoring network that publishes 157 

nationwide and real-time hourly surface observations. This dataset provides an 158 

opportunity to improve emission estimates using the DA. In this study, a regional multi- 159 

air pollutant assimilation system using 3DVAR and EnKF DA techniques was 160 

constructed to simultaneously assimilate various surface observations (e.g. CO, SO2, 161 

NO2, O3, PM2.5, and PM10). We adopted a “two-step” method in this system, in which 162 

the ICs of each DA window were simulated using the posterior emissions of the 163 

previous DA window. The capabilities of RAPAS for reanalysis field generation and 164 

emission inversion estimation were also evaluated. The robustness of the system was 165 

investigated with different prior inventories, uncertainty settings of prior emissions, and 166 

observation errors. The remainder of the paper is organized as follows: Section 2 167 

introduces the DA system and observation data, Section 3 describes the experimental 168 

design, Section 4 presents and discusses the results of the system performance and 169 

sensitivity tests, and Section 5 concludes the paper. 170 

2. Method and data 171 

2.1 System description 172 

2.1.1 Procedure of the assimilation system 173 
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A regional air pollutant assimilation system has been preliminarily constructed and 174 

successfully applied in our previous studies to optimize the gridded CO and NOx 175 

emissions (Feng et al., 2020a; Feng et al., 2020b). Herein, the system was further 176 

extended to simultaneously assimilate multiple species (e.g. CO, SO2, NO2, O3, PM2.5, 177 

and PM10) and officially named the Regional multi- Air Pollutant Assimilation System 178 

(RAPASv1.0). The RAPAS has three components: a regional chemical transport model 179 

(CTM), which is coupled offline and used to simulate the meteorological fields and 180 

atmospheric compositions, and the 3DVAR and ensemble square root filter (EnSRF) 181 

modules, which are used to optimize chemical ICs (Feng et al., 2018; Jiang et al., 2013b) 182 

and anthropogenic emissions (Feng et al., 2020a; Feng et al., 2020b), respectively. 183 

3DVAR was introduced considering its excellent performance in our previous study and 184 

the lower computational cost during the spin-up period in optimizing ICs. Additionally, 185 

the 3DVAR method can obtain a better IC than the EnKF method (Schwartz et al., 2014). 186 

Based on the above three components, the RAPAS was divided into two subsystems: 187 

the IC assimilation (IA) subsystem (CTM plus 3DVAR) and the emission inversion (EI) 188 

subsystem (CTM plus EnSRF). As shown in Figure 1, the IA subsystem was first run 189 

to optimize the chemical ICs (Kleist et al., 2009; Wu et al., 2002) for the subsequent EI 190 

subsystem. Distinguish the source type of model-observation mismatch error was not 191 

required for the IA subsystem. The EI subsystem runs cyclically with a “two-step” 192 

scheme. In the first step, the prior emissions (��) are perturbed and input into the CTM 193 

model to simulate chemical concentration ensembles. The simulated concentrations of 194 

the lowest model level were then interpolated to the observation space according to the 195 

locations and times of the observations using the nearest-neighbor interpolation method. 196 

Prior emissions (��), simulated observations and real observations were entered into 197 

the EnSRF module to generate optimized emissions (�� ). In the second step, the 198 

optimized emissions were re-entered into the CTM model to generate the ICs of the 199 

next DA window. Meanwhile, the optimized emissions were transferred to the next 200 

window as prior emissions. Unlike joint adjustment of ICs and emissions (“one-step” 201 

scheme) in emission inversion (Chen et al., 2019), the “two-step” scheme needs to run 202 
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the CTM model twice, which is time consuming but can transfer the potential errors of 203 

the inverted emissions in one DA window to the next for further correction.  204 

 205 

Figure 1. Composition and flow chart of RAPAS. �� and �� represent the prior and 206 

posterior emissions. The 3DVAR assimilation stage lasts five days with data input 207 

frequency of six hours and the DA window in the EI subsystem is set to one day. 208 

2.1.2 Atmospheric transport model 209 

The regional chemical transport model of Weather Research and 210 

Forecasting/Community Multiscale Air Quality Modelling System (WRF/CMAQ) was 211 

adopted in this study. CMAQ is a regional 3-D Eulerian atmospheric chemistry and 212 

transport model with a “one-atmosphere” design developed by the US Environmental 213 

Protection Agency (EPA). It can simultaneously address the complex interactions 214 

among multiple pollutants/air quality issues. The CMAQ was driven by the WRF model, 215 

which is a state-of-the-art mesoscale numerical weather prediction system designed for 216 
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both atmospheric research and meteorological field forecasting. In this study, WRF 217 

version 4.0 and CMAQ version 5.0.2 were used. The WRF simulations were performed 218 

with a 36-km horizontal resolution on 169 × 129 grids, covering all of mainland China 219 

(Figure 2). This spatial resolution has been widely adopted in regional simulations as it 220 

can provide good simulations of spatiotemporal variations in air pollutants (Mueller 221 

and Mallard, 2011; Sharma et al. 2016). In the vertical direction, there were 51 sigma 222 

levels on the sigma-pressure coordinates extending from the surface to 100 hPa. The 223 

underlying surface of the urban and built-up land was replaced by the MODIS land 224 

cover retrieval of 2016 to adapt to the rapid expansion of urbanization. The CMAQ 225 

model was run with the same domain but with three grid cells removed from each side 226 

of the WRF domain. There were 15 layers in the CMAQ vertical coordinates, which 227 

were interpolated from 51 WRF layers.  228 

The meteorological initial and lateral boundary conditions were both provided by the 229 

Final Operational Global Analysis data of the National Center for Environmental 230 

Prediction (NCEP) with a 1° × 1° resolution at 6-h intervals. The chemical lateral 231 

boundary conditions and chemical ICs in the IA subsystem originate from background 232 

profiles. As mentioned above, in the EI subsystem, the chemical IC in the first window 233 

is provided by the IA subsystem and in the following windows, it is forward simulated 234 

using optimized emissions from the previous window. Carbon Bond 05 with updated 235 

toluene chemistry (CB05tucl) and the 6th generation aerosol module (AERO6) were 236 

chosen as the gas-phase and aerosol chemical mechanisms, respectively (Appel et al., 237 

2013; Sarwar et al., 2012). The detailed physical and chemical configurations are listed 238 

in Table 1. 239 
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 240 

Figure 2. Model domain and observation network. The red dashed frame depicts the 241 

CMAQ computational domain; the black squares represent the surface meteorological 242 

measurement sites; the navy triangles represent the sounding sites; and the red and blue 243 

dots represent the air pollution measurement sites. Observations from all sites were 244 

assimilated in the 3DVAR subsystem, while observations of city sites where red dots 245 

were averaged are used for assimilation and where blue dots were averaged are used 246 

for independent evaluation in the EI subsystem; the boxed subregions are the North 247 

China Plain (NCP) and Yangtze River Delta (YRD); and the shaded area depicts the 248 

topography. 249 

 250 

 251 

 252 

 253 

 254 
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Table 1. Configuration options of WRF/CMAQ 255 

2.1.3 3DVAR assimilation algorithm 256 

Grid-point Statistical Interpolation (GSI) developed by the US NCEP was utilized in 257 

this study. Building on the work of Liu et al. (2011), Jiang et al. (2013b) and Feng et al. 258 

(2018), we extended GSI to simultaneously assimilate multiple species (including CO, 259 

SO2, NO2, O3, PM2.5, and PM10) and first used individual aerosol species of PM2.5 as 260 

analysis variables within the GSI/WRF/CMAQ framework. Additional work includes 261 

the construction of surface air pollutant observation operators, the updating of 262 

observation errors, and the statistics of background error covariance for the analysis 263 

variables. Moreover, the data interface was modified to read/write the CMAQ 264 

output/input file directly, which was easy to implement. 265 

In the sense of minimum analysis error variance, the 3DVAR algorithm optimizes the 266 

analysis fields with observations by iterative processes to minimize the cost function 267 

(J(x)) defined below: 268 

J(x) =
�

�
(�� − ��)����(�� − ��) +

�

�
[�(��) − �]����[�(��) − �],  (1) 269 

where �� is a vector of the analysis field, �� is the background field, y is the vector 270 

of observations, B and R are the background and observation error covariance matrices, 271 

WRF CMAQ 

Parameter Scheme Parameter Scheme 

Microphysics WSM6 Horizontal/Vertical advection yamo/wrf 

Longwave RRTM Horizontal/Vertical diffusion multiscale/acm2 

Shortwave Goddard Deposition m3dry 

Boundary layer ACM Chemistry solver EBI 

Cumulus Kain-Fritsch Photolysis phot_inline 

Land-surface Noah Aerosol module AERO6 

Surface layer Revised Cloud module cloud_acm_ae6 

Urban canopy No Gas-phase chemistry CB05tucl 
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respectively, representing the relative contributions to the analysis, and H is the 272 

observation operator that maps the model variables to the observation space. 273 

The analysis variables were the 3D mass concentrations of the pollution components 274 

(e.g. CO and sulfate) at each grid point. Hourly mean surface pollution observations 275 

within a one-hour window of the analysis were assimilated. To assimilate the surface 276 

pollution observations, model-simulated compositions were first diagnosed at 277 

observation locations. For gas concentrations to be directly used as analysis variables, 278 

the units need to be converted from ppm and ppb to mg m-3 and μg m-3, respectively, to 279 

match the observations. The model-simulated PM2.5 and PM10 concentrations at the 280 

ground level were diagnosed as follows: 281 

���.� = �� × ��� + �� × ��� + �� × ��� = OC + EC + ���
�� + ���

� + ���
� +282 

���� + ���.�                                                     (2) 283 

���� = ��� + ��� + ��� = ���.� + ���                         (3) 284 

where ��, ��, and �� are the PM2.5 fractions of the Aitken, accumulation, and coarse 285 

modes, respectively. These ratios are recommended as the concentrations of PM2.5 and 286 

fine mode aerosols (i.e. Aitken plus accumulation) can differ because PM2.5 particles 287 

include small tails from the coarse mode in the CMAQ model (Binkowski and Roselle, 288 

2003; Jiang et al., 2006). ���, ���, and ��� are the mass concentrations of the three 289 

modes in the CMAQ model, respectively. Seven aerosol species of PM2.5 (organic 290 

carbon (OC), elemental carbon (EC), sulfate (���
��), nitrate (���

�), ammonium (���
�), 291 

sea salt (SEAS), and fine-mode unspeciated aerosols (���.� )) and additional coarse 292 

PM10 (PMC) were extracted as analysis variables and were updated using the PM2.5 and 293 

PMC observations. Before calculating equation (1) within the GSI, the analysis 294 

variables were bilinearly interpolated in the horizontal direction to the observation 295 

locations. 296 

Calculating background error covariance (B) is generally costly and difficult when a 297 

high-dimensional numerical model is used. For simplification, B was represented as a 298 
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product of spatial correlation matrices and standard deviations (SDs). 299 

� = ����          (4) 300 

� = �� ⊗ �� ⊗ ��             (5) 301 

where D is the background error SD matrix; C is the background error correlation 302 

matrix; ⊗ is the Kronecker product; and �� , �� , and ��  denote three one-303 

dimensional correlation submatrices in the longitude, latitude, and vertical coordinate 304 

directions, respectively. �� and �� are assumed to be horizontally isotropic such that 305 

they can be represented using a Gaussian function. The correlation between any two 306 

points �� and �� in the horizontal direction is expressed as follows: 307 

c���, ��� = �
�

(�����)�

���        (6) 308 

where �  is the horizontal correlation scale estimated using the proxy of the 309 

background error (Figure 3). The vertical correlation matrix �� is directly estimated 310 

from the model background field as �� is only an �� × �� (here, ��=15) matrix. 311 
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 312 

Figure 3. Vertical profiles of standard deviations (top, μg m-3), horizontal (middle, km) 313 

and vertical (bottom, km) length scales for CO, SO2, NO2, O3, sulfate, nitrate, 314 

ammonium, EC, OC, sea salt, unspeciated aerosols (AP2.5), PMC, PM2.5 and PM10. 315 

To estimate these matrices, the “NMC” method was used to compute B for each variable 316 

by taking the differences between forecasts of different lengths valid at the same time 317 

(Parrish and Derber, 1992; Rabier et al., 1998). Differences between the 24- and 12-h 318 

WRF/CMAQ forecasts of 60 pairs (two pairs per day) of analysis variables valid at 319 

either 0000 or 1200 UTC over November 2016 were used. The horizontal and vertical 320 

length scales of the correlation matrices were estimated using recursive filters (Purser 321 

et al., 2003). The vertical distribution of the background error SDs, which varies with 322 

height and species, is shown in Figure 3. The vertical profile of the background error 323 
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SDs corresponds to the vertical concentration distribution. This means that higher 324 

concentrations tend to have larger background error SDs (e.g., CO and nitrate). These 325 

SDs exhibit a common reduction as the height increases, especially at the top of the 326 

boundary layer. The horizontal correlation of the background error determines the 327 

propagation of observation information in this direction, whereas the vertical 328 

correlation determines the vertical extension of such increments. For gaseous pollutants 329 

and most individual aerosol components, the horizontal length scales increased with 330 

height, whereas for the total particulate matter (i.e. PM2.5, PM10), the scales increased 331 

with height in the boundary layer and decreased with height in the free troposphere. 332 

The ground-level scale generally spread 40–45 km for all control variables. The vertical 333 

length scale of most species first increased and then decreased with height, which may 334 

be related to vertical mixing (Kahnert, 2008) and stack emissions at approximately 200 335 

m height. 336 

2.1.4 EnKF assimilation algorithm 337 

In EnKF, the time-dependent uncertainties of the state variables are estimated using a 338 

Monte Carlo approach through an ensemble. Uncertainty can be propagated using linear 339 

or nonlinear dynamic models (flow-dependent background error covariance) by simply 340 

implementing ensemble simulations. The EnSRF algorithm introduced by Bierman 341 

(1977) and Maybeck (1979) was used to constrain pollution emissions in this study. 342 

EnSRF is a deterministic EnKF that obviates the need to perturb observations, which 343 

has a higher computational efficiency and a better performance (Sun et al., 2009). 344 

The perturbation of the prior emissions represents the uncertainty. We implemented 345 

additive emission adjustment methods, which were calculated using the following 346 

function: 347 

��
� = ��

� + ���
�, i = 1, 2, ..., N             (7) 348 

where � is the background (prior) state, � is the identifier of the perturbed samples, 349 

and N is the ensemble size, which was set to 40 considering the trade-off between 350 

computational cost and inversion accuracy (Figure S1). In contrast to the estimation of 351 
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parameters based on the augmentation of the conventional state vector (e.g. 352 

concentrations) with the parameter variables, � only comprises emissions in this study 353 

(similarly hereafter). δ��
�  is the randomly perturbed samples added to the prior 354 

emissions ��
�  to produce ensemble samples of the inputs ��

� . δ��
�  is drawn from 355 

Gaussian distributions with a mean of zero and standard deviation of the prior emission 356 

uncertainty in each grid. The state variables of the emissions include CO, SO2, NOx, 357 

primary PM2.5 (PPM2.5) and PMC. We used variable localization to update the analysis, 358 

which means that the covariance among different state variables was not considered, 359 

and the emission of one species was constrained only by its corresponding air pollutant 360 

observation. This method has been widely used in chemical data assimilation systems 361 

to avoid spurious correlations between species (Ma et al., 2019; Miyazaki et al., 2012b).  362 

After obtaining an ensemble of state vectors (prior emissions), ensemble runs of the 363 

CMAQ model were conducted to propagate the errors in the model with each ensemble 364 

sample of state vectors. Combined with the observational vector y, the state vector �� 365 

was updated by minimizing the analysis variance. 366 

 �� = �� + �(� − ���)  (8) 367 

 � = ����(����� + �)��  (9) 368 

 �� =
�

���
∑ (��

� − ��)�
��� (��

� − ��)�  (10) 369 

 δ��
� = δ��

� − ���δ��
�  (11) 370 

While employing sequential assimilation and independent observations, ��   is 371 

calculated as follows: 372 

 �� = (1 + ��
(����� + �)� )

��

�  (12) 373 

where �� is the mean of the ensemble samples ��
�; � is the observation operator that 374 

maps the model space to the observation space, consisting of the model integration 375 
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process converting emissions into concentrations and spatial interpolation matching the 376 

model concentration to the locations of the observations; � − ���  reflects the 377 

differences between the simulated and observed concentrations; �� is the ensemble-378 

estimated background (a priori) error covariance; ���� contains the response of the 379 

uncertainty in the simulated concentrations to the uncertainty in emissions; K is the 380 

Kalman gain matrix of the ensemble mean depending on the �� and observation error 381 

covariance R, representing the relative contributions to analysis; and ��  is the Kalman 382 

gain matrix of the ensemble perturbation, which is used to calculate emission 383 

perturbations after inversions δ��
�. The ensemble mean �� of the analyzed state was 384 

considered the best estimate of the emissions. 385 

When large volumes of site observations are at a much higher resolution than the model 386 

grid spacing, many correlated or fully consistent model-data mismatch errors can 387 

appear in one cluster, resulting in excessive adjustments and deteriorated model 388 

performance (Houtekamer and Mitchell, 2001). To reduce the horizontal observation 389 

error correlations and influence of representativeness errors, a “super-observation” 390 

approach combining multiple noisy observations located within the same grid and 391 

assimilation window was developed based on optimal estimation theory (Miyazaki et 392 

al., 2012a). Previous studies demonstrated the necessity for data-thinning and 393 

dealiasing errors (Feng et al., 2020b; Zhang et al., 2009a). The super-observation ����, 394 

super-observation error ����, and corresponding simulation ����,� of the ith sample 395 

are calculated as follows: 396 

 1
����

�� = ∑ 1
��

��
�
���                (13) 397 

  ���� = ∑ ��
�
��� �� ∑ ��

�
����  (14) 398 

  ����,� = ∑ ��
�
��� ��� ∑ ��

�
����  (15) 399 

where j is the identifier of m observations within a super-observation grid; �� is the 400 

observational error of the actual jth observation ��; ��� is the simulated concentration 401 
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using the ith prior emission sample corresponding to the jth observation; and �� =402 

1
��

��  is the weighting factor. The super-observation error decreased as the number of 403 

observations used within a super-observation increased. This method was used in our 404 

previous inversions using surface-based (Feng et al., 2020b) and satellite-based (Jiang 405 

et al., 2021) observations. 406 

In this study, the DA window was set to one day because the model requires a longer 407 

time to integrate the emission information into the concentration ensembles (Ma et al., 408 

2019). Due to the “super-observation” approach, only one assimilation is needed in one 409 

assimilation window. In addition, owing to the complexity of hourly emissions, it is 410 

difficult to simulate hourly concentrations that match the observations well. Although 411 

a longer DA window would allow more observations to constrain the emission change 412 

of one grid, the spurious correlation signals of EnKF would attenuate the observation 413 

information over time (Bruhwiler et al., 2005; Jiang et al., 2021). Kang et al. (2012) 414 

conducted OSSEs and demonstrated that owing to the transport errors and increased 415 

spurious correlation, a longer DA window (e.g. 3 weeks) would cause the analysis 416 

system to blur essential emission information away from the observation. Therefore, 417 

daily mean simulations and observations were used in the EnSRF algorithm and daily 418 

emissions were optimized in this system.  419 

EnKF is subject to spurious correlations because of the limited number of ensembles 420 

when it is applied in high-dimensional atmospheric models, which can cause rank 421 

deficiencies in the estimated background error covariance and filter divergence and 422 

further degrade analyses and forecasts (Wang et al., 2020). Covariance localization is 423 

performed to reduce spurious correlations caused by a finite ensemble size 424 

(Houtekamer and Mitchell, 2001). Covariance localization preserves the meaningful 425 

impact of observations on state variables within a certain distance (cutoff radius) but 426 

limits the detrimental impact of observations on remote state variables. The localization 427 

function of Gaspari and Cohn function (Gaspari and Cohn, 1999) is used in this system, 428 
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which is a piecewise continuous fifth-order polynomial approximation of a normal 429 

distribution. The optimal localization scale is related to the ensemble size, assimilation 430 

window, dynamic system, and lifetime of the chemical species in the atmosphere. CO, 431 

SO2 and PM2.5 are rather stable in the atmosphere, with a lifetime of more than one day. 432 

According to the average wind speed (3.3 m/s, Table 4) and length of the DA window, 433 

the localization scales of CO, SO2 and PM2.5 were set to 300 km. In addition, the 434 

localization scales of NO2, which is rather reactive and has a lifetime of approximately 435 

10 hours in winter (de Foy et al., 2015), and PMC, which mainly from local sources 436 

and has a short residence time in the atmosphere owing to the rapid deposition rate 437 

(Clements et al., 2014; Clements et al., 2016; Hinds, 1982), were set to 150 and 250 438 

km, respectively.  439 

2.2 Prior emissions and uncertainties 440 

Anthropogenic emissions over China were obtained from the 2016 Multi-resolution 441 

Emission Inventory for China (MEIC 2016) (Zheng et al., 2018), while those over the 442 

other regions of East Asia were obtained from the mosaic Asian anthropogenic emission 443 

inventory (MIX) (Li et al., 2017). The spatial resolutions of the MEIC and MIX 444 

inventories were both 0.25° × 0.25° and they are downscaled to match the model grid 445 

spacing of 36 km. The spatial distributions of CO, SO2, NOx, PPM2.5, and PMC 446 

emissions are shown in Figure 11. The daily emission inventory, which was 447 

arithmetically averaged from the combined monthly emission inventory, was directly 448 

used in the EI subsystem and was employed as the prior emission of the first DA 449 

window in the EI subsystem (Figure 1). During the simulations, daily emissions were 450 

further converted to hourly emissions. All species emitted from area sources were 451 

converted to hourly emissions using the same diurnal profile (Figure S2) and for the 452 

point source, we assumed that there was no diurnal change. MEIC 2012 was used as an 453 

alternative a priori over China to investigate the impact of different prior emissions on 454 

optimized emissions. The Model of Emissions of Gases and Aerosols from Nature 455 

(MEGAN) (Guenther et al., 2012) was used to calculate time‐dependent biogenic 456 

emissions, which was driven by the WRF model. Biomass burning emissions were not 457 
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included because they have little impact across China during the study period (Zhang 458 

et al., 2020). 459 

During the inversion cycles, inverted emissions of different members converge 460 

gradually, and the ensemble-estimated error covariance matrix is likely to be 461 

underestimated. To avoid this, considering the compensation of model errors and 462 

comparable emission uncertainties from one day to the next, we imposed the same 463 

uncertainty on emissions at each DA window. As mentioned above, the optimized 464 

emissions of the current DA window were transferred to the next DA window as prior 465 

emissions. The technology-based emission inventory developed by Zhang et al. (2009b), 466 

using the same method as MEIC, showed that the emissions of PMC and PPM2.5 had 467 

the largest uncertainties, followed by CO, and finally SO2 and NOx. Therefore, the 468 

uncertainties of PMC, PPM2.5, CO, SO2, and NOx in this study were set as 40%, 40%, 469 

30%, 25%, and 25%, respectively. However, previous studies have shown that inversely 470 

estimated CO and PMC emissions can exceed 100% higher than the bottom-up 471 

emissions (MEIC) in certain areas (Feng et al., 2020b; Ma et al., 2019). Therefore, 472 

according to the extent of underestimation, we set an uncertainty of 100% for both the 473 

CO and PMC emissions at the beginning of the three DA windows to quickly converge 474 

the emissions. Mean emission analysis is generally minimally sensitive to the 475 

uncertainty setting in the assimilation cycle method (Feng et al., 2020; Gurney et al., 476 

2004; Miyazaki et al., 2012a) as the inversion errors of the current window can be 477 

transferred to the next window for further optimization (Section 4.3). 478 

2.3 Observation data and errors 479 

Hourly averaged surface CO, SO2, NO2, O3, PM2.5, and PM10 observations from 1504 480 

national control air quality stations were assimilated into this system, which were 481 

obtained from the Ministry of Ecology and Environment of the People’s Republic of 482 

China (http://106.37.208.233:20035/, last access: 25 June 2020). These sites are 483 

distributed over most of central and eastern China and become denser near metropolitan 484 

areas (see Figure 2). To ensure data quality, value-range checks were performed to 485 

eliminate unrealistic or unrepresentative observations and only the observations within 486 
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the subjectively selected threshold range were assimilated (Table 2). In additionally, a 487 

time-continuity check was performed to eliminate gross outliers and sudden anomalies 488 

using the function of ��� (|�(�) − �(� ± 1)|) ≤ �(�) , where �(�)  and �(� ± 1) 489 

represent observations at time �  and � ± 1 , respectively, and �(�) = �� + �� × �� . 490 

This means that the concentration difference between time t and time t+1 and t-1 should 491 

be less than �(�) . ��  was fixed at 0.15 and the section of ��  is given in Table 2, 492 

which was determined empirically according to the time series change of concentration 493 

at each site. To avoid potential cross‐correlations, we assimilated PM2.5 and PMC. 494 

Additionally, in the EI subsystem, the observations within each city were averaged to 495 

reduce the data density, reduce the error correlation, and increase spatial representation 496 

(Houtekamer and Mitchell, 2001; Houtekamer and Zhang, 2016). Finally, 336 city sites 497 

were available across mainland China, in which data from 311 cities were selected for 498 

assimilation and the remaining 25 were selected for independent validation (Figure 2). 499 

In the IA subsystem, owing to the small horizontal correlation scale (Figure 3), all site 500 

observations were assimilated to provide a good IC for the next emission inversion to 501 

obtain more extensive observation constraints. 502 

The observation error covariance matrix (R) includes both the measurement and 503 

representation errors. The measurement error �� is defined as follows: 504 

�� = ����� + ����� × Π�         (16) 505 

where �����  is the base error and Π�  denotes the observed concentration. These 506 

parameters for different species are listed in Table 2 and were determined according to 507 

Chen et al. (2019), Feng et al. (2018), and Jiang et al. (2013b). 508 

The representative error depends on the model resolution and characteristics of the 509 

observation locations, which were calculated using the equations of Elbern et al. (2007), 510 

defined as follows: 511 

�� = ����Δ� �⁄                  (17) 512 

where γ is a tunable parameter (here, γ=0.5), Δ� is the grid spacing (36 km), and L 513 
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is the radius (3 km for simplification) of the influence area of the observation. The total 514 

observation error (�) was defined as follows: 515 

 � = ���
� + ��

�                 (18) 516 

Table 2. Parameters of quality control and measurement error 517 

Parameter 
CO 

mg m-3 

SO2 

μg m-3 

NO2 

μg m-3 

O3 

μg m-3 

PM2.5 

μg m-3 

PMC 

μg m-3 

value‐range 0.1-12 1-800 1-250 1-250 1-800 1-900 

time-continuity 

(��) 
2.5 160 70 80 180 180 

ermax 0.05 1 1 1 1.5 1.5 

ermin 0.5% 0.5% 0.5% 0.5% 0.75% 0.75% 

 518 

3 Experimental design 519 

RAPAS was conducted according to the procedure and settings described in Section 2. 520 

December is one of the months with the most severe air pollution, whereas July is one 521 

of the least polluted months in China. Therefore, this study mainly tested the 522 

performance of the RAPAS system over these two months. For December, the IA 523 

subsystem was run from 26 November to 31, 2016, with a 6-hour interval cycling 524 

assimilation to optimize ICs (ICDA). A better IC at 0000 UTC on 1 December could be 525 

obtained by a five-day high-frequency cycling assimilation and atmospheric mixing. 526 

The EI subsystem was then run for December 2016 with a one-day assimilation window 527 

to optimize emissions (EMDA). In July, the system operated identically to that of 528 

December. It should be noted that owing to the stronger atmospheric oxidation, the 529 

lifetime of NO2 in July was significantly shorter than that in December; thus, we 530 

adopted a smaller localization scale for NO2 (80 km). Both assimilation experiments 531 

used the combined prior emission inventories of 2016, as described in Section 2.2, and 532 

the emission base year coincided with the research stage. An Observing Systems 533 

Simulation Experiment (OSSE) was conducted to evaluate the performance of the 534 
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RAPAS system, which has been widely used in previous assimilation systems 535 

development (Daley, 1997). In the OSSE experiment, we used the MEIC 2016 536 

inventory as a “true” emission and reduced by 30% over mainland China as a prior 537 

emission. The simulations were simulated using the “true” emission and sampled 538 

according to the locations and times of the real observations used as artificial 539 

observations. The observation errors were the same as those in EMDA. To evaluate the 540 

IC improvements from the IA subsystem, an experiment without 3DVAR (NODA) was 541 

conducted with the same meteorological fields and physical and chemistry 542 

parameterization settings as those of the ICDA. To evaluate the posterior emissions of 543 

the EI subsystem, two parallel forward modelling experiments were performed for 544 

December 2016: a control experiment (CEP) with prior (MEIC 2016) emissions and a 545 

validation experiment (VEP) with posterior emissions. Both experiments used the same 546 

IC at 0000 UTC on December 01 generated through the IA subsystem. The only 547 

difference between CEP and VEP were emissions. Table 3 summarizes the different 548 

emission inversion experiments conducted in this study. 549 

To investigate the robustness of our system, eight sensitivity tests (from EMS1 to EMS7; 550 

see Table 3) were performed. These experiments were all based on EMDA. EMS1 used 551 

MEIC 2012 as the original prior emission in China, aiming to investigate the impact of 552 

different prior inventories on the estimates of emissions. The other experiments 553 

(EMS2–5) aimed to test the impact of different prior uncertainty settings, in which the 554 

prior uncertainties were reduced by -50% and -25%, and increased by 25% and 50%, 555 

respectively. EMS6 aimed to evaluate the impact of observation errors on emission 556 

estimates, in which all observation errors are magnified twice. EMS7 aimed to evaluate 557 

the impact of IC optimization of the first window on emission estimates, in which the 558 

ICs were taken from a five-day spin-up simulation. Eight forward modelling 559 

experiments (VEP1, VEP2, …, VEP7) were also performed with the posterior 560 

emissions of EMS1 to EMS7 to evaluate their performance.  561 

 562 
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Table 3. Emission inversion and sensitivity experiments conducted in this study 563 

 564 

4 Results 565 

4.1 Evaluations  566 

4.1.1 Simulated meteorological fields 567 

In the RAPAS system, the inversion approach attributes all biases between the 568 

simulated and observed concentrations to emissions. Meteorological fields dominate 569 

the physical and chemical processes of air pollutants in the atmosphere, and thus their 570 

Exp. 

Type 

Exp. 

Name 
Period 

IC of the first 

DA Window 

ICs of the 

subsequent DA 

window 

Emission 

Assimilation 

EMDA 
1–31 

December 

0000 UTC on 

December 1, 

taken from 

ICDA 

Forecast with 

posterior 

emissions in the 

previous window 

MEIC 2016 for 

December (the first 

DA window), 

optimized emissions 

of the previous 

window (other DA 

windows) 

OSSE 
1–31 

December 

Same as 

EMDA 
Same as EMDA 

Same as EMDA but 

with a decrease of 

30% for CO, SO2, 

NOx, PPM2.5, and 

PMC 

Sensitivity 

EMS1 
1–31 

December 

Same as 

EMDA 
Same as EMDA 

Same as EMDA but 

for EMIC 2012 

EMS2-5 
1–31 

December 

Same as 

EMDA 
Same as EMDA 

Same as EMDA but 

with a ± 25% or ± 

50% of default 

uncertainty 

EMS6 
1–31 

December 

Same as 

EMDA 
Same as EMDA 

Same as EMDA but 

with a +100% of 

default observation 

errors 

EMS7 
1–31 

December 

0000 UTC on 

December 1, 

taken from 

ICNO 

Same as EMDA Same as EMDA 
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simulation accuracy would significantly affect the estimates of emissions in this study. 571 

To quantitatively evaluate the performance of the WRF simulations, the mean bias 572 

(BIAS), root mean square error (RMSE), and correlation coefficient (CORR) were 573 

calculated against the surface meteorological observations measured at 400 stations and 574 

the planetary boundary layer height (PBLH) was calculated using the sounding data at 575 

92 sites. Surface observations were obtained from the National Climate Data Center 576 

integrated surface database (http://www.ncdc.noaa.gov/oa/ncdc.html, last access: 25 577 

October 2021) and sounding data were obtained from the website of the University of 578 

Wyoming (http://weather.uwyo.edu/upperair/sounding.html, last access: 10 March 579 

2022). The sounding data had a 12 hour interval. The observed PBLH was calculated 580 

using sound data via the bulk Richardson number method (Richardson et al., 2013). 581 

The spatial distribution of meteorological stations is shown in Figure 2. The simulated 582 

temperature at 2 m (T2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), 583 

and PBLH from 26 November to 31 December 2016 were evaluated against the 584 

observations. Table 4 summarizes the statistical results of the evaluation of the 585 

simulated meteorological parameters. Overall, T2, RH2 and PBLH were slightly 586 

underestimated, with biases of -0.1 ℃, -3.8%, and -41.1 m, respectively. CORRs were 587 

approximately 0.98 for T2, 0.94 for RH2, and 0.90 for PBLH, showing good 588 

consistency between the observations and simulations. WS10 was overestimated, with 589 

a bias of 0.7 m/s and an RMSE of 0.8 m/s, but were better than the simulations from 590 

many previous studies (Chen et al., 2016; Jiang et al., 2012a; Jiang et al., 2012b). 591 

Therefore, the WRF can generally reproduce meteorological conditions sufficiently in 592 

terms of their temporal variation and magnitude over China, which is adequate for our 593 

inversion estimation. 594 

 595 

 596 

 597 

 598 
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Table 4. Statistics comparing the simulated and observed 10-m wind speed (WS10), 2-599 

m temperature (T2), and 2-m relative humidity (RH2), and planetary boundary layer 600 

height (PBLH).  601 

Variable Met. 
No. of 

sites 

Mean 

Obs. 
Mean Sim. BIAS RMSE CORR 

WS10 (m/s) 400 2.6 3.3 0.7 0.8 0.72 

T2 (°C) 400 2.9 2.8 -0.1 0.7 0.98 

RH2 (%) 400 66.3 62.6 -3.8 5.2 0.94 

PBLH (m) 92 267.5 226.4 -41.1 50.4 0.90 

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 602 

4.1.2 Initial conditions  603 

Figure 4 shows an evaluation of the analyzed concentrations of the six species against 604 

surface observations. For comparison, the evaluations of the simulations without 605 

3DVAR (NODA) are also shown in Figure 4. The simulations of the NODA experiment 606 

(red dots) are scattered on both sides of the central line, as large systematic biases 607 

remain across many measurement sites. Conversely, the ICDA experiment (blue dots) 608 

showed a much better agreement with the observations than those from NODA. The 609 

statistics show that there are large systematic biases in the NODA simulations, with 610 

large RMSEs and small CORRs for all species, particularly for CO and PMC. After the 611 

assimilation of surface observations, the RMSE of CO decreased to 0.7 mg m-3, and 612 

those of SO2, NO2, O3, PM2.5, and PMC decrease to 22.0, 12.0, 9.6, 20.5, and 19.6 μg 613 

m-3, respectively, with respective reductions of 50.0%, 73.1%, 61.0%, 64.7%, 69.5%, 614 

and 60.8% compared to those of the NODA (Table 5). The CORRs of ICDA increased 615 

by 290.0%, 291.3%, 55.4%, 87.2%, 130.0%, and 214.8% to 0.78, 0.90, 0.87, 0.88, 0.92, 616 

and 0.85, respectively. These statistics indicate that the ICs of the ground level 617 

improved significantly. However, owing to the lack of observations, we still do not 618 

know the simulation bias in the upper-middle boundary layer. Although concentrations 619 

at high altitudes can be constrained by ground-based observations through vertical 620 
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correlations, the effect is limited; therefore, the bias remains non-negligible. 621 

 622 

Figure 4. Scatter plots of simulated versus observed (a) CO, (b) SO2, (C) NO2, (d) O3, 623 

(e) PM2.5, and (f) PMC mass concentrations at 0000 UTC on December 1 initializations 624 

from the background (red) and analysis (blue) fields. 625 

 626 

 627 

 628 

 629 

 630 
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Table 5. Comparisons of the surface CO, SO2, NO2, O3, PM2.5, and PMC mass 631 

concentrations from the control and assimilation experiment against observations 632 

aggregated over all analysis times. CO unit: mg m-3; others units: μg m-3. 633 

Species Exp. Name 
Mean 
Obs. 

Mean 
Sim. 

BIAS RMSE CORR 

CO 
NODA 

1.5  
0.8  -0.7  1.4  0.20  

ICDA 1.5  -0.1  0.7  0.78  

SO2 
NODA 

36.3  
56.0  19.7  81.7  0.23  

ICDA 37.8  1.5  22.0  0.90  

NO2 
NODA 

45.8  
51.1  5.3  30.8  0.56  

ICDA 47.0  1.1  12.0  0.87  

O3 
NODA 

20.5  
30.8  10.4  27.2  0.47  

ICDA 23.3  2.8  9.6  0.88  

PM2.5 
NODA 

70.9  
82.2  11.3  67.3  0.40  

ICDA 71.8  0.9  20.5  0.92  

PMC 
NODA 

43.5  
8.5  -35.0  50.0  0.27  

ICDA 41.6  -1.9  19.6  0.85  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 634 

4.1.3 Posterior emissions 635 

Owing to the mismatched spatial scales, it is difficult to directly evaluate the optimized 636 

emissions against observations. Generally, we indirectly validated the optimized 637 

emissions by comparing the forward simulated concentrations using the posterior 638 

emissions against atmospheric measurements (e.g., Jiang et al., 2014; Jin et al., 2018; 639 

Peters et al., 2007). Figure 5 shows the spatial distributions of the mean biases between 640 

the gaseous pollutants simulated using prior and posterior emissions and assimilated 641 

observations. In the CEPs, for each species, the distribution of biases was similar to the 642 

increments in background fields constrained through 3DVAR, as shown in Figure S3. 643 

For example, almost all sites had large negative biases for CO, while for SO2 and NO2, 644 

positive biases were mainly distributed over the North China Plain (NCP), Yangtze 645 

River Delta (YRD), Sichuan Basin (SCB), and Central China and negative biases were 646 

distributed over remaining areas. After constraining with observations, the biases of all 647 
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three gaseous air pollutants were significantly reduced at most sites. For CO, the biases 648 

at 62% of the sites decreased to absolute values less than 0.2 mg m-3 and for SO2 and 649 

NO2, the biases at 52% and 47% of the sites were within ±4 μg m-3. However, large 650 

negative biases were still observed in western China, indicating that the uncertainties 651 

of the posterior emissions are still large in western China, which may be attributed to 652 

the large biases in prior emissions and the relatively limited observations. Overall, the 653 

statistics show that there are different levels of improvement at the 311 assimilation 654 

sites of 92%, 85%, and 85% for CO, SO2, and NO2, respectively. The small number of 655 

sites with worse performance may be related to over-adjusted emissions by EI or 656 

contradictory adjustments caused by opposite biases in adjacent areas. 657 

Table 6 lists the statistical results of the evaluations averaged over the whole mainland 658 

of China. For CO, the mean bias was -0.8 mg m-3 with the prior emissions, while it 659 

substantially reduced to -0.1 mg m-3 (reduction rate of 89.6%) when simulating with 660 

the posterior emissions. Additionally, the RMSE decreased by 48.1% from 1.08 to 0.56 661 

mg m-3, and the CORR increased by 76.1% from 0.46 to 0.81. For SO2 and NO2, the 662 

regional mean biases slightly increased as the positive/negative biases among different 663 

sites might be offset. However, the RMSEs decreased to 17.7 and 12.3 μg m-3, 664 

respectively, which were 58.3% and 50.8% lower than those of CEPs, and the CORRs 665 

increased by 125.6% and 35.4%, both reaching up to 0.88, indicating that EI 666 

significantly improved the NOx and SO2 emission estimates. 667 
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 668 

Figure 5. Spatial distribution of the BIAS of the simulated (a, b) CO, (c, d) SO2, and 669 

(e, f) NO2 with prior (left, CEP) and posterior (right, VEP) emissions. CO unit: mg m-670 

3; SO2 and NO2 units: μg m-3. 671 

Figure 6 shows the spatial distributions of the mean biases of simulated PM2.5 and PMC 672 

evaluated against assimilated observations. Similarly, the CEP simulations did not 673 

perform well. There were widespread underestimations across the country, with mean 674 

biases of -24.0 and -32.4 μg m-3. After data assimilation, the performance of the VEP 675 

simulations significantly improved. The biases decreased by 72.1% and 90.4% to -6.7 676 
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and -3.1 μg m-3, the RMSEs decreased by 41.2% and 40.7% to 29.6 and 24.6 μg m-3, 677 

and the CORRs increased by 35.9% and 176.0% to 0.87 and 0.69 for PM2.5 and PMC, 678 

respectively. Overall, 89.6% and 97.2% of the assimilation sites were improved for 679 

PM2.5 and PMC, respectively. However, compared with the results for the three gaseous 680 

pollutants, there were sites with large biases scattered throughout the entire domain. In 681 

addition to the potential over-adjusted or contradictory adjustments of emissions as in 682 

the three gas species, the sites with large biases may be related to the complex 683 

precursors and complex homogeneous and heterogeneous chemical reactions and 684 

transformation processes of secondary PM2.5, and the fact that we did not simulate the 685 

time variation of dust blowing caused by wind speed for PMC owing to the lack of land 686 

cover data that is compatible with the CMAQ dust module and agricultural activity data 687 

to identify dust source regions. 688 

 689 

Figure 6. Same as in Figure 5 but for PM2.5 and PMC. 690 
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Figures 7 and 8 show the spatial distributions of the biases calculated against 691 

independent observations for the five species. With posterior emissions, the decreasing 692 

ratios of RMSEs ranged from 26.7%–42.0% and the CORRs increased by 13.7–59.0% 693 

to 0.62–0.87. Overall, the biases at the independent sites are similar or slightly worse 694 

than those at the assimilated sites, which is reasonable as the closer the independent 695 

sites are to the assimilated site, the more constraints of observation information can be 696 

obtained and the more significant the improvements in the optimized state variables of 697 

the model. For example, generally, the transmission distance of NO2 is relatively short 698 

and remote cities with small emission correlations to the cities with assimilated 699 

observations are relatively less constrained, resulting in only a 26.7% decrease in the 700 

RMSE. 701 

 702 

Figure 7. As in Figure 5 but for the independent validation. 703 
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 704 

Figure 8. As in Figure 6 but for the independent validation. 705 

Comparing our results with those of previous studies, Tang et al. (2013) inverted CO 706 

emissions over Beijing and the surrounding areas and obtained comparable 707 

improvements (Table 6) in the RMSE (37–48% vs. 30–51%) and CORR (both studies 708 

~ 0.81); however, we decreased the biases by 90–97%, which is much greater than their 709 

48–64% reductions. Additionally, Chen et al. (2019) showed that the RMSE of 710 

simulated SO2 with updated SO2 emissions decreased by 4.2–52.2% for different 711 

regions, and the CORR only increased to 0.69 at most. These improvements are smaller 712 

than those obtained in this study, which may be due to the insufficient adjustment of 713 

emissions caused by the underestimated ensemble spread through the inflation method. 714 

The better performance in this study may be related to our inversion process, which 715 

causes the optimized emissions of the current DA window to propagate to the next DA 716 

window for further correction. 717 
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Table 6. Statistics comparing the pollution concentrations from the simulations with 718 

prior (CEP) and posterior (VEP) emissions against assimilated and independent 719 

observations, respectively. CO unit: mg m-3; others units: μg m-3. 720 

Species 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR  

CEP VEP CEP VEP CEP VEP CEP VEP  

Against assimilated observations  

CO 1.43  0.66  1.36  -0.77  -0.08  1.08  0.56  0.46  0.81   

SO2 32.5  34.4  28.4  1.9  -4.1  42.4  17.7  0.39  0.88   

NO2 43.8  40.8  39.0  -2.9  -4.8  25.0  12.3  0.65  0.88   

PM2.5 77.0  53.1  70.3  -24.0  -6.7  50.3  29.6  0.64  0.87   

PMC 40.5  8.1  37.5  -32.4  -3.1  41.5  24.6  0.25  0.69   

Against independent observations  

CO 1.54  0.79  1.52  -0.75  -0.02  1.15  0.72  0.59  0.82   

SO2 40.6  39.2  37.3  -1.3  -3.2  44.3  27.2  0.57  0.87   

NO2 50.2  50.0  47.5  -0.3  -2.7  21.7  15.9  0.73  0.83   

PM2.5 91.5  64.6  84.1  -26.9  -7.4  64.1  37.2  0.62  0.87   

PMC 42.0  9.2  40.4  -32.8  -1.6  39.3  26.6  0.39  0.62   

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 721 

4.1.4 Uncertainty reduction 722 

The uncertainty reduction rate (UR) is an important quantity to evaluate the 723 

performance of RAPAS and the effectiveness of in situ observations (Chevallier et al., 724 

2007; Jiang et al., 2021; Takagi et al., 2011). Following Jiang et al. (2021), the UR was 725 

calculated as 726 

�� = (1 −
����������

������
) × 100                   （19） 727 

where ����������  and ������  are the posterior and prior uncertainties, respectively, 728 

calculated using the standard deviations of the prior and posterior perturbations (Text 729 

S2). Table 7 shows the URs averaged in each province and mainland China. URs varied 730 

with species as they are closely related to the magnitude settings of prior uncertainties 731 

(Jiang et al., 2021). The URs of PPM2.5 and PMC were the most effective while the UR 732 

of NOx emissions was the lowest. For mainland China overall, uncertainties were 733 

reduced by 44.4%, 45.0%, 34.3%, 51.8%, and 56.1% for CO, SO2, NOx, PPM2.5, and 734 
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PMC, respectively. For one species, URs varied across provinces. URs are usually 735 

related to observation coverage, which means that the more observation constraints 736 

there are, the more URs decrease. Additionally, URs may also be related to emission 737 

distributions. Generally, URs were more significant in the provinces where 738 

observations and emissions were both relatively concentrated (e.g. Tibet), while they 739 

were much lower where the emissions were scattered or relatively uniform, but the 740 

observations were only in large cities, even if there were many more observations than 741 

in other provinces.  742 

Table 7. Time-averaged posterior emission uncertainty reduction (%) indicated by the 743 

standard deviation reduction of total emissions per province calculated by prior and 744 

posterior ensembles. 745 

 746 
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4.1.5 Evaluation using chi-squared statistics  747 

To diagnose the performance of the EnKF analysis, chi-squared (χ2) statistics were 748 

calculated, which are generally used to test whether the prior ensemble mean RMSE 749 

with respect to the observations is consistent with the prior “total spread” (square root 750 

of the sum of ensemble variance and observation error variance). Following Zhang et 751 

al. (2015), for the tth window, χ2 is defined as: 752 

χ�
� = (� − ���)�(����� + �)��(� − ���)           （ 20 ） 753 

Figure 9 shows the time series of the relative changes between the prior and posterior 754 

emissions and the χ2 statistics. There were relatively large adjustments in emissions in 755 

the first three windows, especially for the PMC. Subsequently, the five species reached 756 

a more optimal state with successive emission inversion cycles. The χ2 statistics showed 757 

similar variation characteristics as the daily changes in emissions. The χ2 value was 758 

slightly greater than 1, indicating that the uncertainties from the error covariance 759 

statistics did not fully account for the error in the ensemble simulations. A similar result 760 

was reported by Chen et al. (2019). Further investigations should be conducted to 761 

generate larger spreads by accounting for the influence of model errors. As we imposed 762 

the same uncertainty of prior emissions at each DA window to partially compensate for 763 

the influence of model errors, χ2 statistics showed small fluctuations, indicating that the 764 

system updated emissions consistently and stably. 765 

 766 
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 767 

Figure 9. Relative changes (a) in posterior emission estimates of CO, SO2, NOx, PPM2.5, 768 

and PMC and χ2 statistics (b) of these state vectors in each window. 769 

4.1.6 Evaluation using OSSE 770 

Figure 10 shows the spatial distribution of the error reduction in the posterior emissions 771 

of the five species. After inversion, in most areas, the emission errors were reduced by 772 

more than 80%, especially in the central and eastern regions with dense observation 773 

sites, while in remote areas far away from cities, due to the sparse observation sites, the 774 

emission errors were still not well adjusted. Overall, the error reduction rates of CO, 775 

SO2, NOx, PPM2.5, and PMC were 78.4%, 86.1%, 78.8%, 77.6%, and 72.0%, 776 

respectively, indicating that with the in situ observations in China, RAPAS can 777 

significantly reduce emission errors and thus showed good performance in emission 778 

estimates.  779 
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 780 

Figure 10. Spatial distribution of the error reduction (%) of posterior emissions in the 781 

OSSE. 782 

4.2 Inverted emissions 783 

Figure 11 shows the spatial distribution of temporally averaged prior and posterior 784 

emissions and their differences in emissions in December 2016. It should be noted that 785 

emissions outside China were masked; as the observation sites were limited to China in 786 

this study, there was a slight change in the emissions outside China. Higher emissions 787 

were mainly concentrated in central and eastern China, especially in the NCP, YRD, 788 

and PRD, and lower emissions occurred across Northwest and Southern China. 789 

Compared with the prior emissions, posterior CO emissions were considerably 790 

increased across most areas of mainland China, especially in northern China, with an 791 

overall increase of 129%. A notable underestimation of prior emissions was also 792 

confirmed by inversion estimations (Feng et al., 2020b; Tang et al., 2013; Wu et al., 793 

2020) and model evaluations (Kong et al., 2019b) in previous studies. For SO2, the 794 

emissions increased mainly in Northeast China, Shanxi, Ningxia, Gansu, Fujian, 795 

Jiangxi, and Yunnan provinces. In SCB, Central China, YRD, and part of the NCP, 796 
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emissions were significantly reduced. The national total SO2 emissions increased by 797 

20%. For NOx, although the increment of national total emissions was small 798 

(approximately 5%), there were large deviations. The emissions in NCP and YRD were 799 

reduced, whereas the emissions in most cities in other regions increased. The changes 800 

in the emission of PPM2.5 were similar to those of SO2. Compared with the prior 801 

emissions, the posterior PPM2.5 emissions decreased over central China, SCB, and YRD, 802 

whereas those in southern and northern China increased, especially in Shanxi, Shaanxi, 803 

Gansu, and southern Hebei provinces. Overall, the relative increase was 95%. For PMC, 804 

the posterior emissions were increased over all of mainland China, with national mean 805 

relative increase exceeding 1000%. Larger emission increments mainly occurred in 806 

areas with significant anthropogenic emissions of CO and PPM2.5, indicating that the 807 

large underestimation of PMC emissions in the prior inventory may be mainly 808 

attributed to the underestimations of anthropogenic activities. The absence of natural 809 

dust is another reason, as the wind-blown dust scheme was not applied in this study. 810 

Overall, PM10 emissions (PPM2.5+PMC) increased by 318%. If we assume that all the 811 

increments in PM10 emissions are from natural dust, that means the contribution of 812 

natural dust accounted for 75% of total PM10 emissions, which is consistent with the 813 

source apportionment of PM10 of 75% in Changsha in Central China (Li et al., 2010). 814 

Large PMC emission increments were also reported by Ma et al. (2019).  815 

Detailed estimations of posterior emissions and relative changes compared to prior 816 

emissions in each province and mainland China are given in Table S1. The evaluation 817 

results for July showed that the emission uncertainty could still be significantly reduced 818 

and the performance of the system in July was comparable to that in December (Table 819 

S2). Additionally, the seasonal variation in emissions was well reflected (Figures S4 820 

and S5), which means that our system performed well at different times of the year. 821 

Note that the differences, excluding PMC, between the prior and posterior emissions 822 

mainly reflect the deficiencies of the prior emissions as the times of the prior emissions 823 

and observations were consistent in this study. 824 
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 825 

Figure 11. Spatial distribution of the time-averaged prior emissions (left column, MEIC 826 

2016), posterior emissions (middle column), and differences (right column, posterior 827 

minus prior). 828 

4.3 Sensitivity tests 829 

4.3.1 Impact of prior inventories 830 

Various prior inventories have shown considerable differences in space allocation and 831 
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emission magnitudes. Inversion results can be sensitive to a priori emissions if the 832 

observations are insufficient (Gurney et al., 2004; He et al., 2018). MEIC 2012 was 833 

used as an alternative a priori in EMS1 to investigate the impact of different prior 834 

emissions on posterior emissions. Figure 12 shows the time series of the relative 835 

differences in the daily posterior emissions of the five species between the EMDA (base) 836 

and EMS1 experiments. Overall, the differences between the two posterior emissions 837 

gradually decreased over time. At the beginning, the differences in the CO, SO2, NOx, 838 

PPM2.5, and PMC between the two inventories (i.e. MEIC 2012 vs. MEIC 2016) were 839 

17.5%, 114.5%, 30.8%, 46.0%, and 72.0%, respectively, compared to 2.5%, 4.5%, 840 

4.5%, -8.9%, and 3.0% in the last ten days. In addition, the species with larger emission 841 

differences at the beginning took a longer time (i.e. more DA steps) to achieve 842 

convergence. The quick convergence of PMC emissions was attributed to the large prior 843 

uncertainty of 100% used in the first three DA windows. In contrast to the other species, 844 

there were significant negative deviations in PPM2.5 emissions between the two 845 

experiments. This may be due to the positive deviations in the precursors of PM2.5 (i.e., 846 

SO2 and NOx), which lead to a larger amount of secondary production. The PPM2.5 847 

emissions will be reduced to balance the total PM2.5. We compared the PM2.5 848 

concentrations simulated by the two optimized inventories and found that they were 849 

almost the same (Figure S6). Overall, this indicates that observations in China were 850 

sufficient to infer emissions and that our system was robust. Meanwhile, the monthly 851 

posterior emissions shown in Section 4.2 were still underestimated to a certain extent. 852 
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 853 

Figure 12. Relative differences in CO, SO2, NOx, PPM2.5, and PMC emissions (%, the 854 

ratio of absolute difference to EMDA) between the EMDA and EMS1 experiments.  855 

 856 

4.3.2 Impact of prior uncertainties settings 857 

The uncertainty of prior emissions determines how closely the analysis is weighted 858 

towards the background and observations; however, information about prior 859 

uncertainties is generally not readily available. To evaluate the possible influence of 860 

prior uncertainties on the optimized emissions, we increased/reduced the uncertainties 861 

after three days of cycling, namely starting at 0000 UTC, 3 December, by 25% and 50 % 862 

in EMS2 (-50%), EMS3 (-25%), EMS4 (+25%), and EMS5 (+50%), respectively. Table 863 

8 summarizes the emission changes with different prior uncertainty settings in the 864 

EMS2–5 experiments. To better understand the response of the system to the emission 865 

uncertainty settings, Figure 13 illustrates the time series of SO2 emission changes, Chi-866 

square statistics, and RMSEs of simulated SO2 with emissions updated in the EMDA 867 

and EMS2–5 experiments over the YRD and NCP (Figure 2). Compared with the 868 

EMDA, when the uncertainties decreased (increased), the emissions of the five species 869 

decreased (increased) accordingly. This is because the posterior emissions of the five 870 

species were larger than the prior emissions and, as shown in Figure 13a–d, larger 871 
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uncertainty will lead to faster convergence, resulting in larger posterior emissions. It 872 

can also be seen from Figure 13 that a faster convergence will reduce the RMSE of the 873 

simulated concentration with the posterior emissions in the early stage of the 874 

experiment; however, in the later stage of the experiment, there were no significant 875 

differences in the RMSE and Chi-square statistics among the different experiments. 876 

However, day-to-day changes in emissions also cause slight fluctuations. In addition, 877 

when greater uncertainties are set, the day-to-day changes in emissions are more drastic, 878 

resulting in a larger RMSE, as shown in the NCP. Moreover, the significant day-to-day 879 

variations in the estimated emissions may not be in line with the actual situation. Owing 880 

to the spatial-temporal inhomogeneity of emissions, the differences in Chi-square 881 

statistics between the YRD and NCP show that it may be necessary to apply different a 882 

priori uncertainties according to different regions (Chen et al., 2019). Therefore, when 883 

using an EnKF system for emission estimation, error setting must be carefully executed. 884 

Overall, the uncertainties chosen in EMDA aim to minimize the deviation of the 885 

concentration fields and maintain the stability of the inversion.  886 

Table 8. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%, the 887 

ratio of absolute difference to EMDA) between the EMDA and EMS2-5 experiments. 888 

Species EMS2 EMS3 EMS4 EMS5 

CO -8.6 -4 3 5.2 

SO2 -14 -5.7 3.6 6.8 

NOx -6.5 -3 2.8 4.5 

PPM2.5 -16.5 -7.8 4.6 8.7 

PMC -18.5 -8.2 7.3 13.1 

 889 
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 890 

Figure 13. Time-series of SO2 emission changes, Chi-square statistics, and RMSE of 891 

simulated SO2 with updated SO2 emissions in the EMDA and EMS2-5 experiments 892 

over the YRD and NCP. 893 

4.3.3 Impact of observation error settings 894 

Observation errors are another factor that determine the relative weights of the 895 

observations and background in the analysis. A proper estimate of the observation error 896 

is important for filter performance; however, observation errors are generally not 897 

provided with datasets. The observation error is usually set to a fixed value (Ma et al., 898 

2019), specific proportion of the observation value (Tang et al., 2013), or value 899 

calculated by combining measurement error with representative error as used in this 900 

study. Generally, the performance of data assimilation is sensitive to the specification 901 
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of the observation error (Tang et al., 2013). Sensitivity experiment (EMS6) with 902 

doubled observation error was conducted to evaluate the influence of observation error 903 

on the optimized emissions. Overall, the spatial distribution of emissions after 904 

optimization was almost the same as that of the EMDA experiment but with a lower 905 

increment (Figure S7), resulting in a weaker estimate of the national total emissions for 906 

each species. This is because that the observation error inflates and the system becomes 907 

more certain of the prior emission, and reduces the effect of observation information. 908 

Figure 14 shows the time series of simulated and observed daily concentrations and 909 

their RMSEs verified against the assimilated sites. The simulations in VEP6 usually 910 

performed worse, with larger biases and RMSEs than those of VEP (Figures S8 and S9), 911 

especially in western and southern China, where posterior emissions were significantly 912 

underestimated. These results generally corresponded to sluggish emission changes and 913 

large Chi-square statistics (Figure S10), suggesting that an observation error that is too 914 

large may substantially impact the estimated emissions. 915 
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 916 

Figure 14. Time series of the daily concentrations (CONC, left) and root mean square 917 

error (RMSE, right) obtained from CEP, VEP, and VEP7. The simulations were verified 918 

against the assimilated sites. 919 

4.3.4 Impact of the IC optimization of the first window 920 

Several studies indicate large emission discrepancies resulting from IC errors (Jiang et 921 

al., 2013a; Miyazaki et al., 2017; Tang et al., 2013), which means that if the IC is not 922 

optimized, the errors of concentrations would be compensated for through the 923 

adjustment of emissions. To evaluate the impact of IC optimization of the first window 924 
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on the emission inversions, an EMS7 experiment without the IA step was conducted. 925 

Figure 15 shows the time series of the relative differences in the daily posterior 926 

emissions of the five species between the EMDA and EMS7 experiments. It can be 927 

observed that IC optimization had a significant impact on the emission inversions of 928 

long-lived species (i.e. CO). The overall difference in the inverted CO emissions 929 

between the two experiments was approximately 5.3% but can reach 26.1% in the first 930 

few windows. For the short-lived species, IC optimization had little impact on the 931 

emissions; for example, the average emission differences of SO2, NOx, and PMC in the 932 

two experiments were 0.3%, 0.3%, and 0.9%, respectively. For PPM2.5, the average 933 

emission difference is affected not only by primary emissions, but also by the complex 934 

chemistry of its precursors. Therefore, the difference between the two experiments 935 

fluctuated, with overall difference of 2%. Notably, with the gradual disappearance of 936 

the benefit of IC assimilation, the two experiments reached a unified state after several 937 

windows. For CO, the impact of IA on emission inversion lasted approximately half a 938 

month. These results indicate that removing the bias of the IC of the first DA window 939 

is essential for the subsequent inverse analysis (Jiang et al., 2017).   940 

 941 

Figure 15. Relative differences in CO, SO2, NOx, PPM2.5, and PMC emissions (%, the 942 

ratio of absolute difference to EMDA) between the EMDA and EMS7. 943 
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4.4 Discussion 944 

Optimal state estimation using an EnKF relies on the assumption of an unbiased 945 

Gaussian prior error, which is not guaranteed in such highly nonlinear and large bias 946 

systems. In this study, some pollutants (e.g. CO, PMC) have very large simulated biases; 947 

thus, if a small uncertainty is adopted, the emission bias cannot be fully reduced. If a 948 

very large uncertainty is adopted, then the degree of freedom of adjustment is too large 949 

and the inverted daily emissions will fluctuate abnormally. Therefore, we only set a 950 

larger prior uncertainty in the first three windows, adopting a moderate uncertainty in 951 

the following windows and used a “two-step” inversion scheme and cyclic iteration to 952 

gradually correct the emission errors. Figure 9a shows the time series of the relative 953 

differences between prior and posterior emissions in each window. There were 954 

relatively large adjustments for the emissions in the first three windows, especially for 955 

PMC, but the adjustment ranges of the five species after the first three windows were 956 

within the uncertainty range (e.g. ± 25%), indicating that with this scheme, the EnKF 957 

method used in this system had a good performance in emission inversion. 958 

Model-data mismatch errors are from both the emissions and the inherent model errors 959 

arising from the model structure, discretization, parameterizations, and biases in the 960 

simulated meteorological fields. Neglecting model errors would attribute all 961 

uncertainties to emissions and lead to considerable bias in the estimated emissions. In 962 

the version of the CMAQ model used in this study, there are no heterogeneous reactions 963 

(Quan et al., 2015; Wang et al., 2017), the parameterization scheme for the formation 964 

of secondary organic aerosols (SOA) is imperfect (Carlton et al., 2008; Jiang et al., 965 

2012; Yang et al., 2019), no feedback between chemistry and meteorology was 966 

considered, and we used an idea profile for chemical lateral boundary conditions. All 967 

the above problems can lead to underestimated concentrations of pollutants, which in 968 

turn require more emissions to compensate, leading to overestimation of emissions. In 969 

addition, previous studies showed that ammonia emissions in the MEIC inventory are 970 

underestimated (Kong et al., 2019b; Paulot et al., 2014; Zhang et al., 2018). Owing to 971 

lack of ammonia observations, our system does not include emission estimates of 972 
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ammonia, which means that the concentration of ammonium aerosol was 973 

underestimated in this system, also resulting in an overestimation of the PPM2.5 974 

emission. Wind-blown dust was also not simulated; thus, the PMC emission inverted in 975 

this system come from anthropogenic activities and natural sources. Although some of 976 

these shortcomings can be solved by updating the CTM model, there will still be errors 977 

in each parameterization and process. In general, a parameter estimation method was 978 

used to reduce the model errors, in which some uncertain parameters were included in 979 

the augmented state vector and optimized synchronously based on the available 980 

observations (Brandhorst et al., 2017; Evensen, 2009). However, it is difficult to 981 

identify the key uncertain parameters of different species in different models, which 982 

generally comes not only from the complex atmospheric chemical model but also from 983 

hundreds of model inputs (Tang et al., 2013). Another method is bias correction, which 984 

treats the model error as a bias term and includes it in an augmented state vector 985 

(Brandhorst et al., 2017; De Lannoy et al., 2007; Keppenne et al., 2005). In addition, 986 

the weak-constraint 4DVAR method can be used to reduce model errors, which adds a 987 

correction term in the model integration to account for the different sources of model 988 

error (Sasaki, 1970). Although the reliable diagnosis of model error remains a challenge 989 

(Laloyaux et al., 2020), it should be considered in an assimilation system. In the future, 990 

we will consider model errors in our system to obtain better emission estimates. 991 

Independent variable localization was adopted to avoid potential spurious correlations 992 

across different species in this study. However, the transmission scales for different 993 

species in different regions differ, and a more accurate localization range can be 994 

obtained through backward trajectory analysis. In addition, O3 observations were not 995 

assimilated to improve NOx and VOC emissions using cross‐species information. O3 996 

concentration and NOx (VOC) emissions were positively correlated in the NOx (VOC)-997 

limited region and negatively correlated in the VOC (NOx)-limited region (Tang et al., 998 

2011; Wang et al., 2019b). Hamer et al. (2015) successfully used O3 observations to 999 

estimate NOx and VOC emissions within the 4DVAR framework within an ideal model. 1000 

However, the NOx emissions are often point or line sources, which are all small 1001 
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compared to the model resolution. With a coarse spatial resolution, the model cannot 1002 

accurately simulate the relationships between O3 and its precursors. When assimilating 1003 

O3 observations to infer NOx or VOC emissions, the inaccurate relationships simulated 1004 

by model would worsen the inversion of NOx emissions (Inness et al., 2015). In general, 1005 

improving the model resolution can improve the detailed simulation and provide better 1006 

prior information on O3-NOx-VOC, but it is still difficult to determine whether the 1007 

condition is NOx-limited or VOC-limited in the real atmosphere using prior emissions 1008 

(Liu and Shi, 2021). Elbern et al. (2007) emphasized that assimilating O3 to correct NOx 1009 

or VOC emissions must follow the EKMA framework derived based on observations, 1010 

otherwise, even if the resolution is improved to sufficiently solve point and line sources, 1011 

precursor emissions may be still adjusted in an opposite direction. This can be 1012 

demonstrated in our OSSE experiment at high resolution of 3 km (Figure S11). In this 1013 

study, the spatial resolutions of the prior emission inventory (i.e., MEIC) is 0.25° × 1014 

0.25°, which is appropriate for modeling at regional scales (Zheng et al., 2017). With 1015 

this emission inventory, it is unable to accurately simulate the O3-NOx-VOC 1016 

relationships. Therefore, to avoid the impact of inaccurate O3‐NOx relationship on 1017 

emission inversion, in our system, we did not assimilate O3, but directly assimilate NO2 1018 

to optimize the NOx emissions. This work will be followed by an ongoing study using 1019 

the available VOC observations. 1020 

Although we do not assimilate O3 observation, model resolution still has some influence 1021 

on inversion results. In our previous study (Feng et al., 2022), we have inferred the NOx 1022 

emissions over YRD in China using NO2 observations, which has a spatial resolution 1023 

of 12 km. The study period, assimilated observations, and inversion settings are the 1024 

same as this study. We compared the posterior emissions of YRD between this study 1025 

and Feng et al. (2022). The results showed that there was similar spatial distribution of 1026 

posterior emissions inferred using the two resolutions (36 km vs 12 km) (Figure S12), 1027 

but the total NOx emission in YRD inferred using 36 km resolution was about 8.8% 1028 

higher than that inferred using 12 km resolution. The differences are mainly caused by 1029 

meteorological differences at different resolutions. This indicates that coarse model 1030 
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resolution may lead to some overestimation of the inverted emissions. In addition, as 1031 

shown previously, the concentrations after DA were evidently underestimated in 1032 

western China, indicating that the inverted emissions over these regions still have large 1033 

uncertainties because of the sparsity of observations, which are spatially insufficient for 1034 

sampling the inhomogeneity of emissions. Therefore, further investigations with the 1035 

joint assimilation of multisource observations (e.g. satellite) are underway. 1036 

NOx is mainly emitted by transportation (Li et al., 2017), which can reflect the level of 1037 

economic activity to a certain extent. Weekly emission changes were explored to verify 1038 

the performance of the system in depicting emission changes (Figure S13). Although 1039 

the “weekend effect” of emissions in China is not significant (Wang et al., 2014; Wang 1040 

et al., 2015), the posterior NOx emission changes are in good agreement with the 1041 

observations. In our previous studies (Feng et al., 2020a; Feng et al., 2020b), this system 1042 

was successfully applied to optimize NOx and CO emissions. The inverted emission 1043 

changes were also in line with the epidemic control time points. Additionally, the 1044 

emission changes can reflect the emission migration from developed or urban areas to 1045 

developing or surrounding areas in recent years, which is consistent with the emission 1046 

control strategies in China. Although the system did not consider the model error, 1047 

resulting in a certain difference between the posterior and actual emissions, the 1048 

spatiotemporal changes in posterior emissions were relatively reasonable and can be 1049 

used to monitor emission changes and inform emission regulations. 1050 

5 Summary and conclusions 1051 

In this study, we developed a Regional multi-Air Pollutant Assimilation System 1052 

(RAPASv1.0) based on the WRF/CMAQ model, 3DVAR algorithm, and EnKF 1053 

algorithm. RAPAS can quantitatively optimize gridded emissions of CO, SO2, NOx, 1054 

PPM2.5, and PMC on a regional scale by simultaneously assimilating hourly in situ 1055 

measurements of CO, SO2, NO2, PM2.5, and PM10. This system includes two subsystems: 1056 

IA subsystem and EI subsystem, which optimize chemical ICs and infer anthropogenic 1057 

emissions.  1058 
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Taking the 2016 MEIC in December as a priori, the emissions of CO, SO2, NOx, PPM2.5, 1059 

and PMC in December 2016 were inferred by assimilating the corresponding 1060 

nationwide observations over China. The optimized ICs and posterior emissions were 1061 

examined against assimilated and independent observations through parallel forward 1062 

simulation experiments with and without DA. Sensitivity tests were performed to 1063 

investigate the impact of different inversion processes, prior emissions, prior 1064 

uncertainties, and observation errors on emission estimates.  1065 

RAPAS showed a good performance in assimilating surface in situ observations, with 1066 

the calculated emission uncertainties reduced by 44.4%, 45.0%, 34.3%, 51.8%, and 1067 

56.1% for CO, SO2, NOx, PPM2.5, and PMC, respectively. It can also significantly 1068 

improve the simulations; the RMSEs of the simulated concentrations with posterior 1069 

emissions decreased by 40.1–56.3% and the CORRs increased from 0.26–0.66 to 0.69–1070 

0.87 for different species. The OSSE experiment showed that the errors of posterior CO, 1071 

SO2, NOx, PPM2.5, and PMC could be reduced by 78.4%, 86.1%, 78.8%, 77.6%, and 1072 

72.0%, respectively. Overall, compared with the prior emissions (MEIC 2016), the 1073 

posterior emissions increased by 129%, 20%, 5%, and 95% for CO, SO2, NOx, and 1074 

PPM2.5, respectively. The posterior PMC emissions, which included anthropogenic and 1075 

natural dust contributions, increased by 1045%. Sensitivity tests with different prior 1076 

inventories showed that the observations in China were sufficient to infer emission and 1077 

that our system was less dependent on prior inventories. Additionally, sensitivity tests 1078 

with different prior uncertainties indicated that when the posterior emissions were 1079 

larger than the prior emissions, the emissions decreased/increased with 1080 

decreases/increases in uncertainties because of the different convergence rates. These 1081 

results demonstrate the advantage of the two-step method in emission inversion in that 1082 

the inversion errors of the last window can be transferred to the current window for 1083 

further optimization and robustness of the emissions estimated from RAPAS using 1084 

nationwide observations over China. It should be noted that the system usually responds 1085 

slowly to too small a priori uncertainties or too large observation errors, which may 1086 

result in large errors in the estimated emissions.   1087 
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In summary, the comprehensive evaluation and sensitivity tests revealed that RAPAS 1088 

could serve as a useful tool for accurately quantifying the spatial and temporal changes 1089 

in multi-species emissions at regional scales and near-real time, which will be helpful 1090 

for air pollution control in China and other regions around the world with dense ground 1091 

observation networks. 1092 
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