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Abstract 30 

Top-down atmospheric inversion infers surface-atmosphere fluxes from spatially 31 

distributed observations of atmospheric compositions, which is a vital means for 32 

quantifying large-scale anthropogenic and natural emissions. In this study, we 33 

developed a Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) based on 34 

the Weather Research and Forecasting/Community Multiscale Air Quality Modeling 35 

System (WRF/CMAQ) model, the three-dimensional variational (3DVAR) algorithm 36 

and the ensemble square root filter (EnSRF) algorithm. It is capable of simultaneously 37 

assimilatingto simultaneously assimilate spatially distributed hourly in-situ 38 

measurements of CO, SO2, NO2, PM2.5 and PM10 concentrations to quantitatively 39 

optimize gridded emissions of CO, SO2, NOx, primary PM2.5 (PPM2.5) and coarse PM10 40 

(PMC) on regional scale. RAPAS includes two subsystems, initial field assimilation (IA) 41 

subsystem and emission inversion (EI) subsystem, which are used to generate a gooda 42 

“perfect” chemical initial condition (IC), and conduct inversions of anthropogenic 43 

emissions, respectively. A “two-step” inversion scheme is adopted in the EI subsystem 44 

in each datasubsystem in its each data assimilation (DA) window, in which the emission 45 

is inferred in the first step, and then, it is input into the CMAQ model to simulate the 46 

initial field of the next window, meanwhile, it is also transferred to the next window as 47 

the prior emission. The chemical IC is optimized through the IA subsystem, and the 48 

original emission inventory is only used in the first DA window. Besides, a “super-49 

observation” approach is implemented based on optimal estimation theory to decrease 50 

the computational costs and observation error correlations and reduce the influence of 51 

representativeness errors.  52 

With this system, we estimated the emissions of CO, SO2, NOx, PPM2.5 and PMC in 53 

December and July 2016 over China using the corresponding nationwide surface 54 

observations. The 2016 Multi-resolution Emission Inventory for China (MEIC 2016) 55 

was used as the prior emission. For December, tThe system was run from 26 November 56 

to 31 December, in which the IA subsystem was run in the first 5 days, and the EI 57 

subsystem was run in the following days. In July, the system was run in the same way. 58 
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The evaluation and sensitivity testing of this system mainly focused on December.The 59 

optimized ICs at the first 5 days and the posterior emissions in December were 60 

evaluated against the assimilated and independent observations. Results showed that 61 

the simulated concentrations of CO, NO2, SO2, PM2.5 and PM10 with the prior 62 

inventory have large systematic biases, with relative biases in the range of -48.2-54.2%. 63 

In the IA subsystem, after 3DVAR,  the root mean squared error (RMSE) of the 64 

simulated concentrations decreased by 50.0-73.2%, and the correlation coefficient 65 

(CORR) increased to 0.78-0.92 for the five species compared to the simulations without 66 

3DVAR. In the EI subsystem, after emission inversionsAdditionally, , the RMSE of the 67 

simulated concentrations decreased by 40.1-56.3%, and the CORR increased to 0.69-68 

0.87 compared to the simulations without optimized emissions. For the whole mainland 69 

China, the uncertainties were reduced by 44.4%, 45.0%, 34.3%, 51.8% and 56.1% for 70 

CO, SO2, NOx, PPM2.5 and PMC, respectively. Overall, compared to the prior emission 71 

(MEIC 2016), the posterior emissions increased by 129%, 20%, 5%, and 95% for CO, 72 

SO2, NOx and PPM2.5, respectively, indicating that there was significant 73 

underestimation in the MEIC inventory. The posterior PMC emissions, including 74 

anthropogenic and natural dust contributions, increased by 1045%. A series of 75 

sensitivity tests were conducted with different inversion processes, prior emissions, 76 

prior uncertainties, and observation errors. Results showed that the “two-step” scheme 77 

clearly outperformed the simultaneous assimilation of ICs and emissions (“one-step” 78 

scheme), and the system is rather robust in estimating the emissions using the 79 

nationwide surface observations over China. Our study offers a useful tool for 80 

accurately quantifying multi-species anthropogenic emissions at large scales and near-81 

real time. 82 

 83 

 84 

 85 

 86 
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1. Introduction 87 

Due to rapid economic developments and pollution control legislations, an increasing 88 

demand to provide updated emission estimates has arisen, especially in areas where 89 

anthropogenic emissions are intensive. Accurately estimating source emission 90 

quantities and spatiotemporal changes resulting from various regulations is imperative 91 

and valuable for understanding air quality responses and crucial for providing timely 92 

instructions for the design of future emissions regulations. However, most inventories 93 

have been developed based on a bottom-up approach and are usually updated with a 94 

few years delay due to the complexity of gathering all statistical information on activity 95 

levels and sector-specific emission factors (Ding et al., 2015). The large uncertainty 96 

associated with the low temporal and spatial resolution of these datasets also greatly 97 

limits the assessment of emission changes. Some studies (Bauwens et al., 2020; Shi and 98 

Brasseur, 2020) have evaluated emission changes indirectly through concentration 99 

measurements, but air pollution changes are not only dominated by emission changes, 100 

but also highly affected by meteorological conditions (Shen et al., 2021).  101 

Top-down atmospheric inversion infers surface-atmosphere fluxes from spatially 102 

distributed observations of atmospheric compositions. Recent efforts have focused on 103 

developing air pollution data assimilation (DA) system to conduct the top-down 104 

inversion, which is able to integrate model and multi-source and large amounts 105 

ofamount observational information to constrain emission sources. Two major methods, 106 

namely, 4D-variational data assimilation (4DVAR) and ensemble Kalman filter (EnKF), 107 

are widely used in those DA systems. 4DVAR provides a global optimal analysis 108 

through minimizing a cost function. It shows implicit flow-dependent background error 109 

covariance and can reflect complex nonlinear constraint relationship (Lorenc, 2003). 110 

Additionally, the model error can be partly accounted for with a weak constraint 111 

4DVAR method through the definition of a systematic error term in a cost function 112 

(Derber, 1989). For example, GEOS-Chem and TM5 4DVAR frameworks have been 113 

used to estimate CH4 (Alexe et al., 2015; Schneising et al., 2009; Stanevich et al., 2021; 114 

Wecht et al., 2014) and CO2 fluxes (Basu et al., 2013; Nassar et al., 2011; Wang et al., 115 
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2019a) from different satellite retrieval products. Monteil et al. (2013) showed that the 116 

global patterns of CH4 emissions derived from SCIAMACHY (with bias correction) 117 

and GOSAT retrievals are in remarkable agreement based on 15 months observations. 118 

Additionally,For example,  Jiang et al. (2017) used 4DVAR algorithm to estimate 119 

global CO emission trends from 2000–2015 using MOPITT retrievals. Kurokawa et al. 120 

(2009) and Stavrakou et al. (2008) also used 4DVAR technique to estimate NOx 121 

emission changes. However, the drawback of the 4DVAR method is the additional 122 

development of adjoint models that are technically difficult and cumbersome for 123 

complex chemical transport models. Instead, EnKF uses the flow‐dependent 124 

background error covariance generated by ensemble simulations to map the deviations 125 

in concentrations to increments of emissions, which is more flexible and easier to 126 

implement. Many previous studies have used EnKF techniques to assimilate the single 127 

or dual species observations to optmize the corresponding emission species (Chen et 128 

al., 2019; Peng et al., 2017; Schwartz et al., 2014; Sekiyama et al., 2010). Multispecies 129 

data assimilation has shown the advantage of efficiently reducing the uncertainty in 130 

emission inventories and has led to improvements in air quality forecasting (Ma et al., 131 

2019; Miyazaki et al., 2012b), since it would offer additional constraints on emission 132 

estimates through the improvements in related atmospheric fields, chemical reactions, 133 

and gas-particle transformations (Miyazaki and Eskes, 2013). Barbu et al. (2009) 134 

updated sulfur oxide (SOx) emissions with SO2 and sulfate aerosol observations and 135 

found that simultaneous assimilation of both species had better performance than 136 

assimilating one of them alone.Barbu et al. (2009) updated sulfur oxide (SOx) emissions 137 

with SO2 gas and sulfate aerosol observations and showed that forecasts were improved 138 

overall but degraded when derived only from SO2 or sulfate observations.  139 

The deviation in chemical initial condition (IC) is one of the important sources of error 140 

that affects the accuracy of emission inversion, because atmosphericatmopheric 141 

inversion fully attributes the biases in simulated and observed concentrations to the 142 

deviations in emissions (Meirink et al., 2006; Peylin et al., 2005). The biases of 143 

concentrations would be compensated through unreasonable adjustment of pollution 144 
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emissions without the optimization of ICs (Tang et al., 2013). Tang et al. (2011) reported 145 

that the simultaneous optimizations of the ICs of O3, NOx and volatile organic 146 

compounds (VOCs) and the emissions of NOx and VOCs produced an overall better 147 

performance in ozone forecasts than the adjustment in emissions only. Similar method 148 

of simultaneously optimizing chemical ICs and emissions were also applied to 149 

constraining emissions in many previous studies (Ma et al., 2019; Miyazaki et al., 2012a; 150 

Peng et al., 2018). Although a large improvement has been achieved, this method still 151 

has great limitations because the contributions from the emissions and the chemical ICs 152 

to the model’s bias are difficult to distinguish (Jiang et al., 2017). Besides, the 153 

simultaneous optimization means that assimilation window is independent with each 154 

other, generally, the uncertainties of the emissions cannot be fully corrected in time in 155 

a window, resulting in an accumulation of errors in the estimation (Jiang et al., 2021).In 156 

addition, in this method, the constraints of the chemical ICs with observations in each 157 

assimilation window make the emission inversions are independent between 158 

assimilation windows, means if the emission in one window is overestimated or 159 

underestimated, it cannot be transferred to the next window for further correcting and 160 

be compensated in the following windows. This may result in a systematic bias in the 161 

inverted emissions (Jiang et al., 2021). 162 

Since 2013, China has deployed an air pollution monitoring network that publishes 163 

nationwide and real-time hourly surface atmospheric observations. This dataset 164 

provides an opportunity to improve emission estimates using DA. In this study, a 165 

regional multi- air pollutant assimilation system introducing 3DVAR and EnKF DA 166 

techniques is constructed to simultaneously assimilate various surface observations 167 

(e.g., CO, SO2, NO2, O3, PM2.5 and PM10). Considering the possible shortcomings of 168 

the simultaneous optimization method (named as “one-step” method in this study) as 169 

metioned by Jiang et al. (2021), we adopted a “two-step” method (Sect. 3) in this system. 170 

Unlike the “one-step” method, the ICs of each DA window in the “two-step” method is 171 

simulated using the posterior emissions of the pervious DA window. Against the 172 

limitations of the simultaneous optimization of emissions and chemical ICs in each DA 173 
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window (here, named as “one-step” method), a “two-step” approach (Sect. 3) is 174 

performed, in which the IC of each DA window is simulated using the posterior 175 

emission of the pervious DA window. The capability of RAPAS in reanalysis field 176 

generation and emission inversion estimation is was evaluated. The robustness of the 177 

system is was also investigated with different prior inventories, uncertainty settings of 178 

the prior emission, and observation errors. This paper is organized as follows: in Sect. 179 

2, we introduce the DA system and the observation data, and in Sect. 3, we describe the 180 

experimental design. The results of the system performance and sensitivity runs tests 181 

are presented and discussed in Sect. 4, followed by the conclusions in Sect. 5. 182 

 183 

2. Method and data 184 

2.1 System description 185 

2.1.1 Procedure of the assimilation system 186 

A regional air pollutant assimilation system has been preliminarily constructed and 187 

successfully applied in our previous studies to optimize gridded CO and NOx emissions 188 

(Feng et al., 2020a; Feng et al., 2020b). Herein, the system is was further extended to 189 

simultaneously assimilate multiple species (e.g., CO, SO2, NO2, O3, PM2.5 and PM10) 190 

and officially named as the Regional multi- Air Pollutant Assimilation System 191 

(RAPASv1.0). The RAPAS mainly includes three components: a regional chemical 192 

transport model (CTM), which is coupled offline and used to simulate the 193 

meteorological fields and atmospheric compositions, and the 3DVAR and ensemble 194 

square root filter (EnSRF) modules, which are used to optimize chemical ICs (Feng et 195 

al., 2018; Jiang et al., 2013b) and anthropogenic emissions (Feng et al., 2020a; Feng et 196 

al., 2020b), respectively. The introduction of 3DVAR mainly considers its great 197 

performance based on our previous study and lower computational cost during spin-up 198 

period in optimizing ICs. Additionally, it has been found that the 3DVAR method can 199 

obtain a better initial field than the EnKF method (Schwartz et al., 2014). 200 

Based on above three components, the RAPAS is divided into two subsystems, namely 201 
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the IC assimilation (IA) subsystem (CTM plus 3DVAR) and the emission inversion (EI) 202 

subsystem (CTM plus EnSRF). As shown in Figure 1, the IA subsystem is first run 203 

separately to optimize chemical ICs using the CTM model and cycling assimilation 204 

within the 3DVAR framework (Kleist et al., 2009; Wu et al., 2002) for the subsequent 205 

EI subsystem. In the IA subsystem, we do not need to distinguish the type of sources of 206 

the model-observation mismatch error.. It runs only once and provides a “perfect” 207 

chemical ICs for the subsequent EI subsystem. The EI subsystem runs cyclically with 208 

a “two‐step” scheme., and in each cycle (DA window), we use a “two‐step” calculation 209 

scheme. In the first step, the prior emissions (��) are perturbed and put into the CTM 210 

model to simulate chemical concentration ensembles, which are then sampled 211 

according to the locations and times of the observations. The simulated concentrations 212 

of the lowest model level are then interpolated to the observation space according to 213 

the locations and times of the observations using the nearest neighbor interpolation 214 

method. The prior emissions (��), simulated observations and real observationsThe 215 

sampled data together with observations and prior emission ensembles are entered into 216 

the EnSRF modulealgorithm to generate the optimized emissions (��). In the second 217 

step, the optimized emissions are entered again into the CTM model again to generate 218 

the initial fields of the next DA window. Meanwhile, the optimized emissions are 219 

transferred to the next window as the prior emissions, which means that the original 220 

emission inventory is only used in the first DA window in the EI subsystem. Different 221 

from the synchronously scheme (“one-step” scheme), which only runs the model once 222 

and optimizes the ICs of the next window and emission at the same time, this “two-223 

step” scheme needs to run the simulations CTM model twice, which is time consuming, 224 

but it could transfer the potential errors of the inverted emissions in one DA window to 225 

the next for further correction.but it could transfer the errors in the inverted emissions 226 

of current DA window to the next one for further correction. The benefit of this scheme 227 

will be further presented in Sect. 4.3. 228 
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 229 

Figure 1. The composition and flow chart of RAPAS. The �� and �� represent the 230 

prior and posterior emissions. The 3DVAR assimilation stage lasts 5 days with data 231 

input frequency of 6 hours, and the DA window in the EI subsystem is set to 1 day. 232 

2.1.2 Atmospheric transport model 233 

The regional chemical transport model of WRF/CMAQ is was adopted in this study. 234 

CMAQ is a regional 3-D Eulerian atmospheric chemistry and transport model with a 235 

“one-atmosphere” design developed in the US Environmental Protection Agency (EPA). 236 

It cancould address the complex interactions among multiple pollutants/air quality 237 

issues simultaneously. CMAQ is was driven by the WRF model, which is a state of the 238 

art mesoscale numerical weather prediction system designed for both atmospheric 239 

research and meteorological field forecasting. In this study, WRF version 4.0 and 240 

CMAQ version 5.0.2 are were adopted. The WRF simulations are were performed with 241 

a 36-km horizontal resolution on 169 × 129 grids, and it covers the whole of mainland 242 

of China (Figure 2). This spatial resolution has been widely adopted in regional 243 
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simulations and can provide good simulations of the spatiotemporal variations of air 244 

pollutants (Mueller and Mallard, 2011; Sharma et al. 2016). In the vertical direction, 245 

there are 51 sigma levels on sigma-pressure coordinates extending from the surface to 246 

100 hPa. The underlying surface of urban and built-up land is was replaced by the 247 

MODIS land cover retrieval of 2016 to adapt to the rapid expansion of urbanization. 248 

The CMAQ model is run with the same domain but with three grid cells removed from 249 

each side of the WRF domain. There are 15 layers in the CMAQ vertical coordinate, 250 

which are were interpolatedcompressed from the 51 WRF layers.  251 

The meteorological initial and lateral boundary conditions are both provided by the 252 

Final (FNL) Operational Global Analysis data of the National Center for Environmental 253 

Prediction (NCEP) with a 1° × 1° resolution at 6-h intervals. The chemical lateral 254 

boundary conditions and chemical ICs in the IA subsystem come from the background 255 

profiles. As mentioned above, in the EI subsystem, the chemical IC in the first window 256 

is provided by the IA subsystem, and in the following windows, it is forward simulated 257 

using optimized emission from the of previous window. The Carbon Bond 05 with 258 

updated toluene chemistry (CB05tucl) and the 6th generation aerosol module (AERO6) 259 

are chosen as the gas-phase and aerosol chemical mechanisms, respectively (Appel et 260 

al., 2013; Sarwar et al., 2012). Detailed physical and chemical configurations are listed 261 

in Table 1. 262 
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 264 

Figure 2. Model domain and observation network. The red dashed frame depicts the 265 

CMAQ computational domain; the blue dots represent the surface meteorological 266 

measurement sites;  the turquoise triangles represent the sounding sites; and the red 267 

and green dots represent the air pollution measurement sites. Observations of all sites 268 

are assimilated in the 3DVAR subsystem, while observations of city sites where red 269 

dots are averaged are used for assimilation and where green dots are averaged are used 270 

for independent evaluation in EI subsystem; the boxed subregions are the North China 271 

Plain (NCP) and Yangtze River Delta (YRD); and the shaded area depicts the 272 

topography. 273 

 274 

 275 

 276 
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Table 1. Configuration options of WRF/CMAQ 277 

2.1.3 3DVAR assimilation algorithm 278 

The Grid-point Statistical Interpolation (GSI) developed in the US National Centers for 279 

Environmental Prediction (NCEP) is was employed in this study. Building upon the 280 

work of Liu et al. (2011), Jiang et al. (2013b) and Feng et al. (2018), we extended it to 281 

simultaneously assimilate multiple species (including CO, SO2, NO2, O3, PM2.5, and 282 

PM10) and first used individual aerosol species of PM2.5 as analysis variables within the 283 

GSI/WRF/CMAQ framework. Additional work includesworks include the construction 284 

of surface air pollutant observation operators, the updating of observation errors, and 285 

the statistics of background error covariance for the analysis variables. Moreover, the 286 

data interface is was also modified to read/write the CMAQ output/input file directly, 287 

which is easy to implement. 288 

In the sense of a minimum analysis error variance, the 3DVAR algorithm optimizes 289 

analysis fields with observations by iterative processes to minimize the cost function 290 

(J(x)) defined below: 291 

J(x) =
�

�
(�� − ��)����(�� − ��) +

�

�
[�(��) − �]����[�(��) − �],  (1) 292 

WRF CMAQ 

Parameter Scheme Parameter Scheme 

Microphysics WSM6 Horizontal/Vertical advection yamo/wrf 

Longwave RRTM Horizontal/Vertical diffusion multiscale/acm2 

Shortwave Goddard Deposition m3dry 

Boundary layer ACM Chemistry solver EBI 

Cumulus Kain-Fritsch Photolysis phot_inline 

Land-surface Noah Aerosol module AERO6 

Surface layer Revised Cloud module cloud_acm_ae6 

Urban canopy No Gas-phase chemistry CB05tucl 
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where �� is a vector of the analysis field; �� denotes the background field; y is the 293 

vector of observations; B and R are the background and observation error covariance 294 

matrices, respectively, representing the relative contributions to analysis; and H is the 295 

observation operator that maps the model variables to the observation space. 296 

The analysis variables are the 3D mass concentrations of the pollution compositions 297 

(e.g., CO and sulfate) at each grid point. Hourly mean surface pollution observations 298 

within a 1 hour window of the analysis are assimilated. To assimilate the surface 299 

pollution observations, model-simulated compositions are first diagnosed at the 300 

observation locations. For gas concentrationspollutions that are directly used as 301 

analysis variables, data units need to be converted from ppm or ppb to mg m-3 or μg m-302 

3 to match with observations. The model-simulated PM2.5 and PM10 concentrations at 303 

the ground level are diagnosed as follows: 304 

���.� = �� × ��� + �� × ��� + �� × ��� = OC + EC + ���
�� + ���

� + ���
� +305 

���� + ���.�                                                     (2) 306 

���� = ��� + ��� + ��� = ���.� + ���                         (3) 307 

where ��, ��, and �� are the PM2.5 fractions of the Aitken, accumulation, and coarse 308 

modes, respectively. These ratios are recommended as the concentrations of PM2.5 and 309 

fine mode aerosols (i.e., Aitken plus accumulation) could differ because the PM2.5 310 

particles include small tails from the coarse mode in the CMAQ model (Binkowski and 311 

Roselle, 2003; Jiang et al., 2006). ��� , ��� , and ���  represent the mass 312 

concentrations of the 3 modes in the CMAQ model. Seven aerosol species of PM2.5, 313 

including organic carbon (OC), elemental carbon (EC), sulfate (���
��), nitrate (���

�), 314 

ammonium (���
�), sea salt (SEAS), and fine-mode unspeciated aerosols (���.�), and 315 

additional coarse PM10 (PMC) are extracted as analysis variables, which are updated 316 

by the PM2.5 and PMC observations, respectively. Before the calculation of equation (1) 317 

within the GSI, the analysis variables are bilinearly interpolated in the horizontal 318 

direction to the observation locations. 319 
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The computation of background error covariance (B) is generally costly and difficult 320 

when a high-dimensional numerical model is used. For simplification, B is represented 321 

as a product of spatial correlation matrices and standard deviations (SDs): 322 

� = ����          (4) 323 

� = �� ⊗ �� ⊗ ��             (5) 324 

where D is the background error SD matrix, C is the background error correlation 325 

matrix, ⊗ denotes the Kronecker product, and �� , �� , and ��  denote three one-326 

dimensional correlation submatrices in the longitude, latitude, and vertical coordinate 327 

directions, respectively. �� and �� are assumed to be isotropic horizontally such that 328 

can be represented using a Gaussian function. The correlation between any two points 329 

�� and �� in the horizontal can be expressed as follows: 330 

c���, ��� = �
�

(�����)�

���        (6) 331 

where � is the horizontal correlation scale, which is estimated using the proxy of the 332 

background error (Figure 3). The vertical correlation matric �� is directly estimated 333 

from the model background field since �� is only an �� × �� (here, ��=15) matrix. 334 
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 335 

Figure 3. Vertical profiles of standard deviations (top, μg m-3), horizontal length scale 336 

(middle, km) and vertical length scale (bottom, km) for CO, SO2, NO2, O3, sulfate, 337 

nitrate, ammonium, EC, OC, sea salt, unspeciated aerosols (AP2.5), PMC, PM2.5 and 338 

PM10. 339 

To estimate these matrices, the “NMC” method is used here to compute B for each 340 

variable by taking the differences between forecasts of different lengths valid at the 341 

same time (Parrish and Derber, 1992; Rabier et al., 1998). Differences between 24- and 342 

12-h WRF/CMAQ forecasts of 60 pairs (two pairs a day) of analysis variables valid at 343 

either 0000 or 1200 UTC over November 2016 are used. The horizontal and vertical 344 

length scales of the correlation matrices are estimated by recursive filters (Purser et al., 345 

2003). The vertical distribution of background error SDs is shown in Figure 3, which 346 
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varies with height and species. The vertical profile of the background error SDs 347 

corresponds to the vertical concentration distribution. This means that higher 348 

concentrations tend to have larger background error SDs (e.g., CO and nitrate). These 349 

SDs exhibit a common reduction with height, especially at the top of the boundary layer. 350 

The horizontal correlation of background error determines the propagation of 351 

observation information in this direction, while vertical correlation determines the 352 

vertical extension of such increments. For gaseous pollutants and most individual 353 

aerosol components, excluding nitrate and sea salt, the horizontal length scales decrease 354 

increase with increasing heights, while for the total particulate matter (i.e., PM2.5 and 355 

PM10), the scales increase with height ins slightly under the boundary layer and then 356 

decreases with height slightly over the boundary layerin the free troposphere. The 357 

ground-level scale generally spreads 40-45 km for all control variables on average. The 358 

vertical length scale of most species increases first and then decreases with height, 359 

which may be related to the vertical mixing (Kahnert, 2008) and stack emissions at 360 

about 200 m height.The vertical length scale of most species increases with height near 361 

the ground where they are emitted (Descombes et al., 2015) and then drops rapidly to 362 

the height of the upper stable atmosphere, with a scale of 1.4 km. 363 

2.1.4 EnKF assimilation algorithm 364 

In EnKF, the time-dependent uncertainties of the state variables are estimated using a 365 

Monte Carlo approach through an ensemble. Uncertainty can be propagated with linear 366 

or nonlinear dynamic models (flow-dependent background error covariance) by simply 367 

implementing ensemble simulations. The EnSRF algorithm introduced by Bierman 368 

(1977) and Maybeck (1979) (Whitaker and Hamill, 2002) is used to constrain pollution 369 

emissions in this study. EnSRF is a deterministic EnKF that obviates the need to perturb 370 

observations, which has a higher computational efficiency and a better performance 371 

(Sun et al., 2009). 372 

The perturbation of prior emissions represents the uncertainty. We implement additive 373 

emission adjustment methods, which are calculated using the following function. 374 
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��
� = ��

� + ���
�, i = 1, 2, ..., N             (7) 375 

where � represents the background (prior) state, � is the identifier of the perturbed 376 

samples, N is the ensemble size, which was set to 40 in consideration of a tradeoff 377 

between the computation cost and inversion accuracy (Figure S1)(40 in this study), and 378 

δ��
� represents the randomly perturbed samples that are added to the prior emissions 379 

��
�  to produce ensemble samples of the inputs ��

� . δ��
�  is drawn from Gaussian 380 

distributions with a mean of zero and the standard deviation of the prior emission 381 

uncertainty in each grid. The state variables of the emissions include CO, SO2, NOx, 382 

primary PM2.5 (PPM2.5) and PMC. We used variable localization to update the analysis, 383 

which means that the covariance among different state variables was not considered, 384 

and the emission of one species was only constrained with its corresponding air 385 

pollutant observation. This method has been widely used in chemical data assimilation 386 

systems to avoid spurious correlations among species. (Ma et al., 2019; Miyazaki et al., 387 

2012b).is set to zero (Miyazaki et al., 2012b).  388 

After obtaining an ensemble of state vectors (prior emissions), ensemble runs of the 389 

CMAQ model are conducted to propagate these errors in the model with each ensemble 390 

sample of state vectors. Combined with observational vector y, the state vector is 391 

updated by minimizing the analysis variance: 392 

 �� = �� + �(� − ���)  (8) 393 

 � = ����(����� + �)��  (9) 394 

 �� =
�

���
∑ (��

� − ���)�
��� (��

� − ���)�  (10) 395 

 δ��
� = δ��

� − ���δ��
�  (11) 396 

While employing sequential assimilation and independent observations, ��   is 397 

calculated as follows: 398 

 �� = (1 + ��
(����� + �)� )

��

�  (12) 399 
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where ���  represents the mean of the ensemble samples;  �  is the observation 400 

operator that maps simulated concentrations from model space to observation space; 401 

� − ��� reflects the differences between the simulated and observed concentrations; 402 

�� is the ensemble-estimated background (a priori) error covariance; ���� contains 403 

the response of the uncertainty in the simulated concentrations to the uncertainty in 404 

emissions; K is the Kalman gain matrix of the ensemble mean depending on the �� 405 

and observation error covariance R, representing the relative contributions to analysis; 406 

and ��   is the Kalman gain matrix of the ensemble perturbation, which is used to 407 

calculate emission perturbations after inversions δ��
�. The ensemble mean �� of the 408 

analyzed state is taken as the best estimate of the emissions. 409 

With large volumes of site observations that are recorded at a much higher resolution 410 

than the model grid spacing, there would be significant correlated or fully consistent 411 

model-data mismatch errors in one cluster, resulting in excessive adjustments and 412 

deteriorated model performances (Houtekamer and Mitchell, 2001). To reduce the 413 

horizontal observation error correlations and the influence of representativeness errors, 414 

a “super-observation” approach combining multiple noisy observations located within 415 

the same grid and assimilation window is developed based on optimal estimation theory 416 

(Miyazaki et al., 2012a). Previous studies have demonstrated the necessity of data-417 

thinning and dealiasing errors (Feng et al., 2020b; Zhang et al., 2009a). The super-418 

observation ����, super-observation error ���� and corresponding simulation ����,� 419 

of the ith sample are calculated as follows: 420 

 1
����

�� = ∑ 1
��

��
�
���                (13) 421 

  ���� = ∑ ��
�
��� �� ∑ ��

�
����  (14) 422 

  ����,� = ∑ ��
�
��� ��� ∑ ��

�
����  (15) 423 

where j is the identifier of m observations within a super-observation grid; �� is the 424 

observational error of actual jth observation �� ; ���  represents a simulated 425 
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concentration using the ith prior emission sample corresponding to the jth observation; 426 

and �� = 1
��

��  is the weighting factor. The super-observation error decreases as the 427 

number of observations used within a super-observation increases. This method has 428 

been used in our previous inversions using surface-based (Feng et al., 2020b) and 429 

satellite-based (Jiang et al., 2021) observations. 430 

In this study, the DA window is was set to 1 day because the model needs a longer time 431 

to integrate emission information into the concentration ensembles (Ma et al., 2019). 432 

Due to the “super-observation” approach, only one assimilation is needed in one 433 

assimilation window. In addition, due to the complexity of hourly emissions, it is very 434 

difficult to simulate hourly concentrations that can match the observations well. 435 

Although a longer DA window could allow more observations to constrain the emission 436 

change of one grid, the spurious correlation signals of EnKF would attenuate 437 

observation information with time (Bruhwiler et al., 2005; Jiang et al., 2021). Kang et 438 

al. (2012) conducted OSSEs and demonstrated that due to the errors of transport and 439 

increase the spurious correlation, a longer DA window (e.g., 3 weeks) would cause the 440 

analysis system to blur out the essential emission information far away from the 441 

observation.Kang et al. (2012) and Zhang et al. (2015) also pointed out that the emission 442 

inversion with a long window (e.g., 1 to 3 weeks) is not as accurate as that obtained 443 

with a short DA window (e.g., 6 hours to 1 week). Therefore, daily mean simulations 444 

and observations are used in the EnSRF algorithm, and daily emissions are optimized 445 

in this system.  446 

EnKF is subject to spurious correlations due to the limited number of ensembles when 447 

it is applied in high-dimensional atmospheric models, which can cause rank 448 

deficiencies in the estimated background error covariance and filter divergence, and 449 

further degrade analyses and forecasts (Wang et al., 2020). Covariance localization is 450 

performed to reduce spurious correlations caused by the finite ensemble size 451 

(Houtekamer and Mitchell, 2001). Covariance localization preserves the meaningful 452 
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impact of observations on state variables within a certain distance (cutoff radius) but 453 

limits the detrimental impact of observations on remote state variables. The localization 454 

function of Gaspari and Cohn function (Gaspari and Cohn, 1999) is used in this system, 455 

which is a piecewise continuous fifth-order polynomial approximation of a normal 456 

distribution. The optimal localization scale is related to the ensemble size, assimilation 457 

window, dynamic system, and lifetime of a chemical species in the atmosphere. CO, 458 

SO2 and PM2.5 are rather stable in atmosphere, with a lifetime more than 1 day. 459 

According to the averaged wind speed (3.3 m/s, Table 4) and the length of DA window, 460 

their localization scales are set to 300 km. In addition, NO2 is rather reactiveactive, with 461 

a lifetime of approximately 10 hours in winter (de Foy et al., 2015), and PMC, which 462 

is mainly from local sources, its residence time in the atmosphere is also short due to 463 

the rapid deposition rate (Clements et al., 2014; Clements et al., 2016; Hinds, 1982). 464 

Their localization scales are set to 150 km and 250 km, respectively.  465 

2.2 Prior emissions and uncertainties 466 

The anthropogenic emissions over China are were taken from the 2016 Multi-resolution 467 

Emission Inventory for China (MEIC 2016) (Zheng et al., 2018), while those over the 468 

other regions of East Asia are were obtained from the mosaic Asian anthropogenic 469 

emission inventory (MIX) (Li et al., 2017). The spatial resolutions of both the MEIC 470 

and MIX inventories are 0.25° × 0.25°, and they are both downscaled to match the 471 

model grid spacing of 36 km(36 km). The spatial distributions of the CO, SO2, NOx, 472 

PPM2.5 and PMC emissions are shown in Figure 120. The daily emission inventory, 473 

which is was arithmetic averaged from the combined monthly emission inventory, is 474 

was directly used in the EI subsystem and employed as the prior emission of the first 475 

DA window in the EI subsystem (Figure 1). During the simulations, the daily emissions 476 

were further converted to hourly emissions. For all the species emitted from area 477 

sources, we converted them to hourly using a same diurnal profile (Figure S2), and for 478 

the point source, we assumed that there was no diurnal change. MEIC 2012 is was used 479 

as an alternative a priori over China to investigate the impact of different prior 480 

emissions on the optimized emissions. The Model of Emissions of Gases and Aerosols 481 
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from Nature (MEGAN) (Guenther et al., 2012) is was used to calculate time‐dependent 482 

biogenic emissions. It is was also driven by the WRF model in this study. Biomass 483 

burning emissions are were not included because they have little impact across China 484 

during the study period (Zhang et al., 2020). 485 

During the inversion cyclescycling inversions, the inverted emissions of different 486 

members converge gradually, and the ensemble-estimated error covariance matrix is 487 

arithmeticallyvery likely to be underestimated. To avoid this, considering the 488 

compensation of model errors and comparable emission uncertainties from one day to 489 

the next, we impose the same uncertainty on emissions at each DA window. As 490 

mentioned above, the optimized emissions of the current DA window are transferred to 491 

the next DA window as prior emissions. The technology-based emission inventory 492 

developed by Zhang et al. (2009b), basically using the same method as MEIC, shows 493 

that the emissions of PMC and PPM2.5 have the largest uncertainties, followed by CO, 494 

and finally SO2 and NOx. Therefore, the uncertainties in this study are set to 40%, 40%, 495 

30%, 25%, and 25%. However, previous studies have shown that the inversely 496 

estimated CO and PMC emissions could exceed 100% higher than the bottom-up 497 

emissions (MEIC) in certain areas (Feng et al., 2020b; Ma et al., 2019). According to 498 

the extent of underestimation, we set an uncertainty of 100% for both the CO and PMC 499 

emissions at the beginning of the three DA windows to quickly converge the emissions. 500 

The mean emission analysis is generally minimally sensitive to the uncertainty setting 501 

in our assimilation cycle cycle assimilation method (Feng et al., 2020; Gurney et al., 502 

2004; Miyazaki et al., 2012a) because the inversion errors of the current window could 503 

be transferred to the next window for further optimization (Sect. 4.3). 504 

2.3 Observation data and errors 505 

Hourly averaged surface CO, SO2, NO2, O3, PM2.5 and PM10 observations from 1504 506 

national control air quality stations are were assimilated in this system, which were 507 

obtained from the Ministry of Ecology and Environment of the People’s Republic of 508 

China (http://106.37.208.233:20035/, last access: 25 June 2020). These sites are 509 

distributeddistribute  over most of central and eastern China and become denser near 510 
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metropolitan areas (see Figure 2). Value‐range and time‐continuity checks are were 511 

performed to ensure data quality. Value‐range checks are were mainly performed to 512 

eliminate unrealistic or unrepresentative nonspatially representative observations. Only 513 

observations within the subjectively selected threshold range are were assimilated 514 

(Table 2). A time‐continuity check is was performed to eliminate gross outliers and a 515 

sudden anomaly using a function of ��� (|�(�) − �(� ± 1)|) ≤ �(�)|�(�) − �(� ±516 

1)| ≤ �(�) , where �(�)  and �(� ± 1)  represent observations at time �  t and � ±517 

1 t+1, respectively, and �(�) = �� + �� × �� . That means that both concentration 518 

differences between time t and time t+1 and t-1 should be less than �(�). �� is fixed 519 

to 0.15, and the section of �� is given in Table 2, which is determined empirically 520 

according to the time series change of concentration at each site. It should be noted that, 521 

to avoid potential cross‐correlations, we assimilated PM2.5 and PMC. Additionally, in 522 

the EI subsystem, the observations within each city are were averaged to thin the data 523 

density and, reduce the error correlation and increase the spatial representation 524 

(Houtekamer and Mitchell, 2001; Houtekamer and Zhang, 2016). Finally, 336 city sites 525 

are available across the mainland of China, in which 311 cities’ data are were selected 526 

for assimilation and the remaining 25 are were selected for independent validation 527 

(Figure 2). In the IA subsystem, due to the small horizontal correlation scale (Figure 3), 528 

to obtain more extensive observation constraints, all site observations are were 529 

assimilated to provide a gooda “perfect” IC for the next emission inversion. 530 

The observation error covariance matrix (R) includes both measurement and 531 

representation errors. The measurement error �� is defined as follow: 532 

�� = ����� + ����� × Π�         (16) 533 

where �����  is a base error, and Π�  denotes the observed concentration. These 534 

parameters for different species are listed in Table 2, which are determined according 535 

to Chen et al. (2019), Feng et al., (2018) and Jiang et al. (2013b). 536 

The representative error depends on the model resolution and the characteristics of the 537 

observation locations, which is were calculated using the equations of Elbern et al. 538 
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(2007) defined as follows: 539 

�� = ����Δ� �⁄                  (17) 540 

where γ is a tunable parameter (here, γ=0.5), Δ� is the grid spacing (36 km), and L 541 

indicates the radius (here, 3 km for simplification) of influence area of an observation. 542 

The total observation error (�) is defined as follows: 543 

 � = ���
� + ��

�                 (18) 544 

Table 2. Parameters of quality control and measurement error 545 

Parameter 
CO 

mg m-3 

SO2 

μg m-3 

NO2 

μg m-3 

O3 

μg m-3 

PM2.5 

μg m-3 

PMC 

μg m-3 

value‐range 0.1-12 1-800 1-250 1-250 1-800 1-900 

time-continuity 

(��) 
2.5 160 70 80 180 180 

ermax 0.05 1 1 1 1.5 1.5 

ermin 0.5% 0.5% 0.5% 0.5% 0.75% 0.75% 

 546 

3 Experimental design 547 

RAPAS is was conducted according to the procedure and settings described in Sect. 2. 548 

December is one of the months with most severe air pollution, while July is one of the 549 

least polluted months in China. Therefore, this study mainly tested the performance of 550 

the RAPAS system in these two months. For December, tThe IA subsystem is was run 551 

from 26 to 31 November 2016 with a 6-hour interval cycling assimilation to optimize 552 

ICs (ICDA). A better IC at 0000 UTC on December 1 can be obtained by 5-day high-553 

frequency cycling assimilation and atmospheric mixing. Then the EI subsystem is was 554 

run for December 2016 with a 1-day assimilation window to optimize emissions 555 

(EMDA). For July, the system also operated in the same way as for December. It needs 556 

to be noted that due to the stronger atmospheric oxidation, the lifetime of NO2 in July 557 
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is significantly shorter than that in December, thus we adopted a smaller localization 558 

scale for NO2 (80 km). Both assimilation experiments use the combined prior emission 559 

inventories of 2016 as described in Sect. 2.2, and the emission base year coincides with 560 

the research stage. An Observing Systems Simulation Experiment (OSEE) was 561 

conducted to evaluate the performance of the RAPAS system, which has been widely 562 

used in previous assimilation systems development (Daley, 1997). In the OSSE 563 

experiment, we used the MEIC 2016 inventory as a “true” emission, and reduced the 564 

“true” emission by 30% over the mainland of China as a prior emission. The simulations 565 

simulated using the “true” emission and sampled according to the locations and times 566 

of the real observations were used as artificial observations. The observation errors are 567 

the same as those in EMDA. To evaluate the  IC improvements from the IA subsystem, 568 

an experiment without 3DVAR (NODAICNO) is conducted with the same 569 

meteorological fields and physical and chemistry parameterization settings as those of 570 

the ICDA. To evaluate the posterior emissions of the EI subsystem, two parallel forward 571 

modeling experiments are performed for December 2016, namely, a control experiment 572 

(CEP) with prior (MEIC 2016) emissions and a validation experiment (VEP) with 573 

posterior emissions. Both experiments use the same initial field at 0000 UTC on 574 

December 01 generated through the IA subsystem. Similar to the above, the only 575 

differences between CEP and VEP are emissions. Table 3 gives a summary of different 576 

emission inversion experiments conducted in this study.Table 3 gives a summary of 577 

these different simulation experiments. 578 

To investigate the robustness of our system, 87 sensitivity tests (from EMS1 to EMS87, 579 

see Table 3) are performed. These experiments are all based on EMDA. In EMS1, rather 580 

than forward simulated using the optimized emissions of the previous DA window in 581 

EMDA, the initial fields of each DA window were first taken from forward simulation 582 

with the prior emissions of the previous DA window, and then optimized using the 583 

3DVAR algorithmthe initial fields of each DA window are optimized using the 3DVAR 584 

algorithm directly and the observations at the corresponding moment as mentioned in 585 

Sect. 2.3. The objective of this experiment is to investigate the advantages of the “two‐586 
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step” calculation scheme in the EI subsystem as introduced in Sect. 2.1. EMS2 uses 587 

MEIC 2012 as the original prior emission in China, aiming to investigate the impact of 588 

different prior inventories on the estimates of emissions. Four other experiments, 589 

namely EMS3-6, aim to test the impact of different prior uncertainty settings, in which, 590 

the prior uncertainties are reduced by -50% and -25%, and increased by 25% and 50%, 591 

respectively. EMS7 aims to evaluate the impact of observation errors on emission 592 

estimates, in which all the observation errors are magnified twice. The last EMS8 593 

experiment aims to evaluate the impact of IC optimization of the first window on 594 

emission estimates, in which the ICs were taken from a 5-day spin-up simulation. Eight 595 

Seven forward modeling experiments (VEP1, VEP2, …, VEP87) are were also 596 

performed with posterior emissions of EMS1 to EMS87 to evaluate their performances, 597 

respectively.  598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 
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Table 3. Emission inversion and sensitivity eExperiments conducted in this study 612 

 613 

 614 

Exp. 

Type 

Exp. 

Name 
Period 

IC of the first 

DA 

WindowInitial 

field 

ICs of the 

subsequent DA 

window 

Emission 

Assimilatio

n 

EMDA 
1-31 

December 

0000 UTC on 

December 1, 

taken from 

ICDA 

Forecast with 

posterior 

emissions in the 

previous window 

MEIC 2016 for 

December (the first 

DA window), 

optimized emissions 

of the previous 

window (other DA 

windows) 

OSSE 
1-31 

December 

The same as 

EMDA 

The same as 

EMDA 

The same as EMDA, 

but with a decrease of 

30% for CO, SO2, 

NOx, PPM2.5, and 

PMC 

Sensitivity 

EMS1 
1-31 

December 

The same as 

EMDAForecast 

with prior 

emissions in 

the previous 

window 

Forecast with 

prior emissions 

in the previous 

window and 

3DVAR 

assimilation 

The same as EMDA 

EMS2 
1-31 

December 

The same as 

EMDA 

The same as 

EMDA 

The same as EMDA, 

but for EMIC 2012 

EMS3-6 
1-31 

December 

The same as 

EMDA 

The same as 

EMDA 

The same as EMDA, 

but with a ± 25% or 

± 50% of default 

uncertainty 

EMS7 
1-31 

December 

The same as 

EMDA 

The same as 

EMDA 

The same as EMDA, 

but with a +100% of 

default observation 

errors 

EMS8 
1-31 

December 

0000 UTC on 

December 1, 

taken from 

ICNO 

The same as 

EMDA 
The same as EMDA 
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4 Results 615 

4.1 Evaluations  616 

4.1.1 Simulated meteorological fields 617 

In the RAPAS system, the inversion approach attributes all the biases between the 618 

simulated and observed concentrations to the emissions. The meteorological fields 619 

dominate the physical and chemical processes of the air pollutants in the atmosphere, 620 

and thus their simulation accuracy would significantly affect the estimates of emissions 621 

in this study. To quantitatively evaluate the performance of the WRF simulations, the 622 

mean bias (BIAS), root mean square error (RMSE), and correlation coefficient (CORR) 623 

were calculated against the surface meteorological observations measured at 400 624 

stations and the planetary boundary layer height (PBLH) calculated using the sounding 625 

data at 92 sites., The surface observationswhich were obtained from the National 626 

Climate Data Center (NCDC) integrated surface database 627 

(http://www.ncdc.noaa.gov/oa/ncdc.html, last access: 25 October 2021), and the 628 

sounding data were obtained from the website of the University of Wyoming 629 

(http://weather.uwyo.edu/upperair/sounding.html, last access: 10 March 2022). The 630 

sounding data are in 12 hours interval. The observed PBLH were calculated using the 631 

sound data through the bulk Richardson number method (Richardson et al., 2013). The 632 

spatial distribution of the meteorological stations (blue dots) is shown in Figure 2. The 633 

simulated temperature at 2 m (T2), relative humidity at 2 m (RH2), and wind speed at 634 

10 m (WS10), and PBLH from 26 November to 31 December 2016 are evaluated 635 

against the observations. Table 4 summarizes the statistical results of the evaluations of 636 

the simulated meteorological parameters. Overall, the T2, RH2 and PBLH are slightly 637 

underestimated, with biases of -0.1 ℃, -3.8% and -41.1 m, respectively. The CORRs 638 

are approximately 0.98 for T2, 0.94 for RH2 and 0.90 for PBLH,Overall, the T2 and 639 

RH2 are slightly underestimated, with biases of -0.1 ℃ and -3.8%, respectively. The 640 

CORRs are approximately 0.98 for T2 and 0.94 for RH2, showing good consistency 641 

between the observations and simulations. The WS10 is overestimated, with a bias of 642 
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0.7 m/s and an RMSE of 0.8 m/s, but is better than many other studies (Chen et al., 643 

2016; Jiang et al., 2012a; Jiang et al., 2012b). Therefore, WRF can generally reproduce 644 

the meteorological conditions sufficiently in terms of their temporal variation and 645 

magnitude over China, which is adequate for our inversion estimation. 646 

Table 4. Statistics comparing the simulated and observed 10-m wind speed (WS10, 647 

m/s), 2-m temperature (T2, ℃), and 2-m relative humidity (RH2, %), and planetary 648 

boundary layer height (PBLH). averaged over all 400 stations. 649 

Variable Met. 
No. of 

sites 

Mean 

Obs. 
Mean Sim. BIAS RMSE CORR 

WS10 (m/s) 400 2.6 3.3 0.7 0.8 0.72 

T2 (°C) 400 2.9 2.8 -0.1 0.7 0.98 

RH2 (%) 400 66.3 62.6 -3.8 5.2 0.94 

PBLH (m) 92 267.5 226.4 -41.1 50.4 0.90 

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 650 

4.1.22 Initial fields  651 

Figure 4 shows the evaluations of the analyzed concentrations of the 6 species against 652 

surface observations. For comparison, the evaluations of the simulations without 653 

3DVAR (NODAICNO) are also shown in Figure 4. The simulations of the 654 

NODAICNO experiment (red dots) are scattered on both sides of a central line, as large 655 

systematic biases remain across many measurement sites. Conversely, the ICDA 656 

experiment (blue dots) shows much better agreement with observations than those from 657 

NODAICNO. The statistics show that there are large systematic biases in the 658 

NODAICNO simulations, with large RMSEs and small CORRs for all species, 659 

especially for CO and PMC. After the assimilation of surface observations, the RMSE 660 

of CO decreases to 0.7 mg m-3, and those of SO2, NO2, O3, PM2.5 and PMC decrease to 661 

22.0, 12.0, 9.6, 20.5 and 19.6 μg m-3, respectively, with respective reduction rates of 662 

50.0%, 73.1%, 61.0%, 64.7%, 69.5%, and 60.8% compared to the ones of the 663 

NODAICNO (Table 5). The CORRs of ICDA increase by 290.0%, 291.3%, 55.4%, 664 
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87.2%, 130.0% and 214.8% to 0.78, 0.90, 0.87, 0.88, 0.92 and 0.85, respectively. These 665 

statistics indicate the initial fields of the ground level have been significantly improved. 666 

However, due to the lack of observations, we still do not know the simulation bias in 667 

the upper-middle boundary layer. Although concentrations at high altitudes can be 668 

constrained by ground-based observations through vertical correlations, the effect is 669 

limited, so the bias is still non-negligible.that the initial fields can be adjusted 670 

effectively by our IA subsystem. 671 

672 
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 673 

Figure 4. Scatter plots of simulated versus observed (a) CO, (b) SO2, (C) NO2, (d) O3, 674 

(e) PM2.5 and (f) PMC mass concentrations at 0000 UTC on December 1 initializations 675 

from the background (red) and analysis (blue) fields. 676 

 677 

 678 
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Table 5. Comparisons of the surface CO, SO2, NO2, O3, PM2.5 and PMC mass 679 

concentrations from the control and assimilation experiment against observations 680 

aggregated over all analysis times. CO unit: mg m-3; others units: μg m-3. 681 

Species Exp. Name 
Mean 
Obs. 

Mean 
Sim. 

BIAS RMSE CORR 

CO 
NODAICNO 

1.5  
0.8  -0.7  1.4  0.20  

ICDA 1.5  -0.1  0.7  0.78  

SO2 
NODAICNO 

36.3  
56.0  19.7  81.7  0.23  

ICDA 37.8  1.5  22.0  0.90  

NO2 
NODAICNO 

45.8  
51.1  5.3  30.8  0.56  

ICDA 47.0  1.1  12.0  0.87  

O3 
NODAICNO 

20.5  
30.8  10.4  27.2  0.47  

ICDA 23.3  2.8  9.6  0.88  

PM2.5 
NODAICNO 

70.9  
82.2  11.3  67.3  0.40  

ICDA 71.8  0.9  20.5  0.92  

PMC 
NODAICNO 

43.5  
8.5  -35.0  50.0  0.27  

ICDA 41.6  -1.9  19.6  0.85  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 682 

4.1.3 Posterior emissions 683 

Due to mismatched spatial scales, it is difficult to directly evaluate the optimized 684 

emissions against observations. Generally, we indirectly validate them by comparing 685 

the forward simulated concentrations using the posterior emissions against atmospheric 686 

measurements (e.g., Jiang et al. (2014), Jin et al. (2018), and Peters et al. (2007)). Figure 687 

5 shows the spatial distributions of the mean biases between the simulated gaseous 688 

pollutants using prior and posterior emissions and assimilated observations. In the CEPs, 689 

for each species, the distribution of biases is similar to the increments in background 690 

fields constrained through 3DVAR as shown in Figure S3. For example, almost all sites 691 

have large negative biases for CO, while for SO2 and NO2, positive biases are mainly 692 

distributed over the North China Plain (NCP), Yangtze River Delta (YRD), Sichuan 693 

Basin (SCB) and Central China, and negative biases are over the rest of the areas. After 694 

constraining with observations, the biases of all the 3 gaseous air pollutants are 695 
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significantly reduced in most sites. For CO, the biases at 62% of the sites decreased to 696 

absolute values less than 0.2 mg m-3, and for SO2 and NO2, the biases at 52% and 47% 697 

of the sites were within ±4 μg m-3. However, large negative biases are still observed in 698 

part of western Chinas, indicating that the uncertainties of the posterior emissions are 699 

still large in western China, which may be attributed to the large biases in prior 700 

emissions and to the relatively limited observation. Overall, the statistics show that 701 

there are different levels of improvements at 92%, 85% and 85% of the total 311 702 

assimilation sites for CO, SO2 and NO2, respectively. The small amount of sites with 703 

worse performance may be related to the overadjusted emissions by EI or contradictory 704 

adjustments caused by opposite biases in adjacent areas. 705 

Table 6 lists the statistical results of the evaluations averaged over the whole mainland 706 

of China. For CO, the mean bias is -0.8 mg m-3 with the prior emissions, while it 707 

substantially reduces to -0.1 mg m-3 with a reduction rate of 89.6% when simulating 708 

with the posterior emissions. Additionally, the RMSE decreases by 48.1% from 1.08 to 709 

0.56 mg m-3, and the CORR increases by 76.1% from 0.46 to 0.81. For SO2 and NO2, 710 

the regional mean biases slightly increase as the positive/negative biases among 711 

different sites might be offset. However, the RMSEs decrease to 17.7 and 12.3 μg m-3, 712 

respectively, which are 58.3% and 50.8% lower than those of CEPs, and the CORRs 713 

increase by 125.6% and 35.4%, both reaching up to 0.88, indicating that EI has 714 

significantly improved the NOx and SO2 emission estimates. 715 
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 716 

Figure 5. Spatial distribution of the BIAS of the simulated (a, b) CO, (c, d) SO2 and (e, 717 

f) NO2 with prior (left, CEP) and posterior (right, VEP) emissions. CO unit: mg m-3; 718 

SO2 and NO2 units: μg m-3. 719 

Figure 6 shows the spatial distributions of the mean biases of simulated PM2.5 and PMC 720 

evaluated against the assimilated observations. Similarly, the CEP simulations do not 721 

perform well. There are widespread underestimations across the country, with mean 722 

biases of -24.0 and -32.4 μg m-3. After data assimilation, the performance of VEP 723 

simulations is significantly improved. The biases decrease by 72.1% and 90.4% to -6.7 724 

and -3.1 μg m-3, the RMSEs decrease by 41.2% and 40.7% to 29.6 and 24.6 μg m-3, and 725 

the CORRs increase by 35.9% and 176.0% to 0.87 and 0.69 for PM2.5 and PMC, 726 

respectively. Overall, 89.6% and 97.2% of the assimilation sites are improved for PM2.5 727 
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and PMC, respectively. However, compared with the results of the 3 gaseous pollutants, 728 

there are sites with large biases scattered throughout the whole domain. Besides the 729 

potential overadjusted or contradictory adjustments of emissions as in the 3 gas species, 730 

It may also be related to the complex precursors and complex homogeneous and 731 

heterogeneous chemical reactions and transformation processes of secondary PM2.5it 732 

may be also related to the complex precursors and the nonlinear responses to its 733 

precursors for PM2.5, and the fact that we do not simulate the time variation of dust 734 

blowing caused by wind speed for PMC due to the lack of land cover data that is 735 

compatible with the CMAQ dust module and agricultural activities data to identify dust 736 

source regions. 737 

 738 

Figure 6. Same as in Figure 5 but for PM2.5 and PMC. 739 
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Figure 7 and Figure 8 show the spatial distributions of the biases calculated against the 740 

independent observations for the 5 species. With posterior emissions, the decreasing 741 

ratios of RMSEs range from 26.7% to 42.0%, and the CORRs increase by 13.7-59.0% 742 

to 0.62-0.87. Overall, the biases at the independent sites are similar or slightly worse 743 

than those at the assimilated sites, which is reasonable since the closer to the assimilated 744 

site the independent sites are, the more constraints of observation information can be 745 

obtained, and the improvements in optimized state variables of the model are more 746 

significant. For example, generally, the transmission distance of NO2 is relatively short, 747 

and remote cities with small emission correlations to the cities with assimilated 748 

observations are relatively less constrained, resulting in only a 26.7% decrease in the 749 

RMSE. 750 

 751 

Figure 7. As in Figure 5 but for the independent validation. 752 
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 753 

Figure 8. As in Figure 6 but for the independent validation. 754 

Compared with the previous studies, Tang et al. (2013) conducted inversion of CO 755 

emissions over Beijing and the surrounding areas, the improvements (Table 6) in the 756 

RMSE (37-48% vs. 30-51%) and the CORR (both studies ~ 0.81) are comparable, but 757 

the biases here could decrease by 90-97%, which is much greater than their 48-64% 758 

reductions. Additionally, Chen et al. (2019) showed that the RMSE of simulated SO2 759 

with updated SO2 emissions decreased by 4.2-52.2% for different regions, and the 760 

CORR only increased to 0.69 at most. The improvement is relatively smaller than our 761 

results, which may be due to the insufficient adjustment of emissions caused by the 762 

underestimated ensemble spread through the inflation method. The better performance 763 

in this study may be related to our inversion process that makes the optimized emissions 764 
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of the current DA window propagate to the next DA window for further correction. 765 

Table 6. Statistics comparing the pollution concentrations from the simulations with 766 

prior (CEP) and posterior (VEP) emissions against assimilated and independent 767 

observations, respectively. CO unit: mg m-3; others units: μg m-3. 768 

Species 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR  

CEP VEP CEP VEP CEP VEP CEP VEP  

Against assimilated observations  

CO 1.43  0.66  1.36  -0.77  -0.08  1.08  0.56  0.46  0.81   

SO2 32.5  34.4  28.4  1.9  -4.1  42.4  17.7  0.39  0.88   

NO2 43.8  40.8  39.0  -2.9  -4.8  25.0  12.3  0.65  0.88   

PM2.5 77.0  53.1  70.3  -24.0  -6.7  50.3  29.6  0.64  0.87   

PMC 40.5  8.1  37.5  -32.4  -3.1  41.5  24.6  0.25  0.69   

Against independent observations  

CO 1.54  0.79  1.52  -0.75  -0.02  1.15  0.72  0.59  0.82   

SO2 40.6  39.2  37.3  -1.3  -3.2  44.3  27.2  0.57  0.87   

NO2 50.2  50.0  47.5  -0.3  -2.7  21.7  15.9  0.73  0.83   

PM2.5 91.5  64.6  84.1  -26.9  -7.4  64.1  37.2  0.62  0.87   

PMC 42.0  9.2  40.4  -32.8  -1.6  39.3  26.6  0.39  0.62   

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 769 

4.1.4 Uncertainty reduction 770 

The uncertainty reduction rate (UR) is another important quantity to evaluate the 771 

performance of RAPAS and the effectiveness of in-situ observations in this system 772 

(Chevallier et al., 2007; Jiang et al., 2021; Takagi et al., 2011). Following Jiang et al. 773 

(2021), the UR is calculated as 774 

�� = (1 −
����������

������
) × 100                   （19） 775 

where ����������  and ������  are the posterior and prior uncertainties, respectively,. 776 

which were calculated using the standard deviations of the prior and posterior 777 

perturbations (Text S3). Figure 910 shows the URs averaged in each province and the 778 

whole mainland China. The URs vary with species, and among the 5 species of 779 

emissions, the uncertainties of the PPM2.5 and PMC are greatly reduced, while the UR 780 

of NOx emission is lowest, that is because the URs are closely related to the magnitude 781 
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settings of prior uncertainties (Jiang et al., 2021). For the whole mainland China, the 782 

uncertainties are reduced by 44.4%, 45.0%, 34.3%, 51.8% and 56.1% for CO, SO2, NOx, 783 

PPM2.5 and PMC, respectively. For one species, it also varies across provinces. The 784 

URs are usually related to observation coverage, which means that the more observation 785 

constraints there are, the more the URs decrease. Additionally, the URs may also relate 786 

to emission distributions. Generally, the URs are more significant in the provinces 787 

where the observations and emissions are both relatively concentrated (e.g., Tibet), 788 

while they are much lower in where the emissions are scattered or relatively uniform, 789 

but the observations are only in large cities, even though there are many more 790 

observations than other provinces.  791 
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 792 

Figure 910. Time-averaged posterior emission uncertainty reduction (%) indicated by 793 

the standard deviation reduction of total emissions per province calculated by prior and 794 

posterior ensembles. 795 

4.1.5 Evaluation using chi-squared statistics  796 

To diagnose the performance of the EnKF analysis, the chi-squared (χ2) statistics was 797 

calculated, which is generally used to test whether the prior ensemble mean RMSE with 798 
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respect to the observations is consistent with the prior “total spread” (square root of the 799 

sum of ensemble variance and observation error variance). Following Zhang et al. 800 

(2015), for the tth window, χ2 is defined as 801 

χ�
� = (� − ���)�(����� + �)��(� − ���)           （ 20 ） 802 

Figure 10 shows the time series of the relative changes between the prior and posterior 803 

emissions and the χ2 statistics. There are relatively large adjustments of emissions in 804 

the first three windows, especially for PMC. After that, the optimality of the five species 805 

reaches a more optimal state with successive emission inversion cycle. The χ2 statistics 806 

shows a similar variation characteristics with the daily changes in the emissions. The 807 

χ2 value is slightly greater than 1, indicating that the uncertainties from error covariance 808 

statistics do not fully account for the error in the ensemble simulations. A similar 809 

situation also appeared in Chen et al. (2019). Further investigations should be 810 

conducted to generate larger spreads by accounting for the influence of model errors. 811 

Since we imposed a same uncertainty of prior emission at each DA window to partially 812 

compensate for the influence of model errors, χ2 statistics showed small fluctuations, 813 

indicating that the system updates emissions consistently and stably. 814 

 815 
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 816 

Figure 10. Relative changes (a) in a posteriori emission estimates of CO, SO2, NOx, 817 

PPM2.5 and PMC, and χ2 statistics (b) of these state vectors in each window. 818 

4.1.6 Evaluation using OSSE 819 

Figure 11 shows the spatial distribution of the error reduction in the posterior emissions 820 

of the five species. It can be found that after inversion, in most areas, the emission errors 821 

can be reduced by more than 80%, especially in the central and eastern regions with 822 

dense observation sites, while in remote areas far away from cities, due to the sparse 823 

observation sites, the emission errors are still not well adjusted. Overall, the error 824 

reduction rates of CO, SO2, NOx, PPM2.5, and PMC are 78.4%, 86.1%, 78.8%, 77.6%, 825 

and 72.0%, respectively, indicating that with the ground in-situ observations in China, 826 

RAPAS can significantly reduce emission errors, thus has good performance in 827 
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emission estimates.  828 

 829 

Figure 11 Spatial distribution of the error reduction (%) of posterior emissions in the 830 

OSSE. 831 

4.2 Inverted emissions 832 

Figure 121 shows the spatial distribution of the temporal averaged prior and posterior 833 

emissions and their differences of the emissions in December 2016.  It should be noted 834 

that the emissions outside China were masked, since the observation sites are all within 835 

China in this study, there is little change in the emissions outside China. Higher 836 

emissions are mainly concentrated in central and eastern China, especially in the NCP, 837 
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YRD, and PRD, and lower emissions occur across Northwest and Southern China. 838 

Compared with the prior emissions, posterior CO emissions are considerably increased 839 

across most areas of mainland China, especially in northern China, with an overall 840 

increase of 129%. Notable underestimation of the prior emissions is also confirmed by 841 

previous inversion estimations (Feng et al., 2020b; Tang et al., 2013; Wu et al., 2020) 842 

and model evaluations (Kong et al., 2019ba). For SO2, the emission increases mainly 843 

occur in Northeast China, Shanxi, Ningxia, Gansu, Fujian, Jiangxi and Yunnan 844 

provinces. In SCB, Central China, YRD, and part of NCP, the emissions are 845 

significantly reduced. For national total, the SO2 emission is increased by 20%. For 846 

NOx, although the increment of national total emissions is small, only about 5%, large 847 

deviations still exist on regional scale. Obviously, the emissions in the NCP and YRD 848 

are reduced, while in the other regions, the emissions of most cities are increased. The 849 

changes in PPM2.5 emission are similar to SO2. Compared with the prior emission, the 850 

posterior PPM2.5 emissions are decreased over central China, SCB and YRD, while the 851 

ones in southern and northern China are increased, especially in Shanxi, Shaanxi, Gansu 852 

and southern Hebei province. Overall, the relative increase is 95%. For PMC, the 853 

posterior emissions are increased over the whole mainland China, with national mean 854 

relative increase exceeding 1000%. Larger emission increments mainly occur in the 855 

areas where have significant anthropogenic emissions of CO and PPM2.5, indicating 856 

that the large underestimations of PMC emissions in the prior inventory may be mainly 857 

attributed to the underestimations of anthropogenic activities. In addition, the absence 858 

of natural dust is another reason, as the wind-blown dust scheme was not applied in this 859 

study.In addition, without dust may be another reason, since no wind blowing dust 860 

scheme was applied in this study as mentioned above. Overall, PM10 emissions 861 

(PPM2.5+PMC) increased by 318%. If we assume that all the increment in PM10 862 

emissions is all from natural dust, that means the contribution of natural dust accounts 863 

for 75% of total PM10 emissions, which is consistent with the source apportionment of 864 

PM10 of 75% in Changsha in Central China (Li et al., 2010). Large PMC emission 865 

increment are also found in Ma et al (2019).  866 
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Detailed estimation of posterior emissions and relative changes compared to prior 867 

emissions in each province and the whole mainland China is given in Table S1. The 868 

evaluation results for July show that the emission uncertainty can still be significantly 869 

reduced, and the performance of the system in July is comparable to that in December 870 

(Table S2). Additionally, the seasonal variation of emissions can be well reflected 871 

(Figures S4 and S5), which means that our system can perform well at different times 872 

of the year. Note that the differences, excluding PMC, between the prior and posterior 873 

emissions mainly reflect the deficiencies of the prior emissions because the times of the 874 

prior emissions and the observations are completely consistent in this study. 875 
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 876 

Figure 121. Spatial distribution of the time-averaged prior emissions (left column, 877 

MEIC 2016), posterior emissions (middle column), and differences (right column, 878 

posterior minus prior). 879 
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4.3 Sensitivity tests 880 

4.3.1 The advantages of “two-step” scheme 881 

Adjusting the ICs and emissions simultaneously (i.e., “one-step” scheme) has been 882 

applied to constrain prior emissions in many previous studies (Evensen, 2009; Kong et 883 

al., 2019b). To investigate the impact of different methods on the optimized emissions, 884 

a sensitivity test (EMS1) is performed, in which the initial fields of each DA window 885 

are optimized using the 3DVAR algorithm directly. Compared with our “two-step” 886 

method (EMDA), the posterior emissions of EMS1 are increased by 7%, 1.4%, 0.6%, 887 

22.2%, and 17.2% for CO, SO2, NOx, PM2.5 and PMC, respectively. As mentioned 888 

previously, in the “two-step” scheme, the optimized emission can be sufficiently fed 889 

back to the concentration field and fully mixed in the atmosphere (1 day), and the error 890 

transfer makes the system consistently and stably updated. If the emission in one 891 

window is overestimated, in this way, it could be compensated in the next window with 892 

lower estimates. In contrast, when initial fields assimilating with observations 893 

simultaneously at each window, the overestimation will not be corrected and will 894 

accumulate to the end. We also evaluate the posterior emissions of EMS1 using the 895 

same method as shown in Sect. 4.1.3. Figure 13 shows the time series of simulated and 896 

observed daily concentrations and their RMSEs verified against the assimilated sites. 897 

Overall, compared to the base experiment (EMDA), the performance of EMS1 is 898 

significantly worse, with RMSEs of CO, SO2, NO2, PM2.5 and PMC increasing from 899 

0.56 mg m-3, 17.7, 12.3, 29.6, and 24.6 μg m-3 to 0.69 mg m-3, 18.8, 13.3, 36.8, and 33.3 900 

μg m-3, respectively. Additionally, it can be seen from the figure that the results of the 901 

two experiments are relatively close at the beginning and during the heavy pollution 902 

period (16-21 December). However, after that, the simulated results with “one-step” 903 

inversion emissions are significantly higher than the observations, and these large 904 

biases continue until the end. The results verified against the independent sites also 905 

show a similar situation (Figure S4). The reason may be that during the period of heavy 906 

pollution, the WRF-CMAQ (off-line model) does not consider the feedback process of 907 

meteorology and chemistry, resulting in low simulations. Therefore, the system will 908 



48 

 

compensate for the underestimated concentrations caused by the model error through 909 

more emissions, resulting in the overestimation of emissions. The accumulation of 910 

emission error in each independent window further leads to the overestimation of 911 

concentration after the end of high pollution, especially for species with a long lifetime 912 

(e.g., CO). On the contrary, this overestimation will be corrected quickly in the 913 

subsequent inversion using the “two-step” inversion scheme in this study, so as to 914 

ensure the stability of the system. It should be noted that the model performance 915 

depends on many factors but does not affect the advantage of the “two-step” scheme. 916 

 917 

Figure 13. Time series of the daily concentrations (CONC, left) and root mean square 918 

error (RMSE, right) obtained from CEP, VEP, VEP1, and VEP3. The simulations were 919 

verified against the assimilated sites. 920 
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4.3.12 Impact of prior inventories 921 

Various prior inventories have great differences in space allocation and emission 922 

magnitude. Inversion results can be sensitive to a priori emissions if the observation is 923 

insufficient (Gurney et al., 2004; He et al., 2018). MEIC 2012 is used as an alternative 924 

a priori in EMS2 to investigate the impact of different prior emissions on the posteriori. 925 

Figure 134 shows the time series of the relative differences in daily posterior emissions 926 

of the five species between the EMDA (base) and EMS2 experiments. Overall, the 927 

differences between the two posterior emissions gradually decrease over time. At the 928 

beginning, the differences in the CO, SO2, NOx, PPM2.5 and PMC between the two 929 

inventories (i.e., MEIC 2012 vs MEIC 2016) are 17.5%, 114.5%, 30.8%, 46.0% and 930 

72.0%, respectively, while during the last ten days, the differences of the two posterior 931 

emissions have decreased to 2.5%, 4.5%, 4.5%, -8.9% and 3.0%, respectively. In 932 

addition, it also could be found that the species that has larger emission differences at 933 

the beginning take a longer time (namely more DA steps) to achieve convergence. The 934 

quick convergence of PMC emission is attributed to the large prior uncertainty of 100% 935 

used in the first 3 DA windows. Different from the other species, there are significant 936 

negative deviations of PPM2.5 emissions between the two experiments. That may be 937 

due to the positive deviations in the precursors of PM2.5 (i.e., SO2 and NOx), which will 938 

lead to a larger amount of secondary production. To balance the total PM2.5 939 

concentration, the PPM2.5 emissions will be reduced. We compare the PM2.5 940 

concentrations simulated by the two optimized inventories and find that they are almost 941 

the same (Figure S65). Overall, this indicates that the observation in China is sufficient 942 

in inferring the emissions, and our system is rather robust. Meanwhile, it also suggests 943 

that the monthly posterior emissions shown in Sect. 4.2 are still underestimated to a 944 

certain extent. 945 
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 946 

Figure 134. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%, the 947 

ratio of absolute difference to EMDA) between the EMDA and EMS2 experiments.  948 

 949 

4.3.23 Impact of prior uncertainties settings 950 

The uncertainty of prior emissions determines how closely the analysis is weighted 951 

toward the background and observation, but information about prior uncertainties is 952 

generally not readily available. To evaluate the possible influence of prior uncertainties 953 

on the optimized emissions, we increased/reduced the uncertainties after 3 days of 954 

cycling, namely starting at 0000 UTC, 3 December, by 25% and 50 % in EMS3 (-50%), 955 

EMS4 (-25%), EMS5 (+25%) and EMS6 (+50%), respectively. Table 7 summarizes the 956 

emission changes with different prior uncertainties settings in EMS3-6 experiments. To 957 

better understand the response of the system to the emission uncertainty settings, Figure 958 

145 shows the time series of SO2 emission changes, the Chi-square statistics and the 959 

RMSEs of simulated SO2 with emissions updated in the EMDA and EMS3-6 960 

experiments over the YRD and NCP (Figure 2). Compared with the EMDA, when the 961 

uncertainties are decreased (increased), the emissions of the 5 species decrease 962 

(increase) accordingly. That is because the posterior emissions of the 5 species are 963 

larger than the prior emissions, and as shown in Figure 14a-dFig. 13, larger uncertainty 964 
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will lead to a faster convergence, resulting in larger posterior emissions. It also could 965 

be found from Figure 145 that a faster convergence will indeed reduce the RMSE of 966 

the simulated concentration with the posterior emissions in the early stage of the 967 

experiment, but in the later stage of the experiment, there are no significant differences 968 

for the RMSE and Chi-square statistics among the different experiments. However, the 969 

day-to-day changes in emissions can also cause slight fluctuations. In addition, it shows 970 

that when greater uncertainties are set, the day-to-day changes in emissions are also 971 

more drastic, resulting in a larger RMSE as shown in NCP. Moreover, those significant 972 

day-to-day variations of estimated emissions may not be in line with the actual situation. 973 

Due to the spatial-temporal inhomogeneity of emissions, the differences of Chi-square 974 

statistics between the YRD and NCP show that it may be necessary to apply different a 975 

priori uncertainties according to different regions (Chen et al., 2019). Therefore, when 976 

using an EnKF system for emission estimation, we have to be very careful about the 977 

setting of these errors. Overall, the uncertainties chosen in EMDA aim to minimize the 978 

deviation of the concentration fields and maintain the stability of inversion.  979 

Table 7. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%, the 980 

ratio of absolute difference to EMDA) between the EMDA and EMS3-6 experiments. 981 

Species EMS3 EMS4 EMS5 EMS6 

CO -8.6 -4 3 5.2 

SO2 -14 -5.7 3.6 6.8 

NOx -6.5 -3 2.8 4.5 

PPM2.5 -16.5 -7.8 4.6 8.7 

PMC -18.5 -8.2 7.3 13.1 

 982 
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983 



53 

 

 984 

Figure 145. Time-series of SO2 emission changes, the Chi-square statisticsemissions 985 

changes and the RMSE of simulated SO2 with updated SO2 emissions in the EMDA 986 

and EMS3-6 experiments over the Yangtze River Delta (YRD) and North China Plain 987 

(NCP). 988 

4.3.34 Impact of observation error settings 989 

Another factor that determines the relative weights of the observation and background 990 

in the analysis is observation errors. A proper estimate of the observation error is also 991 

important in regard to the filter performance, but observation errors are not provided 992 

with the dataset. The observation error is usually set to a fixed value (Ma et al., 2019), 993 

a specific proportion of the observation value (Tang et al., 2013) or the value calculated 994 

by combining measurement error with representative error as used in this study. 995 

Generally, the performance of the data assimilation is quite sensitive to the specification 996 

of observation error (Tang et al., 2013). To evaluate the influence of observation error 997 

on the optimized emissions, a sensitivity experiment (EMS7) with doubled observation 998 

error was conducted. Overall, the spatial distribution of emissions after optimization is 999 
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almost the same as that of the EMDA experiment, but the increment is lower (Figure 1000 

S76), resulting in a weaker estimate of the national total emission for each species. That 1001 

is because that the observation error becomes large, the system will be more convinced 1002 

of the prior emission and reduce the effect of observation information. Figure 15 shows 1003 

the time series of simulated and observed daily concentrations and their RMSEs 1004 

verified against the assimilated sites. The simulations in VEP7 usually perform worse, 1005 

with larger biases and RMSEs than those of VEP (Figures 13, S84 and S97), especially 1006 

in most of western and southern China where posterior emissions are still significantly 1007 

underestimated. These results usually correspond to sluggish emission changes and 1008 

large Chi-square statistics (Figure S10),, suggesting that too large observation error may 1009 

substantially impact the estimated emissions. 1010 

 1011 
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Figure 15. Time series of the daily concentrations (CONC, left) and root mean square 1012 

error (RMSE, right) obtained from CEP, VEP, VEP1, and VEP7. The simulations were 1013 

verified against the assimilated sites. 1014 

4.3.4 Impact of the IC optimization of the first window 1015 

Many studies have shown that there would be large emission discrepancies resulting 1016 

from the IC errors (Jiang et al., 2013a; Miyazaki et al., 2017; Tang et al., 2013), which 1017 

means that if the IC is not optimized, the errors of concentrations would be compensated 1018 

through the adjustment of emissions. To evaluate the impact of the IC optimization of 1019 

the first window on the emission inversions, the EMS8 experiment without the IA step 1020 

was conducted. Figure 16 shows the time series of the relative differences in daily 1021 

posterior emissions of the five species between the EMDA and EMS8 experiments. It 1022 

can be found that the optimization of IC has great impact on the emission inversions of 1023 

long-lived species (i.e., CO). The overall difference in the inverted CO emissions 1024 

between the two experiments is about 5.3%, and in the first few windows, the maximum 1025 

difference can reach 26.1%. For the short-lived species, the IC optimization has little 1026 

impact on the emission, for example, the averaged emission differences of SO2, NOx 1027 

and PMC in the two experiments are 0.3%, 0.3% and 0.9%, respectively. For PPM2.5, 1028 

it is affected not only by the primary emission, but also by the complex chemistry of its 1029 

precursors. Therefore, the difference between the two experiments fluctuates at a 1030 

certain extent, with overall difference of 2%. It is worth noting that with the gradual 1031 

disappearance of the benefit of IC assimilation, the two experiments can reach a unified 1032 

state after some windows. For CO, the impact of IA on emission inversion lasts about 1033 

half a month. These results indicate that removing the bias of IC of the first DA window 1034 

is essential for subsequent inverse analysis (Jiang et al., 2017).   1035 
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 1036 

Figure 16. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%, the 1037 

ratio of absolute difference to EMDA) between the EMDA and EMS8. 1038 

4.3.5 The advantages of “two-step” scheme 1039 

Adjusting the ICs and emissions simultaneously (i.e., “one-step” scheme) has been 1040 

applied to constrain prior emissions in many previous studies (Evensen, 2009; Kong et 1041 

al., 2019a). To investigate the impact of different methods on the optimized emissions, 1042 

a sensitivity test (EMS1) was performed, in which the initial fields of each DA window 1043 

were optimized using the 3DVAR algorithm directly. Compared with our “two-step” 1044 

method (EMDA), the posterior emissions of EMS1 are increased by 7%, 1.4%, 0.6%, 1045 

22.2%, and 17.2% for CO, SO2, NOx, PM2.5 and PMC, respectively. Overall, there is no 1046 

significant difference between the two methods for NOx and SO2, but for CO, it can be 1047 

clearly seen that the difference increases with the inversion (Figure S11). As mentioned 1048 

previously, in the “two-step” scheme, the unresolved posterior emission error will be 1049 

fed back to the initial field of the next window through sufficient mixed simulation 1050 

within one day for timely optimization. Meanwhile, the system always maintains the 1051 

mass balance of pollutants. In this way, the system updates emissions more consistently 1052 

and stably. If the emission in one window is overestimated, in this way, it could be 1053 
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compensated in the next window with lower estimates. In contrast, when initial fields 1054 

assimilating with observations simultaneously at each window, the overestimation will 1055 

not be corrected and will accumulate to the end. We also evaluate the posterior 1056 

emissions of EMS1 using the same method as shown in Sect. 4.1.3. Overall, compared 1057 

to the base experiment (EMDA), the performance of EMS1 is significantly worse, with 1058 

RMSEs of CO, SO2, NO2, PM2.5 and PMC increasing from 0.56 mg m-3, 17.7, 12.3, 1059 

29.6, and 24.6 μg m-3 to 0.69 mg m-3, 18.8, 13.3, 36.8, and 33.3 μg m-3, respectively 1060 

(Figure 15). Additionally, it can be seen from the figure that the results of the two 1061 

experiments are relatively close at the beginning and during the heavy pollution period 1062 

(16-21 December). However, after that, the simulated results with “one-step” inversion 1063 

emissions are significantly higher than the observations, and these large biases continue 1064 

until the end. The results verified against the independent sites also show a similar 1065 

situation (Figure S8). The reason may be that during the period of heavy pollution, the 1066 

WRF-CMAQ (off-line model) does not consider the feedback process of meteorology 1067 

and chemistry, resulting in low simulations. Therefore, the system will compensate for 1068 

the underestimated concentrations caused by the model error through more emissions, 1069 

resulting in the overestimation of emissions. The accumulation of emission error in each 1070 

independent window further leads to the overestimation of concentration after the end 1071 

of high pollution, especially for species with a long lifetime (e.g., CO). On the contrary, 1072 

this overestimation will be corrected quickly in the subsequent inversion using the 1073 

“two-step” inversion scheme in this study (Figure S11), so as to ensure the stability of 1074 

the system. Additionally, the other “one-step” experiment, taking MEIC 2012 as prior 1075 

emissions, was conducted. However, the relative differences (Figure S12) in posterior 1076 

emissions between this experiment and the EMS1 did not converge like that between 1077 

EMDA and EMS2 with “two-step” scheme (Figure 13), which further demonstrates the 1078 

advantages of the “two-step” scheme. It should be noted that the model performance 1079 

depends on many factors but does not affect the advantage of the “two-step” scheme. 1080 

4.4 Discussion 1081 

Optimal state estimation using an EnKF relies on the assumption of unbiased Gaussian  1082 
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prior error, which is not guaranteed in such highly nonlinear and large biases systems 1083 

In this study, some pollutants (e.g., CO, PMC) have very large simulated biases, thus if 1084 

a small uncertainty is adopted, the emission bias cannot been fully reduced, while if a 1085 

very large uncertainty is adopted, then the degree of freedom of adjustment is too large, 1086 

and the inverted daily emissions will fluctuate abnormally. Therefore, we only set a 1087 

larger prior uncertainty in the first three windows, adopted a moderate uncertainty in 1088 

the following windows, and used a “two-step” inversion scheme and cyclic iteration to 1089 

gradually correct the emission errors. Figure 10(a) shows the time series of the relative 1090 

differences between the prior and posterior emissions in each window. There are the 1091 

relatively large adjustments for the emissions in the first three windows, especially for 1092 

PMC, but the adjustment ranges of the five species after the first 3 windows are 1093 

basically within the uncertainty range (e.g., ±25%), indicating that with this scheme, 1094 

the EnKF method used in this system still has a good performance in emission inversion. 1095 

The model-data mismatch error not only comes from the emissions, but also from the 1096 

inherent model errors arising from model structure, discretization, parameterizations 1097 

and the biases in the simulated meteorological fields. Neglecting model errors would 1098 

attribute all uncertainties to emissions, and lead to considerable biases in the estimated 1099 

emissions. In the version of CMAQ model used in this study, there is no heterogeneous 1100 

reactions (Quan et al., 2015; Wang et al., 2017), the parameterization scheme for the 1101 

formation of secondary organic aerosol (SOA) is imperfect (Carlton et al., 2008; Jiang 1102 

et al., 2012; Yang et al., 2019), no feedback between chemistry and meteorology is 1103 

considered, and we used an idea profile for chemical lateral boundary conditions. All 1104 

of the above problems can lead to underestimated concentrations of pollutants, which 1105 

in turn require more emissions to compensate, leading to overestimations in emissions. 1106 

In addition, previous studies have shown that the emission of ammonia in the MEIC 1107 

inventory was underestimated (Kong et al., 2019b; Paulot et al., 2014; Zhang et al., 1108 

2018). Due to lack of ammonia observations, our system does not include emission 1109 

estimates of ammonia, which means that the concentration of ammonium aerosol was 1110 

underestimated in this system, also resulting in an overestimation in the PPM2.5 1111 
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emission. Wind-blown dust was also not simulated here, thus the PMC emission 1112 

inverted in this system do not only come from anthropogenic activities, but also from 1113 

natural sources. Although some of these shortcomings could be solved in the future by 1114 

updating the CTM model, there will still be errors in each parameterization and each 1115 

process. Generally, parameter estimation method was used to reduce the model errors, 1116 

in which, some uncertain parameters were included in the augmented state vector and 1117 

were optimized synchronously based on the available observations (Brandhorst et al., 1118 

2017; Evensen, 2009). However, it is still quite difficult to identify the key uncertain 1119 

parameters of different species in different models, which generally comes not only 1120 

from the complex atmospheric chemical model, but also from hundreds of model inputs 1121 

(Tang et al., 2013). Another method is bias correction, which treats the model error as 1122 

a bias term, and includes it in the augmented state vector (Brandhorst et al., 2017; De 1123 

Lannoy et al., 2007; Keppenne et al., 2005). In addition, the weak-constraint 4D-Var 1124 

method can also be used to reduce the model errors, which adds a correction term in 1125 

the model integration to account for the different sources of model error (Sasaki, 1970). 1126 

Although reliable diagnosis of model error is still a challenge at present (Laloyaux et 1127 

al., 2020), it should be considered in an assimilation system. We will consider model 1128 

errors in our system in the future to obtain better emission estimates. 1129 

Independent variable localization was adopted to avoid potential spurious correlations 1130 

across different species in this study. However, the transmission scales for different 1131 

species in different regions are still different, and a more accurate localization range 1132 

could be obtained through backward trajectory analysis. Although Hamer et al. (2015) 1133 

successfully used O3 observations to estimate NOx and VOC emissions within the 4D-1134 

var framework within an idealised modelIn additionally, O3 observations are not 1135 

assimilated to improve NOx and VOC emissions using cross‐species information due to 1136 

the strong nonlinear effects within the O3‐NOx‐VOC relationship (Wang et al., 2019b), 1137 

in which the O3 concentration and NOx (VOC) emissions are positively correlated in 1138 

the NOx (VOC)-limited region and negatively correlated in the VOC (NOx)-limited 1139 

region (Tang et al., 2011). This work will be followed up by an ongoing work using 1140 
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available VOC observations. The optimization of the initial fields or emissions of NO2 1141 

may also change the O3‐NOx‐VOC relationship. Assuming that NO2 is underestimated, 1142 

the NO2 concentration increases after assimilation, but the VOC concentration remains 1143 

unchanged, then in the NOx (VOC)-limited region, the subsequent generation of O3 1144 

will increase (decrease); Conversely, the ozone concentration errors caused by 1145 

assimilating NO2 will also affect the subsequent NOx emission inversion. Similarly, the 1146 

model may not be able to resolve local-scale NO2 well because of uniform distribution 1147 

of concentration over the whole grid. Therefore, the model is shifted towards a NOx 1148 

(VOC)-limited regime in high (low) pollution regions, which negatively impacts results 1149 

by perturbing ozone chemistry in unrealistic ways (Inness et al., 2015). To evaluate the 1150 

influence of O3‐NOx‐VOC relationship change and model resolution on inversion, we 1151 

also further conducted a nested emission inversion on a densely observed area (the 1152 

Yangtze River Delta, China) with a grid spacing of 12 km (Feng et al., 2022). The study 1153 

period is the same as this study. Results showed that the NOx emissions in the Yangtze 1154 

River Delta retrieved at two resolutions are almost the same (14.7 kt/day vs. 13.4 1155 

kt/day), with a difference of 8.8%, indicating that the emissions can be adjusted 1156 

effectively by RAPAS. As shown previously, the concentrations after DA are obviously 1157 

underestimated in western China, indicating that the inverted emissions over these 1158 

regions still have large uncertainties because of the sparsity of observations that are 1159 

spatially insufficient for sampling the inhomogeneity of emissions. Therefore, further 1160 

investigations with joint assimilation of multisource observations (e.g., satellite) are 1161 

also underway. 1162 

When comparing the performances of the “two-step” and “one-step” schemes, for the 1163 

“one-step” scheme, we use a combination assimilation method, namely 3DVAR for the 1164 

optimizations of initial fields and EnKF for emission inversions in each DA window, 1165 

which is similar as Jiang et al., (2017), but different from most previous studies 1166 

(Miyazaki et al., 2017; Tang et al., 2013). Because most previous “one-step” 1167 

assimilation studies used only one method (i.e., EnKF). This combination method may 1168 

cause the comparison less than perfect. However, it should be noted that, even using 1169 
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the same method (such as EnKF) to optimize the emission of the current window and 1170 

the initial field of the next window simultaneously (Peng et al., 2018), the initial field 1171 

estimation errors will still be mixed in the simulated concentration field, resulting in 1172 

unreasonable emission compensation in the next window. In “one-step” scheme, the 1173 

essence is to build a good initial field in the high levels. Schwartz et al. (2014) compared 1174 

the performances of EnKF and 3DVAR in optimizing initial fields, and found that 1175 

3DVAR method can obtain a better initial field than EnKF method. Therefore, we 1176 

believe that in this comparison, a combinatorial assimilation approach used in the "one-1177 

step" scheme is an acceptable approach, and the conclusion is credible, that the “two-1178 

step” scheme has better performances than the “one-step” scheme in emission estimates. 1179 

NOx is mainly emitted by transportation (Li et al., 2017), which can better reflect the 1180 

level of economic activities to a certain extent. Weekly emission changes were also 1181 

explored to verify the performance of the system in depicting emission changes (Figure 1182 

S13). Although the “weekend effect” of emissions in China is not significant (Wang et 1183 

al., 2014; Wang et al., 2015), the posterior NOx emission changes showed a good 1184 

agreement with the observations. In our previous studies (Feng et al., 2020a; Feng et 1185 

al., 2020b), the system was successfully applied to optimize NOx and CO emissions, 1186 

respectively. The inverted emission changes were also in line with the time points of 1187 

epidemic control. Additionally, the emission changes can well reflect the emission 1188 

migration from developed regions or urban areas to developing regions or surrounding 1189 

areas over recent years, which were consistent with the emission control strategies in 1190 

China. Although the system does not consider the model error, resulting in a certain 1191 

difference between the posterior emission and the actual emission, the spatiotemporal 1192 

changes in posterior emissions are relatively reasonable, which can be used to monitor 1193 

emission changes and make emission regulations. 1194 

 1195 

5 Summary and conclusions 1196 

In this study, we developed a Regional multi-Air Pollutant Assimilation System 1197 
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(RAPASv1.0) based on the WRF/CMAQ model, 3DVAR and EnKF algorithm. RAPAS 1198 

can quantitatively optimize gridded emissions of CO, SO2, NOx, PPM2.5 and PMC on 1199 

regional scale by simultaneously assimilating hourly in-situ measurements of CO, SO2, 1200 

NO2, PM2.5 and PM10. This system includes two subsystems, namely the IA subsystem 1201 

and the EI subsystem, which optimizes the chemical ICs, and infers the anthropogenic 1202 

emissions, respectively.  1203 

Taking the 2016 Multi-resolution Emission Inventory for China (MEIC 2016) in 1204 

December as a priori, the emissions of CO, SO2, NOx, PPM2.5 and PMC in December 1205 

2016 were inferred through assimilating the corresponding nationwide observations 1206 

over China. The optimized ICs and posterior emissions were examined against the 1207 

assimilated and independent observations through parallel forward simulation 1208 

experiments with and without DA. Sensitivity tests are also performed to investigate 1209 

the impact of different inversion processes, prior emissions, prior uncertainties and 1210 

observation errors on the emission estimates.  1211 

The results show that RAPAS has a good performance in assimilating ground in-situ 1212 

observations, with the calculated emission uncertaintiescan significantly improve the 1213 

simulations and reduce the uncertainties of the emissions. For the whole mainland 1214 

China, the emission uncertainties reduced by 44.4%, 45.0%, 34.3%, 51.8% and 56.1% 1215 

for CO, SO2, NOx, PPM2.5 and PMC, respectively. It can also significantly improve the 1216 

simulations,, the RMSEs of the simulated concentrations with posterior emissions 1217 

decreased by 40.1-56.3%, and the CORRs increased from 0.26-0.66 to 0.69-0.87 for 1218 

different species. The OSSE experiment shows that the error of posterior CO, SO2, NOx, 1219 

PPM2.5, and PMC could be reduced by 78.4%, 86.1%, 78.8%, 77.6%, and 72.0%, 1220 

respectively. Overall, compared with the prior emissions (MEIC 2016), the posterior 1221 

emissions increased by 129%, 20%, 5% and 95% for CO, SO2, NOx and PPM2.5, 1222 

respectively. The posterior PMC emissions, which included anthropogenic and natural 1223 

dust contributions, increased by 1045%. The sensitivity tests with different inversion 1224 

processes show that the “two-step” scheme in emission inversion outperforms the joint 1225 

adjustment of ICs and emissions (“one-step” scheme), especially after heavy pollution. 1226 
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The sensitivity tests with different prior inventories show the observation in China is 1227 

sufficient in inferring the emissions, and our system is less dependent on prior 1228 

inventories. Additionally, the sensitivity tests with different prior uncertainties indicate 1229 

that when the posterior emissions are larger than the prior emissions, the emissions 1230 

decrease/increase with the decreases/increases of uncertainties because of the different 1231 

convergence rates. These results demonstrate the advantage of the two-step method in 1232 

emission inversion in that the inversion errors of the last window could be transferred 1233 

to the current window for further optimization and the robustness of the emissions 1234 

estimated from RAPAS using the nationwide observations over China. It should be 1235 

noted that the system usually responds slowly to too small a priori uncertainty or too 1236 

large observation error, which may result in large errors in the estimated emissions. 9 1237 

and S10  1238 

 1239 

Independent variable localization was adopted to avoid potential spurious correlations 1240 

across different species in this study. However, the transmission scales for different 1241 

species in different regions are still different, and a more accurate localization range 1242 

could be obtained through backward trajectory analysis. In additionally, O3 1243 

observations are not assimilated to improve NOx and VOC emissions using cross‐1244 

species information due to the strong nonlinear effects within the O3‐NOx‐VOC 1245 

relationship, in which the O3 concentration and NOx (VOC) emissions are positively 1246 

correlated in the NOx (VOC)-limited region and negatively correlated in the VOC 1247 

(NOx)-limited region (Tang et al., 2011). This work will be followed up by an ongoing 1248 

work using available VOC observations. As shown previously, the concentrations after 1249 

DA are obviously underestimated in western China, indicating that the inverted 1250 

emissions over these regions still have large uncertainties because of the sparsity of 1251 

observations that are spatially insufficient for sampling the inhomogeneity of emissions. 1252 

Therefore, further investigations with joint assimilation of multisource observations 1253 

(e.g., satellite) are also underway. 1254 
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In summary, the comprehensive evaluation and sensitivity tests reveal that RAPAS 1255 

could serve asthis study offers a useful tool for accurately quantifying the spatial and 1256 

temporal changes of multi-species emissions at regional scales and near-real time, 1257 

which will be helpful for the air pollution control in China, and the other regions around 1258 

the world with dense ground observation networksmulti-species anthropogenic 1259 

emissions at large scales and near-real time, which will serve better for monitoring 1260 

emission changes and designing future emissions regulations and pollution control. 1261 
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