
Responses to the comments of Reviewer #2: 

We are truly grateful to the positive comments and thoughtful suggestions. Those 

comments are all valuable and very helpful for revising and improving our paper, as 

well as the important guiding significance to our research. We have studied the 

comments/suggestions carefully and have made corresponding corrections. All changes 

made to the text are marked in red color. The point-by-point responses to the reviewers’ 

comments are listed as follows: 

 

General comments: 

1. The study “A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for 

emission estimates: system development and application by Shuzhuang Feng and 

colleagues describes a proposed method to estimate chemical and particulate matter 

emissions from observations by inversion. Emission rates of trace gases both of 

biogenic sources and anthropogenic chemical pollutants cannot be measured directly 

(apart from very special cases). Yet by evident reasons a precise knowledge is utterly 

important. While it is a long-discussed topic in atmospheric chemistry data assimilation 

and inversion, a solution of which is hampered by other factors, as initial and boundary 

data, deposition rates and many other parameters exert significant influence on the 

simulation result of chemistry transport models (CTM), which are the link between 

observations and emission estimates. 

As their central objective the authors claim this study offer “a useful tool for accurately 

quantifying multi-species anthropogenic emissions at large scales and near-real time, 

which will serve better for monitoring emission changes and designing future emissions 

regulations and pollution control.” 

While the aspirations of the authors are remarkable, I could not find sound justifications 

for both a validated methodological approach and the practical proof of concept by the 

presented case study. I cannot recommend publication prior to a presentation of 

supporting evidence of the central claim. 



Response: Thank you very much for this comment. We strongly agree that the 

conclusion that the system can reveal emissions changes well and provide effective 

assistance for pollution control can only be concluded after sufficient validation of the 

spatial and temporal changes in emissions inferred from the system. In this study, 

several methods were adopted to evaluate our system and the inversion results.  

First, the uncertainty reduction rate (UR) is an important quantity to evaluate the 

performance of an assimilation system and the effectiveness of assimilating 

observations (Chevallier et al., 2007; Takagi et al., 2011). In this system, the overall UR 

of CO, SO2, NOx, PPM2.5 and PMC emissions were 44.4%, 45.0%, 34.3%, 51.8% and 

56.1%, respectively, indicating that our system has good and comparable performance 

in optimizing the emissions of the 5 species.  

Second, an Observing Systems Simulation Experiment (OSEE) was conducted to 

evaluate the performance of the RAPAS system. We used the MEIC 2016 inventory as 

a “true” emission, and reduced the “true” emission by 30% over the mainland of China 

as a prior emission. Overall, the errors of posterior emissions of CO, SO2, NOx, 

PPM2.5 and PMC over the mainland of China can be reduced by 78.4%, 86.1%, 78.8%, 

77.6%, and 72.0%, respectively. Results of the OSSE show that the RAPAS can 

significantly reduce errors in prior emissions, and the method adopted in the RAPAS is 

reasonable and feasible. 

Third, to diagnose the performance of the EnKF analysis, the chi-squared (χ2) statistics 

was also calculated. Since we imposed a same uncertainty of prior emission at each DA 

window to partially compensate for the influence of model errors, χ2 statistics showed 

small fluctuations, indicating that the system updates emissions consistently and stably. 

Fourth, as only organized emissions from stacks have direct online monitoring in China, 

direct validation of the optimized emissions is impossible, and instead, we indirectly 

evaluate the posterior emissions by comparing the forward simulated atmospheric 

mixing ratios against measurement. The results showed that the RMSEs of the 

simulated concentrations with posterior emissions decreased by 40.1-56.3%, and the 



CORRs increased from 0.26-0.66 to 0.69-0.87 for different species.  

Fifth, according to the suggestion of another reviewer, the weekend effect of emissions 

was examined in the revised manuscript, which is a good way to test the reasonability 

of the day-to-day variation of the inverted emissions. But unfortunately, the weekend 

effect of China's emissions is not significant (Wang et al., 2014; Wang et al., 2015). We 

examined the day-to-day variations of the posterior NOx emissions, which is mainly 

emitted by transportation (Li et al., 2017), and found that there is no significant 

weekend effect, but the daily variation of the posterior emissions is in good agreement 

with the observations.  

Finally, the emission changes of NOx during the 2020 COVID‐19 Epidemic have been 

widely studied with satellite observations (Bauwens et al., 2020; Liu et al., 2020), and 

were relatively well known because of the lockdown policy. In our previous study (Feng 

et al., 2020), with the RAPAS system, we also estimated the spatial and temporal 

changes of the NOx emissions, and found that the inverted daily variations of NO2 

emissions in different areas of China were consistent with their lockdown policies.  

In this study, we further extended our system to synchronously assimilate the 

conventional ground observations of SO2, CO, NO2, PM2.5 and PM10 and infer the 

SO2, CO, NOx, primary PM2.5 and coarse PM10 emissions. Since the observations are 

released by the National Environmental Monitoring Station of China in real time, with 

this system, near-real time emissions could be estimated. Therefore, we believe that this 

system could serve as a useful tool for accurately quantifying the changes of 

anthropogenic emissions at near-real time, which will be helpful for the air pollution 

control in China, and the other regions around the world with ground observation 

networks. 

 

Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van Gent, J., Eskes, H., 

Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: 

Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI 

and OMI Observations, 47, e2020GL087978, 10.1029/2020gl087978, 2020. 
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S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission 

inventory under the international collaboration framework of the MICS-Asia and 

HTAP, Atmospheric Chemistry and Physics, 17, 935-963, 10.5194/acp-17-935-

2017, 2017. 

Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., 

Krotkov, N. A., Eskes, H., van der A, R., Veefkind, P., Levelt, P. F., Hauser, O. P., 

and Joiner, J.: Abrupt decline in tropospheric nitrogen dioxide over China after the 

outbreak of COVID-19, Science Advances, 6, 2020. 

Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., 

Morino, I., Uchino, O., Andres, R. J., Yokota, T., and Maksyutov, S.: On the 

Benefit of GOSAT Observations to the Estimation of Regional CO<sub>2</sub> 

Fluxes, SOLA, 7, 161-164, 10.2151/sola.2011-041, 2011. 

Wang, Y. H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, 

T., Wang, L. L., Gao, W. K., Wang, X. K., and Wang, Y. S.: Ozone weekend effects 

in the Beijing-Tianjin-Hebei metropolitan area, China, Atmospheric Chemistry 

and Physics, 14, 2419-2429, 2014. 

Wang, Z., Li, Y., Dong, X., Sun, R., Sun, N., and Pan, L.: Analysis on weekend effect 

of air pollutants in urban atmosphere of Beijing, Journal of University of Chinese 

Academy of Sciences, 32, 843-850, 2015. 

 

 

Specific comments: 

1. The introduction comprises related literature on emission inversion, however with a 

clear bias toward Kalman filtering. The variational approach, which plays a key role in 

radiatively active trace gases for greenhouse effects, is also used in reactive chemistry 

inversion. Yet this methodological branch is disposed of by remarking that this is 

“technically difficult and cumbersome for complex chemical transport models”, 



without addressing its features. Literature survey may be complemented to a 

appropriate level here. 

Response: Thank you for this suggestion. We supplement some literature reviews on 

the characterization of the 4D-var method and related inversion studies in the revised 

manuscript. See lines 108-119, pages 4-5. 

“4DVAR provides a global optimal analysis through minimizing a cost function. It 

shows implicit flow-dependent background error covariance and can reflect complex 

nonlinear constraint relationship (Lorenc, 2003). Additionally, the model error can be 

partly accounted for with a weak constraint 4DVAR method through the definition of a 

systematic error term in a cost function (Derber, 1989). For example, GEOS-Chem and 

TM5 4DVAR frameworks have been used to estimate CH4 (Alexe et al., 2015; 

Schneising et al., 2009; Stanevich et al., 2021; Wecht et al., 2014) and CO2 fluxes  

(Basu et al., 2013; Nassar et al., 2011; Wang et al., 2019) from different satellite 

retrieval products. Monteil et al. (2013) showed that the global patterns of CH4 

emissions derived from SCIAMACHY (with bias correction) and GOSAT retrievals are 

in remarkable agreement based on 15 months observations. Additionally, Jiang et al. 

(2017) used 4DVAR algorithm to estimate global CO emission trends from 2000–2015 

using MOPITT retrievals. Kurokawa et al. (2009) and Stavrakou et al. (2008) …” 

 

2. A central position next to emission optimization is initial value optimization as a 

prerequisite for unbiased emission rate estimates. A discussion on sensitivities of CTMs 

to additional parameter controls (see above), which demonstrate the authors’ awareness 

of competing impacts on model simulations is lacking however. As it is presented, it is 

tacitly assumed that these sensitivities are minor. In this context, the authors’ approach 

may well be valid. But it is a matter of scientific scrutiny to meticulously expose the 

underlying assumptions, which would not affect the value of the study. 

Response: Thank you very much for this comment. We fully agree that the model-data 

mismatch error comes not only from the emissions, but also from the inherent model 



errors arising from model structure, discretization and parameterizations, such as 

boundary condition error, deposition rates, lack of chemical reactions and processes of 

gas-particle transformation, etc. At present, there is still a lack of reasonable and 

effective algorithms to solve the model error in atmospheric data assimilation 

(Houtekamer and Zhang, 2016). Usually, it was assumed that the atmospheric chemical 

transport model is perfect. Neglecting model errors in the EnKF would attribute all 

uncertainties to emissions. We have added the following discussions about model error 

in the revised manuscript, which could also be found in lines 1096-1129, pages 58-59. 

“The model-data mismatch error not only comes from the emissions, but also from the 

inherent model errors arising from model structure, discretization, parameterizations 

and the biases in the simulated meteorological fields. Neglecting model errors would 

attribute all uncertainties to emissions, and lead to considerable biases in the estimated 

emissions. In the version of CMAQ model used in this study, there is no heterogeneous 

reactions (Quan et al., 2015; Wang et al., 2017), the parameterization scheme for the 

formation of secondary organic aerosol (SOA) is imperfect (Carlton et al., 2008; Jiang 

et al., 2012; Yang et al., 2019), no feedback between chemistry and meteorology is 

considered, and we used an idea profile for chemical lateral boundary conditions. All 

of the above problems can lead to underestimated concentrations of pollutants, which 

in turn require more emissions to compensate, leading to overestimations in emissions. 

In addition, previous studies have shown that the emission of ammonia in the MEIC 

inventory was underestimated (Kong et al., 2019b; Paulot et al., 2014; Zhang et al., 

2018). Due to lack of ammonia observations, our system does not include emission 

estimates of ammonia, which means that the concentration of ammonium aerosol was 

underestimated in this system, also resulting in an overestimation in the PPM2.5 

emission. Wind-blown dust was also not simulated here, thus the PMC emission 

inverted in this system do not only come from anthropogenic activities, but also from 

natural sources. Although some of these shortcomings could be solved in the future by 

updating the CTM model, there will still be errors in each parameterization and each 

process. Generally, parameter estimation method was used to reduce the model errors, 



in which, some uncertain parameters were included in the augmented state vector and 

were optimized synchronously based on the available observations (Brandhorst et al., 

2017; Evensen, 2009). However, it is still quite difficult to identify the key uncertain 

parameters of different species in different models, which generally comes not only 

from the complex atmospheric chemical model, but also from hundreds of model inputs 

(Tang et al., 2013). Another method is bias correction, which treats the model error as 

a bias term, and includes it in the augmented state vector (Brandhorst et al., 2017; De 

Lannoy et al., 2007; Keppenne et al., 2005). In addition, the weak-constraint 4D-Var 

method can also be used to reduce the model errors, which adds a correction term in 

the model integration to account for the different sources of model error (Sasaki, 1970). 

Although reliable diagnosis of model error is still a challenge at present (Laloyaux et 

al., 2020), it should be considered in an assimilation system. We will consider model 

errors in our system in the future to obtain better emission estimates.” 

 

Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for 

Atmospheric Data Assimilation, Monthly Weather Review, 144, 4489-4532, 2016. 

 

 

Methodology comments: 

3.a. Inversion and data assimilation methods perceived in the referenced literature 

address Best Linear Unbiased Estimators (BLUE). This property should also be granted 

by the two-step procedure combining three-dimensional variational (3DVAR) 

algorithm and the ensemble square root filter (EnSRF) algorithm, which is claimed to 

show ”that the “two-step” scheme clearly outperformed the simultaneous assimilation 

of ICs and emissions (“one-step” scheme), …” (line 72). While splitting tasks into 

sequential steps is a well established strategy in numerics to reduce complexity and 

increase efficiency (e.g. ADI methods), essential care must be taken to ensure the 

convergence of both split (two-step) and combined (one-step) algorithms toward the 



same result. The claimed robustness of the method is demonstrated here not in a sense 

of same result. Rather different background emissions are probed for convergence (e.g. 

line 153), which does not experimentally validate the two-step method. Moreover, it is 

a problem, that the two-step method is established by two different methods. Unless 

there is a sophisticated multivariate (that is multi-species crosscorrelating) background 

error covariance matrix (which is evidently not the case in this study) initial value 

estimation by 3DVAR cannot account for some realistic chemical consistency. Even 

monovariate cross-correlations are essential to be defined, both horizontally and 

vertically, to optimize unobserved adjacent areas/height levels. Any estimation errors 

made in step one are compensated by step two provided biased emission optimization, 

which is, by EnKF, also performed in time. (Say, too high/low estimated vertical 

concentrations aloft and mixed down to the observation site are adjusted by too 

low/high emissions). So the system is prone to propagate errors made in a single step, 

the methodologically weakest of which limits the overall success. So better analyse why 

(see L 71-72) it can be possible that “the “two-step” scheme clearly outperformed the 

simultaneous assimilation of ICs and emissions (“one-step” scheme)”.  

The authors should either proof the BLUE property of their two-step method with a 

unique solution by mathematical rigour, or adopt a one-step procedure based on their 

EnKF approach, or even better, an ensemble Kalman Smoother. 

Response: Thank you for this comment. We want to prove the superiority of the system 

in the inversion strategy (“two-step”) by comparing the performances of the “two-step” 

and “one-step” schemes. The latter has been widely used in previous studies (Miyazaki 

et al., 2017; Peng et al., 2018). However, in this study, for the “one-step” scheme, we 

use a combination assimilation method, namely 3DVAR for the optimizations of initial 

fields and EnKF for emission inversions in each DA window, which is similar as Jiang 

et al., (2017), but different from most previous studies. Because most previous “one-

step” assimilation studies used only one method (i.e., EnKF). We agree that this 

combination method may cause the comparison less than perfect. However, It should 

be noted that, even using the same method (such as EnKF) to optimize the emission of 



the current window and the initial field of the next window simultaneously (Peng et al., 

2018), the initial field estimation errors will still be mixed in the simulated 

concentration field, resulting in unreasonable emission compensation in the next 

window. In “one-step” scheme, the essence is to build a good initial field through data 

assimilation for each DA window. The 3DVAR method used in this study has good 

performance in optimizing the initial field, which has been shown in section 4.1.2. 

Although the biases in the high levels were not evaluated, with only ground 

observations, we believe that the performance of the EnKF method in the high levels is 

similar. Schwartz et al. (2014) compared the performances of EnKF and 3DVAR in 

optimizing initial fields, and found that 3DVAR method can obtain a better initial field 

than EnKF method. Therefore, we believe that in this comparison, a combinatorial 

assimilation approach used in the "one-step" scheme is an acceptable approach. 

During the comparison, three results were analyzed, including the evaluation of 

posterior emissions against observations, the daily variations of the posterior emissions, 

and the convergence performances with different prior emissions. The evaluation 

against observations shows that the RMSEs of the simulated concentrations with 

posterior emissions decreased by 40.1-56.3%, and the CORRs increased from 0.26-0.66 

to 0.69-0.87 for different species; The daily variations show that the posterior emissions 

is in good agreement with the observations; and the convergence performances with 

different prior emissions show that the differences between the posterior emissions 

gradually decrease over time in the "two-step" scheme, but it is not found in the "one-

step" scheme. Therefore, we believe that the “two-step” scheme has better performance 

than the “one-step” scheme in emission inversions.  

Following descriptions are added in the revised manuscripts.  

Lines 1046-1048, page 56. 

“Overall, there is no significant difference between the two methods for NOx and SO2, 

but for CO, it can be clearly seen that the difference increases with the inversion (Figure 

S11).” 



Lines 1072-1079, page 57. 

“On the contrary, this overestimation will be corrected quickly in the subsequent 

inversion using the “two-step” inversion scheme in this study (Figure S11), so as to 

ensure the stability of the system. Additionally, the other “one-step” experiment, taking 

MEIC 2012 as prior emissions, was conducted. However, the relative differences 

(Figure S12) in posterior emissions between this experiment and the EMS1 did not 

converge like that between EMDA and EMS2 with “two-step” scheme (Figure 13), 

which further demonstrates the advantages of the “two-step” scheme.” 

Lines 1163-1179, pages 60-61. 

“When comparing the performances of the “two-step” and “one-step” schemes, for the 

“one-step” scheme, we use a combination assimilation method, namely 3DVAR for the 

optimizations of initial fields and EnKF for emission inversions in each DA window, 

which is similar as Jiang et al., (2017), but different from most previous studies 

(Miyazaki et al., 2017; Tang et al., 2013). Because most previous “one-step” 

assimilation studies used only one method (i.e., EnKF). This combination method may 

cause the comparison less than perfect. However, it should be noted that, even using 

the same method (such as EnKF) to optimize the emission of the current window and 

the initial field of the next window simultaneously (Peng et al., 2018), the initial field 

estimation errors will still be mixed in the simulated concentration field, resulting in 

unreasonable emission compensation in the next window. In “one-step” scheme, the 

essence is to build a good initial field in the high levels. Schwartz et al. (2014) compared 

the performances of EnKF and 3DVAR in optimizing initial fields, and found that 

3DVAR method can obtain a better initial field than EnKF method. Therefore, we 

believe that in this comparison, a combinatorial assimilation approach used in the "one-

step" scheme is an acceptable approach, and the conclusion is credible, that the “two-

step” scheme has better performances than the “one-step” scheme in emission estimates. 

” 



 

Figure R1. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%) 

between the EMS1 and the other “one-step” experiment taking MEIC 2012 as prior 

emissions. Note that the X-axis scale is different from Figure 13. (Figure S12 in the 

revised manuscript) 

 

Figure R2 The temporal variability of the posterior emissions (kton/day) in EMSD 

(solid line) and EMS1 (dotted line) experiments over the whole mainland China. Labels 

on the right Y-axis refer to CO emissions. (Figure S11 in the revised manuscript) 



Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and 

Henze, D. K.: A 15-year record of CO emissions constrained by MOPITT CO 

observations, Atmospheric Chemistry And Physics, 17, 4565-4583, 10.5194/acp-

17-4565-2017, 2017. 

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: 

Decadal changes in global surface NOx emissions from multi-constituent satellite 

data assimilation, Atmospheric Chemistry and Physics, 17, 807-837, 2017. 

Peng, Z., Lei, L., Liu, Z., Su, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The 

impact of multi-species surface chemical observation assimilation on air quality 

forecasts in China, Atmospheric Chemistry and Physics, 18, 10.5194/acp-18-

17387-2018, 2018. 

Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating aerosol observations 

with a "hybrid" variational-ensemble data assimilation system, Journal Of 

Geophysical Research-Atmospheres, 119, 4043-4069, 10.1002/2013jd020937, 

2014. 

 

3.b. In addition, it is a well established validation procedure and common practice after 

implementation of a new data assimilation/inversion algorithm, to test the system by 

“identical twin” experiments and Observation System Experiments (OSEs), where a 

virtual reality is given by “nature runs”, where “artificial observations” serve to 

estimate known chemical states and emission rates (see textbook by Daley, 1990 for 

details). There is no hint in the paper, that corresponding activities have been 

undertaken. These tests do not confirm the correctness of the theoretical approach. This 

being assumed, they seek a necessary, yet insufficient test being approved. The authors 

are strongly encouraged to validate and proof their approach by these tests. 

Response: Thank you for this suggestion. According to this suggestion, we have added 

an Observing Systems Simulation Experiment (OSSE) to further validate our system in 

the revised manuscript. We also show the modifications as follows:  

Lines 561-568, page 25. 

“… coincides with the research stage. An Observing Systems Simulation Experiment 

(OSEE) was conducted to evaluate the performance of the RAPAS system, which has 

been widely used in previous assimilation systems development (Daley, 1997). In the 



OSSE experiment, we used the MEIC 2016 inventory as a “true” emission, and reduced 

the “true” emission by 30% over the mainland of China as a prior emission. The 

simulations simulated using the “true” emission and sampled according to the locations 

and times of the real observations were used as artificial observations. The observation 

errors are the same as those in EMDA. To evaluate the IC improvements …” 

 

Table 3 

 

Lines 819-828, pages 42-43. 

4.1.6 Evaluation using OSSE 

Figure 11 shows the spatial distribution of the error reduction in the posterior emissions 

of the five species. It can be found that after inversion, in most areas, the emission errors 

can be reduced by more than 80%, especially in the central and eastern regions with 

dense observation sites, while in remote areas far away from cities, due to the sparse 

observation sites, the emission errors are still not well adjusted. Overall, the error 

reduction rates of CO, SO2, NOx, PPM2.5, and PMC are 78.4%, 86.1%, 78.8%, 77.6%, 

and 72.0%, respectively, indicating that with the ground in-situ observations in China, 

RAPAS can significantly reduce emission errors, thus has good performance in 

emission estimates.  

Exp. 

Type 

Exp. 

Name 
Period 

IC of the first 

DA window 

ICs of the 

subsequent DA 

window 

Emission 

Assimilation OSSE 
1-31 

December 

The same as 

EMDA 

The same as 

EMDA 

The same as EMDA, 

but with a decrease of 

30% for CO, SO2, NOx, 

PPM2.5, and PMC 



 

Figure R3 Spatial distribution of the error reduction (%) of posterior emissions in the 

OSSE. (Figure 11 in the revised manuscript) 

 

4. The presentation of the EnKF is confusing (see equs. (7)-(12)): Below (7) we read 

“���
� represents the randomly perturbed samples that are added to the prior emissions 

Xb0 to produce ensemble samples of the inputs ��
� …..”. Evidently these parameters 

are emissions. In equs (8) and (11), also others in between, these parameters are used 

as state parameters in traditional ensemble KF notation, revealing in (8) a comparison 

with observations ( � − ��� ). I presume observation operator �  does not link 



emissions X with observations y. Rather concentrations are surely meant here (and not 

the extremely unlikely case of available eddy covariance tower flux measurements). A 

means to unravel this would be the approach of expanding the state vector of 

concentrations by emission rates following Wu at al. (2016). See their eq. (5.3). Take 

also note of their discussion of optimization and control on the finite assimilation 

window length. What is the assimilation frequency within a DA window of 1 day? 

Please clarify these points. 

Response: Thank you for this comment. The observation operator �  reflects the 

combined information of emissions, the physics and chemistry processes in simulations 

and the transformation of different species from model space to observation space 

(Peng et al., 2017). ���  can be regarded as the simulations at the observation 

locations. Therefore, � − ��� represents the deviations between the observations and 

the simulations. Wu at al. (2016) expanded the state variables to realize the joint 

optimization of concentrations and emissions, which is similar to “one-step” method. 

The relationship between emissions and observations was also expressed through the 

observation operator � (Wu et al., 2016, Section 3). The assimilation frequency in one 

assimilation window is once. Following descriptions are added in the revised 

manuscripts.  

See lines 400-402, page 19. 

“� is the observation operator that maps simulated concentrations from model space 

to observation space; � − ���  reflects the differences between the simulated and 

observed concentrations;” 

See lines 433-434, page 20. 

“Due to the “super-observation” approach, only one assimilation is needed in one 

assimilation window.” 

 



Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM&lt;sub&gt;2. 5&lt;/sub&gt; 

forecast over China by the joint adjustment of initial conditions and source 

emissions with an ensemble Kalman filter, Atmospheric Chemistry and Physics, 

17, 4837-4855, 10.5194/acp-17-4837-2017, 2017. 

 

5. Is there a test set demonstrating prognostic improvements? And if so, which forecast 

time is used. I was unable to identify such an experiment, which demonstrates a type of 

benefits from emission optimization. 

Response: Thank you for this comment. In previous, many studied have been 

conducted to illustrate the benefits of emission optimization for air quality forecasting 

(ref.). In fact, improving air quality forecasts was one of our goals in developing this 

system, and during the development of this system, we indeed conducted experiments 

to test its ability to improve forecasts. We found that, compared the forecasts (72 hours) 

with original emission inventory, overall, the RMSEs of forecasts with the optimized 

emissions could decrease by 45.2%, 57.0%, 43.8%, 34.9% and 41.3% and the CORRs 

could increase by 82.0%, 140.0%, 19.9% 40.5% and 59.4% for CO, SO2, NO2, PM2.5 

and PM10, respectively (Figure R4). Because the purpose of this paper is to introduce 

this system, we do not present in the paper the impact of emission optimization using 

this system on air quality forecasts.. 

 

 

 



 

Figure R4 Mean forecasts and observations, RMSE (mg/m3 for CO and μg/m3 for other 

species) and CORR of the 72-hr forecasts, aggregated over 28 forecasts and verified 

against all surface monitoring data. The forecasts are performed at each 0000 UTC and 

the emissions of FCNO and FCDA are from the MEIC and a posteriori of the previous 

window, respectively. 

 



6. L 203: The grid size of 36 km is very coarse. In fact to be judged in relation to your 

following statement: 

L 878-883 “In additionally, O3 observations are not assimilated to improve NOx and 

VOC emissions using cross species information due to the strong nonlinear effects 

within the O3‐NOx‐VOC relationship, in which the O3 concentration and NOx (VOC) 

emissions are positively correlated in theNOx (VOC)-limited region and negatively 

correlated in the VOC (NOx)-limited region (Tang et al., 2011).” NOx chemistry is 

linked to VOCs and CO via O3. Due to the lack of VOC observations, the evolution of 

O3 (build up) is mandatory, as otherwise NO2 evolution is not properly analysable. 

This clearly indicates that the model set-up/coarseness is unable to simulate the core 

reactivity of tropos. chemistry properly and thus is unsuited to infer emission rates. It 

is suggested to rerun the experiment with asufficiently highly resolved nest on a densely 

observed area.. 

Response: Thanks for this suggestion. Indeed, the unoptimized VOC emissions due to 

the lack of observations will perturb the O3‐NOx‐VOC relationship, and then affect the 

optimization of NOx emissions. The purpose of those sentences is to show that due to 

the highly nonlinear relationship of NOx-O3-VOC, we cannot constrain NOx or VOC 

emissions by assimilating O3 observations, not that the model cannot well simulate the 

tropospheric chemical reactions. CMAQ is a widely used and validated regional air 

quality model (Nolte et al., 2015), with the popular spatial resolution about 36 km at 

the regional scale (Chen et al., 2021; Holloway et al., 2012; Moniruzzaman et al., 2020; 

Sharma et al., 2016). Many studies used the global model (e.g., GEOS-Chem) to 

simulate O3 (Zhang et al., 2011; Jourdain et al., 2010; Parrington et al., 2008 ) or 

constrain NOx emissions (Jourdain et al., 2010; Vinken et al., 2014) with a resolution 

of tens to hundreds of kilometers at the regional scale, but they can still better capture 

the temporal and spatial changes of NOx and O3. There are reasons to believe that 

CMAQ has the ability to simulate O3 well at a higher resolution (36 km) at the regional 

scale. For example, Sharma et al. (2016) used CMAQ model with a resolution of 36 km 

to simulate ozone in India, and further investigated the effect of different precursor 



species and sources on O3. The evaluations showed that the simulation was in good 

agreement with the observation. Using the same resolution, Mueller and Mallard (2011) 

used CMAQ model quantified the contribution of natural sources to ozone over the 

continental United States. Model evaluations showed that overall bias in daily 

maximum 8-h ozone was less than3 ppbv and the mean fractional bias was only 6%. In 

addition, we also evaluated the O3 simulation with posterior emissions inferred in this 

study and found that, compared with observation, the simulated O3 is still improved 

due to improved NOx estimation, with a decrease of RMSE from 35.8 to 33.3 μg m-3 

and an increase of correlation coefficient from 0.43 to 0.53. Gan et al. (2016) found that 

there was no significant difference for both simulated pollutant concentrations and 

radiation variables at 36 and 12 km resolution in CMAQ model. We also further 

conducted a nested emission inversion on a densely observed area (the Yangtze River 

Delta, China) with a grid spacing of 12 km (Feng et al., 2022). The study period is the 

same as this study. Results showed that the biases (-2.6 vs. -1.0 μg m-3) , RMSEs (11.0 

vs. 9.4 μg m-3) and correlation coefficients (0.86 vs. 0.89) of simulated NO2 with two 

posterior emissions were comparable against the observation in the Yangtze River Delta. 

Moreover, the NOx emissions in the Yangtze River Delta retrieved at two resolutions 

are almost the same (14.7 kt/day vs. 13.4 kt/day), with a difference of 8.8%. These 

statistics indicate that the emissions can be adjusted effectively by RAPAS. We have 

added following discusses about the possible effect of coarse model settings on NOx 

emission inversion.   

Lines 243-245, pages 9-10. 

“This spatial resolution has been widely adopted in regional simulations and can 

provide good simulations of the spatiotemporal variations of air pollutants (Mueller and 

Mallard, 2011; Sharma et al. 2016).” 

Lines 1141-1146, page 60. 

“The optimization of the initial fields or emissions of NO2 may also change the O3‐

NOx‐VOC relationship. Assuming that NO2 is underestimated, the NO2 concentration 



increases after assimilation, but the VOC concentration remains unchanged, then in the 

NOx (VOC)-limited region, the subsequent generation of O3 will increase (decrease); 

Conversely, the ozone concentration errors caused by assimilating NO2 will also affect 

the subsequent NOx emission inversion.” 

Lines 1150-1157, page 60. 

“To evaluate the influence of O3‐NOx‐VOC relationship change and model resolution 

on inversion, we also further conducted a nested emission inversion on a densely 

observed area (the Yangtze River Delta, China) with a grid spacing of 12 km (Feng et 

al., 2022). The study period is the same as this study. Results showed that the NOx 

emissions in the Yangtze River Delta retrieved at two resolutions are almost the same 

(14.7 kt/day vs. 13.4 kt/day), with a difference of 8.8%, indicating that the emissions 

can be adjusted effectively by RAPAS.” 

 

Chen, Y., Shen, H., Kaiser, J., Hu, Y., Capps, S. L., Zhao, S., Hakami, A., Shih, J. S., 

Pavur, G. K., Turner, M. D., Henze, D. K., Resler, J., Nenes, A., Napelenok, S. L., 

Bash, J. O., Fahey, K. M., Carmichael, G. R., Chai, T., Clarisse, L., Coheur, P. F., 

Van Damme, M., and Russell, A. G.: High-resolution hybrid inversion of IASI 

ammonia columns to constrain US ammonia emissions using the CMAQ adjoint 

model, Atmos. Chem. Phys., 21, 2067-2082, 2021. 

Feng, S., Jiang, F., Wang, H., Shen, Y., Zheng, Y., Zhang, L., Lou, C., and Ju, W.: 

Anthropogenic emissions estimated using surface observations and their impacts 

on PM2.5 source apportionment over the Yangtze River Delta, China, Science of 

The Total Environment, 828, 154522, 2022. 

Gan, C.-M., Hogrefe, C., Mathur, R., Pleim, J., Xing, J., Wong, D., Gilliam, R., Pouliot, 

G., and Wei, C.: Assessment of the effects of horizontal grid resolution on long-

term air quality trends using coupled WRF-CMAQ simulations, Atmospheric 

Environment, 132, 207-216, 2016. 

Holloway, T., Voigt, C., Morton, J., Spak, S. N., Rutter, A. P., and Schauer, J. J.: An 

assessment of atmospheric mercury in the Community Multiscale Air Quality 

(CMAQ) model at an urban site and a rural site in the Great Lakes Region of North 

America, Atmos. Chem. Phys., 12, 7117-7133, 2012. 

Jourdain, L., Kulawik, S. S., Worden, H. M., Pickering, K. E., Worden, J., and 

Thompson, A. M.: Lightning NO<sub>x</sub> emissions over the USA 

constrained by TES ozone observations and the GEOS-Chem model, Atmos. 



Chem. Phys., 10, 107-119, 2010. 

Moniruzzaman, C. G., Bowden, J., and Arunachalam, S.: Aircraft landing and takeoff 

emission impacts on surface O3 and PM2.5 through aerosol direct feedback effects 

estimated by the coupled WRF-CMAQ model, Atmospheric Environment, 243, 

117859, 2020. 

Mueller, S. F. and Mallard, J. W.: Contributions of Natural Emissions to Ozone and 

PM2.5 as Simulated by the Community Multiscale Air Quality (CMAQ) Model, 

Environmental Science & Technology, 45, 4817-4823, 2011. 

Nolte, C. G., Appel, K. W., Kelly, J. T., Bhave, P. V., Fahey, K. M., Collett Jr, J. L., 

Zhang, L., and Young, J. O.: Evaluation of the Community Multiscale Air Quality 

(CMAQ) model v5.0 against size-resolved measurements of inorganic particle 

composition across sites in North America, Geosci. Model Dev., 8, 2877-2892, 

2015. 

Parrington, M., Jones, D. B. A., Bowman, K. W., Horowitz, L. W., Thompson, A. M., 

Tarasick, D. W., and Witte, J. C.: Estimating the summertime tropospheric ozone 

distribution over North America through assimilation of observations from the 

Tropospheric Emission Spectrometer, Journal of Geophysical Research: 

Atmospheres, 113, 2008. 

Sharma, S., Chatani, S., Mahtta, R., Goel, A., and Kumar, A.: Sensitivity analysis of 

ground level ozone in India using WRF-CMAQ models, Atmospheric 

Environment, 131, 29-40, 2016. 

Vinken, G. C. M., Boersma, K. F., van Donkelaar, A., and Zhang, L.: Constraints on 

ship NO<sub>x</sub> emissions in Europe using GEOS-Chem and OMI satellite 

NO2 observations, Atmos. Chem. Phys., 14, 1353-1369, 2014. 

Zhang, L., Jacob, D. J., Downey, N. V., Wood, D. A., Blewitt, D., Carouge, C. C., van 

Donkelaar, A., Jones, D. B. A., Murray, L. T., and Wang, Y.: Improved estimate of 

the policy-relevant background ozone in the United States using the GEOS-Chem 

global model with 1/2° × 2/3° horizontal resolution over North America, 

Atmospheric Environment, 45, 6769-6776, 2011. 

 

 

Technical corrections: 

7. L. 59-63: What is meant in one case: Emission optimization with or without prior IC 

by 3D-var? 

Response: Thanks. We have rephrased the sentence (See lines 61-69, page 3) as follows: 



“Results showed that the simulated concentrations of CO, NO2, SO2, PM2.5 and PM10 

with the prior inventory have large systematic biases, with relative biases in the range 

of -48.2-54.2%. In the IA subsystem, after 3DVAR, the root mean squared error (RMSE) 

of the simulated concentrations decreased by 50.0-73.2%, and the correlation 

coefficient (CORR) increased to 0.78-0.92 for the five species. In the EI subsystem, 

after emission inversions, the RMSE of the simulated concentrations decreased by 40.1-

56.3%, and the CORR increased to 0.69-0.87.” 

 

8. L. 68-69: Selection of the Dec 2016 case study analysis: in view of typically episodic 

nature of mineral dust: does this high quantitative increment make sense for a validation 

of a novel algorithm? Why not another episode? 

Response: Thanks for this comment. China has implemented strict pollution control 

measures in recent years to combat air pollution, especially in the cold season, and 

December is one of the most polluted months in China. Therefore, we believe that it is 

more meaningful to invert this month’s emission changes for the pollution control. In 

addition, in China, sandstorms mainly occur in spring, and the month we choose is 

basically unaffected by sandstorms. However, because northern China is basically arid 

and semi-arid regions, the wind-blown dust exists throughout the year. According to the 

suggestion of another reviewer, we have also performed another inversion in July. The 

increase of PMC emissions (1178%) constrained by observations in July is comparable 

with that in December. The following discussions are added in the revised manuscript. 

See lines 549-551, page 24. 

 “December is one of the months with most severe air pollution, while July is one of 

the least polluted months in China. Therefore, this study mainly tested the performance 

of the RAPAS system in these two months. For December, the IA …” 

See lines 556-559, pages 24-25. 

“For July, the system also operated in the same way as for December. It needs to be 

noted that due to the stronger atmospheric oxidation, the lifetime of NO2 in July is 



significantly shorter than that in December, thus we adopted a smaller localization scale 

for NO2 (80 km).” 

See lines 868-873, page 45. 

“The evaluation results for July show that the emission uncertainty can still be 

significantly reduced, and the performance of the system in July is comparable to that 

in December (Table S2). Additionally, the seasonal variation of emissions can be well 

reflected (Figures S4 and S5), which means that our system can perform well at 

different times of the year.” 

 

 

Figure R5 The prior and posterior emissions (kton/day) in July and December 2016 

over the whole mainland China. (Figure S5 in the revised manuscript) 



 

Figure R6 Spatial distribution of the time-averaged prior emissions (left column, 

MEIC 2016), posterior emissions (middle column), and differences (right column, 

posterior minus prior) in July 2016. (Figure S4 in the revised manuscript) 

 

 

 

 

 



Table R1. Statistics comparing the pollution concentrations from the simulations with 

prior (CEP) and posterior (VEP) emissions against observations for July. CO unit: mg 

m-3; others units: μg m-3. (Table S2 in the revised manuscript) 

Species 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR  

CEP8 VEP8 CEP8 VEP8 CEP8 VEP8 CEP8 VEP8  

CO 0.79 0.33 0.63 -0.46 -0.16 0.58 0.35 0.25 0.65  

SO2 12.9 15.6 9.6 2.7 -3.3 19.7 7.2 0.12 0.71  

NO2 20.0 23.0 16.5 3.0 -3.5 22.0 6.8 0.47 0.81  

PM2.5 29.2 21.9 23.3 -7.3 -6.0 21.1 13.9 0.51 0.76  

PMC 53.6 27.6 42.3 -26.0 -11.3 42.3 30.9 0.38 0.61  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 

 

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME 

measurements: a signature of anthropogenic sources, Atmospheric Chemistry and 

Physics, 3, 2225-2232, 2003. 

 

9. L 122-124: Unclear: “Barbu et al. (2009) updated sulfur oxide (SOx) emissions with 

SO2 gas and sulfate aerosol observations and showed that forecasts were improved 

overall but degraded when derived only from SO2 or sulfate observations.” Better 

formulate logics: ... do you mean alone? 

Thanks for this comment. We have rephrased that sentence to make it clear. See lines 

134-137, page 4. 

 “Barbu et al. (2009) updated sulfur oxide (SOx) emissions with SO2 and sulfate 

aerosol observations and found that simultaneous assimilation of both species had 

better performance than assimilating one of them alone.” 

 

10. L 176-177: “It runs only once and provides a “perfect” chemical ICs for the 

subsequent EI subsystem.” Justify "perfect". Justify analysis of unobserved height 



levels? 

Response: Thanks for this comment. Even with data assimilation, it is still impossible 

to get a perfect initial field, so we put the quotes around the word of perfect. In the 

revised manuscript, we have changed “perfect” to “good” in that sentence (See line 42, 

page 2; line 530, page 23). In addition, for the concentrations at high levels, they could 

be constrained by the ground observations through the vertical correlation. Figure R7 

shows the changes of vertical profiles between the assimilation and control experiments. 

Overall, it could be found that there are changes of concentrations almost throughout 

the whole column. However, due to lack of observations of vertical profiles, it is 

difficult for us to verify the constraints on the concentrations of the upper air. Anyway, 

the effect of only assimilating ground observations on the concentration in middle and 

upper layers of the boundary layer is necessarily limited, so there must be a bias. This 

also needs our attention, and may be partially resolved by further assimilating satellite 

observations in the future. We have added some discussions about this point. 

See lines 666-670, page 30. 

“These statistics indicate the initial fields of the ground level have been significantly 

improved. However, due to the lack of observations, we still do not know the simulation 

bias in the upper-middle boundary layer. Although concentrations at high altitudes can 

be constrained by ground-based observations through vertical correlations, the effect is 

limited, so the bias is still non-negligible.” 



 

Figure R7 Mean vertical profiles of the background (red) and analysis (blue) fields, 

and their difference averaged over the China mainland. 

 

11. L. 180-181: “which are then sampled according to the locations and times of the 

observations” Unclear, more technical details are needed here. 

Response: Thanks for this comment. We have changed it to the following sentence. See 

lines 212-215, page 8. 

“In the first step, the prior emissions (��) are perturbed and put into the CTM model to 



simulate chemical concentration ensembles. The simulated concentrations of the lowest 

model level are then interpolated to the observation space according to the locations 

and times of the observations using the nearest neighbor interpolation method.” 

 

12. L. 184: Do you mean DA window length of 1 day?  

Response: Yes, the DA window is set to 1 day. On the one hand, the model needs a 

longer time to integrate emission information into the concentration ensembles. On the 

other hand, due to the complexity of hourly emissions, it is very difficult to simulate 

hourly concentrations that can match the observations well. We have added descriptions 

about the length of DA window to Figure 1. 

 

13. Figur1 a caption too short. More detail on precise times and data update frequency 

in the EnKF needed.  

Response: Many thanks for this suggestion. The caption of Figure 1 has changed as 

follows: 

“Figure 1. The composition and flow chart of RAPAS. The �� and �� represent the 

prior and posterior emissions. The 3DVAR assimilation stage lasts 5 days with data 

input frequency of 6 hours, and the DA window in the EI subsystem is set to 1 day.” 

 

14. L 225 “represent the measurement sites” Do you mean “chemistry”?  

Response: Yes. We have changed “the measurement sites” to “the air pollution 

monitoring sites”. See line 268, page 12. 

 

15. L 242: “… of surface air pollutant observation operators,…” Explain please.  

Response: Thanks for this comment. The surface air pollutant observation operator 

means the interpolation of simulated concentrations from model space to observation 



space according to the locations of observation data. In this study, we need to construct 

observation operators for different pollutants. It has been explained in lines 297-319, 

page 14. 

 

16. L 312 “the horizontal length scales decrease with increasing heights,” Please explain 

why, and not the opposite.  

Response: Thanks. We made a mistake here. As shown in Figure 3, for gaseous 

pollutants and most individual aerosol components, the horizontal length scales 

increase with height. We have corrected it in the revised manuscript. See lines 354-355, 

page 17.  

 

17. L 314 “ The ground-level scale generally spread 40-45 km for all control variables 

on average.” This is little more than a grid cell. How defined?  

Response: Thanks for this comment. Although the ground-level scale calculated in 

Formular 6 generally spread 40-45 km on average, in GSI namelist, two variables, 

namely scale factor and weight factor, were used for further tuning horizontal scale  

(e.g., 40-45 km) specified for horizontal smoothing and weight setting. The final 

background error covariance matrix used in analysis are the content multiplied by these 

factors. Therefore, the actual increment usually spreads multiple grids. 

 

17. L 315-318: More detailed explanation required: Do you mean stack overshooting 

vs. surface emissions? A result of NMC? Is boundary height and related mixing 

considered?  

Response: Yes, this result was calculated using the “NMC” method. The boundary 

height and related mixing were considered because these processes are included in the 

CMAQ model. The vertical length scale of most species increases first and then 

decreases with height, which is related to the vertical mixing and stack emissions at 



about 200 m height. Ma et al (2018) also found high correlation occurred in the middle 

boundary layer other than the upper or lower levels. 

The sentence (See lines 358-360, page 17) has been rephrased as follows: 

“The vertical length scale of most species increases first and then decreases with height, 

which may be related to the vertical mixing (Kahnert, 2008) and stack emissions at 

about 200 m height.” 

 

Ma, C., Wang, T., Zang, Z., and Li, Z.: Comparisons of Three-Dimensional Variational 

Data Assimilation and Model Output Statistics in Improving Atmospheric 

Chemistry Forecasts, Advances in Atmospheric Sciences, 35, 813-825, 2018. 

 

18. L 323-324: Whitaker and Hamil is a meteorological application without emission 

optimisation. For square root filtering technique fundamentals please refer to much 

earlier textbook literature, eg. Bierman: 1977, or Maybeck 1979  

Response: Thanks! We have updated the references. See lines 368-369, page 17. 

 

19. L 336 variable localization: meaning? 

Response: The variable localization was defined in Miyazaki et al. (2012) and Ma et 

al. (2019). It means that the emission of one species is only constrained with its 

corresponding air pollutant observation. We have rephrased that sentence (See lines 

383-388, page 18) as follows:  

“We used variable localization to update the analysis, which means that the covariance 

among different state variables was not considered, and the emission of one species was 

only constrained with its corresponding air pollutant observation. This method has been 

widely used in chemical data assimilation systems to avoid spurious correlations among 

species. (Ma et al., 2019; Miyazaki et al., 2012b).”  

 

Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: 



Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for 

Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over 

Eastern China, 124, 7393-7412, 2019. 

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. 

F.: Simultaneous assimilation of satellite NO2, O-3, CO, and HNO3 data for the 

analysis of tropospheric chemical composition and emissions, Atmospheric 

Chemistry and Physics, 12, 9545-9579, 2012. 

 

20. L 336-337: Do you mean also at the same location? 

Response: We reinterpreted that sentence. Please see Response 19. 

 

21. Eq (12) Matrix in a denominator? Please explain 

Response: Yes, the denominator is a matrix. We have revised Eq (12) to make it clear. 

 �� = (1 + ��
(����� + �)� )

��

�  (12) 

 

22. L. 384-386: This is too much a try-and-error like discussion. Emissions are not 

constant or diurnially constant over these times: weather changes, working days, 

holidays, ... Please be more precise about your reasoning 

Response: Thanks for your comment. That sentence (see lines 438-442, page 20) has 

been changed as follows: 

“Kang et al. (2012) conducted OSSEs and demonstrated that due to the errors of 

transport and increase the spurious correlation, a longer DA window (e.g., 3 weeks) 

would cause the analysis system to blur out the essential emission information far away 

from the observation.” 

 

23. L425 arithmetically 



Response: Thank you. We have corrected it. See lines 488, page 22. 

“… and the ensemble-estimated error covariance matrix is arithmetically likely to be 

underestimated.” 

 

24. L 446 are distributed 

Response: We have changed “distribute” to “are distributed”. See line 510, page 22. 

 

25. L 449 unrepresentative 

Response: We have changed “nonspatially representative” to “unrepresentative”. See 

line 513, page 21. 

 

26. L 452-453 Explain relations, formulae better 

Response: We have rewritten that formulae and added some explains in the revised 

manuscript. See lines 516-519, page 23. 

 “… a function of ��� (|�(�) − �(� ± 1)|) ≤ �(�) , where �(�)  and �(� ± 1) 

represent observations at time �  and � ± 1 , respectively, and �(�) = �� + �� × �� . 

That means that both concentration differences between time t and time t+1 and t-1 

should be less than �(�).” 

 

27. L461 25/336 is a fairly low fraction. Please justify. 

Response: For better constraints on emissions, we need to select relatively more 

observations for assimilation. The 25 independent observations are relatively evenly 

distributed in the central and eastern regions where emissions are relatively strong. We 

believe that it is enough for the evaluation of the posterior emissions. 

  



28. L 534- 540 For emission inversion the boundary layer height and its prevalent 

stability is more decisive than any other parameter. Can you please make efforts to 

validate this by radiosonde data, if available?  

Response: Thank you for this suggestion. We have obtained 92 sites 

(http://weather.uwyo.edu/upperair/sounding.html, last access: 10 March 2022) of 

sounding data (including virtual potential temperature, geopotential height, wind speed, 

wind direction, etc) from the University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html) for the validations of the simulated 

planetary boundary layer height (PBLH), which are in 12 hours interval (00 and 12 

UTC). The observed PBLH was calculated with these sounding data using the bulk 

Richardson number method (Grachev et al., 2013; Richardson et al., 2013). Overall, the 

WRF simulations show an overall systematic underestimation of PBLH, with bias of -

41.1 m (-15.4%). Similar underestimation was also found in Banks et al. (2015) when 

evaluated eight different schemes in WRF. Lower PBLH corresponds to worse diffusion 

and transport of air pollutants, which results in higher concentrations in the atmosphere, 

and accordingly, less emissions were inferred to compensate this underestimation. It 

should be noted that the low vertical resolution of most sounding data in China may 

cause a certain bias in the calculated PBLH. We have added evaluations about PBLH 

in the revised paper. 

lines 622-639, page 28. 

“To quantitatively evaluate the performance of the WRF simulations, the mean bias 

(BIAS), root mean square error (RMSE), and correlation coefficient (CORR) were 

calculated against the surface meteorological observations measured at 400 stations and 

the planetary boundary layer height (PBLH) calculated using the sounding data at 92 

sites. The surface observations were obtained from the National Climate Data Center 

(NCDC) integrated surface database (http://www.ncdc.noaa.gov/oa/ncdc.html, last 

access: 25 October 2021), and the sounding data were obtained from the website of the 

University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html, last access: 

10 March 2022). The sounding data are in 12 hours interval. The observed PBLH were 



calculated using the sound data through the bulk Richardson number method 

(Richardson et al., 2013). The spatial distribution of the meteorological stations is 

shown in Figure 2. The simulated temperature at 2 m (T2), relative humidity at 2 m 

(RH2), wind speed at 10 m (WS10), and PBLH from 26 November to 31 December 

2016 are evaluated against the observations. Table 4 summarizes the statistical results 

of the evaluations of the simulated meteorological parameters. Overall, the T2, RH2 

and PBLH are slightly underestimated, with biases of -0.1 ℃, -3.8% and -41.1 m, 

respectively. The CORRs are approximately 0.98 for T2, 0.94 for RH2 and 0.90 for 

PBLH, showing good consistency…” 

 

Banks, R. F., Tiana-Alsina, J., Rocadenbosch, F., and Baldasano, J. M.: Performance 

Evaluation of the Boundary-Layer Height from Lidar and the Weather Research 

and Forecasting Model at an Urban Coastal Site in the North-East Iberian 

Peninsula, Boundary-Layer Meteorology, 157, 265-292, 2015. 

Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: The 

Critical Richardson Number and Limits of Applicability of Local Similarity 

Theory in the Stable Boundary Layer, Boundary-Layer Meteorology, 147, 51-82, 

2013. 

Richardson, H., Basu, S., and Holtslag, A. A. M.: Improving Stable Boundary-Layer 

Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number, 

Boundary-Layer Meteorology, 148, 93-109, 2013. 

 

29. “These statistics indicate that the initial fields can be adjusted effectively by our IA 

subsystem.” I think this claim is not sustained, despite the fact that emissions are not 

yet corrected: What about height levels above? How are they validated? How can be 

made sure that CB5 chemsitry fields are in the proper chemical balance of the system 

(notably NO_x, O3, CO, VOCs)?  

Response: Yes, this conclusion is indeed not rigorous enough. The evaluations only 

show that the initial fields of the ground level have been significantly improved. Due 

to lack of observations, we do not evaluate the concentrations at high levels. Although 

the concentrations at high levels could be constrained by the ground observations 



through the vertical correlation, the effect is limited, so there must be a bias. We 

modified that sentence in the revised paper, see lines 665-670, page 30. The changes 

are also listed as follows. 

“These statistics indicate the initial fields of the ground level have been significantly 

improved. However, due to the lack of observations, we still do not know the simulation 

bias in the upper-middle boundary layer. Although concentrations at high altitudes can 

be constrained by ground-based observations through vertical correlations, the effect is 

limited, so the bias is still non-negligible.” 

 

30. “L 619: This applies more to the NOx-O3-CO/VOC chemistry rather than PM2.5.  

Response: Thank you for this comment. Yes, O3 has complex precursors, and strong 

nonlinear relationship with its precursors. Although there are nonlinear processes 

during the formation of secondary particulate matter, overall, the more PM2.5 

precursors are emitted, the more secondary particulate matters are formed, resulting in 

higher PM2.5 concentrations. We have revised that sentences as follows:. 

“… It may also be related to the complex precursors and complex homogeneous and 

heterogeneous chemical reactions and transformation processes of secondary PM2.5, 

and the fact that …” 

 

31. L 662: Where did you get the \sigma from? For KF an analysis error covariance 

matrix A should be available for this.  

Response: Thank you for this comment. In the EnKF-based inverse estimation scheme, 

the uncertainty is represented by the spread of the ensemble samples (Tang et al., 2013). 

The posterior and prior uncertainties are the standard deviations of the prior and 

posterior perturbations of ��
�  and ��

� . ��
�  was perturbed from the prior emissions 

��
� by adding a randomly perturbed item of ���

�, which was drawn from Gaussian 

distributions with a mean of zero and the standard deviation of the prior emission 



uncertainty in each grid. After constrained using observations, the perturbed emissions 

of ��
� is changed to ��

� according to Eq. 2 ~ 5. 

��
� = ��

� + ���
� , i = 1, 2, … , N                   (1) 

   ��
� = �� + (��

� − ��) − ���(��
� − ��)                 (2) 

�� = (1 + ��
(����� + �)� )

��

�                    (3) 

� = ����(����� + �)��                      (4) 

�� =
�

���
∑ (��

� − ���)�
��� (��

� − ���)�                  (5) 

We have added this calculation method of the posterior and prior uncertainties in the 

supplemental material. 

“… where ���������� and ������ are the posterior and prior uncertainties, respectively, 

which were calculated using the standard deviations of the prior and posterior 

perturbations (Text S3).” 

 

Tang, X., Zhu, J., Wang, Z. F., Wang, M., Gbaguidi, A., Li, J., Shao, M., Tang, G. Q., 

and Ji, D. S.: Inversion of CO emissions over Beijing and its surrounding areas 

with ensemble Kalman filter, Atmospheric Environment, 81, 676-686, 2013. 

 

32. L 701-702: With 1000% excess is linearisation still acceptable? A scrutinized 

analysis is appropriate.  

Response: Thank you for this comment. If we assume that the 1000% increment of 

PMC is all from natural dust, that means the contribution of natural dust accounts for 

90% of total PMC emissions, which is reasonable in China. Qiu et al. (2016) conducted 

source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, 

China, and the results showed that the contribution of wind-blown dust accounts for 

more than 90% of total PMC emissions. Another study in Changsha in central China 

showed that the contribution of wind-blown dust account for about 75% of the primary 



PM10 concentrations (Li et al., 2010).  

We also realize that this problem in the inversion results. Therefore, we used a larger 

prior uncertainty in the first three windows, a “two-step” inversion scheme and cyclic 

iteration to quickly converge emissions. Figure 10 shows the time series of the relative 

differences between the prior and posterior emissions in each window. In addition to 

the relatively large adjustment range of emissions in the first three windows, the 

adjustment range of the PMC is basically within the uncertainty range (e.g., 40%), 

indicating that with this scheme, EnKF still has a good performance in emission 

inversion. For PMC, because the posterior emission includes the contribution of natural 

dust, which is not considered in the original emission, there is a large increment in the 

first three windows, which is consistent with Ma et al (2019).  

We have added related discussions in the revised paper, see lines 861-865, page 44. The 

changes are also listed as follows:  

“Overall, PM10 emissions (PPM2.5+PMC) increased by 318%. If we assume that all 

the increment in PM10 emissions is all from natural dust, that means the contribution of 

natural dust accounts for 75% of total PM10 emissions, which is consistent with the 

source apportionment of PM10 of 75% in Changsha in Central China (Li et al., 2010).” 

 



 

Figure R8 Relative changes (a) in a posteriori emission estimates of CO, SO2, NOx, 

PPM2.5 and PMC, and χ2 statistics (b) of these state vectors in each window. (Figure 10 

in the revised manuscript) 

 

Li, J.-d., Deng, Q.-h., Lu, C., and Huang, B.-l.: Chemical compositions and source 

apportionment of atmospheric PM10 in suburban area of Changsha, China, Journal 

of Central South University of Technology, 17, 509-515, 2010. 

Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: 

Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for 

Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over 

Eastern China, 124, 7393-7412, 10.1029/2019jd030421, 2019. 

Qiu, X., Duan, L., Gao, J., Wang, S., Chai, F., Hu, J., Zhang, J., and Yun, Y.: Chemical 

composition and source apportionment of PM10 and PM2.5 in different functional 

areas of Lanzhou, China, Journal of Environmental Sciences, 40, 75-83, 2016 



33. L 705 “In addition, without dust may be another reason, since no wind blowing dust 

scheme was applied in this study as mentioned above.” Check English meaning. 

Response: Thanks! We have revised that sentence. . See lines 858-860, page 44. 

“In addition, the absence of natural dust is another reason, as the wind-blown dust 

scheme was not applied in this study.” 

 

34. L727-728 : Please demonstrate this statement. 

Response: Thanks for this suggestion. In the second step of the “two-step” scheme, the 

optimized emissions are entered again into the CTM model to generate the initial fields 

of the next DA window. In other words, the unresolved posterior emission error will be 

fed back to the initial field of the next window through simulation in the current 

assimilation window of one day, and then fed back to the emission again in the next 

window for timely optimization. Previous studies (Byun, 2002; de Almeida 

Albuquerque et al., 2018) have demonstrated that a spin-up time of 1-2 days can provide 

realistic initial conditions for the CMAQ runs, even if the simulation starts from the 

clean atmospheric conditions, which shows that the emissions can be well mixed in the 

atmosphere within the window time of one day in this study. Additionally, with this 

method, the system can maintain mass conservation (Zhang et al., 2015), thus it can 

update emissions more consistently and stably. 

The sentence (See lines 1048-1053, page 456) has been rephrased as follows: 

“As mentioned previously, in the “two-step” scheme, the unresolved posterior emission 

error will be fed back to the initial field of the next window through sufficient mixed 

simulation within one day for timely optimization. Meanwhile, the system always 

maintains the mass balance of pollutants. In this way, the system updates emissions 

more consistently and stably.” 

 

Byun, D. W.: A study of photochemical processes of the Houston-Galveston 



metropolitan airshed with EPA CMAQ. 

de Almeida Albuquerque, T. T., Andrade, M. d. F., Ynoue, R. Y., Moreira, D. M., 

Andreao, W. L., dos Santos, F. S., and Sperandio Nascimento, E. G.: WRF-

SMOKE-CMAQ modeling system for air quality evaluation in SAo Paulo 

megacity with a 2008 experimental campaign data, Environmental Science and 

Pollution Research, 25, 36555-36569, 2018. 

Zhang, S., Zheng, X., Chen, J. M., Chen, Z., Dan, B., Yi, X., Wang, L., and Wu, G.: A 

global carbon assimilation system using a modified ensemble Kalman filter, 

Geosci. Model Dev., 8, 805-816, 2015. 

 

35. L 746-747: This is well known, but demonstrate that this flaw cannot happen. Please 

my mathematical means.  

Response: Thanks for this comment. During the heavy pollution period, the severe 

pollution enhances the feedback between the boundary layer and air pollution (Huang 

et al., 2020). However, WRF-CMAQ is an off-line model, which can not consider the 

concentration rise caused by the feedback process. Therefore, during the inversion, 

more emissions will be inferred to compensate this underestimation. This process is a 

flaw of the off-line atmospheric chemical transport model. In the “two-step” inversion, 

when such serious feedback leads to overestimation of emissions, the unresolved 

posterior emission error will be fed back to the initial field. In the next window, the 

system will quickly adjust the overestimated emissions to compensate for 

overestimated simulations. The system corrects the emissions by means of error transfer, 

and thus avoid the impact of error accumulation. The purpose of the “two-step” 

inversion strategy is not to avoid this flaw, but to make the unsolved emission inversion 

error be corrected quickly and stably. 

 

Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.: Amplified 

transboundary transport of haze by aerosol-boundary layer interaction in China, 

Nature Geoscience, 13, 428-434, 2020. 

 

36. Fig 13 emission changes  



Response: Thanks for this suggestion. We have changed “emissions changes” to 

“emission changes”. See line 985, page 53. 

 


