
Responses to the comments of Reviewer #1: 

We would like to thank the anonymous referee for his/her comprehensive review and 

valuable suggestions. These suggestions help us to present our results more clearly. In 

response, we have made changes according to the referee’s suggestions and replied to 

all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

 

General comments: 

1. A major problem arises due to the choice of the Ensemble Kalman Filter (EnKF) to 

perform the emission inversion. A key assumption of the EnKF, and indeed of any 

sequential DA method, is that the model minus observation errors have mean zero bias, 

be random, and have a Gaussian distribution. The authors’ own results show here that 

this assumption is invalidated. They report an a posteriori emission scalings of between 

5-1045% for each of the pollutants studied – this strongly implies the presence of large 

biases between the observations and model when run with a priori emissions. Such large 

biases will affect the optimality of the EnKF solution, and it is essential that the authors 

consider this in a revised manuscript. For solutions the authors should look to other 

fields. The problems of bias with the EnKF have been well discussed in its application 

in the fields of land surface (Brandhorst et al., 2017; De Lannoy et al., 2007) and in 

oceanographic DA (e.g., Keppenne et al., 2005). Air quality/atmospheric chemistry 

cannot be exempt from this. Extensive published work exists trying to solve this 

problem in other fields by exploring various possibilities: bias estimation as an 

additional state term, removal of observation bias through statistical methods, and 

parameter estimation. The parameter estimation presented in Brandhorst et al. (2017) 

gives a clear pathway for the authors to resolve this problem. If emission inversion 

could be framed as a bias correction method via parameter estimation (citing the correct 

literature), rather than being an end and means unto itself alone, then I think this would 

be acceptable. Right now, emission estimation is present in the first sentence of the 



abstract and appears to be the primary focus, but due to the limitations of the EnKF this 

emphasis combined with the current approach is problematic. 

Response: We really appreciate these valuable comments and suggestions. Yes, we 

agree that optimal state estimated using a EnKF relies on the assumption of zero mean 

forecast error, which is not guaranteed in such highly nonlinear and large biases systems 

(e.g., Chen et al., 2019). In this study, some pollutants (e.g., CO, PMC) may have very 

large simulated biases, thus if a small uncertainty is adopted, the emission bias cannot 

been fully reduced, while if a very large uncertainty is adopted, then the degree of 

freedom of adjustment is too large, and the inverted daily emissions will fluctuate 

abnormally. Therefore, we only set a larger prior uncertainty in the first three windows, 

adopted a moderate uncertainty in the following windows, and used a “two-step” 

inversion scheme and cyclic iteration to gradually correct the emission errors. Figure 

R1(a) shows the time series of the relative differences between the prior and posterior 

emissions in each window. There are the relatively large adjustments for the emissions 

in the first three windows, especially for coarse PM10 (PMC), but the adjustment ranges 

of the five species after the first 3 windows are basically within the uncertainty range 

(e.g., ±25%), indicating that with this scheme, the EnKF method used in this system 

still has a good performance in emission inversion. For PMC, because the posterior 

emission includes the contribution of natural dust, which dominates in PMC emissions 

in China (Li et al., 2010; Lu et al., 2020; Ma et al., 2019), but it was not included in the 

original emission inventory (MEIC 2016). The large increment (1045%) of PMC 

inverted in this study is consistent with the result of Ma et al (2019). 

The model error exists objectively, and this study ignores the model error, which will 

indeed have a certain impact on the inversion results. Previous studies using parameter 

estimation or/and bias correction method to account for a certain degree of the model 

errors, including random and systematic errors (Brandhorst et al., 2017; De Lannoy et 

al., 2007; Evensen, 2009). The bias correction method is usually used for correcting the 

systematic error (Baek et al., 2006; Danforth et al., 2007; Ruiz and Pulido, 2015). De 

Lannoy et al. (2007) assumed that the bias evolves more slowly than the forecast. A 



good bias forecast model is needed to represent the variation characteristics of model 

error especially when the bias evolves quickly (De Lannoy et al., 2007). However, the 

biggest dilemma is to assume that the covariance structure of the bias errors is a fraction 

of the state errors, which cannot be guaranteed if emission is framed as a bias correction 

term. In Brandhorst et al. (2017), they directly applied the bias correction method to the 

observations, which cannot give a bias correction for the emissions in the whole domain. 

Additionally, their studies interpret roughly constant mismatch between simulated and 

measured values as a bias. Therefore, it may be inflexible for correcting emission with 

accident or drastic changes (e.g., primary PM2.5 during 16-20 December). Moreover, it 

is quite difficult to identify several key uncertain parameters of different species, which 

comes not only from the complexity of the atmospheric chemical model itself, but also 

from hundreds of other model input variables (Tang et al., 2013). Therefore, considering 

model errors is still a big challenge in emission inversions (e.g., Miyazaki et al., 2012; 

Peng et al., 2018; etc.). In general, there is currently no reasonable and convincing 

algorithm to describe the model error well for atmospheric data assimilation 

(Houtekamer and Zhang, 2016), and the emission is basically regarded as the state 

variable in current inversion studies (e.g., Ma et al., 2019; Miyazaki et al., 2015; etc.). 

We have added related discussions in the revised paper. The changes are also listed as 

follows:  

Lines 1082-1129, pages 57-59. 

“Optimal state estimation using an EnKF relies on the assumption of unbiased Gaussian  

prior error, which is not guaranteed in such highly nonlinear and large biases systems 

In this study, some pollutants (e.g., CO, PMC) have very large simulated biases, thus if 

a small uncertainty is adopted, the emission bias cannot been fully reduced, while if a 

very large uncertainty is adopted, then the degree of freedom of adjustment is too large, 

and the inverted daily emissions will fluctuate abnormally. Therefore, we only set a 

larger prior uncertainty in the first three windows, adopted a moderate uncertainty in 

the following windows, and used a “two-step” inversion scheme and cyclic iteration to 

gradually correct the emission errors. Figure 10(a) shows the time series of the relative 



differences between the prior and posterior emissions in each window. There are the 

relatively large adjustments for the emissions in the first three windows, especially for 

PMC, but the adjustment ranges of the five species after the first 3 windows are 

basically within the uncertainty range (e.g., ±25%), indicating that with this scheme, 

the EnKF method used in this system still has a good performance in emission inversion. 

The model-data mismatch error not only comes from the emissions, but also from the 

inherent model errors arising from model structure, discretization, parameterizations 

and the biases in the simulated meteorological fields. Neglecting model errors would 

attribute all uncertainties to emissions, and lead to considerable biases in the estimated 

emissions. In the version of CMAQ model used in this study, there is no heterogeneous 

reactions (Quan et al., 2015; Wang et al., 2017), the parameterization scheme for the 

formation of secondary organic aerosol (SOA) is imperfect (Carlton et al., 2008; Jiang 

et al., 2012; Yang et al., 2019), no feedback between chemistry and meteorology is 

considered, and we used an idea profile for chemical lateral boundary conditions. All 

of the above problems can lead to underestimated concentrations of pollutants, which 

in turn require more emissions to compensate, leading to overestimations in emissions. 

In addition, previous studies have shown that the emission of ammonia in the MEIC 

inventory was underestimated (Kong et al., 2019b; Paulot et al., 2014; Zhang et al., 

2018). Due to lack of ammonia observations, our system does not include emission 

estimates of ammonia, which means that the concentration of ammonium aerosol was 

underestimated in this system, also resulting in an overestimation in the PPM2.5 

emission. Wind-blown dust was also not simulated here, thus the PMC emission 

inverted in this system do not only come from anthropogenic activities, but also from 

natural sources. Although some of these shortcomings could be solved in the future by 

updating the CTM model, there will still be errors in each parameterization and each 

process. Generally, parameter estimation method was used to reduce the model errors, 

in which, some uncertain parameters were included in the augmented state vector and 

were optimized synchronously based on the available observations (Brandhorst et al., 

2017; Evensen, 2009). However, it is still quite difficult to identify the key uncertain 



parameters of different species in different models, which generally comes not only 

from the complex atmospheric chemical model, but also from hundreds of model inputs 

(Tang et al., 2013). Another method is bias correction, which treats the model error as 

a bias term, and includes it in the augmented state vector (Brandhorst et al., 2017; De 

Lannoy et al., 2007; Keppenne et al., 2005). In addition, the weak-constraint 4D-Var 

method can also be used to reduce the model errors, which adds a correction term in 

the model integration to account for the different sources of model error (Sasaki, 1970). 

Although reliable diagnosis of model error is still a challenge at present (Laloyaux et 

al., 2020), it should be considered in an assimilation system. We will consider model 

errors in our system in the future to obtain better emission estimates.” 

 

Figure R1. Relative changes (a) in a posteriori emission estimates of CO, SO2, NOx, 

PPM2.5 and PMC, and χ2 statistics (b) of these state vectors in each window. (Figure 10 

in the revised manuscript) 
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2. Furthermore, the authors need to make use of the available diagnostics exist to help 

diagnose the optimality of the EnKF analysis, e.g., the chi-squared diagnostic. Based 

on reported examples in the literature, my guess is that with each sequential iteration of 

the EnKF the emission biases are slowly reduced (prior to the reported overestimation) 

and the EnKF will slowly reach a more optimal state. The authors should plot chi-

squared along with the relative change in a posteriori emission estimates for each 

successive emission inversion cycle with the EnKF. Doing this should highlight 

whether the optimality improves over time. If it does not then it would imply other 

fundamental problems with the approach. 

Response: Thank you very much for this suggestion. We have added a subsection and 

a figure (Figure R1 in this response manuscript, and Figure 10 in the revised manuscript) 

about the chi-squared statistics along with the relative changes of the posterior emission 

estimates. Following descriptions and figure are also added in the revised manuscripts. 

See lines 796-818, pages 40-41. 

4.1.5 Evaluation using chi-squared statistics  

To diagnose the performance of the EnKF analysis, the chi-squared (χ2) statistics was 

calculated, which is generally used to test whether the prior ensemble mean RMSE with 

respect to the observations is consistent with the prior “total spread” (square root of the 

sum of ensemble variance and observation error variance). Following Zhang et al. 

(2015), for the tth window, χ2 is defined as 



χ�
� = (� − ���)�(����� + �)��(� − ���)           （ 20 ） 

Figure 10 shows the time series of the relative changes between the prior and posterior 

emissions and the χ2 statistics. There are relatively large adjustments of emissions in 

the first three windows, especially for PMC. After that, the optimality of the five species 

reaches a more optimal state with successive emission inversion cycle. The χ2 statistics 

shows a similar variation characteristics with the daily changes in the emissions. The 

χ2 value is slightly greater than 1, indicating that the uncertainties from error covariance 

statistics do not fully account for the error in the ensemble simulations. A similar 

situation also appeared in Chen et al. (2019). Further investigations should be 

conducted to generate larger spreads by accounting for the influence of model errors. 

Since we imposed a same uncertainty of prior emission at each DA window to partially 

compensate for the influence of model errors, χ2 statistics showed small fluctuations, 

indicating that the system updates emissions consistently and stably. 

 

3. The combination of the 3D-Var and EnKF together could be more clearly motivated 

and the choice of combining these two algorithms seems somewhat expedient. There 

are various self-citations justifying this choice, but the authors should dedicate some 

text for justifying why the two algorithms combined represent something greater than 

the sum of their parts. I am not saying a justification cannot be made, but we are missing 

a fundamental justification of the method choice. 

Response: Thank you for your suggestion. Previous studies have demonstrated that 

emissions would be adjusted unreasonably to compensate initial field error if the initial 

field is not optimized (Miyazaki et al., 2017; Tang et al., 2013). An EMDA experiment 

without the IA step also shows a great impact of the initial field optimization on the 

emission inversion (Comment 11). Therefore, it is essential to remove the bias in initial 

field for the subsequent emission inversion. To get a better initial condition during spin-

up period, we directly use 3DVAR module developed before and did not need to extend 



EnKF module to optimize initial field. Jiang et al., (2017) also used a combination of 

two methods to optimize a 15-year record of CO emissions. Additionally, it has been 

found that the 3DVAR method can obtain a better initial field than the EnKF method 

(Schwartz et al., 2014). We have added following words in the revised manuscript. See 

lines 197-200, page 7. 

“The introduction of 3DVAR mainly considers its great performance based on our 

previous study and lower computational cost during spin-up period in optimizing ICs. 

Additionally, it has been found that the 3DVAR method can obtain a better initial field 

than the EnKF method (Schwartz et al., 2014).” 
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and Ji, D. S.: Inversion of CO emissions over Beijing and its surrounding areas 

with ensemble Kalman filter, Atmospheric Environment, 81, 676-686, 

10.1016/j.atmosenv.2013.08.051, 2013. 

 

4. As an example of potential problems with their combination, it seemed odd to first 

do the 3D-Var IA step and then the EnKF EI step afterwards for a mixture of long- and 

short-lived gases. In fact, if you optimize the concentration of CO, which is long-lived 

relative to the DA windows and DA cycles, then this should remove some of the bias 

associated with low a priori emissions of CO. The authors say this removes some of the 

bias associated with errors from other issues other than emissions, but this raises other 



issues – see next comment (5). I think this would be fine if optimizing the 

concentrations for forecasting purposes is the only goal, but if the emission estimation 

is a primary or secondary goal (as presented) then I think that this goal is undermined 

by the approach taken. At the very minimum the authors should include the changes in 

the emission estimates obtained from and experiment with the EI without first running 

the 3D-var. If the goal was emission estimation, then it would seem to make more sense 

to perform a long spin-up simulation prior to running the EI step rather than to partially 

fix the model concentration field prior to this. The authors cite concerns about other 

types of model bias as a justification for this step, but I do not find this fully convincing. 

Surely, if the emissions are biased to the extent shown, this would impact the a priori 

ICs as much as the model run after the IA step. The large biases discussed in sect. 4.1.2 

between the ICDA and ICNO experiments seem to be consistent with this point. Indeed, 

the authors even find that the spatial patterns in the simulated concentrations using 

posteriori and a priori emissions are similar to the increments calculated in the 3D-var, 

which indicates a potentially similar cause in both cases. I think the authors need to 

make at least another experiment to test the effect of this in the EI step (see specific 

comment 11).  

Response: Thank you for this comment. Our goal is to optimize the emission. The goal 

of 3D-Var in the IA step is used for getting a better IC for the subsequent EI step. 

Besides model errors, the model-data mismatch errors in the EI step mainly come from 

the IC and the emissions. Previous studies have demonstrated that there would be large 

emission discrepancies resulting from the initial field errors (Jiang et al., 2013; 

Miyazaki et al., 2017; Tang et al., 2013), Removing the bias in initial conditions as 

much as possible is essential for inverse analysis (Jiang et al., 2017). In the revised 

manuscript, we also added a new inversion experiment, in which the IA step was 

stopped. The results show that the optimized initial field has the greatest impact on the 

emission inversion of long-lived species (e.g., CO). The maximum difference in the 

first few days of posterior CO emissions can reach 26.1%. With the gradual 

disappearance of the benefit of initial field assimilation, the two experiments can reach 



a unified state after some windows. 
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5. The authors appear to claim that the IA step removes some biases and prevents biased 

emission estimates. My concern here though is that I see no way for the 3D-Var to 

distinguish model-observation biases arising due to emissions or biases due to some 

other source. If this is somehow possible then the authors should explain how. In either 

case I think the authors should be clearer, either about the limitations of partitioning 

different types of bias, or on how this part of the algorithm functions. Certainly the 

similarity in spatial patterns of the 3D-var IA increments and a priori vs a posteriori EI 

hints that both systems are addressing the same root cause of the biases but with 

different assumptions about the cause. 

Response: Thank you for this comment. Yes, the 3D-Var cannot distinguish model-

observation biases arising due to emissions or biases due to some other source. And we 

also do not need to distinguish the source types of model-data mismatch errors in the 

IA step. The goal of 3D-Var in this step is only to get a better IC for the subsequent EI 

step. Besides model errors, the model-data mismatch errors in the EI step mainly come 

from the IC and the emissions. As stated in General Comment 4, in the EI subsystem, 

we attribute all the model-data mismatch error to the bias in emission, thus we need to 



minimize the IC errors to get better emissions estimates. The following descriptions are 

added in the revised manuscript. See lines 206-207, page 8. 

 “In the IA subsystem, we do not need to distinguish the type of sources of the model-

observation mismatch error.” 

 

6. As a further comment on model error, bias, and emission estimation. I think the 

authors should be clearer that despite the IA step, from which the model is assumed 

perfect, inherent errors arising from discretization and model parameterizations will 

still exist meaning that the model will have other nonresolvable biases. This will 

naturally mean that other types of model bias will feed into the emission inversion step 

leading to biased emission estimates. Perhaps the authors could discuss the work on DA 

methods that consider model error, e.g., weak constraint 4D-var, that could be used to 

resolve such problems. This would help the discussion on the overestimate of emissions 

lines 740 onwards. 

Response: Many thanks for this suggestion. We fully agree that the model-data 

mismatch error not only comes from emissions, but also from the inherent model errors 

arising from model structure, discretization and parameterizations, such as biases in 

meteorological fields, feedbacks of meteorology and chemistry, and chemical reactions 

and gas-particle transformations, etc. Neglecting model errors in the EnKF would 

attribute all uncertainties to emissions. For these random, systematic, or time-correlated 

model errors, they can be partly resolved using parameter estimation, bias correction 

and weak constraint 4D-var methods. We have added following related discussions in 

the revised manuscript. See lines 1096-1129, pages 58-59. 

“The model-data mismatch error not only comes from the emissions, but also from the 

inherent model errors arising from model structure, discretization, parameterizations 

and the biases in the simulated meteorological fields. Neglecting model errors would 

attribute all uncertainties to emissions, and lead to considerable biases in the estimated 

emissions. In the version of CMAQ model used in this study, there is no heterogeneous 



reactions (Quan et al., 2015; Wang et al., 2017), the parameterization scheme for the 

formation of secondary organic aerosol (SOA) is imperfect (Carlton et al., 2008; Jiang 

et al., 2012; Yang et al., 2019), no feedback between chemistry and meteorology is 

considered, and we used an idea profile for chemical lateral boundary conditions. All 

of the above problems can lead to underestimated concentrations of pollutants, which 

in turn require more emissions to compensate, leading to overestimations in emissions. 

In addition, previous studies have shown that the emission of ammonia in the MEIC 

inventory was underestimated (Kong et al., 2019; Paulot et al., 2014; Zhang et al., 2018). 

Due to lack of ammonia observations, our system does not include emission estimates 

of ammonia, which means that the concentration of ammonium aerosol was 

underestimated in this system, also resulting in an overestimation in the PPM2.5 

emission. Wind-blown dust was also not simulated here, thus the PMC emission 

inverted in this system do not only come from anthropogenic activities, but also from 

natural sources. Although some of these shortcomings could be solved in the future by 

updating the CTM model, there will still be errors in each parameterization and each 

process. Generally, parameter estimation method was used to reduce the model errors, 

in which, some uncertain parameters were included in the augmented state vector and 

were optimized synchronously based on the available observations (Brandhorst et al., 

2017; Evensen, 2009). However, it is still quite difficult to identify the key uncertain 

parameters of different species in different models, which generally comes not only 

from the complex atmospheric chemical model, but also from hundreds of model inputs 

(Tang et al., 2013). Another method is bias correction, which treats the model error as 

a bias term, and includes it in the augmented state vector (Brandhorst et al., 2017; De 

Lannoy et al., 2007; Keppenne et al., 2005). In addition, the weak-constraint 4D-Var 

method can also be used to reduce the model errors, which adds a correction term in 

the model integration to account for the different sources of model error (Sasaki, 1970). 

Although reliable diagnosis of model error is still a challenge at present (Laloyaux et 

al., 2020), it should be considered in an assimilation system. We will consider model 

errors in our system in the future to obtain better emission estimates.” 



7. In addition to problems with the DA of long-lived gases in the IA step, I do question 

the DA of shortlived gases, i.e., NOx. I am aware of unpublished negative results 

showing that NOx concentration DA has limited benefit for the model forecast skill and 

in the worst case negatively impacts results by perturbing ozone chemistry in unrealistic 

ways. Hints of such problems can be found in ECMWF reports (Flemming et al., 2009; 

Inness et al., 2009, 2015) that clearly show the limited efficacy of NOx concentration 

assimilation due to the decay of DA increments. The authors should discuss these 

limitations in a meaningful way. 

Response: Many thanks for this suggestion. We have added a discussion section in the 

revised manuscript, and added following discusses about the limited benefits or even 

negative effect of NO2 concentration initial field optimization on ozone chemistry and 

emission inversions. See page * and page *. 

“Similarly, the model may not be able to resolve local-scale NO2 well because of 

uniform distribution of concentration over the whole grid. Therefore, the model is 

shifted towards a NOx (VOC)-limited regime in high (low) pollution regions, which 

negatively impacts results by perturbing ozone chemistry in unrealistic ways (Inness et 

al., 2015).” 

 

8. Important details of the work could have been explained in a clearer and more concise 

way (specific comments to follow), e.g., why do the authors not include the length of 

DA window and analysis run the figure describing the architecture of their system? 

These details appear almost at the end of the descriptions, but such information, that 

can easily be compacted into concise form, could appear earlier either in figure 1 or in 

a suitable table. See specific comments below. There are also some contradictions in 

the explanations of the different experiments, which make it awkward to evaluate what 

has been done. 

Response: Many thanks for this suggestion. We have added descriptions about the 

length of DA window and the architecture of our system (see Specific Comment 7) in 



the revised manuscript. We also shorten some text to describe our system more clearly 

and concisely (e.g., Specific Comment 4). Additionally, the descriptions of EMS1 in 

Table 3 and lines 582-584 of the original manuscript were rephrased to avoid any 

misunderstanding. (see Specific Comment 10) 

 

9. The DA experiments are only run for a single month. Given that this system will 

presumably be used in an operational capacity throughout the year it would have been 

nice to see statistics on the results of other experiments at different times of the year. I 

think this point is especially relevant for the pollutants with a strong seasonality in their 

emissions, e.g., PM2.5. Why was December 2016 chosen as the period of study? I could 

not see any discussion on this. Please can the authors add something to explain this. 

Response: Many thanks for these suggestions. December is one of the most severely 

polluted and most concerned months in China every year. Therefore, we chose 

December as the period of study to reflect the capacity in optimizing anthropogenic 

emissions. According to this suggestion, we also performed a new inversion for July to 

further verify the system's capacity. Different from the inversion in winter, the 

localization scale of NO2 was set to 80 km, because the lifetime of NO2 is much shorter 

in summer (about 6 hours) due to the stronger atmospheric oxidation (Beirle et al., 

2003). Figure R2 shows the prior and posterior emissions in July and December. It 

could be found that the emissions in December are always greater than those in July. 

Table S2 lists the statistical results of the evaluations in July averaged over the whole 

mainland of China. After assimilation, the evaluation with posterior emissions is 

significantly improved. The RMSEs decrease by 39.7, 63.5, 69.1, 34.1 and 27.0%, and 

the CORRs increase by 160.0, 491.7, 72.3, 49.0 and 60.5% for CO, SO2, NO2, PM2.5 

and PMC, respectively. Overall, the performance of the system in July is comparable 

to that in December. The following discussions are added in the revised manuscript.  

See lines 549-551, page 24. 

“December is one of the months with most severe air pollution, while July is one of the 



least polluted months in China. Therefore, this study mainly tested the performance of 

the RAPAS system in these two months. For December, the IA …” 

See lines 556-559, page 24. 

“For July, the system also operated in the same way as for December. It needs to be 

noted that due to the stronger atmospheric oxidation, the lifetime of NO2 in July is 

significantly shorter than that in December, thus we adopted a smaller localization scale 

for NO2 (80 km).” 

See lines 868-873, page 45. 

“The evaluation results for July show that the emission uncertainty can still be 

significantly reduced, and the performance of the system in July is comparable to that 

in December (Table S2). Additionally, the seasonal variation of emissions can be well 

reflected (Figures S4 and S5), which means that our system can perform well at 

different times of the year.” 

 

 



Figure R2. The prior and posterior emissions (kton/day) in July and December 2016 

over the whole mainland China. (Figure S5 in the revised manuscript) 

 

Figure R3. Spatial distribution of the time-averaged prior emissions (left column, 

MEIC 2016), posterior emissions (middle column), and differences (right column, 

posterior minus prior) in July 2016. (Figure S4 in the revised manuscript) 

 

 

 



Table R1. Statistics comparing the pollution concentrations from the simulations with 

prior (CEP) and posterior (VEP) emissions against observations for July. CO unit: mg 

m-3; others units: μg m-3. (Table S2 in the revised manuscript) 

Species 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR  

CEP8 VEP8 CEP8 VEP8 CEP8 VEP8 CEP8 VEP8  

CO 0.79 0.33 0.63 -0.46 -0.16 0.58 0.35 0.25 0.65  

SO2 12.9 15.6 9.6 2.7 -3.3 19.7 7.2 0.12 0.71  

NO2 20.0 23.0 16.5 3.0 -3.5 22.0 6.8 0.47 0.81  

PM2.5 29.2 21.9 23.3 -7.3 -6.0 21.1 13.9 0.51 0.76  

PMC 53.6 27.6 42.3 -26.0 -11.3 42.3 30.9 0.38 0.61  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 

 

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME 

measurements: a signature of anthropogenic sources, Atmospheric Chemistry and 

Physics, 3, 2225-2232, 2003. 

 

10. Another point regarding the season chosen and the performance of the EI step. Since 

the EI system does not include emission estimates of ammonia, and ammonia can be 

very important to spring time loadings of PM2.5, could its absence from the system 

lead to compensation effects on the primary PM2.5 emission estimates? I think the 

authors should discuss this as a potential issue for the wider application of RAPAS 

throughout the year. This might help to identify the necessity for future development 

paths. 

Response: Many thanks for this suggestion. Due to lack of ammonia observations, the 

current version of RAPAS does not include emission estimates of ammonia, which 

actually leads to compensation effects on the estimates of primary PM2.5 emission. 

Kong et al. (2019) conducted emission inversion of NH3 with the same prior inventory 

as this study (MEIC), and found NH3 emissions increased heterogeneously almost over 

the whole mainland China, with an average increase of 27%. Therefore, this deficiency 



may lead to a certain overestimation of posterior PPM2.5 emissions. We have added 

the following discussions in the revised paper, see lines 1107-1111, page 58. 

“In addition, previous studies have shown that the emission of ammonia in the MEIC 

inventory was underestimated (Kong et al., 2019; Paulot et al., 2014; Zhang et al., 2018). 

Due to lack of ammonia observations, our system does not include emission estimates 

of ammonia, which means that the concentration of ammonium aerosol was 

underestimated in this system, also resulting in an overestimation in the PPM2.5 

emission.”  

 

Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He, Y., Tian, S., 

Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.: Improved Inversion of 

Monthly Ammonia Emissions in China Based on the Chinese Ammonia 

Monitoring Network and Ensemble Kalman Filter, Environmental Science & 

Technology, 53, 12529-12538, 2019. 

 

 

Specific Comments: 

1. Can the authors briefly mention the ICNO experiment results in the abstract. 

Response: Thanks for this suggestion. We have added following descriptions in the 

revised manuscripts. See lines 62-64, page 3.  

“Results showed that the simulated concentrations of CO, NO2, SO2, PM2.5 and PM10 

with the prior inventory have large systematic biases, with relative biases in the range 

of -48.2-54.2%. In the IA subsystem, after 3DVAR, the root mean squared error 

(RMSE) …” 

 

2. Sentence running from line 138-line 141. Please can the authors rephrase this? I had 

difficulty making sense of this sentence. 



Response: Thank you very much for your suggestion. We are so sorry for that the 

description is not clear enough, which increases reading difficulties for readers. The 

sentence (See lines 156-162, page 6) has been rephrased as follows: 

“In addition, in this method, the constraints of the chemical ICs with observations in 

each assimilation window make the emission inversions are independent between 

assimilation windows, means if the emission in one window is overestimated or 

underestimated, it cannot be transferred to the next window for further correcting and 

be compensated in the following windows. This may result in a systematic bias in the 

inverted emissions (Jiang et al., 2021).” 

 

3. Please reformulate sentence running from line 147 to 150. 

Response: Thanks! We have revised that sentence as follows, which also could be 

found in lines 168-172, page 6 in the revised manuscript. 

 “Considering the possible shortcomings of the simultaneous optimization method 

(named as “one-step” method in this study) as metioned by Jiang et al. (2021), we 

adopted a “two-step” method (Sect. 3) in this system. Unlike the “one-step” method, 

the ICs of each DA window in the “two-step” method is simulated using the posterior 

emissions of the pervious DA window.” 

 

4. Line 172 onwards in section 2.1.1. Please can the authors find a way to shorten the 

summary text to avoid repetitions. There is already a lot of detail here some of which 

is repeated in the following sections. 

Response: Many thanks for this suggestion. These sentences have been further 

summarized in the revised manuscript, including the composition and operation of IA 

subsystem, one-step introduction, etc. Additionally, we supplemented more technical 

details in the first step of EI subsystem according to the suggestion of another reviewer. 

See lines 201-228, pages 7-8. 



“Based on above three components, the RAPAS is divided into two subsystems, namely 

the IC assimilation (IA) subsystem (CTM plus 3DVAR) and the emission inversion (EI) 

subsystem (CTM plus EnSRF). As shown in Figure 1, the IA subsystem is first run to 

optimize chemical ICs (Kleist et al., 2009; Wu et al., 2002) for the subsequent EI 

subsystem. In the IA subsystem, we do not need to distinguish the type of sources of 

the model-observation mismatch error. The EI subsystem runs cyclically with a “two‐

step” scheme. In the first step, the prior emissions (��) are perturbed and put into the 

CTM model to simulate chemical concentration ensembles. The simulated 

concentrations of the lowest model level are then interpolated to the observation space 

according to the locations and times of the observations using the nearest neighbor 

interpolation method. The prior emissions (�� ), simulated observations and real 

observations are entered into the EnSRF module to generate the optimized emissions 

(��). In the second step, the optimized emissions are entered into the CTM model again 

to generate the initial fields of the next DA window. Meanwhile, the optimized 

emissions are transferred to the next window as the prior emissions. Different from the 

“one-step” scheme, this “two-step” scheme needs to run the CTM model twice, which 

is time consuming, but it could transfer the potential errors of the inverted emissions in 

one DA window to the next for further correction. The benefit of this scheme will be 

further presented in Sect. 4.3.” 

 

5. I found no mention of the temporal variability of the emissions. The EI seems to be 

run for single days resolving an emission estimate for each day. Are the daily a 

posteriori emission estimates somehow applied to the hourly emission variabilities each 

day?  

Response: Thanks for this comment. Yes, the EI resolves an emission estimate for each 

day. For both the prior and posterior emissions, we adopted a same scheme to convert 

the emissions from daily to hourly in each day and each grid. It is difficult to obtain the 

diurnal variations of each emission source. Therefore, in our scheme, for all the species 

emitted from area sources, we converted them to hourly emissions using a same diurnal 



profile (Figure R4), and for the point sources, we assumed that there was no diurnal 

change. The reason for estimating daily emissions in the EI subsystem is that, first, due 

to the complex of hourly emissions, it is very difficult to simulate hourly concentrations 

that can match the observations well; second, since the observations are concentrated 

in cities, to retrieve the emission in each grid, the emitted pollutants need to be fully 

mixed and transmitted in the atmosphere.  

 

Figure R4. Hourly emission variabilities. (Figure S2 in the revised manuscript) 

 

The following introductions have been added in the revised manuscript, see lines 476-

479, page 21. 

“During the simulations, the daily emissions were further converted to hourly emissions. 

For all the species emitted from area sources, we converted them to hourly using a same 

diurnal profile (Figure S2), and for the point source, we assumed that there was no 

diurnal change.” 

 

6. If the daily emission estimates from the EI are estimated for a single day and then 

applied to the following day as the updated a priori, how does this system behave due 

to day-of-the-week effects? Emissions from traffic and other sources are known to 

change at the weekend compared to the day, so how does this affect the day-to-day 



performance of the DA system when transitioning Friday-Saturday or Sunday-Monday? 

Further to that, how does this affect the hourly emission variability following point 5 

above?  

Response: Thanks for this comment. Yes, the daily emissions are estimated and then 

applied to the following day as the updated a priori. NOx is mainly emitted by 

transportation (Li et al., 2017), which can better reflect the level of economic activities 

to a certain extent. Figure R5 shows the posterior NOx emission changes on different 

days of the week overlaid with concentration changes. The power emissions are not 

taken into account in the statistics because the production processes of resource-based 

power sector are little interrupted. During this study period, high emissions mainly 

occur from Thursday to Saturday, while low emissions occur in other days. It could be 

found that the posterior emission changes are in good agreement with the observations. 

The emission changes transitioning Friday-Saturday or Sunday-Monday are not 

obvious during this study. However, the emission changes transitioning Saturday-

Sunday significantly decrease. Wang et al. (2014) showed that Monday and Sunday had 

lower levels of NO2 than the other days of the week in Beijing–Tianjin–Hebei, while 

Wang et al. (2015) showed that NO2 concentrations on weekends are higher than those 

on weekdays in Bijing. Deng and Jian (2020) showed that the “weekend effect” within 

the Yangtze River Economic Belt varies greatly. Additionally, Beirle et al. (2003) 

reported that there is no weekly pattern can be found in China. These results indicate 

that weekly emission variation may be related to local production and lifestyle in 

different regions and at different times. 

As mentioned in response 5, we didn’t optimize hourly emissions and applied a diurnal 

profile to convert emissions from daily to hourly on each day and at each grid. 

We have added related discussions in the revised paper. Lines 1180-1194, page 61. 

“NOx is mainly emitted by transportation (Li et al., 2017), which can better reflect the 

level of economic activities to a certain extent. Weekly emission changes were also 

explored to verify the performance of the system in depicting emission changes (Figure 



S13). Although the “weekend effect” of emissions in China is not significant (Wang et 

al., 2014; Wang et al., 2015), the posterior NOx emission changes showed a good 

agreement with the observations. In our previous studies (Feng et al., 2020a; Feng et 

al., 2020b), the system was successfully applied to optimize NOx and CO emissions, 

respectively. The inverted emission changes were also in line with the time points of 

epidemic control. Additionally, the emission changes can well reflect the emission 

migration from developed regions or urban areas to developing regions or surrounding 

areas over recent years, which were consistent with the emission control strategies in 

China. Although the system does not consider the model error, resulting in a certain 

difference between the posterior emission and the actual emission, the spatiotemporal 

changes in posterior emissions are relatively reasonable, which can be used to monitor 

emission changes and make emission regulations.” 

 

Figure R5 Weekly variation in posterior NOx emission and NO2 observation.  

 

Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME 

measurements: a signature of anthropogenic sources, Atmospheric Chemistry and 

Physics, 3, 2225-2232, 2003. 

Deng, H. and Jian, X.: Study on weekend and holiday effects of urban haze pollution 

in the Yangtze River Economic Belt, Journal of Central China Normal University. 

Natural Sciences Edition, 54, 536-545, 2020 
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Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., 

Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a 

review, National Science Review, 4, 834-866, 2017. 

Wang, Y. H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, 

T., Wang, L. L., Gao, W. K., Wang, X. K., and Wang, Y. S.: Ozone weekend effects 

in the Beijing-Tianjin-Hebei metropolitan area, China, Atmospheric Chemistry 

and Physics, 14, 2419-2429, 2014. 

Wang, Z., Li, Y., Dong, X., Sun, R., Sun, N., and Pan, L.: Analysis on weekend effect 

of air pollutants in urban atmosphere of Beijing, Journal of University of Chinese 

Academy of Sciences, 32, 843-850, 2015. 

 

7. Figure 1. Please can the authors show the length of DA window in each step of this 

system.  

Response: Thank you very much for your suggestion. We have added the length of DA 

window in Figure 1. Additionally, more details on the description of symbols, precise 

times and data update frequency are supplemented to the caption of Figure 1. 

“Figure 1. The composition and flow chart of RAPAS. The �� and �� represent the  

prior and posterior emissions. The 3DVAR assimilation stage lasts 5 days with data 

input frequency of 6 hours, and the DA window in the EI subsystem is set to 1 day.” 

 

8. Line 210. Would “interpolated” be more accurate than “compressed”?  

Response: Thanks for your suggestion. We have changed ‘compressed’ to 

‘interpolated’. See line 251, page 10. 

 

9. I think the name of the ICNO experiment should be renamed to NODA or DANO to 

indicate more clearly that neither the IA or EI steps are performed. As it is, ICNO 

implies only not IA. 

Response: Thanks for your suggestion. We have renamed ‘ICDA’ to ‘NODA’.  

 



10. The descriptions of EMS1 in Table 3 and on lines 498-501 seem to be in 

contradiction of one another, i.e., Table 3 says EMS1 is initialized with prior emissions 

from the previous window (no indication of 3DVar) and the text from line 498 claims 

that the ICs are from the 3D-Var experiment. The authors should make this clearer to 

avoid any confusion. 

Response: Thanks! Yes, the description of EMS1 is not clear enough. In EMS1, the 

initial field of each DA window is first taken from a forward simulation with the prior 

emissions in the previous DA window, and then optimized using observations with the 

3DVAR method. We have revised the sentence and reorganized Table 3 to make it clear.. 

See lines 580-584, page 25 in the revised manuscript. 

 “In EMS1, rather than forward simulated using the optimized emissions of the 

previous DA window in EMDA, the initial fields of each DA window were first taken 

from forward simulation with the prior emissions of the previous DA window, and then 

optimized using the 3DVAR algorithm and the observations at the corresponding 

moment as mentioned in Sect. 2.3.” 

 

11. It would have been good to see an EMDA experiment without any 3D-Var to see 

what affect the 3DVar has on the emission inversion step. I think this is an important 

test because of the potential overlap between emission error and initial condition error 

arising from emission errors. 

Response: Thank you for your opinion. We conducted an EMDA experiment without 

3D-Var, which is named as EMS8, to test the effect of the initial field optimization on 

the emission inversions. Figure R6 shows the time series of the relative differences in 

daily posterior emissions of the five species between the EMDA and EMS8 experiments. 

It can be found that the optimization of initial field has great impact on the emission 

inversion, especially for the long-lived species (e.g., CO). With the gradual 

disappearance of the benefit of initial field assimilation, the two experiments can reach 



a unified state after some windows. The following changes has been added in the 

revised paper. 

 

Table 3 

Lines 593-595, page 26 

“The last EMS8 experiment aims to evaluate the impact of IC optimization of the first 

window on emission estimates, in which the ICs were taken from a 5-day spin-up 

simulation.” 

 Lines 1015-1035, page 55 

4.3.4 Impact of the IC optimization of the first window 

Many studies have shown that there would be large emission discrepancies resulting 

from the IC errors (Jiang et al., 2013a; Miyazaki et al., 2017; Tang et al., 2013), which 

means that if the IC is not optimized, the errors of concentrations would be compensated 

through the adjustment of emissions. To evaluate the impact of the IC optimization of 

the first window on the emission inversions, the EMS8 experiment without the IA step 

was conducted. Figure 16 shows the time series of the relative differences in daily 

posterior emissions of the five species between the EMDA and EMS8 experiments. It 

can be found that the optimization of IC has great impact on the emission inversions of 

long-lived species (i.e., CO). The overall difference in the inverted CO emissions 

between the two experiments is about 5.3%, and in the first few windows, the maximum 

difference can reach 26.1%. For the short-lived species, the IC optimization has little 

Exp. 

Type 

Exp. 

Name 
Period 

IC of the first 

DA window 

IC of the first DA 

window 
Emission 

Sensitivity EMS8 1-31 December 

0000 UTC on 

December 1, 

taken from 

ICNO 

The same as EMDA 
The same 

as EMDA 



impact on the emission, for example, the averaged emission differences of SO2, NOx 

and PMC in the two experiments are 0.3%, 0.3% and 0.9%, respectively. For PPM2.5, 

it is affected not only by the primary emission, but also by the complex chemistry of its 

precursors. Therefore, the difference between the two experiments fluctuates at a 

certain extent, with overall difference of 2%. It is worth noting that with the gradual 

disappearance of the benefit of IC assimilation, the two experiments can reach a unified 

state after some windows. For CO, the impact of IA on emission inversion lasts about 

half a month. These results indicate that removing the bias of IC of the first DA window 

is essential for subsequent inverse analysis (Jiang et al., 2017).   

 

Figure R6. Relative differences in CO, SO2, NOx, PPM2.5 and PMC emissions (%, 

the ratio of absolute difference to EMDA) between the EMDA and EMS8. (Figure 16 

in the revised manuscript) 

 

12. I think Figure 10 should be expanded to show the changes in emissions beyond the 

borders of China. I am assuming of course that the EI system’s state variables include 

emission terms beyond China’s frontiers. If they do not, then I would ask the authors to 



make this point clearer. But given the large emission region (north India) included in 

the western part of the modelling domain, it would make sense to show any emission 

changes in that region. 

Response: Thanks for this comment. Yes, the EI system’s state variables include 

emissions outside China, but in Figure 10 (Figure 12 in the revised manuscript), we 

only showed the emissions within China. Since the observation sites are all located in 

China, the changes of the emissions outside China are very small. The affected areas 

are related to the covariance localization scale of a chemical species, which are mainly 

located in the Indochina Peninsula, the Korean Peninsula and the northwest and 

northeast borders of China. Due to the sparse stations in Tibet province, there is 

basically no adjustment for the emissions in the north of India. The following 

description has been added on lines 834-836, page 43 in the revised paper. 

 “It should be noted that the emissions outside China were masked, since the 

observation sites are all within China in this study, there is little change in the emissions 

outside China.”  



 

Figure R7 Spatial distribution of the time-averaged prior emissions (left column, MEIC 

2016), posterior emissions (middle column), and differences (right column, posterior 

minus prior).  

 



13. I assume that the authors have performed some offline testing on the number of 

ensemble members in the EnKF. It would be interesting to hear about these tests and 

what they showed with regard to selecting 40 over any other number of ensemble 

members. 

Response: Thanks for this comment. Generally, in EnKF, the larger the number of 

ensembles, the smaller the impact of spurious correlations, but the more 

computationally expensive. The choice of ensemble size involves a tradeoff between 

the computation costs and the accuracy of the inversions. We have tested the impact of 

the number of ensemble members (e.g., 20, 30, 40, 50, and 70) on the inversion results. 

Figure R8 shows the emissions of the 5 species in China inferred using different 

ensemble numbers. It could be found that when the number of ensembles is less than 

40, as the number of ensembles we use decreases, the inverted emissions will increase 

significantly, and when the ensemble number is greater than 40, as the number of 

ensembles increases, the change in the inverted emissions is very little. Therefore, we 

set the ensemble number to 40. The following description has been added on lines 377-

378, page 16 in the revised paper. 

“… N is the ensemble size, which was set to 40 in consideration of a tradeoff between 

the computation cost and inversion accuracy (Figure S1), and δ��
� represents …” 

 



Figure R8 Comparison of emissions of different species inferred by selecting 

different ensemble numbers. CO unit:10 Gg; others units: Gg. (Figure S1 in the 

revised manuscript) 

 

14. I think the application of the chi squared metric to the discussion in sections 4.3.3 

and 4.3.4 would be very informative of how the optimality of the EnKF is changing in 

each case. 

Response: We really appreciate this suggestion. We have added the Chi-square 

statistics in sections 4.3.2 and 4.3.3 and in Figure 14 and S10 in the revised manuscript. 

It could be found that a larger uncertainty usually leads to a faster convergence. After a 

few windows, there are no significant differences for the Chi-square statistics among 

the different experiments. However, the day-to-day changes in emissions can also cause 

slight fluctuations. Additionally, the total spread (including the ensemble variance and 

the observation error) is relatively small compared to the ensemble mean RMSE of 

surface SO2 in the NCP, but the opposite in the YRD, indicating that it may be necessary 

to apply different a priori uncertainties according to different regions in the future (Chen 

et al., 2019). Figure S10 shows the time series of the relative changes in a posteriori 

emission estimates and χ2 statistics in EMS7 experiment. Due to applying larger 

observation error, the day-to-day changes in emissions is small compared with that in 

EMDA, and may not reflect the actual situation. Although χ2 statistics also shows that 

the emission converges to a certain range after some windows, it is slightly larger than 

the statistics in EMDA, indicating that there may be a large discrepancies (�� − ����
�) 

between simulations with prior emissions and observations, which is more verified that 

the emissions cannot respond in a timely manner with too large observation errors. The 

changes in the revised manuscript are marked in red as follows: 

See line 959, page 50. 

“Figure 14 shows the time series of SO2 emission changes, the Chi-square statistics and 



the RMSEs …” 

See line 964, page 50. 

“… …and as shown in Figure 14a-d, larger uncertainty will lead to a faster 

convergence… …” 

See lines 969-970, page 51. 

“… but in the later stage of the experiment, there are no significant differences for the 

RMSE and Chi-square statistics among the different experiments. However, the day-

to-day changes in emissions can also cause slight fluctuations.” 

See line 974-976, page 51. 

“Due to the spatial-temporal inhomogeneity of emissions, the differences of Chi-square 

statistics between the YRD and NCP show that it may be necessary to apply different a 

priori uncertainties according to different regions (Chen et al., 2019).” 

See lines 1008-1009, page 54. 

“These results usually correspond to sluggish emission changes and large Chi-square 

statistics (Figure S10), suggesting that too large observation error may substantially 

impact the estimated emissions.” 

 

 

 

 

 



See Figure S10. 

 

Figure R10. Relative changes (a) in a posteriori emission estimates of CO, SO2, NOx, 

PPM2.5 and PMC, and χ2 statistics (b) of these state vectors in EMS7 experiment. 

(Figure S10 in the revised manuscript) 

 

 

 

 

 

 



See Figure 14. 

 

Figure R9. Time-series of SO2 emission changes, the Chi-square statistics and the 

RMSE of simulated SO2 with updated SO2 emissions in the EMDA and EMS3-6 

experiments over the Yangtze River Delta (YRD) and North China Plain (NCP). (Figure 

14 in the revised manuscript) 

 

Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air pollution 

in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data 

assimilation system, Atmospheric Chemistry and Physics, 19, 8619-8650, 2019. 

 

15. Line 854. When the authors speak about reduced emission uncertainties, I think 

some care is needed. In fact, the errors in the simulated concentrations are reduced, and 



from that the a posteriori emissions are assumed to have lower uncertainty. However, 

this ignores the fact that there are unquantifiable model uncertainties included within 

the new emission estimates, and so I think it is dangerous to say the emission 

uncertainty itself is reduced without the support of an independent estimate. 

Response: Thanks for this suggestion. Yes, we agree that the model error is an 

important uncertainty source for the estimates of emissions and is usually difficult to 

quantify. Generally, the reduction of uncertainties is used to test the effectiveness of an 

assimilation system to assimilate observational data (Chevallier et al., 2007; Takagi et 

al., 2011), it does not represent a real reduction in emissions uncertainty. We have 

revised that sentence as follows: 

 “The results show that RAPAS has a good performance in assimilating ground in-situ 

observations, with the calculated emission uncertainties reduced by 44.4%, 45.0%, 

34.3%, 51.8% and 56.1% for CO, SO2, NOx, PPM2.5 and PMC, respectively. It can also 

significantly improve the simulations, the RMSEs of the simulated concentrations with 

posterior emissions decreased by 40.1-56.3%, and the CORRs increased from 0.26-0.66 

to 0.69-0.87 for different species.” 

 

Chevallier, F., Breon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon 

Observatory to the estimation of CO2 sources and sinks: Theoretical study in a 

variational data assimilation framework, J. Geophys. Res.-Atmos., 112, d09307, 

https://doi.org/10.1029/2006JD007375, 2007. 

Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., 

Morino, I., Uchino, O., Andres, R. J., Yokota, T., and Maksyutov, S.: On the 

Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes, SOLA, 

7, 161-164, https://doi.org/10.2151/sola.2011-041, 2011. 

 

16. Line 872 onwards. This is probably also a symptom of the fact that the EnKF was 

not specifically developed to estimate state variables with significant bias errors. The 

incremental improvement described here are exactly symptomatic of this issue, and 



examples like this are described in the literature on the topic cited above. This is an 

example of the text that will need to be revised in light of the required shift to speak of 

parameter estimation to solve for biases being treated by the EnKF. 

Response: Thanks for this comment. Although the EnKF method has been widely used 

in the estimates of emissions and surface carbon fluxes (Brunner et al., 2012; Miyazaki 

et al., 2017; Peter et al., 2005, 2007; Wang et al., 2020; Zhang et al., 2015), we agree 

that there are problems with estimating emissions using the EnKF. The estimates of 

emissions are significantly related to the settings of the uncertainties of prior emissions, 

the model-data mismatch errors, the ensemble numbers, the localization scheme, and 

the choice of prior emissions. Generally, the uncertainty of prior emissions and the error 

of observations determine how closely the analysis is weighted toward the background 

and observation. Thus, it is very important to set reasonable values for above items. 

Therefore, we did many tests to choose the appropriate settings to ensure the reliability 

of the inversion results (section 4.3). The following words have been added in the 

revised manuscript. See lines 976-978, page 51. 

“Therefore, when using an EnKF system for emission estimation, we have to be very 

careful about the setting of these errors.” 
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CO2 surface fluxes from atmospheric trace gas observations, J. Geophys. Res., 

110, D24304. 

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., 

Miller, J. B., Bruh-wiler, L. M. P., P´etron, G., Hirsch, A. I.,Worthy, D. E. J.,Werf, 

G. R. V. D., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An 

atmospheric perspective on North American carbon dioxide exchange: 



CarbonTracker, P. Natl. Acad. Sci., 104, 18925–18930. 
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Yang, D., Liu, L., and Xia, C.: Large Chinese land carbon sink estimated from 

atmospheric carbon dioxide data, Nature, 586, 720-723, 2020. 

Zhang, S., Zheng, X., Chen, J. M., Chen, Z., Dan, B., Yi, X., Wang, L., and Wu, G.: A 

global carbon assimilation system using a modified ensemble Kalman filter, 

Geosci. Model Dev., 8, 805-816, 2015. 

 

17. Line 878 to 883. There is an example of ozone observations being successfully used 

to estimate NOx and VOC emissions within the 4D-var framework (Hamer et al., 2015) 

that specifically deals with the problem of NOx-limited vs VOC limited conditions. I 

would suggest to the authors to consider including some text on the potential ways to 

address this problem. This might be one limitation of the EnKF method compared to 

the 4D-var? 

Response: Thanks for this comment. Actually, there is also a similar limitation of the 

4D-var method. Figure R11 shows one situation of limitation in adjusting NOx 

emissions using O3 observations with EnKF, which was adopted from Tang et al. 

(2016). Obviously,  the relationship between O3 concentrations and NOx emissions is 

unreasonable due to highly nonlinearly chemical mechanism, because the system 

adjusts the emissions (blue dot) in the opposite direction to fit the observations. This 

relationship contained in the covariance matrix of EnKF is similar to the Jacobian 

matrix in 4D-var describing the forward-model response to perturbations to the 

emission parameters (Eq. 10 and Eq. 15 in Hamer et al. (2015)). Theoretically, one O3 

observation may correspond to two NOx/VOC emission states. It is difficult to solve 

for VOC/NOx emissions using O3 observation only even with 4DVAR method unless 

other constraints are introduced, because O3 observations on their own would have 

problems identifying which NOx/VOC state is the correct one. We also confirmed this 

with Dr. Hamer. Although Hamer et al. (2015) conducted inversion analyses of NOx 

and VOC emissions under varying polluted photochemical regimes, their sensitivity 

analyses were performed within an idealised model. The photochemical regime (i.e., 

either NOx- or VOC-limited regimes) of each experiment was prescribed, and the 



difference between prior and true emission scaling factors is small (their table 5). They 

also introduced constraints from observations of other species (e.g., NO2 in OCN 

experiment and HCHO in HCN experiment) on emissions. Therefore, in most cases, 

the posterior emission error was reduced (e.g., their table 8). Due to the complexity of 

pollution problem in China, the photochemical regime varies in different regions and at 

different times (Jin and Holloway, 2015; Li et al., 2021; Wang et al., 2019), thus it is 

difficult to adjust NOx and VOC emissions using cross‐species information within real 

observations in China. As suggested in Hamer et al. (2015), the analysis of the results 

was limited to identifying relationships between the observing scenario, the 

photochemical regime, the adjoint sensitivities and so on. The following words have 

been added in the revised manuscript. See lines 1133-1135, page 59. 

“Although Hamer et al. (2015) successfully used O3 observations to estimate NOx and 

VOC emissions within the 4D-var framework within an idealised model, O3 

observations are not assimilated to improve NOx and VOC emissions using cross‐

species information due to the strong nonlinear effects within the O3‐NOx‐VOC 

relationship (Wang et al., 2019), in which …” 

 

Figure R11. O3 concentrations (ppbv) and NOx emissions (no unit, normalized by the 

true NOx emission) before and after data assimilation and their ensemble samples. The 



red dot represents the true state of the NOx emission and the observed O3 concentration 

(VOC-limited). The magenta dot represents the result of the ensemble mean of the grey 

squares (NOx-limited). The gray line represents a linear relationship calculated from 

the ensemble samples of O3 concentrations and NOx emissions. The analyzed O3 

concentration and NOx emission are denoted by the blue dot. (Tang et al., 2016) 
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Technical changes: 

 

Line 37. “It is capable of…” 

Response: Thanks for this suggestion. We have changed “It is capable to …” to “It is 

capable of …”. See line 37, page 2. 

 

Line 38. “…assimilating spatially…” 



Response: Thanks for this suggestion. We have changed “… assimilate spatially …” 

to “… assimilating spatially …”. See line 38, page 2. 

 

Line 44. “…subsystem in each data…” 

Response: Thanks for this suggestion. We have changed “… subsystem in its each 

data …” to “… subsystem in each data …”. See lines 44-45, page 2. 

 

Line 103. “…and large amounts of …” 

Response: Thanks for this suggestion. We have changed “… and large amount …” to 

“… and large amounts of …”. See lines 104-105, page 4. 

 

Line 126. “…because atmospheric…” 

Response: Thanks for this suggestion. We have changed “… because atmopheric …” 

to “… because atmospheric …”. See line 141, page 5.  

 

Line 139. “…means that the assimilation windows are independent from each other, 

generally,…” 

Response: Thanks for this suggestion. We have rephrased that sentence. See, lines 156-

162, page 6. 

 

Lines 176-177. “…and provides “perfect” chemical ICs…” 

Response: Thanks for this suggestion. We have deleted that sentence and shorten the 

text of that paragraph. See line 207, page 8. 

 



Line 199. “…can address the complex…” 

Response: Thanks for this suggestion. We have changed “… could address the 

complex …” to “… can address the complex …”. See line 237, page 9. 

 

Line 204. “…and it covers the whole of mainland of China…” 

Response: Thanks for this suggestion. We have changed “… and it covers the whole 

mainland of China …” to “… and it covers the whole of mainland of China …”. See 

line 242, page 9. 

 

Line 217. “…using optimized emission from the previous window…” 

Response: Thanks for this suggestion. We have changed “… using optimized emission 

of previous window …” to “… using optimized emission from the previous window …”. 

See line 258, page 10. 

 

Line 242. “Additional work includes the…” 

Response: Thanks for this suggestion. We have changed “Additional works include 

the …” to “Additional work includes the …”. See line 284, page 13. 

 

Lines 256-257. “Hourly mean surface pollution observations within a 1 hour window 

of the analysis…” 

Response: Thanks for this suggestion. We have changed “Hourly surface pollution 

observations within 1 hour window of the analysis …” to “Hourly mean surface 

pollution observations within a 1 hour window of the analysis …”. See line 298, page 

14. 

 



Line 259. “For gas concentrations that are directly…” 

Response: Thanks for this suggestion. We have changed “For gas pollutions that are 

directly …” to “For gas concentrations that are directly …”. See line 301, page 14. 

 

Line 314-315. “The ground-level scale generally spreads 40-45 km…”Line 320. “In the 

EnKF…” 

Response: Thanks for this suggestion. We have changed “The ground-level scale 

generally spread 40-45 km …” to “The ground-level scale generally spreads 40-45 

km …”. See line 358, page 17. 

 

Line 401. “…with a lifetime more than 1 day.” 

Response: Thanks for this suggestion. We have changed “with lifetime more than 1 

day …” to “with a lifetime more than 1 day …”. See line 459, page 21. 

 

Line 403. “In addition, NO2 is rather reactive…” 

Response: Thanks for this suggestion. We have changed “In addition, NO2 is rather 

active …” to “In addition, NO2 is rather reactive …”. See line 461, page 21. 

 

Line 424. “During the inversion cycles, …” 

Response: 

Thanks for this suggestion. We have changed “During the cycling inversions …” to 

“During the inversion cycles …”. See line 486, page 22. 

 

Line 439. “…assimilation cycle…” 



Response: Thanks for this suggestion. We have changed “… cycle assimilation …” to 

“… assimilation cycle …”. See line 502, page 22. 

 

Line 446. Missing last access date on link. 

Response: Thanks for this suggestion. We have added last access date on link. See line 

509, page 22. 

 

Line 582. “…are over the rest of the areas…” 

Response: Thanks for this suggestion. We have changed “… are over the rest areas …” 

to “… are over the rest of the areas …”. See line 694, page 32. 

 


