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Abstract. In this study, we aimed to evaluate the monthly precipitation forecasts of JMA/MRI-CPS2, a global dynamical 15 

seasonal climate forecast (Dyn-SCF) system operated in the Japan Meteorological Agency, by comparing them with the 

forecasts of a statistical SCF (St-SCF) system using climate indices systematically and globally. Accordingly, we developed 

a new global St-SCF system using 18 climate indices and compared the monthly precipitation of this system with those of 

JMA/MRI-CPS2. Consequently, it was found that JMA/MRI-CPS2 forecasts are superior to St-SCFs around the equator (10º 

S–10º N) even for six-month lead forecasts. For one-month lead forecasts, the accuracy of JMA/MRI-CPS2 forecasts was 20 

higher than that of St-SCFs when viewed globally. In contrast, for forecasts made two months or longer in advance, St-SCFs 

had an advantage in global forecasts. In addition to evaluating the accuracy of JMA/MRI-CPS2 forecasts, the slow dynamics 

of the ocean and atmosphere, not reproduced by the JMA/MRI-CPS2 system, were determined by comparing the evaluations, 

and it was concluded that this could contribute to improving Dyn-SCF systems. 

1 Introduction 25 

Seasonal climate forecasts (SCFs), which predict the weather more than two weeks to one year in advance, can provide 

useful information for decision-making and early warning in various fields, such as agriculture and water resource 

management (Doblas-Reyes et al., 2006; Jones et al., 2000; Klemm and McPherson, 2017; Meinke and Stone, 2005; Pozzi et 

al., 2013); however, their usefulness substantially depends on the accuracy of forecasts. Therefore, the evaluation of the 

accuracy of SCFs is an important aspect in the construction of SCF systems (Kim et al., 2012), which is implemented in 30 

most SCF systems.  
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The general approach for evaluating the accuracy of SCFs involves analyzing the degree of similarity with the observed data. 

As a more advanced approach, the assessment of added values compared to the SCF system using climatology or simple 

statistical methods has been proposed (Luo et al. 2012; Pappenberger et al. 2015; Turco et al. 2017). For dynamical SCF 

(Dyn-SCF) systems, in particular, which use dynamical climate models with a large computational load, such as coupled 35 

atmosphere-ocean models, it is necessary to show added values as benefits to the large cost by comparing with the forecast 

accuracy of simple methods with a smaller cost. The mean square skill score is often used to evaluate the forecast accuracy 

of SCF systems (Stockdale et al. 2011; Kim et al. 2016), and it can be considered an evaluation of added values to SCFs 

using climatology. 

Statistical SCF (St-SCF) systems are an alternative and simpler method for Dyn-SCF systems (Doblas-Reyes et al., 2013). 40 

The forecast accuracy of St-SCF and Dyn-SCF systems has been compared in various manners and regions (Folland et al. 

1991; Anderson, van den Dool, and Ploshay 1999; Barnston, Glantz, and He 1999; van Oldenborgh et al. 2005; Quan et al. 

2006; Wu et al. 2009; Pappenberger et al. 2015; Turco et al. 2017). However, to the best of our knowledge, no systematic 

global comparison has yet been made because it is difficult to develop a global system for St-SCFs (Eden et al., 2015). 

Systematic global comparisons can be used to identify regions and seasons in which Dyn-SCF systems have advantages and 45 

disadvantages in forecasting. 

Among the various statistical methods used in St-SCF systems, numerous studies have used climate indices like Nino 3.4, 

Southern Oscillation Index, Madden-Julian Oscillation (Quayle 1929; Nicholls, McBride, and Ormerod 1982; McBride and 

Nicholls 1983; Gordon 1986; Chu 1989; Stone, Hammer, and Marcussen 1996; Chiew et al. 1998; Kirono, Chiew, and Kent 

2010; Schepen, Wang, and Robertson 2012; Eden et al. 2015; Singh and Qin 2020). The predictability of St-SCFs using 50 

climate indices relies on the slow dynamics in the ocean and atmosphere, and the climate states are correlated to the slow 

dynamics. This is essentially the same for Dyn-SCF systems, whose predictability also depends on the presence of slow 

variations in soil moisture, snow cover, sea ice, and ocean surface temperature (Doblas-Reyes et al., 2013). Therefore, the 

forecast accuracy of St-SCFs using climate indices can be a suitable benchmark for that of Dyn-SCFs. In addition, by 

comparing Dyn-SCFs and St-SCFs, the dynamics that are insufficiently reproduced in Dyn-SCF systems can be clarified, 55 

which could contribute to improving the accuracy of Dyn-SCFs.  

A global Dyn-SCF system, JMA/MRI-CPS2 (Takaya et al. 2018), developed by the Japan Meteorological Agency (JMA) 

and Meteorological Research Institute (MRI), is used for operational seasonal forecasting. Takaya et al. (2018) reported that 

JMA/MRI-CPS2 generally improved the forecast accuracy of the interannual variability in the ocean and atmosphere, 

including El Niño events, compared to its predecessor model, JMA/MRI-CPS1 (Takaya et al., 2017). The Tokyo Climate 60 

Center, a regional climate center of the World Meteorological Organization, published the monthly forecast accuracy of 

JMA/MRI-CPS2. For example, the evaluation showed that the accuracy of precipitation forecasts is high near the equator; 

moreover, the one-month lead forecasts have the highest accuracy in February and the lowest in April. However, 

comparisons with St-SCFs have not been performed for JMA/MRI-CPS2 forecasts. 
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In this study, we attempted to evaluate the forecast accuracy of JMA/MRI-CPS2 for monthly precipitation by comparing it 65 

with that of the St-SCF system using climate indices. Correspondingly, the forecast accuracy of JMA/MRI-CPS2 was 

evaluated by comparing it with the observed precipitation. Next, an St-SCF system using 18 climate indices was newly 

developed and it was used to make monthly precipitation forecasts. Then, the forecast accuracy of the St-SCF system using 

climate indices was evaluated and compared to that of JMA/MRI-CPS2. In addition, we discussed the possibility of model 

improvement through comparing Dyn-SCFs with St-SCFs using climate indices. 70 

2 Method, model, and data 

2.1 Method 

The outline of this study is presented in Figure 1 and Table 1. In Step 1, the accuracy of monthly precipitation forecasts of 

JMA/MRI-CPS2 was evaluated through comparison with observed data. The hindcast data of JMA/MRI-CPS2 from 1981 to 

2010 were used for monthly precipitation forecasts. Monthly precipitation data from the Global Precipitation Climatology 75 

Project (GPCP (Adler et al., 2003, 2018)) v2.3, provided by NOAA/OAR/ESRL PSL, were used as observations. The study 

area was global and the spatial resolution for the comparison was 2.5° × 2.5°; moreover, the accuracy was evaluated for each 

grid. The spatial resolution of both JMA/MRI-CPS2 and GPCP v2.3 was 2.5° × 2.5°; however, the center of grids was not 

matched between them. Thus, GPCP v2.3 was re-gridded to the grid of JMR/MRI-CPS2 using the bilinear method. The 

hindcast data of JMA/MRI-CPS2 included five ensembles with different initial conditions, and the ensemble mean was used 80 

in this study. 

Next, in Step 2-1, statistical models were constructed for each grid and 18 climate indices, with monthly values of a climate 

index as an explanatory variable and monthly precipitation as an objective variable (see Section 2.2.2). The smoothing spline 

method was used to create the statistical models. In Step 2-2, monthly precipitation for each year was forecasted in each grid 

using the leave-one-out method. In Step 2-3, the forecast values of 18 statistical models were compared with GPCP v2.3, and 85 

the forecast value of the model with the highest correlation with observations was selected for each grid to create a 

composite forecast value of statistical models. Simultaneously, a composite forecast accuracy was obtained by combining 

the forecast accuracy of selected forecast values in each grid.  

Finally, in Step 3, the forecast accuracy of JMA/MRI-CPS2 forecasts, obtained in Step 1, was compared with the composite 

forecast accuracy of the statistical models obtained in Steps 2-3. 90 

The anomaly correlation coefficient (ACC) between the forecast and observed values was used to evaluate the forecast 

accuracy, and the deviation in climatology from 1981 to 2010 for the forecasts and observations was used to calculate the 

ACC. A significance level of 0.05 was used to evaluate statistical significance of ACC. Forecasts with 1 to 6 lead months 

were evaluated. For example, in the case of precipitation forecasts for October, monthly precipitation forecasts that started 

from April to September were used. In the statistical model for forecasts in October, the precipitation in October was used as 95 

an objective variable and climate indices from April to September were used as explanatory variables. 
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2.2 Model and data 

2.2.1 JMA/MRI-CPS2 

The main component of JMA/MRI-CPS2 is a coupled atmosphere-ocean model (JMA/MRI-CGCM2), whose atmospheric 

component is based on the low-resolution version of the JMA Global Spectral Model (GMS1011C, Japan Meteorological 100 

Agency, 2013). Its spatial resolution is TL159 (approximately 110 km) with 60 vertical layers. The ocean component of 

JMA/MRI-CGCM2 is based on the MRI Community Ocean Model version 3 (MRI.COM3 v3 (Tsujino, 2010)), which 

includes a sea ice model. The spatial resolution of MRI.COPM3 v3 is 1° east-west, 0.3–0.5° north-south, and 52 vertical 

layers. The Japanese 55-year Reanalysis (JRA-55; (Kobayashi et al. 2015)) was used to initialize the atmospheric data, and 

the Global Ocean Data Assimilation System (MOVE/MRI.COM-G2 (Toyoda et al., 2013)) was used for ocean data. 105 

The JMA/MRI-CPS2 hindcast data were obtained from the Japan Meteorological Business Support Center. The hindcast 

period was 1979–2019 and the time resolution was daily. In this study, the hindcast data from 1981 to 2010 were used, and 

daily values were averaged to produce monthly values. The spatial resolution of the hindcast data was 2.5° × 2.5°. The 

hindcast data included five ensembles with different initial conditions that were averaged for each grid. There were two 

forecasts starting in the middle and end of each month. The one closer to the end of the month was used in this study, such as 110 

Jan 31, Feb 25, Mar 27, Apr 26, May 31, Jun 30, Jul 30, Aug 29, Sep 28, Oct 28, Nov 27, and Dec 27. The forecast period of 

hindcast data was 240 days; the forecast values in the first six months were used in this study. 

2.2.2 Statistical seasonal climate forecast system using climate indices 

Statistical models were constructed with a climate index as the explanatory variable and precipitation as the objective 

variable (in Step 2-1 of Fig.1). The model is expressed as follows:  115 

𝑃𝑅𝐸!,#,$%(𝑇) = max{𝑓!,#,&,$%(𝐼𝐷𝑋#(𝑇 − 𝐿𝑀)),0} 

where 𝑃𝑅𝐸!,#,$%(𝑇) denotes the forecast values of precipitation for grid i, climatic index j, lead month LM, and forecast 

month T. 𝐼𝐷𝑋#(𝑇 − 𝐿𝑀) is the value of climatic index j in T – LM. 𝑓!,#,&,$% is a function to obtain precipitation in T for grid i 

from climatic index j in T – LM. In this study, the smoothing spline method was used to develop functions 𝑓!,#,&,$%. An 

example of this function is shown in Fig. 2. 120 

Table 4 summarizes the 18 climate indices used in this study by category. These indices were selected from those provided 

by the NOAA Physical Sciences Laboratory, and the values were updated within approximately a week after the end of each 

month. 
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3 Results 

3.1 Comparison of global prediction skill 125 

Fig. 3 shows the global averages of monthly ACC for JMA/MRI-CPS2 forecasts for each lead month. It can be observed that 

JMA/MRI-CPS2 has high accuracy in one-month lead forecasts; the accuracy decreases rapidly in the two-month lead 

forecasts, and gradually declines thereafter. The highest accuracy of one-month lead forecasts was observed in February, 

with an ACC of 0.340, while the worst forecast accuracy was observed in April, with an ACC of 0.224. For two-month lead 

forecasts, February had an ACC of 0.139, which is less than half the value of one-month lead forecasts. Comparing the 130 

ACCs of the ocean and land, it is evident that the one-month lead forecast accuracy in February for land is higher than that 

for ocean, and that in April for land is lower than that for ocean. For forecasts made more than two months in advance, the 

forecast accuracy is generally higher for the ocean than land. 

Fig. 4 shows the global averages of the monthly ACC for St-SCFs using climate indices for each lead month. It can be seen 

that the forecast accuracy decreases as the lead month increases, but the decrease is significantly smaller than that in the case 135 

of JMA/MRI-CPS2. The highest accuracy of one-month lead forecasts for the global forecast was observed in October, with 

an ACC of 0.313, while the worst forecast accuracy was observed in June, with an ACC of 0.263. The ACCs of October for 

two-month and six-month lead forecasts were 0.307 and 0.250, respectively. Comparing the ocean and land areas, it can be 

observed that the forecast accuracy is higher for ocean forecasts from one to six months in advance. 

Fig. 5 shows a comparison of the annual mean ACC between JMA/MRI-CPS2 and St-SCFs using climate indices. It is 140 

evident that the forecast accuracy of JMA/MRI-CPS2 is lower than that of St-SCFs even after one month in advance. The 

difference becomes larger for two months in advance and gradually increases for longer forecasts. However, the global 

averages of ACC include grids where the correlation is not significant. Fig. 5 shows a comparison of the ratio of areas with 

significant ACC and that with significant and higher ACC between JMA/MRI-CPS2 and St-SCFs using climate indices. It 

can be observed that these two values are higher in JMA/MRI-CPS2 for one-month lead forecasts. Therefore, it can be 145 

concluded that the forecast accuracy of JMA/MRI-CPS2 is generally higher for one-month lead forecasts. However, when 

the forecasts were longer than two months, the accuracy of St-SCFs using climate indices was higher. 

3.2 Spatial comparison of global prediction skill 

Fig. 6 shows the spatial distribution of ACC for JMA/MRI-CPS2 in February, April, and June. It can be observed that in 

February, the month with the highest accuracy in one-month lead forecasts, the area with significant ACC is spread 150 

worldwide. However, in April, the month with the lowest accuracy, significant areas are limited to low latitudes near the 

equator even in one-month lead forecasts. For two-month lead forecasts, the significant areas are more limited, even in 

February.   

Fig. 7 shows the spatial distribution of ACC for St-SCFs in April, June, and October. In October, which had the highest 

accuracy for one-month lead forecasts, the ACC is unevenly distributed and high, especially in Southeast Asia, Middle East, 155 
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East Africa, and equatorial Pacific region. In June, the month with the lowest forecast accuracy, there were no regions with 

high forecast accuracy, except for the low latitudes near the equator in the western longitude. The regions with high forecast 

accuracy in October remained highly accurate even for more than two-month lead forecasts. This is a considerable difference 

from the forecasts of JMA/MRI-CPS2. 

Fig. 8 shows the annual mean ACC, ratio of areas with significant ACCs, and ratio of areas with significant and higher 160 

ACCs by latitude for JMA/MRI-CPS2 (left) and St-SCFs using climate indices (right). As shown in the maps, the accuracy 

of JMA/MRI-CPS2 forecasts is generally high at low latitudes, and the difference between one- and two-month lead 

forecasts is large. St-SCFs using climate indices showed that the forecast accuracy was high at low latitudes, as well as 

JMA/MRI-CPS2. In contrast, unlike JMA/MRI-CPS2, the statistical forecasts exhibited small differences between one-

month lead forecasts and more than two-month lead forecasts, especially above 20º S and 20º N. For JMA/MRI-CPS2 165 

forecasts, the forecast accuracy decreased as the latitude increased, while the accuracy of St-SCFs remained almost the same 

above 20º S and 20º N. 

Fig. 8 (at the bottom) also shows that JMA/MRI-CPS2 has larger areas with higher ACCs around the equator between 10° S 

and 10° N from one- to six-month lead forecasts. Even at higher latitudes between 40º S and 70º N, JMA/MRI-CPS2 has 

larger areas with higher ACCs in one-month lead forecasts. This is almost true for the ratio of areas with significant (at the 170 

middle in Fig. 8).  

3.3 Regional comparison of global prediction skill: Europe in April 

The ACCs for April in Figs. 6 and 7 show that St-SCFs using climate indices have significant ACCs in Europe from one to 

three months in advance, while JMA/MRI-CPS2 forecasts have no or small significant correlations in Europe for one to 

three months in advance. Fig. 9 shows the relationship between the NINO3.4 index and precipitation in Paris (2.5° E and 50º 175 

N. This shows that there is a nonlinear correlation between NINO3.4 and precipitation, wherein the precipitation increases 

with positive (=El Niño) and negative (=La Niña) values of NINO3.4, and reaches a minimum of approximately 0 for 

NINO3.4. In addition, a nonlinear relationship can be observed from one- to six-month lead forecasts. The slow dynamics 

responsible for the robust relationship between NINO3.4 and precipitation should exist; however, they are not reproduced in 

JMA/MRI-CPS2, implying that further analysis and incorporation of these dynamics into JMA/MRI-CPS2 can improve the 180 

forecast accuracy of the model. 

4 Discussion 

4.1 Prediction skill of JMA/MRI-CPS2 in comparison to St-SCF 

The forecast accuracy of JMA/MRI-CPS2 was evaluated by Takaya et al. (2018) and published by the Tokyo Climate Center. 

The evaluation showed that the accuracy of precipitation forecasts is high around the equator and that of one-month lead 185 

forecasts is highest in February and lowest in April. The same forecast accuracy was confirmed in this study (Figs. 3, 6, and 
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8). In addition, by comparing with St-SCFs using climate indices as benchmark, we identified the regions and lead periods in 

which JMA/MRI-CPS2 has advantages and disadvantages. For example, it was found that JMA/MRI-CPS2 has higher 

accuracy around the equator between 10º S and 10º N even in long-term forecasts of six months (Fig. 8). In general, it is well 

known that Dyn-SCF systems have particularly high accuracy in the tropics (Doblas-Reyes et al., 2013). In addition, we 190 

showed that JMA/MRI-CPS2 has higher accuracy in comparison to an St-SCF system. To the best of our knowledge, this is 

the first study that demonstrates Dyn-SCF systems have the added value on seasonal climate forecasts in tropics in 

comparison with St-SCF systems. It was also found that the accuracy of one-month lead forecasts was higher than that of St-

SCFs globally (Fig. 5). This is also considered to be a significant added value of JMA/MRI-CPS2. In contrast, for forecasts 

longer than two months, St-SCFs using climate indices have an advantage globally (Figs. 3, 4, and 5). At low and middle 195 

latitudes between 40º S and 70º N, JMA/MRI-CPS2 has an advantage in one-month forecasts; however, St-SCFs have an 

advantage in two-month and longer forecasts (Figs. 6, 7, and 8). These results clearly indicate that improving the accuracy of 

JMA/MRI-CPS2 for longer-term forecasts over two months is a challenge that must be addressed. The improvement in 

accuracy of Dyn-SCFs in comparison to St-SCFs is discussed in the next section. 

4.2 Improvement of prediction skill by comparing with St-SCF using climate indices 200 

Various methods have been proposed to improve the forecast accuracy of Dyn-SCFs, including the initialization of soil 

moisture (Prodhomme et al., 2016b) and incremented resolution (Prodhomme et al., 2016a). For JMA/MRI-CPS2, Takaya et 

al. (2021) showed that the forecast accuracy increases significantly with the number of ensembles. In this study, by 

comparing its accuracy with that of St-SCFs, we found the presence of robust slow dynamics that are not well-reproduced by 

JMA/MRI-CPS2, implying the possibility of improving the accuracy of Dyn-SCFs by incorporating the slow dynamics into 205 

the Dyn-SCF system. The key to this approach for model improvement is that both Dyn-SCFs and St-SCFs with climate 

indices rely on slow dynamics in the ocean and atmosphere. Therefore, a comparison between them can clarify the slow 

dynamics that are not well-reproduced by Dyn-SCFs. It is expected that this approach will be widely applied to improve the 

forecast accuracy of Dyn-SCFs. 

4.3 Global St-SCF system 210 

Several studies have compared Dyn-SCFs and St-SCFs, but no systematic global comparison has been performed (Eden et 

al., 2015). Therefore, to the best of our knowledge, this is the first study in which the global accuracy of Dyn-CSFs is 

compared with St-SCFs systematically and globally. Systematic global comparisons have not been performed before because 

it is difficult to construct global St-SCFs. Eden et al. (2015) recently proposed the construction of a global St-SCF system 

using multiple climate indices. We used this approach to construct a global St-SCF system. In this regard, this study is more 215 

advanced than that by Eden et al. (2015) because we used more climate indices and statistical models that considered the 

nonlinear relationship between climate indices and precipitation. While Eden et al. (2015) used eight climate indices, 

including CO2 concentration, to construct their global St-SCF system, we used 18 climate indices in this study. In addition, 
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Eden et al. (2015) used a linear regression model in their system, but we used the smoothing spline method that can consider 

the nonlinear relationship between climate indices and precipitation. Moreover, as shown in Figs. 2 and 9, there is a 220 

nonlinear relationship between climate indices and precipitation. 

Global St-SCF systems can be significantly improved. Moreover, a large number of climate indices can be considered. In 

this study, we selected 18 climate indices whose values were updated within approximately a week after the end of each 

month from those provided by the NOAA Physical Sciences Laboratory. The number of available climate indices can be 

increased by ensuring that these indices are updated. In addition, statistical methods other than the smoothing spline method 225 

used in this study can also be utilized. Recently, St-SCFs using machine learning, such as artificial intelligence, have been 

proposed. If the goal is to improve the accuracy of St-SCF system forecasts, these approaches are also likely to be effective. 

5 Conclusion 

It is concluded that, on a global scale, the forecast accuracy of JMA/MRI-CPS2 for monthly precipitation was observed to be 

generally higher for one-month lead forecasts; however, St-SCFs were more accurate for forecasts more than two months in 230 

advance. Spatially, JMA/MRI-CPS2 has an advantage in forecasting 1–6 months in advance around the equator (10º S–10º 

N) and in one-month lead forecasts at low and middle latitudes (40º S and 70º N). The comparison with St-SCFs using 

climate indices suggests the possibility of model improvement for Dyn-SCFs. A more detailed analysis of the comparison 

and practical improvements for the Dyn-SCF system are expected.  

Data and code availability 235 

The JMA/MRI-CPS2 hindcast data can be purchased from the Japan Meteorological Business Support Center 

(http://www.jmbsc.or.jp/en/index-e.html). GPCP v2.3 is available at https://psl.noaa.gov/data/gridded/data.gpcp.html. The 

URLs where the 18 climate indices are obtained are listed in Table 4. All of the source codes used for the analyses in the 

present paper are stored at https://doi.org/10.5281/zenodo.5090304, while the source code of JMA/MRI-CPS2 is not opened 

for the public. 240 
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Figure 1: Research outline 

 

 350 

 
Figure 2:  Spline interpolation curve (red line) of NINO3.4 in July for estimating August precipitation at 110º longitude and -2.5º 

latitude. Plots denote observational precipitation and the values of NINO3.4 index. 
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Figure 3: Globally averaged ACC by JMA/MRI-CPS2 (left: global average (GLB); center: average over land (LND); right: 

average over ocean (OCN)) 

 

 360 

 
Figure 4: Globally averaged ACC by St-SCFs (left: global average (GLB); center: average over land (LND); right: average over 

ocean (OCN)) 
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Figure 5: Comparison of globally averaged annual ACC (left), ratio of area with significant ACC (center), and ratio of higher 

ACC with significant between JMA/MRI-CPS2 and St-SCFs using climate indices (right) 

 

 370 

 

 

 
Figure 6: Spatial distribution of ACC for JMA/MRI-CPS2. Grided with significant are shown. Left, center, and right columns 

denote Feb, Apr, and Jun, respectively. Top, middle, and bottom denote 1 to 3 months lead.  375 
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 380 
Figure 7: Spatial distribution of ACC for St-SCFs using climate indices. Grided with significant are shown. Left, center, and right 

columns denote Apr, Jun, and Oct, respectively. Top, middle, and bottom denote 1 to 3 months lead.  
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Figure 8: Comparison of latitude for JMA/MRI-CPS2 (left) and SCFs using climate indices (right). Top: ACC, Middle: ratio of 

significant ACC; Bottom: ratio of higher ACC between JMA/MRI-CPS2 and St-SCFs using climate indices. 

 390 
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Figure 9: Relationship between NINO3.4 and precipitation at Paris (2.5º E, 50º N). Dots indicate observational precipitation and 

NINO3.4 index values. Red lines are interpolated spline curves. 395 
 

 

Table 1:  Evaluation of prediction skill in Steps 1 and 2. 

Item Description 

Variable Precipitation 

Area Global 

Spatial resolution 2.5º×2.5º (144 column; 73 rows) 

Period 1981-2010 

Time resolution Monthly 

Lead month of prediction 1-6 month 

Evaluation of prediction skill Anomaly correlation coefficient (ACC) 

Observation Global Precipitation Climatology Project (GPCP) v2.3 (regrided) 

Dynamical model JMA/MRI-CPS2 

Statistical model 18 Climate indices 

 

 400 
Table 2: JMA/MRI-CPS2 

  Model Initial conditions 

Atmosphere JMA-GSM1011C (TL159L60) JRA-55 

Ocean MRI.COM v3 (1º × 0.3-0.5º L52) MOVE/MRI.COM-G2 

 

 

Table 3: Hindcast data of JMA/MRI-CPS2 
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 410 
 

 

 

 

Table 4: 18 climate indices 415 
Category Name Long name URL 

Teleconnections 

PNA Pacific North American Index ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/pna_index.tim 

WP Western Pacific Index ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/wp_index.tim 

EA/WR 
Eastern Atlantic/Western 

Russia 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/eawr_index.tim 

NAO North Atlantic Oscillation ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/nao_index.tim 

NOI Northern Oscillation Index  
https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/NOIx/data/n

oix.txt 

ENSO 

MEI v2 Multivariate ENSO Index  https://psl.noaa.gov/enso/mei/data/meiv2.data 

Nino 1+2 
Extreme Eastern Tropical 

Pacific SST (0-10S, 90W-80W)  

http://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii 

Nino 3 
Eastern Tropical Pacific SST 

(5N-5S, 150W-90W)  

http://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii 

Nino 4 
Central Tropical Pacific SST 

(5N-5S) (160E-150W)  

http://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii 

Nino 3.4 
East Central Tropical Pacific 

SST (5N-5S) (170-120W)  

http://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii 

SST: Pacific 

(except ENSO) 

WHWP 
Western Hemisphere Warm 

Pool 

https://www.esrl.noaa.gov/psd/data/correlation/whwp.data 

TPI(IPO) 

Tripole Index for the 

Interdecadal Pacific Oscillation 

(unfiltered) 

https://psl.noaa.gov/data/timeseries/IPOTPI/tpi.timeseries.ersstv5.data 

SST: Atlantic 

(except 

WHWP) 

TNA 
Tropical Northern Atlantic 

Index 

https://www.esrl.noaa.gov/psd/data/correlation/tna.data 

TSA 
Tropical Southern Atlantic 

Index 

https://www.esrl.noaa.gov/psd/data/correlation/tsa.data 

Item Description 

Area Global 

Spatial resolution 2.5º×2.5º 

Period 1979-2019 

Time resolution Daily 

Ensemble 5 

Start day Middle and end of month 

Forecast period 240 days 
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Atmosphere 

QBO Quasi-Biennial Oscillation https://www.esrl.noaa.gov/psd/data/correlation/qbo.data 

SOI Southern Oscillation Index https://www.esrl.noaa.gov/psd/data/correlation/soi.data 

AAO Antarctic Oscillation 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/a

ao/monthly.aao.index.b79.current.ascii 

AO Antarctic Oscillation 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/

monthly.ao.index.b50.current.ascii 
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