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Abstract. This study investigates particle dry deposition by characterizing critical parameters and land-use 14 

dependence in a 0-D box model as well as quantifying the resulting impact of dry deposition parameterizations on 15 

regional-scale 3-D model predictions. A publicly available box model (DepoBoxToolv1.0) configured with several 16 

land-use dependent dry deposition schemes is developed to evaluate predictions of several model approaches with 17 

available measurements. The 0-D box model results suggest that current dry deposition schemes in 3-D regional 18 

models underestimate particle dry deposition velocities, but this varies with size distribution properties and land-use 19 

categories. We propose two revised schemes to improve dry deposition performance in air quality models and test 20 

them in the Community Multiscale Air Quality (CMAQ) model. The first scheme improves the previous CMAQ 21 

scheme by preserving the original dry deposition impaction calculation but turning off redundant integration across 22 

particle size for each aerosol mode. The second scheme adds a dependence on leaf area index (LAI) to better 23 

estimate uptake to vegetative surfaces while using a settling velocity that is integrated across particle size for the 24 

Stokes number calculation. CMAQ model performance was evaluated for a month in July 2011 for the conterminous 25 

U.S. based on available observations of ambient sulfate (SO4
2-) aerosol concentrations from multiple routine 26 

particulate matter monitoring networks. Incorporation of the first scheme has a larger impact on coarse particles than 27 

fine particles, systematically reducing monthly domain-wide average particle dry deposition velocities ( 𝑉𝑑) by 28 

approximately 96% and 35%, respectively, and increasing monthly average SO4 concentrations by 395% and 21%. 29 

After incorporating LAI into the boundary layer resistance (𝑅𝑏), the second scheme creates more spatial diversity of 30 

𝑉𝑑 and changes SO4 concentrations (coarse = -76% to +336%; fine = -7% to +18%) with land-use categories. These 31 

modifications are incorporated into the current publicly available version of CMAQ (v5.3 and beyond). 32 

1 Introduction 33 

Dry deposition is an essential removal process for atmospheric particles and can account for a significant 34 

fraction, sometimes more than half, of the total deposition of many important chemical compounds in the 35 
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atmosphere (Lovett, 1994). The ability of atmospheric models to represent dry deposition processes directly affects 36 

the skill with which they can predict particle concentrations with implications for radiative forcing and the role of 37 

particles in climate change (Emerson et al., 2020). A previous study from Shu et al. (2017) found that dry deposition 38 

could cause substantial differences in secondary organic aerosol (SOA) concentrations between two regional 39 

chemical transport models (CTMs), the Community Multiscale Air Quality (CMAQ) model, and the Comprehensive 40 

Air Quality Model with extensions (CAMx), when accounting for differences in emissions, meteorology, and 41 

chemistry. However, a general lack of dry deposition measurements makes it hard to evaluate the accuracy of the 42 

model concerning this specific process.  43 

Particle dry deposition is a complex process that depends on the chemical and physical properties of 44 

particles, which are related to their source and composition, as well as the features of the underlying land surface 45 

and the proximate meteorological conditions. In general, the flux of particle mass through the surface boundary 46 

layer is usually mathematically expressed as (Wesely and Hicks, 1977) 47 

𝐹(𝑧) = 𝐶(𝑧) ∗ 𝑉𝑑,   (1) 48 

where 𝐹(𝑧) is the vertical flux of a pollutant in the surface boundary layer; 𝐶(𝑧) is the concentration at a specific 49 

height; Vd is the deposition velocity. 50 

In atmospheric models, many mechanistic or process-based dry deposition schemes have been developed to 51 

estimate Vd for scientific research and operational purposes (Petroff et al., 2008; Ruijrok et al., 1995) but only a few 52 

of them have been implemented in CTMs. Changes to the functional form of the parameterizations are challenges 53 

that could cause a variance of estimated Vd by 2 to 3 orders of magnitude (Ruijrok et al. 1995). Land-use 54 

dependence is another challenge to either measurement or modeling studies. Zhang (2001) investigated several 55 

schemes for calculating particle dry deposition velocity as a function of particle and summarized that some schemes 56 

applied only to one type of land-use category (Slinn and Slinn, 1980; Davidson et al., 1982; Wiman and Ågren, 57 

1985; Peters and Eiden, 1992) while others applied to any type of land-use category (Schemel and Hodgson, 1980; 58 

Haynie, 1986; Giorgi, 1988). The differences in these studies suggest the importance of using measurements to 59 

assess and improve these mechanistic and process-based dry deposition schemes over different land-use categories. 60 

However, existing measurements are limited to a few specific land-surface categories (Nemitz et al., 2002). A newly 61 

revised particle dry deposition scheme by Emerson et al. (2020) could describe observations across a variety of land-62 

use types, suggesting that they have resolved the deficiencies in dry deposition schemes as a result of the lack of 63 

many land-use datasets. However, they also pointed out the difficulty in adapting to a sophisticated scheme in 64 

CTMs. As mentioned above, these considerable uncertainties and differences among mechanistic dry deposition 65 

schemes make it difficult to select a “best-performing” scheme for use in CTMs. When higher-accuracy mechanistic 66 

dry deposition schemes have been chosen, regional models have incorporated physicochemical properties of 67 

particles using a variety of approaches, including representing particle modes with a median particle size and 68 

standard deviation (e.g., CMAQ, Binkowski and Shankar (1995)), representing the bulk particle population with a 69 

single particle diameter (e.g., CAMx coarse-fine approach), or applying the diameter of discrete size bins (e.g., 70 

GEOS-Chem Two-Moment Aerosol Sectional model, Emerson et al. (2020)). Saylor et al. (2019) found that fine-71 

particle concentration predictions at the surface may vary by 5%-15% depending on the choice of particle deposition 72 
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velocity schemes in CTMs. An additional challenge in model evaluation is that most measurement studies report 73 

deposition flux for one particle size, making it challenging to assess deposition velocity calculated by regional 74 

models directly with measured values. Therefore, it is necessary to translate results among measurements, dry 75 

deposition schemes, and regional air quality models to improve large-scale 3-D models’ capability to better predict 76 

ambient concentrations. Previous reviews (Pryor et al., 2008 and Petroff et al., 2008) have pointed out the value in 77 

unified studies that combine numerous measurements and modeling methods.  78 

To further address this gap between measurements and large-scale models, the present study develops a 0-79 

D box model (DepoBoxToolv1.0) to assess dry deposition schemes that have previously been incorporated in 3-D 80 

CTMs with available measurement datasets similar to the approach of Khan and Perlinger (2017). We propose two 81 

revised schemes to improve dry deposition performance in CMAQv5.3 and compare their performance for different 82 

land surface categories with that of several existing dry deposition schemes. These proposed schemes are then 83 

incorporated into CMAQ to quantify the change of  𝑉𝑑 and resulting concentrations of several particle-phase species 84 

of interest. CMAQ performance was evaluated based on available observations of ambient particle concentrations 85 

from multiple monitoring networks. Combining the 0-D box model and the 3-D CTM not only helps us better 86 

constrain particle dry deposition from both detailed deposition measurements and long-term ambient measurements, 87 

but also provides an opportunity to identify missing information from both measurements and models that should be 88 

prioritized for future research. 89 

2 Methods 90 

2.1 Description of particle dry deposition schemes 91 

In this study, we focus on two conventional dry deposition schemes, Z01 (Zhang et al., 2001) and PR11 92 

(Pleim and Ran, 2011). These two schemes both borrowed the general framework of Slinn's (1982) scheme but 93 

introduced various modifications and alternative forms for the surface resistance (Saylor et al. 2019). They have 94 

been widely implemented in regional-scale 3-D models because of their relatively simple formulations and few 95 

dependencies on environmental parameters. However, significant deposition differences have been reported by Shu 96 

et al. (2017) between CAMx v5.4.1 (Z01) and CMAQ v5.0.1 (PR11). The underlying theory of the two schemes is 97 

described in Sections 2.1.1 and 2.1.2. Two revised dry deposition schemes based on the original PR11 are then 98 

described in Section 2.1.3. 99 

2.1.1 Z01 scheme 100 

The Z01 scheme, used in CAMx for particle dry deposition, is based on Slinn's (1982) scheme, which was 101 

developed for vegetated canopies, including the deposition processes of Brownian diffusion, impaction, interception, 102 

gravitational settling and particle rebound. Because the full scheme requires detailed canopy information that is 103 

generally unavailable in regional-scale transport models, the underlying formulations were simplified into empirical 104 

parameterizations for all deposition processes. In the Z01 scheme, 𝑉𝑑  is expressed as 105 

𝑉𝑑 = 𝑉𝑔 +
1

𝑅𝑎+𝑅𝑠
,  (2) 106 
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where 𝑉𝑔 is the gravitational settling velocity; 𝑅𝑎  is the aerodynamic resistance above the canopy; 𝑅𝑠  is the surface 107 

resistance. The gravitational settling velocity is calculated as  108 

𝑉𝑔 =
ρdp

2𝑔𝐶

18𝜂
,  (3) 109 

where ρ is the density of the particle; 𝑑𝑝 is the particle diameter; g is the acceleration of gravity; C is the 110 

Cunningham correction factor; 𝜂 is the temperature-dependent viscosity coefficient of air. The Cunningham 111 

correction factor C is calculated as 112 

𝐶 = 1 + 
2𝜆

𝑑𝑝
 (1.257 + 0.4𝑒−

0.55𝑑𝑝

𝜆
 ), (4) 113 

where 𝜆 is the mean free path of air molecules and is calculated as the function of temperature, pressure, and the 114 

kinematic viscosity of air. The aerodynamic resistance (Ra) is calculated as 115 

 𝑅𝑎 =
ln(

𝑍𝑅
𝑍0

)−ΨH

𝜅𝑢⋆
, (5) 116 

where 𝑍𝑅 is the height at which the dry deposition velocity 𝑉𝑑 is evaluated; 𝑍0 is the roughness length; ΨH is the 117 

stability function for heat; 𝜅 is the Von Karman constant and 𝑢⋆ is the friction velocity. A detailed expression for 118 

ΨH can be found in Khan and Perlinger (2017). 119 

The surface resistance, 𝑅𝑠  depends on the collection efficiency of the surface and is determined by the 120 

various deposition processes, the size of the particles, atmospheric conditions, and land surface properties. 𝑅𝑠  is 121 

usually the limiting resistance for aerosols because Brownian diffusion is much slower for particles than molecular 122 

diffusion for gaseous species. However, the effects of inertial impaction and interception by protruding micro-scale 123 

roughness elements can partially bridge the diffusion layer such that 𝑅𝑠  is inversely related to three collection 124 

efficiencies (Slinn, 1982). Brownian diffusion dominates 𝑉𝑑 for the smaller particles and declines rapidly with 125 

increasing 𝑑𝑝, while impaction and interception are essential for large 𝑑𝑝 (e.g., larger than one 𝜇𝑚).  126 

In the Z01 scheme, 𝑅𝑠  is parameterized as 127 

𝑅𝑠 =
1

𝜀0𝑢⋆(𝐸𝐵+𝐸𝐼𝑀+𝐸𝐼𝑁)𝑅1
, (6) 128 

where 𝐸𝐵, 𝐸𝐼𝑀, 𝐸𝐼𝑁 are the collection efficiencies from Brownian diffusion, impaction, and interception, 129 

respectively; 𝜀0 is an empirical constant and is taken as 3 for all land-use categories (LUCs). 𝑅1 is the correction 130 

factor representing the fraction of particles that stick to the surface and is parameterized as a function of Stokes 131 

number (𝑆𝑡) as 132 

𝑅1 = 𝑒−𝑆𝑡0.5
, (7) 133 

For Brownian diffusion, 𝐸𝐵 is parameterized as a function of Schmidt number (𝑆𝑐), 134 

𝐸𝐵 = 𝑆𝑐−𝛾, (8) 135 

𝑆𝑐 =
𝜈

𝐷
,  (9) 136 

where 𝑆𝑐 is the ratio of kinematic viscosity of air, 𝜈, to the particle Brownian diffusivity (D); 𝛾 is a LUC-dependent 137 

variable (rough surfaces: 0.54-0.56; smooth surfaces: 0.50-0.56). Brownian diffusivity (D) is calculated as 138 

𝐷 =
𝐶𝑘𝐵𝑇

3𝜋𝜇𝑑𝑝
, (10) 139 

where C is the Cunningham correction factor; 𝑘𝐵 is Boltzmann’s constant; and T is temperature.  140 
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Particle impaction (𝐸𝐼𝑀) is parameterized as a function of the Stokes number (𝑆𝑡), which is the ratio of the 141 

stopping distance of a particle to the characteristic dimension of an obstacle (Pryor et al., 2008). One oft-used 142 

formulation for 𝑆𝑡 in impaction factor parameterizations tends to emphasize the nature of the flow field in 143 

determining the magnitude of 𝑆𝑡 (Giorgi, 1988) and is usually used for smooth surfaces: 144 

𝑆𝑡 =
𝑉𝑔𝑢⋆

2

𝑔𝜈
,  (11) 145 

while the formulation of Slinn (1982) focuses on the individual obstacles (e.g., leaves) and is used for vegetation 146 

surface: 147 

𝑆𝑡 =
𝑉𝑔𝑢⋆

𝑔𝐴
, (12) 148 

where A is the characteristic radius of collectors. The assumption for this approach is that vegetative hairs and 149 

cobwebs, for example, probably deflect with wind fluctuations, reducing the efficiency with which particles impact 150 

on these small collectors. Particle impaction in the Z01 scheme is expressed as  151 

𝐸𝐼𝑀 = (
𝑆𝑡

𝛼+St
)

𝛽

,  (13) 152 

where 𝛼 and 𝛽 are constants. This form is the same as the one used by Peters and Eiden (1992) but 𝛼 153 

is LUC-dependent and 𝛽 is assumed to be 2. Collection efficiency by interception (𝐸𝐼𝑁) is calculated as 154 

𝐸𝐼𝑁 =
1

2
(

𝑑𝑝

𝐴 
)

2

,  (14) 155 

The Z01 scheme is applied in 3-D models (e.g., CAMx and GEOS-Chem) using a single diameter to 156 

represent either a discrete size bin (for the sectional aerosol scheme) or bulk aerosol (for the coarse-fine scheme). 157 

2.1.2 PR11 scheme (Pleim and Ran, 2011) 158 

Pleim and Ran (2011) described the equations and techniques used for the particle dry deposition scheme in 159 

the CMAQ model (version 4.5 to 5.2.1). 𝑉𝑑 is derived by Venkatram and Pleim (1999) and expressed as  160 

𝑉𝑑 =
𝑉𝑔

1− 𝑒−𝑉𝑔∗(𝑅𝑎+𝑅𝑏),  (15) 161 

where 𝑉𝑔 has the same formulation as the Z01 scheme and, when calculated using Eq. 3, 𝑅𝑎  uses the same 162 

expression as Z01, but applies a factor of 0.95 for the Prandtl number under neutral conditions as follows: 163 

𝑅𝑎 = 0.95
ln(

𝑍𝑅
𝑍0

)−ΨH

𝜅𝑢⋆
,   (16) 164 

𝑅𝑏  is the quasi-laminar boundary layer resistance and expressed as 165 

𝑅𝑏 = [𝐹𝑓𝑢⋆(𝐸𝐵 + 𝐸𝐼𝑀 + 𝐸𝐼𝑁)]
−1

,  (17) 166 

where 𝐹𝑓 is an empirical correction factor to account for increased deposition in convective conditions as suggested 167 

by Binkowski and Shankar (1995): 168 

𝐹𝑓 = 1 + 0.24
𝑤⋆

2

𝑢⋆
2 ,  (18) 169 

where 𝑤⋆ is the convective velocity scale.  170 

𝐸𝐵 is a function of the Schmidt number and expressed as 171 

𝐸𝐵 = 𝑆𝑐−
2

3,  (19) 172 
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The Schmidt number was calculated with Eq. 9 identically to the Z01 scheme. Pleim and Ran (2011) 173 

expressed 𝐸𝐼𝑀 as  174 

𝐸𝐼𝑀 = (
𝑆𝑡2

400+𝑆𝑡2),  (20) 175 

where Stokes number was calculated with Eq. 11. The value of 400 was chosen for the denominator of the impaction 176 

factor calculation to better represent aerosol deposition to heavily vegetated regions. Unlike the CAMx model, the 177 

interception efficiency, 𝐸𝐼𝑁, is not used in the CMAQ model because it is difficult to specify realistic estimates of 178 

these parameters over the area of typical grid cells used by air quality models (i.e., ~4-20km) based on available 179 

land-use data (Pleim and Ran, 2011). 180 

 The PR11 scheme was applied in CMAQ by integrating the size-dependent terms across each particle mode 181 

using the geometric mean diameter and standard deviation (Binkowski and Shankar, 1996). For example, the 182 

impaction factor for particle volume was modified to be: 183 

𝐸𝐼�̂� =
𝑆𝑡2

400
{exp(20 𝑙𝑛2 𝜎𝑔)},  (21) 184 

where σg is the standard deviation of an aerosol mode. The denominator was simplified from its form in Eq. 20 in 185 

order to facilitate incorporation of the integrated Stokes number (Eq. 11). The integrated settling velocity, 𝑉�̂�, and 186 

integrated Brownian diffusivity, �̂�, needed for the Schmidt number, are defined in Appendix A. This form of the 187 

impaction term (Eq. 21) is then applied to calculate the boundary-layer resistance (Eq. 17) in the chemical transport 188 

model.  189 

2.1.3 Proposed schemes 190 

Although Z01 and PR11 both used Slinn's (1982) scheme as the start point, they also did several 191 

modifications, especially for surface resistance, which could be the one of the keys to cause differences. Beyond 192 

that, they used different approaches to integrate 𝑉𝑑 over particle size distributions after implementing them into 193 

regional models (CMAQ: modal approach; CAMx: sectional approach). These differences have been characterized 194 

in (Shu et al., 2017), showing that CMAQ (v5.0.1) predicts larger 𝑉𝑑 than CAMx (v5.4.1) for large particles. 195 

However, these uncertainties have not been constrained in previous studies. In this study, we propose two revised 196 

dry deposition schemes that significantly impact the CMAQ-predicted deposition velocities. The two schemes are 197 

still based on the existing PR11 scheme with several modifications and better representation of integrations. The 198 

first revised scheme (OFF) is set to minimize the influence of σg on the integration of impaction. As mentioned in 199 

Section 2.1.3, unlike 𝑉�̂� and �̂�,  the integration form of 𝐸𝐼�̂� in Eq. 21 is heavily dependent on σg, which could differ 200 

its value by tens of thousands of times as the change of σg. Especially when it is reaching up to CMAQ upper bound 201 

(σg = 2.5), 𝐸𝐼�̂� is dominated by the factor of exp(20 𝑙𝑛2 𝜎𝑔) rather than impaction of monodisperse particles as Eq. 202 

20. Thus, OFF correctly implements the impaction term following Eq. 20, thereby removing the explicit integration 203 

instead of analytical integration across particle size in the expression for EIM. OFF could maximumly avoid the 204 

influence of σg dependence, however, it also loses the ability to well-representing the polydispersity of the 205 

underlying particle size distribution for impaction after these modifications. Therefore, we also propose another 206 
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scheme. For the second proposed scheme (VGLAI), we update the impaction term expression from PR11(Eq. 21) to 207 

Eq. 22.  208 

𝐸𝐼�̂� =  
𝑆𝑡 ̂

2

(1+ 𝑆𝑡 ̂
2

)
, (22) 209 

which reduces the constant in the denominator used to approximate the effect of vegetated surfaces to unity as Eq. 210 

20. Accordingly, we modify the expression of the Stokes number to a form that is more suitable for addressing 211 

vegetated surfaces: 212 

𝑆𝑡 ̂ =
𝑉�̂�𝑢⋆

𝑔𝐴
,  (23) 213 

We integrate the Stokes number by using 𝑉�̂� instead of directly turning off redundant integration factor across 214 

particle size for each aerosol mode like OFF, thus the polydispersity of the underlying particle size distribution is 215 

implicitly accounted for. Finally, we add a new leaf area index (LAI) factor in 𝑅𝑏  to respond to vegetation coverage 216 

by representing the greater surface area of leaves, 217 

𝑅𝑏 = [(1 + 𝑓𝑣𝑒𝑔(𝐿𝐴𝐼 − 1)) ∙ 𝐹𝑓𝑢⋆(𝐸𝐵 + 𝐸𝐼𝑀 + 𝐸𝐼𝑁)]
−1

,  (24) 218 

where 𝑓𝑣𝑒𝑔 is the fractional area of vegetation surface in the CMAQ grid cell, which can be acquired from the inputs 219 

to typical meteorological models (i.e. the Weather Research and Forecasting model; WRF) and 𝑙𝑎𝑖 is the leaf area 220 

index in the vegetated portion. 𝐸𝐵  and 𝐸𝐼𝑁 both inherit implementation in PR11. 221 

2.2 Assessment of particle dry deposition schemes at different model scales 222 

We conducted a comprehensive evaluation of particle dry deposition schemes discussed in Section 2.1 at 223 

different model scales. All tested schemes and their full expressions are presented in Table 1. We first developed a 224 

convenient and unified 0-D box model (DepoBoxToolv1.0) and evaluated the schemes on three different vegetation 225 

surface categories (grass, coniferous forest and deciduous forest). For better understanding the performance of the 226 

schemes across atmospherically relevant particle sizes, we investigated the predicted deposition velocities for a 227 

variety of modal diameters and standard deviations. In section 2.2.1, we describe the details of DepoBoxToolv1.0, 228 

and we present the measurements used for evaluating this box model in section 2.2.2. Finally, in section 2.2.3, we 229 

describe how we have incorporated the two newly proposed dry deposition schemes (OFF and VGLAI) in 230 

CMAQv5.3 and characterized them alongside the existing scheme (PR11). 231 

2.2.1 Development and application of DepoBoxToolv1.0 platform 232 

DepoBoxToolv1.0 (https://github.com/shumarkq/Depoboxtool/tree/master) is an open-source, Python-233 

based tool that can be easily used, modified, and distributed throughout the research community to help translate 234 

between deposition models and measurements. DepoBoxToolv1.0 currently provides four essential functions 235 

including dry deposition scheme evaluation, diagnostics, sensitivity analysis, and model inter-comparison. Further, it 236 

can easily incorporate different land-use categories when corresponding parameters are available. In this study, we 237 

selected three measurement studies prescreened from Khan and Perlinger (2017), and details are described in 238 
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Section 2.2.2. In the future, DepoBoxTool may be applied to better understand field measurements of particle 239 

deposition above surfaces of varying types. 240 

Fundamentally, DepoBoxToolv1.0 can quickly toggle multiple schemes for inter-comparison while 241 

isolating the predictions from the uncertainties from other photochemical modeling processes. This feature is useful 242 

for better constraining the uncertainty introduced by the choice of numerical approximation to represent the particle 243 

size distribution. DepoBoxToolv1.0 has the option of calculating 𝑉𝑑 for a single-diameter particle population, for a 244 

number of discrete size bins (i.e. sectional aerosol approach), or for a log-normal mode (i.e. modal aerosol 245 

approach); each approach is regularly used in 3-D models. DepoBoxToolv1.0 does not explicitly treat varying 246 

chemical composition with size, but this feature may be added if detailed measurements are available in the future. 247 

We applied both the modal and the sectional size distributions in the DepoBoxToolv1.0 to compare with a 248 

single diameter approach. Appendix A describes how parameters like settling velocity and Brownian diffusion are 249 

extended, with knowledge of dp and σ, to apply to the modal approach. Size-dependence was thus introduced 250 

through these terms and propagated through the calculated of 𝑉𝑑 for the OFF and VGLAI schemes. For the PR11 251 

scheme, additional integration was applied for the impaction factor calculation (Eq. 21). Because we are focused 252 

primarily in this study on improving the representation of dry deposition in CMAQ, we did not consider the modal 253 

integration of the Z01 scheme. 254 

 For the application of the sectional approach, we calculated particle numbers at each defined bin between 255 

lower and upper particle diameter bounds using Eq. 25 256 

𝑁(𝑑𝑝) =
𝑁𝑡

2
+

𝑁𝑡

2
erf (

ln (𝑑𝑝/𝑑𝑝𝑔̅̅ ̅̅ ̅̅

√2𝑙𝑛𝜎𝑔
), (25) 257 

where 𝑁𝑡 is the total number of particles; 𝑑𝑝 is the particle diameter; and 𝑑𝑝𝑔
̅̅ ̅̅ ̅ is the median diameter. Number-258 

weighted dry deposition velocity was estimated as the sum of normalized velocities at each size bin using Eq. 26 259 

𝑉𝑑 = ∑ (
𝑁𝑖

𝑁𝑡
∗ 𝑉𝑑𝑖

), (26) 260 

where 𝑁𝑖 is the number of particles at each size bin. For aerosol volume, the initial volume at each bin was 261 

calculated first using Eq. 27 and assuming uniform density across particle sizes.  262 

𝑀𝑖 = 𝜌 ∗ 𝑉𝑖  = 𝜌 ∗
𝜋

6
∗ 𝑑𝑝𝑚𝑖

3 ∗ 𝑁𝑖,  (27)     263 

The volume-weighted dry deposition velocity is computed as the sum of normalized velocities at each size 264 

bin using Eq. 28 265 

𝑉𝑑 = ∑ (
𝑉𝑖

∑𝑉𝑖
∗ 𝑉𝑑𝑖

), (28) 266 

where 𝑉𝑖 and 𝑀𝑖 are the volume and mass of particles in section i, respectively. The dry deposition velocity (𝑉𝑑 𝑖) is 267 

calculated using 𝑑𝑝𝑚𝑖
(the mean diameter at each bin). We use 100 size bins for calculations to minimize numerical 268 

artifacts (see Supplement). 269 

Finally, we used DepoBoxToolv1.0 to conduct a sensitivity analysis exploring the effects of the underlying 270 

particle size distribution (median particle diameter and standard deviation) on the predictions of each experimental 271 

scheme (Z01, OFF, and VGLAI) relative to the PR11 scheme. For this exercise, every scheme is applied via the 272 

sectional approach. We test a wide range of diameters from 0.01 to 50 μm and standard deviations from 1.01 to 2.5 273 
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for a log-normal particle size distribution and use 𝑁𝐵 to characterize the difference among schemes. Results are 274 

discussed in Section 3.2.  275 

2.2.2 Field measurements for DepoBoxToolv1.0 276 

Khan and Perlinger (2017) compiled available measured 𝑉𝑑 , inferred 𝑉𝑑, and relevant physical and 277 

environmental parameters (Table 2). Unfortunately, although these studies provide useful observations, we omitted 278 

many of them in our study because they did not provide the required parameters for running DepoBoxToolv1.0. 279 

Three measurement studies were chosen to evaluate deposition schemes for three sizes of particles on grass (Vong et 280 

al., 2004), coniferous forest (Lamaud et al., 1994), and deciduous forests (Matsuda et al., 2010). These three studies 281 

each used different methods to measure aerosol fluxes across particle sizes. Lamaud et al. (1994) and Vong et al. 282 

(2004) both used eddy correlation methods and measured aerosol number while Matsuda et al. (2010) used gradient 283 

methods and measured aerosol volume. Lamaud et al. (1994) reported the log-normal particle size distribution with 284 

0.04 𝜇𝑚 geometric mean diameter (𝑑𝑝𝑔) and 2.5 geometric standard deviation (𝜎𝑔) to represent particles on the 285 

coniferous forest. Vong et al. (2004) reported deposition velocity for four particle sizes but expressed the most 286 

confidence and representativeness in the results for 𝑑𝑝𝑔 = 0.52 𝜇𝑚. Vong et al. (2004) did not characterize the 287 

geometric standard deviation, so we have assumed two values (𝜎𝑔= 1.7 and 2.5) that are often associated with the 288 

shape of background particle distributions for comparison with the grass dataset. Matsuda et al. (2010) did not 289 

provide a detailed size distribution. Thus, 0.48 𝜇𝑚 (Kenneth et al., 1977) was assumed to be the 𝑑𝑝𝑔 of reported 290 

sulfate PM2.5 particles for the deciduous forest dataset. We also assumed values for 𝜎𝑔  of 1.7 and 2.5 as was done for 291 

Vong et al. (2004). Table 2 shows site information and required parameters for running DepoBoxToolv1.0 from the 292 

three selected measurement studies. In order to run the PR11 dry deposition scheme in DepoBoxToolv1.0, the 293 

convective velocity scale, 𝑤⋆, was provided by meteorological model (WRF) output since it is absent in the selected 294 

measurement studies. An estimation of 𝑤⋆ involves a knowledge of the surface heat flux and the mixed layer height 295 

and it is not practical to measure these variables on a routine basis (Venkatram, 1978). A representative 𝑤⋆ for a 296 

specific season and the land surface condition is assumed to reproduce a similar value of 𝑤⋆ to the values that would 297 

be typical for the field site. Median values of assumed 𝑤⋆ for the three measurement studies are presented in Table 2 298 

and detailed daily variations of assumed 𝑤⋆ (Fig. S2) can be found in the supplement. 299 

2.2.3 CMAQ simulation and observational data sets 300 

We conducted three CMAQ simulations including the conventional deposition scheme (PR11), the scheme 301 

with improved impaction (OFF) and the scheme with larger sensitivity to vegetation (VGLAI) for July 2011. The 302 

modeling domain is a grid with 12 km x 12 km resolution covering the entire conterminous U.S. and extending to 50 303 

hPa in altitude with 35 vertical layers and higher resolution near the Earth’s surface. The lowest model layer is 304 

approximately 20 meters deep. Emissions for 2011 are tabulated from information provided by states and other 305 

federal agencies via the 2011 National Emissions Inventory. The emissions estimates were further allocated in space 306 

and time by the Sparse Matrix Operator Kernel Emissions (SMOKE) program. Plume rise for elevated point sources 307 

was calculated online in CMAQ, as were NOx emissions from lightning strikes (Kang et al., 2019). Biogenic 308 
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emissions of volatile organic compounds were predicted with the Biogenic Emission Inventory System (Bash et al., 309 

2016) and Offline meteorology was calculated with the Weather Research and Forecasting (WRF) model version 310 

3.7. Boundary conditions for the model were driven by a hemispheric application of the GEOS-Chem model 311 

(Henderson et al., 2014) run for 2011. Specific land cover information was obtained from the National Land Cover 312 

Database (NLCD) and leaf area index information was gathered from satellite products from the MODIS satellite. 313 

Outputs from the three CMAQ simulations was paired in space and time with observed data using the atmospheric 314 

model evaluation tool (AMET, Appel et al., 2011). There are several regional and national networks that provide 315 

routine observations of particle species in the U.S. for CMAQ evaluation. In this study, we used SO4 measurement 316 

data sets from the Interagency Monitoring of Protected Visual Environments (IMPROVE, 157 sites;  317 

http://vista.cira.colostate.edu/improve/, last access: 21 July 2018) and  Chemical  Speciation  Network  (CSN;  171  318 

sites;  https://www3.epa.gov/ttnamti1/speciepg.html, last access: 21 July 2018). Appel et al. (2011) showed that a 319 

recent version of CMAQ (v5.1) demonstrates impressive model skill predicting ambient fine PM concentrations 320 

when compared with routine measurement networks, including CSN and IMPROVE network. Nolte et al. (2015) 321 

investigated fine and coarse mode size distribution performance for CMAQv5.0, finding that many sites and 322 

chemical species contributions were well-reproduced, but the model tended to underpredict concentrations of large 323 

particles in sites dominated by soil dust. Appel et al. (2020) compared metrics (concentration, bias, root mean square 324 

error (RMSE) and the Pearson correlation coefficient (COR)) of monthly average PM2.5 between CMAQv5.2.1 325 

(PR11) and CMAQv5.3.1 (VGLAI) and found that results of CMAQv.5.3.1 are expectedly better than 326 

CMAQv5.2.1. 327 

2.2.4 Evaluation metrics 328 

Two statistical metrics are used in this study. Fractional Bias (𝐹𝐵) is used to evaluate our model results and 329 

is calculated as 330 

𝐹𝐵 =
2

𝑁
∑

𝑀𝑖−𝑂𝑖

𝑀𝑖+𝑂𝑖 
,  (29) 331 

N is the number of data points; Mi is modeled concentration or  𝑉𝑑; Oi is observed concentration or 𝑉𝑑. In 332 

DepoBoxToolv1.0, we use 𝐹𝐵 to evaluate the dry deposition schemes with site observations. 𝐹𝐵 is also used to 333 

evaluate CMAQ performance with observations collected from routine measurement networks (Section 3.5). 334 

Normalized bias (𝑁𝐵) is used for quantifying the change in predictions from the PR11 base deposition 335 

scheme to one of the other schemes (Z01, OFF or VGLAI) for both the size distribution sensitivity analysis with 336 

DepoBoxToolv1.0 and the full 3D CMAQ simulations. It is calculated as 337 

𝑁𝐵 =
𝑀𝑚𝑖

−𝑀𝑏𝑖
 

𝑀𝑏𝑖
 

, (30) 338 

where M represents any metric (i.e., 𝑉𝑑  or pollutant concentrations); 𝑏𝑖 is the result of PR11 dry deposition scheme; 339 

𝑚𝑖 is the result of one of the other dry deposition schemes.  340 
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3 Results 341 

3.1 Evaluation of dry deposition schemes in DepoBoxToolv1.0 342 

We predict 𝑉𝑑 with four deposition schemes (Z01, PR11, OFF, VGLAI) by using measured parameters and 343 

meteorological data from ambient field studies as box model inputs, except  𝑤⋆ which comes from WRF. Daily 344 

variations of measured and modeled 𝑉𝑑 for three land-use categories (grass, coniferous and deciduous forests) 345 

calculated using sectional and modal approaches are presented in Fig. 1-3, respectively. Single diameter results are 346 

shown in Fig. S4. We found that Z01 (CAMx) performed very differently versus the other three PR11-based 347 

schemes for the three different land-use types (Table 3). For the grass dataset, all schemes markedly underestimate 348 

the measured 𝑉𝑑 with low fractional biases down to -1.40 (Fig. 1). Over the coniferous forest, Z01 and VGLAI 349 

overestimate the measured 𝑉𝑑 while PR11 and OFF underestimate the measured 𝑉𝑑 (Fig. 2). For grass and 350 

coniferous forest comparisons where aerosol numbers are reported (k=0), the predictions do not appear highly 351 

sensitive to the choice of size distribution method. Although we reproduced the same deposition velocities with the 352 

measurement data as in Vong et al. (2004) for grass, our box model is unable to reproduce the same bimodal pattern 353 

for all four deposition schemes. This could be explained by the imperfection of observation data since the 354 

measurement could not be perfectly considered to represent “deposition to the grass surfaces” because they have not 355 

been screened for either wind direction or the morning transition period (Vong et al., 2004). For the deciduous forest 356 

where aerosol volumes are used (k=3), estimated 𝑉𝑑 is very sensitive to 𝜎𝑔 . When changing 𝜎𝑔  from 1.7 to 2.5, all 357 

schemes using either sectional or modal methods sharply increase 𝑉𝑑 from underestimating (FB < -1.52) to 358 

overestimating (FB > 0.69; Table 3 and Fig. 3). The PR11 scheme particularly stands out, overpredicting 𝑉𝑑 by an 359 

order of magnitude relative to measured 𝑉𝑑 when 𝜎𝑔  = 2.5. Considering the lack of information that we had about 360 

the shape of the size distributions when the measurements were made, we cannot constrain the modeled 𝑉𝑑 merely 361 

based on box model results. However, with the same 𝜎𝑔  (2.5), the updated schemes (OFF and VGLAI) both reduce 362 

the bias in 𝑉𝑑 compared to PR11. This suggests that the overestimated 𝑉𝑑  in the PR11 scheme could be caused by 363 

the modal size integration of the impaction term (Eq. 21). Both OFF and VGLAI resolve this potential error by 364 

turning off impaction integration and relying on the integrated settling velocity to calculate Stokes number. Across 365 

three land-use types, PR11, OFF, and VGLAI show more consistent diurnal patterns as the measurements than Z01, 366 

indicating that convective velocity scale, 𝑤⋆ (Fig. S2) could drive the diurnal pattern. Beyond that, all schemes’ 367 

results are very sensitive to 𝜎𝑔 , especially when aerosol volumes are used in Matsuda et al. (2010), suggesting the 368 

importance of the measured 𝜎𝑔  when assessing modeled 𝑉𝑑. 369 

3.2 Sensitivity of deposition schemes to particle size distribution 370 

The range of behaviors for each dry deposition scheme were explored using DepoBoxToolv1.0 to calculate 371 

the aggregate deposition velocity (using a 100 size bin sectional approach) of a population of particles for a wide 372 

range of atmospherically relevant 𝑑𝑝𝑔 (0.01~50 𝜇m) and 𝜎𝑔  (1.01~2.5).  From the left column of Fig. 4, we can see 373 

that, in general, 𝑉𝑑 by Z01 are lower than PR11 for grass and deciduous forest, with some exceptions at tiny sizes 374 

(dp < 0.1 𝜇m) over deciduous forest. For coniferous forest, Z01 has higher 𝑉𝑑 for small particles (𝑑𝑝 <  1.0 𝜇m) and 375 
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lower 𝑉𝑑  when 𝑑𝑝 is larger than 1.5 𝜇m. As shown in the middle column of Fig. 4, OFF generally predicts lower 𝑉𝑑 376 

for groups of particles where 𝑑𝑝 is from 0.5 to 10 𝜇m and 𝜎𝑔  is from 1.2 to 2.5 on all three surface categories. For 377 

these regimes, impaction dominates the change of 𝑉𝑑. Deviations relax though at the smallest and largest particle 378 

sizes, depending on the standard deviation of the aerosol mode. In the right column of Fig. 4, VGLAI has a similar 379 

𝑉𝑑 as OFF across particle mean diameters and mode widths for grass but predicts sharp increases in 𝑉𝑑 for small 380 

particles (𝑑𝑝 < 1.5 𝜇m) and decreases for large particles (𝑑𝑝 > 1.5 𝜇m) on both coniferous and deciduous forests. 381 

This divergent tendency of 𝑉𝑑 with the change of 𝑑𝑝 can be explained by two competing factors in VGLAI. When 382 

particles are small, impaction will not dominate 𝑉𝑑, and the new vegetation dependence will increase 𝑉𝑑. When 383 

particles are large, impaction dominates 𝑉𝑑, and the vegetation factor cannot offset the decrease of 𝑉𝑑 due to 384 

updating impaction with the revised integration technique. Thus, at large particle sizes as well as under lower LAI 385 

condition such as grass, the deviations of OFF and VGLAI relative to PR11 look more similar. 386 

3.3 Comparison of dry deposition schemes in CMAQ 387 

The DepoBoxToolv1.0 analysis gives some indication of the potential impact of revising the PR11 scheme 388 

that is used in CMAQv5.2.1 and earlier with one of the two proposed schemes. However, these box model results 389 

are limited to three land-use surface categories and may not reflect performance in CMAQ for broader conditions 390 

and multiple land-use surfaces. To characterize the impact of the OFF and VGLAI schemes in CMAQ, we cluster 391 

the dry deposition velocities and fluxes of some species of interest across the entire domain into two categories. 392 

Spatially averaged particle dry deposition velocities above forest and non-forested areas are compared between three 393 

schemes for fine, accumulation, and coarse mode particles in CMAQ. From the spatiotemporal averages shown in 394 

Fig. 5A, OFF and VGLAI both reduce 𝑉𝑑 by approximately 1060% and 340% compared to the PR11 simulation for 395 

coarse-mode particles (𝑑𝑝 > 0.2 𝜇m). For Aitken-mode particles (𝑑𝑝 <0.1 𝜇m), OFF does not change 𝑉𝑑 while 396 

VGLAI increases 𝑉𝑑 by ~300%. For accumulation mode particles (0.08 𝜇m < 𝑑𝑝 < 0.2 𝜇m), VGLAI has a similar 𝑉𝑑 397 

as PR11 while OFF reduces 𝑉𝑑 by ~250%. Figure 5B shows that modeled 𝑉𝑑 on the non-forested surface presents a 398 

similar pattern as on the forest surface but has systematically lower modeled 𝑉𝑑  (note the y-axis difference). Figure 399 

6 illustrates the impact of the revised deposition schemes on spatially averaged concentrations of fine-mode SO4 400 

(ASO4I+J), and speciated coarse-mode components including coarse-mode SO4 (ASO4K), coarse-mode soil species 401 

(ASOIL), coarse-mode primary anthropogenic mass (ACORS), and coarse-mode sea-spray cations (ASEACAT) 402 

above the forest and non-forested surfaces. From Fig. 6, OFF increases fine and coarse SO4 particle concentrations 403 

slightly over both forest and non-forested surfaces. VGLAI reduces fine SO4 particle concentrations slightly but not 404 

much change from the PR11 case is observed at this domain-wide scale. Results for ASOIL, ACORS and 405 

ASEACAT demonstrate that both the OFF and VGLAI schemes increase wind-blown dust (forest/non-forested: 406 

OFF=255%/127%, VGLAI=120%/81%), anthropogenic dust (213%/82%, 132%/59%) and sea-spray aerosol 407 

(186%/61%, 110%/52%) mass concentration predictions significantly in most cases. However, the change of 408 

concentrations due to changing dry deposition varies among species based on the spatial distribution of their 409 

emissions and the likelihood of each type being transported over relevant land-use types. 410 
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3.4 Spatial particle dry deposition velocity differences in CMAQ 411 

Figure 7 spatially compares dry deposition velocities of three sizes of SO4 particles (Aitken, accumulation, 412 

coarse)) for the three schemes (PR11, OFF, VGLAI) implemented in CMAQ. There generally exists orders of 413 

magnitude difference in 𝑉𝑑 among different sizes of SO4 particles (Aitken: 𝑉𝑑 = 0.03~0.4 cm/s, accumulation: 𝑉𝑑 = 414 

0.02~0.1 cm/s, coarse: 𝑉𝑑 = 0.4~10 cm/s). On a nationwide scale, 𝑉𝑑 can be very different as a result of mixed land-415 

use categories. In Fig. 7, we see 𝑉𝑑 in the mid-east U.S. is systematically lower than in other U.S. regions for all 416 

three sizes of SO4 particles, following the distribution of eastern deciduous forests (Dyer, 2006). The three CMAQ 417 

simulations have significant differences in 𝑉𝑑 across the U.S. Compared with the PR11 model, OFF systematically 418 

reduces the 𝑉𝑑 of coarse SO4 particles by 96%. For smaller particles, OFF has less impact than on large particles but 419 

still reduces 𝑉𝑑 by up to 35% for the Aitken mode and 96% for the accumulation mode. By removing the explicit 420 

integration of the impaction term we discussed in Section 2.2.2 (i.e. moving PR11 to OFF), we systematically 421 

reduce 𝑉𝑑 for all sizes of particles. VGLAI predicts similar 𝑉𝑑 for coarse particles like OFF but systematically 422 

increases 𝑉𝑑 by 7.8%~319% for the Aitken mode. For accumulation mode particles, VGLAI shows spatial diversity 423 

of 𝑉𝑑 and even increases 𝑉𝑑 in some regions, which indicates that we could offset changes from the impaction factor 424 

revision with other uncertainties from a more detailed vegetation dependence.  425 

3.5 Spatial SO4 particle concentration differences in CMAQ 426 

Small differences in spatially averaged SO4 particle concentrations shown in Fig. 6 suggest that further 427 

temporal and spatial characterization of the dry deposition influence on concentration is needed because dry 428 

deposition velocities and fluxes also vary temporally and spatially. Figure 8 shows the spatial SO4 concentration 429 

differences between the three CMAQ simulations. We examined both coarse (ASO4K) and fine (ASO4IJ) mode 430 

SO4 concentrations but only evaluated modeled fine concentrations using available measured data at the IMPROVE 431 

and CSN monitoring sites. As shown in Fig. 8A-F, OFF and VGLAI both have a more significant influence on 432 

coarse SO4 than on fine SO4 concentrations. The OFF case systematically increases SO4 concentrations (coarse: 433 

Percent change = 3%-395%; fine: PC= 0.1%-21%). VGLAI shows a spatial pattern of SO4 concentration that 434 

changes with land-use (coarse: PC = -76% to +336%; fine: 𝑃𝐶 = -7% to +18%). The vegetation factor increases 𝑉𝑑 435 

in vegetation areas by providing more surface area for deposition. The vegetation fraction specified the Pleim-Xiu 436 

land-surface model (PX LSM, Xiu and Pleim, 2001) used in WRFv3.7 was overestimated, leading to a smaller 𝑅𝑏  437 

(Eq. 24). We expect very different results when using newer versions of WRF (v4.0 or later) when the vegetation 438 

fractions used in the PX LSM were substantially reduced (more realistic), especially in much of the western US.  439 

The fractional bias in predicted fine SO4 concentrations versus air quality measurement network sites for PR11 and 440 

the relative change of 𝐹𝐵 between OFF and VGLAI relative to PR11 are presented in Fig. 9A-C. In Fig. 9A, we can 441 

see that there is a systematic low bias at IMPROVE and CSN sites for fine sulfate. In Fig. 9B, OFF reduces the low-442 

bias for all sites in the entire U.S., by as much as 21% for the sites in the mid-east U.S. In Fig. 9C, VGLAI reduces 443 

low-bias by as much as 1% for selected sites in the mid-east U.S. but conversely increases the low-bias by up to  444 

13% for selected sites in the rest of U.S where non-forested surface dominates. 445 
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4 Conclusions 446 

This study investigated particle dry deposition by characterizing critical parameters and land-use 447 

dependence in a box model and in a regional-scale 3-D chemical transport model. A land-use dependent deposition 448 

scheme box model was developed to evaluate and diagnose particle dry deposition algorithms. Although the 449 

accuracy of each mechanistic dry deposition scheme varied considerably with land-use type, the results show that 450 

the scheme by Pleim and Ran (2011) modified to include vegetation dependence was best able to capture the 451 

magnitude and variability across all of the observation datasets. 452 

The influence of mechanistic dry deposition schemes on regional model predictions can be difficult to 453 

disentangle from uncertainties introduced by the choice of numerical approach used to simulate the size distribution, 454 

representation of other source and sink processes, spatiotemporal variation in environmental inputs (e.g. vegetation 455 

fraction and LAI), and sub-grid variability in land-use type. For example, differences in calculating dry deposition 456 

velocity between sectional and modal methods can lead to discrepancies as large as a factor of 4 for particle sizes of 457 

0.5 𝜇m over deciduous forests. Rather than investigate the performance of the dry deposition scheme in a large, 458 

operational domain, we performed evaluation by land-use type. 459 

Combining the results of the DepoBoxToolv1.0 and CMAQ analyses, we think the VGLAI scheme is most 460 

applicable for predicting particle dry deposition over grass and coniferous forests in CMAQ. For deciduous forests, 461 

it is difficult to constrain the deposition schemes with observations since particle diameter and standard deviation for 462 

sulfate PM2.5 particles are assumed in this study. A better understanding of the impact of the particle size 463 

distributions as well as other forest processes important for deposition will be helpful for further constraining large-464 

scale model predictions. For example, particle deposition velocity predictions were quite sensitive to the standard 465 

deviation of the size distribution, especially for larger particles where the deposition velocity changes by orders of 466 

magnitude with relatively small changes in particle size. We noted that the base PR11 strongly overpredicted 𝑉𝑑 for 467 

large particles (1~10 𝜇𝑚) compared to OFF and VGLAI schemes, suggesting that an artificial bias introduced from 468 

integrating the impaction factor has been alleviated. The corresponding impact of updating from PR11 to VGLAI in 469 

CMAQ is more significant for coarse-mode particles than accumulation mode. CMAQ simulations OFF and VGLAI 470 

show that for fine particles, OFF has slower spatially averaged 𝑉𝑑 than PR11 while VGLAI has faster 𝑉𝑑 than PR11. 471 

In VGLAI, the vegetation factor increased 𝑉𝑑 on vegetation areas by providing more turbulent surface resistance 472 

when impaction does not dominate 𝑉𝑑 for small particles.  473 

We have bridged the gap between dry deposition measurement and modeling by rigorous use of box model 474 

frameworks, regional transport model platforms and field measurements but more efforts are needed for better 475 

understanding particle dry deposition. This study highlighted that deviation among deposition schemes is most 476 

pronounced for small and large particles while current measurements focus on accumulation-mode relevant 477 

diameters. To constrain this uncertainty, more observations on small (dp < 50 nm) and large (dp > 2.5 μm) particles 478 

are needed for evaluation. By building the bridge to understand particle dry deposition from in situ measurements to 479 

a simple simulated atmospheric modeling system, this study better links CMAQ predictions to available real-world 480 

observations and incrementally reduces uncertainties in the magnitude of loss processes important for the lifecycle 481 

of atmospheric pollutants relevant for human and ecosystem exposure. 482 
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Appendix A. Integration of dry deposition schemes for modal aerosol models 483 

Current air quality models compute 𝑉𝑑 as a function of particle diameter. Two typical methods to represent 484 

aerosol size distributions are with discrete size bins or with log-normal modes (Riemer et al., 2019). The CMAQ 485 

aerosol module uses a trimodal log-normal distribution to represent particles in the sub-micrometer size range. As a 486 

result, polydisperse properties are calculated as functions of the modal-based parameters. The polydisperse 487 

formulation for aerosol diffusivity may be written as 488 

�̂� = 𝐷 {exp (
−2𝑘+1

2
𝑙𝑛2 𝜎𝑔) + 1.246𝐾𝑛𝑔 exp (

−4𝑘+4

2
) ln2 𝜎𝑔}.                  (A1) 489 

while the polydisperse settling velocity may be written as 490 

𝑉�̂� = 𝑉𝑔 {exp (
4𝑘+4

2
𝑙𝑛2 𝜎𝑔) + 1.246𝐾𝑛𝑔 exp (

2𝑘+1

2
) ln2 𝜎𝑔} .                         (A2) 491 

where k is equal to the index of the moment being integrated, 𝐾𝑛𝑔 =
2𝜆

𝑑𝑝
;  𝜎𝑔 is the geometric standard deviation of 492 

log-normal size distribution. 𝐷 and 𝑉𝑔 are first calculated using Eqs. 10 and 3 with the geometric mean diameter 493 

(𝑑𝑝𝑔) and then integrated over each mode using Eqs. A1 and A2, respectively. CMAQ calculates particle dry 494 

deposition velocity based on aerosol number, surface area and volume using Eqs. A3-A5. For aerosol number (k = 495 

0), 496 

𝐸𝐼�̂� = 𝐸𝐼𝑀{exp(8 𝑙𝑛2 𝜎𝑔)}.                        (A3) 497 

For aerosol surface area (k = 2), 498 

𝐸𝐼�̂� = 𝐸𝐼𝑀{exp(16 𝑙𝑛2 𝜎𝑔)}.                           (A4) 499 

For aerosol volume (k = 3), 500 

𝐸𝐼�̂� = 𝐸𝐼𝑀{exp(20 𝑙𝑛2 𝜎𝑔)}.                        (A5) 501 

Code and Data availability 502 

Depoboxtoolv1.0 source code is freely available from http://doi.org/10.5281/zenodo.4749636 (Shu et al., 2021) 503 

under the Creative Commons Attribution 4.0 International. It also includes the code and data for testing all box 504 

model results in this study. CMAQ source code, including updated particle dry deposition scheme (VGLAI), is 505 

freely available via http://github.com/usepa/cmaq.git. Archived CMAQ versions including previous particle dry 506 

deposition scheme (PR11) are available from the same repository. The code and data for CMAQ analysis results are 507 

also available from http://doi.org/10.5281/zenodo.4749758 (Shu et al., 2021) under the Creative Commons 508 

Attribution 4.0 International. 509 

Supplement 510 
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Table 1. Detailed mechanistic equations used for different deposition schemes in this study. 

Single Diameter 

Modal 

approach 

Sectional 

approach 

CTM Scheme 𝑉𝑑 𝑉𝑔 𝑅𝑎 𝑅𝑠 or 𝑅𝑏 𝐸𝐵  𝐸𝐼𝑀  𝐸𝐼𝑁  𝑆𝑡   

CAMx Z01 
𝑉𝑔 +

1

𝑅𝑎 + 𝑅𝑠
 

ρdp
2 𝑔𝐶

18𝜂
 ln (
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𝑍0
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𝜅𝑢⋆
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𝜀0𝑢⋆(𝐸𝐵 + 𝐸𝐼𝑀 + 𝐸𝐼𝑁)𝑅1
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2
(
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𝐴 
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Table 2. Site information and required parameters to run DepoBoxToolv1.0. 

Measurement study Vong et al. (2004) Lamaud et al. (1994) Matsuda et al. (2010) 

LUC Grass Coniferous forest Deciduous forest 

Size distribution Number  Number  Volume 

Sampling date May-June 2000 June 1992 July 2009 

Location US France Japan 

Latitude 44.46N 44.84N 36.40N 

Longitude 123.11W 0.58W 138.58E 

Density (𝜌, kg/m3) 1500.00  1500.00 1500.00 

Geometric mean diameter (𝑑𝑝𝑔, 𝜇𝑚) 0.52 0.04 0.48 

Geometric standard deviation (𝜎𝑔) 1.7 and 2.5 2.5 1.7 and 2.5 

Temperature (K) 298.15 290.15 289.45 

Pressure (pascal)  101325.00 101325.00 101325.00 

Relative humidity (RH, %) 72.17 90.00 90.00 

Leaf area index (LAI) 4.00 6.00 6.00 

Horizontal wind speed (Uh, m/s) 2.18 3.53 1.30 

Friction velocity (𝑢⋆, m/s) 0.18 0.60 0.20 

Canopy height (h, m) 0.88 15.00 20.00 

Zero-plane displacement height (d, m) 0.66 11.00 12.00 

Roughness height (z0, m) 0.03 1.20 1.50 

Measurement height (z, m) 5.00 25.00 27.00 

Monin-Obukhov length (L0, m) 0.61 -10 -1.125 

Convective velocity scale (𝑤⋆) 0.35 2.00 2.10 

Note: all parameters are represented as median values. 
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Table 3. Results of the fractional biases for three land-use categories. 

Incorporation Scheme Grass Coniferous 

forest 

Deciduous 

Forest 

Single Z01 -1.22 0.35 -1.42 

 PR11, OFF -1.45 -0.70 -1.79 

 VGLAI -1.27 0.37 -1.53 

       

  𝜎𝑔=1.7 𝜎𝑔=2.5 𝜎𝑔=2.5 𝜎𝑔=1.7 𝜎𝑔=2.5 

Sectional Z01 -1.19 -1.10 0.5 -1.52 0.92 

 PR11, OFF -1.40 -1.24 -0.52 -1.76 1.21 

 VGLAI -1.23 -1.09 0.55 -1.64 1.03 

       

Modal PR11 -1.40 -1.19 -0.45 -1.77 1.67 

 OFF -1.40 -1.25 -0.45 -1.79 0.69 

                     VGLAI       -1.21       -1.07                           0.62       -1.64        1.16 
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A 

 

B 

Fig. 1. Diurnal variations of instantaneous hourly Vd on grass based on particle number. A) 𝝈𝒈 = 1.7 , B) 𝝈𝒈 = 2.5. 𝝈𝒈 was 

not reported in measurement so two values commonly found in CMAQ were assumed. Because PR11 and OFF share the 

same mechanistic dry deposition scheme and predict the same results for the sectional approach, they are presented 

together. For the modal approach, PR11 includes the impaction integration while OFF excludes the impaction integration 

factor. They are thus presented separately. 
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Fig. 2. Diurnal variations of instantaneous hourly Vd on coniferous forest based on particle number. 𝝈𝒈 = 2.5 was 

reported in the measurement study. The legend corresponds to that of Fig. 1. 
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A 

 

B 

Fig. 3. Diurnal variations of median Vd on deciduous forest based on particle volumes. A) 𝝈𝒈 = 1.7, B) 𝝈𝒈 = 2.5. Since 𝝈𝒈 

was not reported in the measurements, two values typical of background aerosol were assumed. The legend corresponds 

to that of Fig. 1. 
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C 

Fig. 4. Sensitivity analysis of deposition velocity to 𝝈𝒈 and 𝒅𝒑 on different land-use types. A) grass, B) coniferous and C) 

deciduous forest
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Fig. 5. Box plot of spatially averaged hourly dry deposition velocities for a A) forested and B) non-forested surface modeled in July for 

three types of particle sizes in CMAQ. 
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Fig. 6. Box plot of spatially averaged hourly concentrations above a A) forested and B) non-forested surface in July for a selection of 

single-compound and lumped species in CMAQ. 
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Fig. 7. Monthly mean SO4 dry deposition velocity (cm/s) for PR11 at three size modes (A, D, G) and the corresponding percent changes 

with updated dry deposition schemes for OFF (B, E, H) and VGLAI (C, F, I) from a 12km grid resolution CMAQ simulation.  

 

Fig. 8. Monthly mean coarse and fine SO4 concentration (𝝁g/m3) for PR11 (A, D) and the corresponding percent changes with updated 5 
dry deposition schemes for OFF (B, E) and VGLAI (C, F) from a 12 km grid resolution CMAQ simulation in July 2011.  
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Fig. 9. Fractional Bias (𝑭𝑩) of fine SO4 for PR11 at IMPROVE and CSN sites (A) and the corresponding relative change of 𝑭𝑩 between 20 
OFF and PR11 (B), and VGLAI and PR11 (C). 
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