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Abstract. The verification of high-resolution meteorological models requires highly resolved validation data and appropriate

tools of analysis. While much progress has been made in the case of precipitation, wind fields have received less attention,

largely due to a lack of spatial measurements. Clear-sky radar echoes could be an unexpected part of the solution by affording

us an indirect look at horizontal wind patterns: Regions of horizontal convergence attract non-meteorological scatterers such as

insects; their concentration visualizes the structure of the convergence field. Using a two-dimensional wavelet transform, this5

study demonstrates how divergences and reflectivities can be quantitatively compared in terms of their spatial scale, (horizontal)

anisotropy and direction. A long-term validation of the highly resolved regional reanalysis COSMO-REA2 against the German

radar composite RADOLAN shows surprisingly close agreement. Despite theoretically predicted problems with simulations

in or near the ‘grey-zone’ of turbulence, COSMO-REA2 is shown to produce a realistic diurnal cycle of the spatial scales

larger than 8km. In agreement with the literature, the orientation of the patterns in both data-sets closely follows the mean10

wind direction. Conversely, an analysis of the horizontal anisotropy reveals that the model has an unrealistic tendency towards

highly linear, roll like patterns early in the day.

1 Introduction

Modern numerical weather models at horizontal resolutions on the order of 1− 10km are generally believed to be useful, but

their added value compared to coarser models is not easy to quantify. On the one hand, the precise placement of very small15

features continues to be largely unpredictable. In a gridpoint-by-gridpoint comparison, highly resolved models are punished

twice for slight location errors in features which coarser models do not attempt to simulate at all. On the other hand, a single

error value summarizing the realism of a highly complex meteorological field is not very informative. To address these issues,

a large variety of so-called spatial verification techniques has been developed in recent years. A first systematic survey of

the field was undertaken in the spatial forecast verification Inter-Comparison Project (Gilleland et al., 2009, ICP). At this20

point, almost all efforts were focused on the verification of precipitation forecasts, for several reasons: Firstly, the improved

representation of convective precipitation was a main incentive for the development of mesoscale weather models. Secondly,

the intermittent nature of rain fields makes the aforementioned double-penalty problem particularly obvious. Lastly, radar (and

to a lesser degree, satellite) observations readily provide high-resolution spatial observations of precipitation.
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The second phase of the ICP project (Dorninger et al., 2018, MesoVICT) has highlighted the need for a spatial verification25

of other meteorological variables, particularly wind: Wind fields at kilometer resolutions can produce highly complex patterns

with potential impacts on convective initiation, wind energy, air quality and aviation safety. The task of verifying spatial wind

forecasts poses practical, methodological and theoretical challenges.

From a practical point of view, we face a lack of spatial observations: Model analyses (e.g. used for wind verification

by Zschenderlein et al. (2019)) conveniently provide highly resolved, gap-free data but the realism of the underlying model30

would have to be verified against some other data beforehand. Interpolated station data (for example the VERA analysis used

within MesoVICT) are generally too coarsely resolved to represent structures on the scale of single kilometers, denser station

networks such as the WegenerNet data-set used by Schlager et al. (2019) are rare. Bousquet et al. (2008) and Beck et al. (2014)

use Multi-Doppler wind retrievals from the French national radar network to verify wind predictions from the AROME model.

This approach is very appealing but limited to cases with precipitation. In addition, Doppler-derived wind composites are not35

yet widely available.

Skinner et al. (2016) present a very interesting alternative using single-Doppler azimuthal wind shear as a proxy for low-

level rotation. Their study also highlights some of the main methodological challenges related to wind verification: Most spatial

verification techniques were developed for scalar quantities which can be decomposed into discrete objects via thresholding.

How should such techniques be adapted to vector fields where non-zero variability is present at every location and the existence40

of well defined objects is not guaranteed? Skinner et al. (2016), who are interested in tornado forming mesocyclones, chose

to focus on the rotational component of the wind field by verifying only the horizontal vorticity. Model and observations are

subjected to several spatial filters and then thresholded at manually selected values before the object based MODE technique

(Davis et al., 2009) and the image-morphing DAS of Keil and Craig (2009) are applied. Their approach is justified because

well-defined objects, i.e., tornadic supercells, clearly exist in the specific case study under consideration. Bousquet et al.45

(2008) find a similar answer to the vector-problem by verifying horizontal divergences against the corresponding values from

the French Multi-Doppler network. Besides point-wise measures, these authors apply a simple scale-separation approach based

on a Haar wavelet decomposition of the wind fields. Other recent attempts at spatial wind verification include Zschenderlein

et al. (2019) who apply the object-based SAL technique (Wernli et al., 2008) to tresholded predictions of gusts (i.e. absolute

wind speed), and Skok and Hladnik (2018) who sort wind vectors into classes based on their speed and direction and use the50

popular fractions skill score (Roberts and Lean, 2008, FSS) to find the scales on which the predicted classes agree with the

observations.

In this study, we take a similar route as Skinner et al. (2016) but instead of the rotational component we focus on the

horizontal divergence of the near surface wind field. Under the right environmental conditions, the spatial pattern of this

divergence field can be observed in widely available radar reflectivity data: On warm, rain-free days, convergent boundary55

layer circulations attract swarms of insects which are drawn in and actively attempt to resist the vertical motion of updraughts

(Wilson et al., 1994). The resulting increased concentration of biological scatterers within the radar beam reflects the pattern

of convergence and divergence. Numerous studies including Weckwerth et al. (1997, 1999); Thurston et al. (2016); Banghoff

et al. (2020) have used this kind of data to study the dominant patterns of boundary layer organization. Atkinson and Wu Zhang
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(1996) identified mesoscale shallow convection, organized in the form of cells or horizontal rolls, as the most prominent of60

those patterns. Numerous studies have used radar data to observe these phenomena (see references in Banghoff et al. (2020));

Banghoff et al. (2020) also present a first long-time climatology using ten years of reflectivities and Doppler velocities from a

single radar station in Oklahoma. They manually classified radar images from over 1000 days into cells, rolls and unorganized

patterns, reporting organized features on 92 % of summer days without rain. Santellanes et al. (2021) exploited this data-set to

study the environmental conditions that favor the different modes of organization.65

In the present investigation, we aim to study a similarly large data-base of reflectivities from the German RADOLAN-RX

composite and compare it to divergence structures from the regional reanalysis COSMO-REA2 (Wahl et al., 2017), covering

the time-span from 2007 to 2013. We limit our analysis to small environments around each radar station and consider both the

entire COSMO-REA2 time-series (for an overall model climatology) and the subset where clear air radar echoes are available

(for verification).70

For a fair, quantitative validation of the model, the spatial patterns must be analyzed objectively. Here, we rely on the

wavelet-based SAD verification methodology of Buschow and Friederichs (2021) which applies a series of directed filters to

objectively determine the dominant spatial Scale, Anisotropy and Direction in an image. A closely related approach was used

to define a wavelet-based index of convective organization in radar and satellite images by Brune et al. (2021).

To what extent a model atO(1km) horizontal resolution can be expected to realistically represent boundary layer circulations75

in the so-called ’Grey-Zone’ regime (Wyngaard, 2004) between parametrized and resolved turbulence is a difficult question

which poses further theoretical challenges to the verification process. Section 2 therefore briefly summarizes some of the

relevant theoretical and experimental results from the literature. Data and methodology are described in sections 3 and 4.

Section 5 presents the results of our analysis, including the model-based climatology of divergence structures and its validation

against RADOLAN. Some discussion of our findings is given in section 6, section 7 examines what conclusions can be drawn80

and identifies avenues for future research.

2 Theory and modelling of mesoscale shallow convection

Zhou et al. (2014) have demonstrated how occurrence and basic properties of shallow convective circulation in the atmospheric

boundary layer can be understood in analogy to Rayleigh Bénard thermal instability. In the classic framework, the circulation

regime of a fluid between two heated plates is determined by the Rayleigh number85

Ra =
gα

kν
·βd4 , (1)

where d is the distance between the plates, β = dT/dz is the temperature gradient, and the coefficients g,α,k,ν denote grav-

itational acceleration, thermal expansion coefficient, thermal conductivity and kinematic viscosity, respectively. Eddies of

wavelength λ start to grow when Ra exceeds a critical value Rac(λ). The qualitative sketch in figure 1 shows that this marginal

stability curve has a global minimum near λ= 2d. For Ra<Rac(2d), the flow is laminar and heat is exchanged via conduction.90

When Ra is increased to Rac(2d), convective cells are initiated with a wavelength of roughly twice the depth of the fluid. Zhou
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Figure 1. Marginal stability curve of Rayleigh-Bénard convection for the classic rigid-rigid boundary conditions. For any given wavelength

λ (relative to the fluid depth d), Eddies grow if the Rayleigh number lies above the curve and decay otherwise.

et al. (2014) argue that an analogous stability curve applies to the atmospheric boundary layer. In this case, Ra is replaced by a

turbulent Rayleigh number of similar form as Eq. 1 wherein the depth d is replaced by the boundary layer heightH . On a sunny

day, the earth’s surface is heated and the vertical temperature gradient, as well as the height of the boundary layer increase.

The theory predicts that, once a critical Ra is crossed, the initial wavelength of the circulation should be near λ= 2H ≈ 3km;95

both smaller and larger eddies begin to develop later.

The simulation of this process is challenging because a model with grid-spacing δ can never resolve eddies with λ < 2δ.

In large eddy simulations with δ << 2H , convection will correctly be initiated at the natural critical Rac with a wavelength

of ∼ 2H . Current NWP models, on the other hand, have δ & 2H . In this case, the first eddies to form as Ra increases have

λ≈ δ and initiate at a grid-spacing dependent value Rac(δ). For global or regional models with δ & 10km, the critical value100

is so large that such circulations will never form under realistic conditions. Modern mesoscale models, however, operate at

δ =O(1km) and Rac(δ) becomes attainable. The result is a potentially unrealistic model circulation, the scale and initiation

time of which depends on δ. This is one example of the so-called Terra Incognita or Grey-Zone of turbulence (Wyngaard,

2004; Honnert et al., 2020), where the highest energy vortices are too large to be adequately represented by the boundary layer

parametrization but too small to be explicitly resolved by the dynamical core of the model. Ching et al. (2014) observed this105

phenomenon in nested WRF simulations, Poll et al. (2017) detected it in TerrSysMP, the atmospheric component of which is

COMSO. Using LES runs of the same models as a reference, both of these studies found that simulations with grid spacing on

the kilometer scale initiate turbulence too late and too energetically. In the present study, we will investigate how frequently

such small-scaled circulations occur in the climatology of COSMO-REA2 and how they compare to radar observations.
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3 Data110

3.1 COSMO-REA2

For a systematic investigation of low-level divergence structures, we ideally need a long, homogeneous time series of high

resolution model data. The regional reanalysis COSMO-REA2 is uniquely suited for our need as it provides seven years (2007-

2013) of hourly output from the mesoscale model COSMO (Baldauf et al., 2011) at a horizontal resolution of 0.018◦ or roughly

2 km. The model was run with 50 vertical levels over a domain covering Germany and the neighbouring countries. For a full115

description of the used physics parametrizations, we refer to Wahl et al. (2017) and references therein. For our purposes, it

is important to note that boundary layer fluxes are handled by a level-2.5 TKE-closure, shallow convection is parametrized

via a modified Tiedtke mass-flux scheme while deep moist convection is left to the dynamic core. The data assimilation

uses a continuous nudging scheme to relax the prognostic temperature, wind speed, pressure and relative humidity towards

observations from stations, radiosondes, aircraft, ships and buoys. In addition, rain rates from radar observations are assimilated120

via latent heat nudging (Stephan et al., 2008, LHN). Thus, on clear air days, the only source of mesoscale information (LHN)

is inactive, meaning that while data assimilation can help create realistic environmental conditions, the fine-scale structure of

the fields is a product of the dynamics and physics of the model. Horizontal divergences were calculated from the hourly 10 m

wind vector fields as a simple finite difference approximation.

3.2 RADOLAN RX125

RADOLAN (Radar online adjustment, ’RADar OnLine ANeichung’) RX is the operational radar reflectivity composite of the

16 C-band radars operated by the German weather service. The output has a spatio-temporal resolution of 1km×1km×5min

and covers Germany and parts of its neighbours. The underlying radar scans are performed at an orography following elevation

angle (∼ 1◦) with an azimuthal resolution of 1◦ and a range resolution of 250 m. Due to the beam geometry, the true native

resolution of the reflectivity composite, as well as the height for which it is representative, depends heavily on the distance to130

the radar station. Pejcic et al. (2020) show that the beams reach typical boundary layer heights of 1− 1.5 km at about 100 km

from the radar location. Therefore, relevant clear-air echoes caused by insects that cannot survive at low temperatures are

expected to be found only in the immediate vicinity of the radars.

To get an idea of the type of data we rely on for our model validation, it is instructive to consider an example case. Figure 2 (a)

displays the RADOLAN RX composite at noon on 2009-07-29. Aside from a few showers over the North Sea, no appreciable135

precipitation was observed in Germany on this warm summer day. Temperatures reached values in the high twenties and a high

pressure system centred near the German-Polish border generated weak south-easterly flow. Despite the absence of rain, most

radars in the composite are surrounded by a disk of low but non-zero reflectivities (-10 to 5 dBZ). While the size, shape and

mean intensity of the disks varies, a consistent fine-scaled cellular pattern can be observed throughout central, northern and

eastern Germany. Moreover the regions of increased reflectivity are coherently organized in a line-like fashion along a SW/NE140

direction. Figure 2 (b), showing the corresponding wind and divergence field from COSMO-REA2, reveals that the orientation

of the reflectivity lines is broadly consistent with the overall direction of low level flow. Furthermore, the divergence field is
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Figure 2. RADOLAN RX reflectivity in dBZ (a), COSMO-REA2 10 m divergence (b) and AQUA MODIS satellite image (c) on 2009-07-29

12:00 UTC.
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Figure 3. Number of complete clear air radar echoes at the twelve selected radars, separately for night and day as defined by sunrise and

sunset.

characterized by small scaled patterns of cells and lines with alternating convergence and divergence, the size and orientation

of which roughly resembles the radar pattern. Throughout eastern Germany, where the divergences are strongest, the satellite

image in panel (c) shows the typical chains of Cumulus clouds often associated with mesoscale shallow convection (Atkinson145

and Wu Zhang, 1996). A visual comparison of the reflectivities around, for example, the Berlin radar with the simulated

divergences and the clouds in that region leads us to hypothesize that the boundary layer processes in COSMO-REA2 are not

entirely unrealistic.

3.3 Data availability

As mentioned above, clear-air echoes typically only occur in a small environment around each radar. We therefore limit our150

study to circular regions with 64km radius, centred at the 16 radar station which were active throughout the COSMO-REA2

period. While simulated divergences are readily available at every such grid point for each hour between 2007 and 2013,

the availability of clear-sky echoes depends on many factors including local topography, technical details of the radars, radar

processing at DWD and the life-cycle of the biological scatterers. We consider an individual radar image incomplete if less

than 50 % of pixels within our 64km radius around the radar are above −10dBZ (visual analysis of many example images155

has shown that no significant signals exist between roughly −10dBZ and the smallest stored value of −32.5dBZ). From the

remaining data, we must filter out rainy episodes, defined here somewhat arbitrarily as cases where at least 100 pixels exceed

+10dBZ. We will refer to all remaining images as complete.

Table 1 shows that such complete clear air echoes are overall rare (well below 5 % of all hourly images) and their frequency

varies considerably between radars. For this study, we neglect the four radar stations with the fewest data, thereby removing160
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Table 1. Number of hourly incomplete, rainy, nighttime and complete daytime hourly radar images per station. The top four radars are

excluded from further analysis.

incomplete rain night day

Frankfurt 54841 6335 41 104

Emden 56064 5065 60 132

Essen 54229 6889 58 145

Rostock 54627 6059 295 340

Hamburg 53556 6866 351 548

Munich 51315 9131 181 694

Feldberg 52143 7419 855 904

Ummendorf 52806 6847 666 1002

Neuhaus 50355 8357 1527 1082

Berlin 52075 6935 1011 1300

Flechtdorf 49117 9033 1830 1341

Hannover 49199 8846 1478 1798

Eisberg 48088 9154 2100 1979

Tuerkheim 45576 10672 3044 2029

Neuheilenbach 47286 8731 3107 2197

Dresden 45787 9462 3122 2950

Table 2. Number of complete hourly non-rainy daytime radar echoes at the twelve selected radar stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2007 12 1 34 191 446 797 293 147 81 90 11 1

2008 3 1 24 13 212 808 1333 124 87 38 6 11

2009 16 12 38 26 264 209 1379 892 406 66 0 34

2010 36 73 52 45 74 541 1684 171 84 5 3 24

2011 2 31 13 145 210 716 741 190 139 59 2 7

2012 10 27 44 22 211 289 750 301 91 16 3 2

2013 53 18 53 46 65 318 1740 509 93 7 2 1

two urban (Essen, Frankfurt) and two coastal locations (Emden, Rostock). The twelve remaining radars give us roughly 20

thousand individual hourly images for comparison with COSMO-REA2. When studying the diurnal cycles below, we will

furthermore include radar data at the full 5 min resolution which gives us over 200 thousand images.

In table 2, we see that the vast majority of clear sky echoes occurs during summer, particularly June and July, with consider-

able variability between the years. The preference for the warm season is expected since both insect activity and boundary layer165
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height are increased by higher temperatures. Consequently, the daytime frequency of available data follows a diurnal cycle as

well (figure 3). In addition, there is a large second population of night time cases. The sudden increase in clear air echoes at

dusk, as well as their absence in winter, hints at migrating swarms of insects as a likely explanation (Drake and Reynolds,

2012). We exclude these data because (1) the weaker nighttime convergences are less likely to influence the pattern of the

insect cloud and (2) migrating swarms tend to inhabit thin layers near an atmospheric inversion which only partly intersect the170

radar beam (cf. p.237 f. in Drake and Reynolds (2012)).

4 Methods

4.1 Wavelet analysis

The idea of this study is to compare the correlation structures of the radar reflectivities and divergence fields, summarized

in terms of scale, anisotropy and direction. To extract these properties from divergence and reflectivity images, we use the175

SAD methodology of Buschow and Friederichs (2021): The image to be analyzed is convolved with a series of localized 2D

wave-forms with varying scale and orientation. The analyzing filters are the so-called daughter wavelets which are generated

by shifting, scaling and rotating a single, carefully designed wave function, the mother wavelet. The square of one wavelet

coefficient, i.e., the result convolving the image with one of the daughters, represents the amount of variance present at a

particular location for a particular combination of spatial scale and orientation. The dual-tree complex wavelet transform180

(Selesnick et al., 2005) used in this study provides daughter wavelets with six orientations and up to J scales for an image of

size 2J × 2J . Following Buschow and Friederichs (2021), the largest three scales are removed because their support is larger

than the image, rendering their interpretation ambiguous. After spatial averaging, a radar image with 128× 128 pixels is thus

summarized by 4×6 values, the so-called wavelet spectrum. To extract the scale, anisotropy and direction from this spectrum,

we treat the J ×6 values as point-masses arranged in a 3D space such that the six directions for one scale are at the vertices of185

a hexagon in the x− y-plane and the hexagons for the J scales are located at z = 1, . . . ,J . The centre of mass of these point

masses has three components in cylindrical coordinates:

– The central scale z ∈ [1,J ] measures the dominant spatial scale of the image. If all variance was at spatial scale j, then

z = j; if all scales contain equal variance, then z = (J − 1)/2.

– The radius ρ ∈ [0,1] describes the anisotropy. If all directions have equal variance, then the centre of mass is in the190

middle of the hexagon and ρ= 0; if all energy is concentrated in one direction, then ρ= 1.

– From the angular coordinate, we can determine the dominant orientation angle ϕ ∈ [0◦,180◦]. Note that ϕ is only mean-

ingful if the anisotropy ρ is non-zero.

For a detailed description of the calculation of these properties, as well as the details of the wavelet transform itself, we refer

to Buschow and Friederichs (2021) and references therein. The software for this analysis is freely available in the open source195

dualtrees R-package (Buschow et al., 2020).
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The central scale z is a dimensionless quantity which cannot be analytically transformed into an equivalent Fourier wave-

length. Since the actual physical size of the patterns is of some interest in the present study, we derive an empirical relationship

based on test images with fixed wavelength in appendix A. We find that, in the range of 1.5< z < 2.5, the relationship is well

described by a linear fit with200

λ≈ z · 9km− 5.4km (2)

It is important to note that this relationship is only approximately valid for the specific wavelets, scales and wave-like test

images used in the present study. This equivalent wavelength is furthermore not identical to the spacing between wave-crests

used as the measure of horizontal scale by Banghoff et al. (2020) because our λ includes also the scale perpendicular to the

orientation of the features.205

To make the distribution of angles ϕ interpretable, we compute the angles of intersection between ϕ and the model wind

direction (averaged over the regions around each radar). A relative angle ∆ϕ= 0◦ thus means that the patterns align with the

wind direction whereas ∆ϕ= 90◦ indicates an orthogonal orientation.

4.2 Boundary conditions and pre-processing

The wavelet analysis described above requires data on a regular grid, ideally of size 2n× 2n to ensure fast computation times,210

discontinuities at the boundaries must be avoided. This is only a minor factor for intermittent fields like rain but very important

for data with non-zero values along each border. To achieve periodic boundaries, we cut out a 128km× 128km region (128

and 64 pixels for RADOLAN and COSMO-REA2, respectively) around each radar location and apply a circular Tukey window

to smoothly reduce the field to zero (for divergences) or−10 dBz (for reflectivities) towards each side. A rectangular boundary

would introduce spurious horizontal and vertical directions to the wavelet spectra.215

For the reflectivity data, further pre-processing steps are required. Firstly, some radar images contain erroneous isolated

pixels with unusual intensities which would artificially reduce the analyzed spatial scales. Following Lagrange et al. (2018),

we therefore compare each pixel to the average over its eight nearest neighbours. If the difference is greater than 10 dBZ, the

pixel value is replaced by the neighbourhood average. Secondly, the reflectivities around each radar often contain gaps of very

small reflectivities (<−10 dBZ), caused for example by buildings, mountains or water bodies without scattering insects. These220

arbitrarily shaped holes introduce an artificial pattern which is unrelated to the wind field and needs to be removed. Here, we

fill in the gaps with a simple algorithm which iteratively replaces values below -10 dBZ with an average over the neighbouring

non-missing pixels. The details of the gap-filling algorithm, as well as a demonstration of its effectiveness are given in appendix

B.

Lastly, a comparison between the wavelet spectra of two images would normally require that both data sets be given on the225

same grid. In our case, we can avoid re-gridding either field since the spatial resolutions differ by a factor of two. The second

scale in RADOLAN thus corresponds to the first scale of COSMO-REA2. We can therefore simply remove the smallest scale

from the radar image to make the spectra comparable. We have checked that the results are virtually identical when the radar
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Figure 4. Average central scale (a), anisotropy (b) and angle relative to the mean wind (c), calculated from COSMO-REA2 (2007-2013) in

the environment of the selected radar stations. White contours mark the sun’s elevation angle at 0◦,20◦,40◦,60◦.

images are bilinearly re-mapped instead. The largest daughter wavelet that fits into our domain is j = 4 for RADOLAN and

j = 3 for COSMO-REA2, giving us three comparable scales with six directions each.230

5 Results

5.1 Climatology of divergence structures in COSMO-REA2

Based on section 2, we can expect that small-scaled, cellular circulations will form on warm sunny days, favored by high

pressure and low wind speeds. Following the diurnal cycle of the boundary layer depth, these circulations start out small and

become larger over the course of the day. According to Poll et al. (2017), Banghoff et al. (2020) and references therein, we235

furthermore expect to see a more linear mode of organization on windier days. The orientation of these roll-like structures will

generally follow the mean wind direction (Weckwerth et al., 1997). Both cells and rolls should leave an imprint on the scale

and anisotropy and direction of the horizontal divergence fields. We therefore cut out square regions of 64× 64 pixels around

the twelve selected radar stations (table 1) and apply the wavelet analysis described above for all hourly time-steps from 2007

to 2013.240

As a first overview, we average the scale z, anisotropy ρ and direction relative to the mean wind ∆ϕ over the hours of the day

and weeks of the year. Figure 4 shows that all three simulated variables undergo pronounced diurnal and annual cycles. During

nighttime, the average central scales of the divergence fields remain close to z ≈ 2 (about 13 km) with no strong variations

between seasons. After the solar elevation exceeds roughly 40◦, z approaches a clear minimum around noon before increasing

again during the afternoon. This region of small values is surrounded by a ring of increased scales a few hours after sunrise245

and around sunset. These largest average scales coincide with a similar ring of unusually low anisotropy (figure 4 b). ρ reaches

a maximum during the early hours of the small-scale phase before decreasing during the afternoon. Concerning the orientation

of the divergence field (panel c), we observe that the small-scale pattern is typically aligned with the mean wind direction while

the larger scaled nighttime patterns are not.

As expected, the simulated small-scaled circulations thus impress their diurnal life-cycle on the mean spatial structure of250

the divergence field. To see how prominent these features are, compared to the overall variability, we now consider probability

densities of the three structural quantities, separated by season and time of day (figure 5).

For the spatial scales in panel (a), we find that the prominent minimum around noon is indeed a common occurrence in all

seasons except winter, indicated by bi-modal distributions between 9 and 15 UTC. During summer in particular, the smaller-

scaled mode, centred near z ≈ 1.75 or λ≈ 10km, is more likely than z > 2. Two modes can be seen with similar clarity in255

the distribution of orientations (figure 5 c): During winter or nighttime, orientations along the wind direction are rare, most

angles are closer to −75◦. In the other three seasons, ∆ϕ≈ 0 is by far the most likely value during daytime. The signal in the
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Figure 5. Estimated probability densities (kernel estimates) for the scale z (a, converted into an approximate wavelength λ via equation 2),

anisotropy ρ (b) and relative angle ∆ϕ (c) for different seasons and times of day.
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Figure 6. REA2 wind speed, boundary layer height, surface pressure anomaly and 2 m temperature during summer (JJA) between 11 UTC

and 13 UTC, averaged around the selected radar locations. “small and round” cases have z < 1.86,ρ < 0.12, “small and linear” is z <

1.86,ρ > 0.32. The boxplot labeled “rx” contains all instances where at least one clear air radar echo is available.

anisotropy (figure 5 b), on the other hand, is far weaker: A clearly increased likelihood for anisotropic features is only evident

in summer between 9 and 12 UTC and the change in the distribution is far less pronounced than for z. While the formation

of exceptionally small structures, oriented along the mean wind, is thus a common occurrence, the increased linearity around260

noon seen in figure 4 b can only occasionally be observed.

Next, we are interested in the typical weather situation associated with the occurrence of these small and / or linear patterns.

To this end, we focus on the three hours around noon during the summer season and search for cases where both ρ and z are

in the bottom 5 % of their climatological distribution (“small and round” mode). For the “small and linear” mode, we select

those cases where z is in the bottom 5 % whereas ρ is in the top 5 % of its distribution. At these time-steps, as well as the265

remaining “reference” cases, we compute spatial averages around the selected radar stations for several relevant variables from

COSMO-REA2.

Figure 6 shows that boundary layer height, 2 m temperature and surface pressure see a moderate increase during time-

steps with small and linear patterns and a stronger increase if the pattern is small and round. In the latter cases, the median

temperature is close to 25◦C and the boundary layer rarely falls below 2 km. Simultaneously, the average 10 m wind speed270

is strongly reduced. Conversely the small and linear mode is associated with a significantly increased wind speed. Hence the

boundary layer circulation in COSMO-REA2 qualitatively resembles Rayleigh Bénard convection.

In preparation for the quantitative comparison with radar data, figure 6 also includes the environmental conditions for days

where at least one clear-sky RADOLAN image is available. We find that the radar echoes occur mostly on very warm days

with moderately increased boundary layer depth and decreased wind speeds. This is consistent with the assumption of insects275

as the primary origin of these echoes. The observations thus mostly sample cases where small-scale circulations are likely to

occur.
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Figure 7. Randomly selected examples from the set of available, non-rainy 12 UTC radar images at Flechtdorf. Top row: Aqua MODIS

snapshots (wvs.earthdata.nasa.gov, timing only approximately matches 12 UTC). Middle: RADOLAN RX reflectivity. Bottom: COSMO-

REA2 10 m divergence. Light colors indicate high reflectivity and convergence, respectively. Numbers in the top left corner indicate the

analyzed scale and anisotropy, the range of reflectivity / divergence values is given in the bottom right.

5.2 Verification against radar reflectivities

In this section, we attempt to assess the realism of our model-based climatology using the clear-sky radar reflectivity data from

RADOLAN. Besides cases with too many missing or rainy pixels, we also exclude all nighttime images. The remaining data280

is subjected to the wavelet analysis as described in section 4.2.

Before analysing the statistics of the entire dataset, we briefly consider a few individual examples. Figure 7 shows five

randomly selected cases from the Flechtdorf radar station. The 12 UTC time step was chosen so that a visible satellite image

from MODIS is available at approximately the same time. For consistency with the wavelet-based analysis, we have removed

the smallest-scaled features from the RADOLAN images by transforming to wavelet-space, setting the coefficients at level 1285

to zero and transforming back.

The first two examples (leftmost columns) feature a closed cloud-cover; model and observation agree on a relatively large

structure on 2009-09-09 and small, isotropic cells on 2011-07-11. The remaining three cases are all relatively small in scale
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Figure 8. Diurnal cycles of spatial scales from 5 min radar data (areas and lines) and hourly COSMO-REA2 10 m divergence (points and

error bars). Grey area and error bars indicate inter-quartile range, white line and black dots mark the median. Only cases with complete (see

section 3.3) clear air echoes are included.

with both data-sets agreeing that 2009-07-29, i.e., our example from figure 2, has the smallest and most anisotropic structure.

Overall, the decent visual similarity between COSMO-REA2 and RADOLAN is reflected in small to moderate differences in290

ρ and z.
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Figure 8 shows a quantitative comparison of the modelled and observed diurnal cycles of central scales. In addition to the

hourly data for which corresponding COSMO-REA2 divergences are available, we have included all other 5 min time-steps

with complete clear-air echoes as well. The results can be separated into two main groups: At the rural radar stations in Eisberg,

Flechtdorf, Neuhaus, Neuheilenbach, Türkheim and Ummendorf, the agreement betweeen model and observations is surpris-295

ingly good. COSMO-REA2 reproduces not only the correct evolution of the diurnal cycle but also similar spatial scales with a

large overlap in the inter-quartile ranges. In contrast, the observed spatial patterns at the three largest German cities of Berlin,

Hamburg and Munich, differ significantly from the modelled values, as well as from the other stations. Hannover and Dresden

have more data than the other urban locations (cf. table 1) and show better agreement with the model. Here, the observed

cycle is flatter but resembles its modelled counterpart in the afternoon. The unusual behaviour of the Feldberg/Schwarzwald300

station is likely the result of its mountainous surrounding which causes both additional ground clutter and changes to the local

circulation, neither of which is resolved by the 2 km model orography. It is however worth noting that, despite the offset, both

data sets agree that the smallest-scaled patterns occur later in the day than at other stations.

Good agreement between model and observations can be seen in the distribution of the angle ϕ as well. In figure 9, we have

pooled all radars together and consider only full hours where the model wind direction is known. Cases with small observed305

anisotropy (ρ≤ 0.1), i.e., ambiguous orientation, were removed as well. We find that, between 10 and 17 UTC, both sets of

images are usually oriented within ±15◦ of the mean model wind direction; the distributions of RADOLAN and COSMO-

REA2 match almost perfectly. Before and after this interval, which coincides with the small-scale phase of the diurnal cycle, a

wider variety of orientations is possible.

While the scale and orientation are thus in reasonably good agreement, the same can not be said for the anisotropy. Figure310

10 shows that the observations are almost universally more isotropic than the model fields. The pattern of increasing linearity

towards a maximum before noon seen in figure 4 b is clearly present in this sample of the model data. The observations, on the

other hand, hardly contain this pattern at all with only a very weak maximum at 11 UTC and nearly constant values during the

afternoon.

Aside from the climatological distribution and diurnal cycle, we are interested in the model’s ability to represent the day-315

to-day variability of the spatial divergence patterns. For z and ρ, we can eliminate the overall bias and diurnal behaviour by

subtracting the long-time mean for every daytime hour from the respective time series. To avoid residual effects of the annual

cycle, we limit this analysis to the summer season. Timing errors within each day are furthermore removed by taking the daily

minimum of z and maximum of ρ. Figure 11 a reveals that the remaining scale anomalies in COSMO-REA2 and RADOLAN

are slightly correlated with many remaining errors below 0.1 and almost all below 0.2 (outer lines). As expected, the correlation320

is even lower for ρ (figure 11 b) and the typical errors are relatively large even after the bias has been removed.

6 Discussion

The results of section 5.1 and 5.2 raise several intertwined questions: What level of realism can be expected of the reanalysed

small-scale structure? To what extent can the RADOLAN data-set be used to validate the simulation? How appropriate was the
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Figure 9. Distribution of orientations relative to the COSMO-REA2 mean wind throughout the day. COSMO-REA2 shown in black,

RADOLAN in blue. Only complete, on-rainy daytime cases with ρ(RADOLAN)> 0.1 are included.

wavelet-based analysis for the task at hand? Concerning the trustworthiness of COSMO-REA2, it must be remembered that the325

local divergence patterns are primarily the product of the model dynamics and parametrized turbulence, not the data assimila-

tion. The environmental conditions which drive the formation of a particular mode of small-scale organization, however, can be

expected to have good accuracy due to the continuous input of wind speed, humidity and pressure from weather stations. It is

therefore not surprising that the model can accurately represent diurnal and annual cycles and differentiate between days with

organized and unorganized situations. Consequently, the model climatology as described in section 5.1 qualitatively agrees330

with our expectations from the literature. Whether or not the simulated small-scale structure can itself be trusted is question-

able in light of the theory discussed in section 2. Our comparison with RADOLAN clear-air data suggests that, despite the

proximity to the Grey-Zone, the modelled structures are not overall unrealistic. In interpreting this result, we must recall that

the difference in native resolution between RADOLAN and COSMO-REA2 was handled by deleting the smallest scale from

RADOLAN. We have thereby filtered out any variability below the model’s effective resolution. Figure 8 therefore does not335
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indicate that the mesoscale model successfully simulates the spatial scales present in the real atmosphere. We can merely see

that the remaining variability (upwards of λ≈ 8km), which both data-sets can represent, matches the observed diurnal cycle

decently, especially at the rural stations.

As predicted by Zhou et al. (2014), the wavelengths of the simulated eddies are near the smallest scale resolved by the

model. We note, however, that the underlying resolution of RADOLAN is 1◦ in azimuth- and 250m in range-direction. Inside340

our 64km radius, and particularly close to the radar, the internal resolution of the measurements is considerably finer than

the used 1km× 1km grid. There is thus no obvious technical reason why, after filtering, RADOLAN should have to exhibit

increased variability on the same scale as the model. We have experimentally re-calculated the central scales of the radar images

including the previously removed smallest scales and found a slight shift in the cycle towards earlier hours. Conversely, if we

remove the second smallest scale as well, a shift in the opposite direction emerges. This supports our interpretation that the345

model simulates the patterns seen in the observations with an approximately correct diurnal cycle, on the scales we included;

smaller-scaled variability, which would initiate earlier in the day, is resolved by neither COSMO nor RADOLAN. It should

furthermore be noted that we make no direct statements about the intensity (variance) of the circulations. Such information

cannot easily be inferred because the absolute radar reflectivities depend on the technical details of the radar, applied pre-

processing and the unknown overall concentration of biological scatterers.350

The greater disagreement at the urban radar locations has two main explanations. On the one hand, it is likely that buildings

and unrelated radio signals introduce excessive noise into the images, overshadowing the natural signal. This explanation is

supported by the lack of complete images at the Essen and Frankfurt stations, both of which are located in highly urbanized

regions (Frankfurt is the city with the most skyscrapers in Germany). On the other hand, the urban landscape itself can influence

18

https://doi.org/10.5194/gmd-2021-128
Preprint. Discussion started: 7 July 2021
c© Author(s) 2021. CC BY 4.0 License.



-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

RADOLAN

C
O

SM
O

-R
EA

2
(a) minimum central scale z

cor = 0.39

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

RADOLAN

C
O

SM
O

-R
EA

2

(b) maximum anisotropy ρ

cor = 0.28
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the near-surface circulation in ways which are not resolved by the model. The similar effects of small-scale orography likely355

explain the special behaviour at the Feldberg/Schwarzwald station.

Aside from spatial scales, the anisotropy of the divergence pattern, i.e., the difference between linear and cellular orga-

nization, is of interest. Here, the model’s tendency towards more linear patterns earlier in the day could not be confirmed

observationally. On the one hand, it is plausible that the lack of finer-scale variability leads to the simulation of unnaturally

regular stripes. On the other hand, gaps and noise have a larger impact on the anisotropy than the scale (cf. appendix B), making360

these results somewhat less robust.

Lastly, it should again be emphasized that our clear air data-set provides no information on nighttime and winter and is

biased towards cases with high temperatures where small-scale circulations are likely to occur. Our validation is therefore

mostly conditional on the occurrence of these phenomena; whether or not the model correctly differentiates between days with

and without organized shallow convection could only partly be judged (cf. figure 11).365

7 Conclusions and outlook

The main goal of this study was to explore the use of clear-sky radar data for the evaluation of simulated low-level divergence

structures. A wavelet-based verification methodology, developed and extensively tested for precipitation data, was used to

summarize the spatial patterns in terms of scale, anisotropy and direction. We have demonstrated that model-based divergences

and radar reflectivities are comparable at this level of abstraction. Our investigation of the German radar network has shown370

that usable clear sky echoes are rare overall and almost non-existent in winter. This supports the assumption that such daytime

echoes are caused by small insects, the life cycle and habitats of which may also explain the substantial differences between

radars as well as strong year to year variations. The relatively long time-span from 2007 to 2013 nonetheless resulted in a robust

data set of over 20.000 individual images, mostly during summer, where the modelled patterns could be verified against spatial

observations. At most radar locations, both data sets show a very similar diurnal cycle in the spatial scales and orientations375

with a strong preference for small-scaled (λ≈ 10km) features around noon. The orientation during the small-scaled phase of

the cycle is almost always within 15◦ of the mean wind. The fact that this observation holds for both data sets also implicitly

confirms that the model adequately represents the mean wind direction. COSMO-REA2 furthermore simulated a trend towards

increasingly linear features at the start of the small-scaled phase which could not be found in the observations. As discussed

above, a more complete set of observations might be able to clarify whether this indicates deficiencies of the model or the380

observations or (likely) both.

Based on the overall decent agreement with the radar observations, we may put some trust in the model’s behaviour at the

unobserved parts of the time series as well. If COSMO-REA2 is thus to be believed, mesoscale shallow convection, favored

by high pressure (clear skies) and temperatures, as well as weak winds, is a common occurrence in Germany in all seasons

except winter; during JJA, the small-scale mode is more likely than the larger-scaled configuration. Its onset a few hours after385

sunrise is characterized by a transition phase with larger scaled, isotropic divergence patterns, the orientation of which switches

from ∼ 70◦ to ∼ 0◦ with respect to the mean wind direction. While most patterns are isotropic, i.e., cellular in nature, there
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is also a weaker signal of linear organization. This more roll-like mode is most often simulated during JJA between 9 and

12 UTC and preferably occurs when winds are unusually strong and the boundary layer is shallower than in the cellular cases.

These simulated features are qualitatively consistent with the theory, as well as previous observations of mesoscale shallow390

convection.

Concerning future prospects, it must be emphasized that we have relied on only the most widely available kind of radar

observations. Modern dual-polarization Doppler radars produce a wealth of further information, which would for example

allow us to confidently separate insect-related echoes from unhelpful noise and clear up the nature of the night-time echoes

(Zrnic and Ryzhkov, 1998; Melnikov et al., 2015). Additionally, parameters like mean wind speed and direction, and even395

the boundary layer height (Banghoff et al., 01 Aug. 2018) could be inferred directly from the radar instead of relying on the

model (Banghoff et al., 2020). Lastly, we re-iterate that small scales below ∼ 8km were filtered out in this study in order

to fairly evaluate the mesoscale model. Depending on their frequency, weather radars can observe much finer details of the

turbulent boundary layer. A similar strategy to ours could therefore also provide useful information for the objective validation

of realistic large eddy simulations as in Thurston et al. (2016); Poll et al. (2017); Bauer et al. (2020); Ito et al. (2020); Pantillon400

et al. (2020).

Code and data availability. Software for the dual-tree wavelet transformation is available in the dualtrees R-package (Buschow et al.,

2020). In addition, the specific version (0.1.4) used for this manuscript has been permanently archived at https://doi.org/10.5281/zenodo.

5027277 (Buschow, 2021a). COSMO-REA2 is currently available from the website of the Hans Ertel centre (reanalysis.meteo.uni-bonn.de).

RADOLAN is available via the DWD OpenData portal (opendata.dwd.de). The cropped reflectivity and divergence fields around the used405

radar station have been archived at https://doi.org/10.5281/zenodo.5036447, together with all auxiliary data and software needed to fully

reproduce the figures in this manuscript from scratch (Buschow, 2021b).

Appendix A: Empirical relationship between scale and wavelength

To approximately translate the central scale into an equivalent Fourier wavelength λ, we apply the exact method described in

section 4.2 to synthetic test images of pure sine-waves, given by410

f(x,y) = sin(2π(kxx+ kyy)) + ε

where ε is a Gaussian white noise term with zero mean and variance 0.04. Figure A1 shows that the relationship between z

and λ is nearly linear for this idealized signal. For z < 1.5 and z > 2.5, the curve becomes non-linear because most variance

is outside the range of scales covered by our wavelet transform. The linear fit yields λ/∆x = 4.464 · z− 2.765. Since we are

merely interested in a rough approximation with round numbers, we simplify the result for ∆x ≈ 2km to obtain equation 2.415
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Appendix B: Filling the gaps in the radar images

For this study, we are not interested in the radar reflectivities themselves, or even their full spatial correlation function, but

only the estimates structural characteristics ρ,ϕ,z. To mitigate the effects of holes, i.e., regions with Z ≤−10dBz, in the

radar images, we implement a simple iterative algorithm to smoothly fill in the gaps: (1) Find missing points with at least

one non-missing neighbour, (2) replace values of those points with an average over the up to eight adjacent non-missing420

values and (3) repeat from (1) until all gaps are filled. The result is similar to inverse distance interpolation but (at least in

our implementations of the two algorithms) considerably faster. To test the success of our approach, we select 300 nearly

complete (less than 3 % missing data) clear-air radar echoes from our data-set and artificially add the gaps form 300 other

randomly selected incomplete images. In figure B1, we compare ρ,ϕ,z, estimated with and without the gap-filling algorithm.

As expected, the impact of the gaps is massive but our algorithm mostly mitigates the effects. We have repeated the experiment425

with inverse distance interpolation (not shown) and found no substantial improvement over the iterative procedure.

Author contributions. SB had the idea for this work, both authors jointly developed the original methodology. Writing and coding was led

by SB, with suggestions and additions from PF. Both authors contributed to the final draft and proof-reading.
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Figure B1. Anisotropy ρ (a), angle ϕ (b) and scale z (c) estimated from nearly complete images (x-axis) and images with added holes

(y-axis). Black dots show the results of the iterative gap-filling algorithms; values obtained without gap filling are shown in grey.
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