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Abstract. A parameterization for the collision-coalescence process is presented, based on the methodology of basis functions. 

The whole drop spectrum is depicted as a linear combination of two lognormal distribution functions, leaving no parameters 

fixed. This basis-function parameterization avoids the classification of drops in artificial categories such as cloud water (cloud 10 

droplets) or rain water (raindrops). The total moment tendencies are predicted using a machine learning approach, in which 

one deep neural network was trained for each of the total moment orders involved. The neural networks were trained using 

randomly generated data , over a wide range of parameters employed by the parameterization. An analysis of the predicted 

total moment errors was performed, aimed to establish the accuracy of the parameterization at reproducing the integrated 

distribution moments representative of physical variables. The applied machine learning approach shows a good accuracy level 15 

when compared to the output of an explicit collision-coalescence model. 
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1 Introduction 20 

Drop populations are represented using drop size distributions (DSD). The first attempt at characterizing drop spectra was 

made  by Marshall and Palmer (1948), who employed exponential distributions based on drop diameter to describe the DSDs 

(Marshall and Palmer, 1948). More recently, the use of a three-parameter gamma distribution has shown a good agreement 

with observations (Ulbrich, 1983). However, lognormal distributions have shown a better squared-error fit to measurements 

of rain DSDs than gamma or exponential distributions (Feingold and Levin, 1986; Pruppacher and Klett, 2010). The analysis 25 

of several important characteristics of the Brownian coagulation process showed that the lognormal distribution adequately 

represents the particle distributions (Lee et al., 1984, 1997). In addition, some authors have employed this type of distribution 

function, lognormal, to parameterize cloud processes with promising results (Clark, 1976; Feingold et al., 1998; Huang, 2014). 
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There are two main approaches to modelling cloud processes: the explicit approach (bin microphysics) and the bulk approach 

(bulk microphysics). Bin microphysics is based on the discretization of a DSD into sections (bins), and calculates the evolution 30 

of the DSD due to the influence of different processes that could be dynamical and/or microphysical (Berry, 1967; Berry and 

Reinhardt, 1974; Bott, 1998a; Khain et al., 2004, 2010). The core of this method is the solution of the Kinetic Coagulation 

Equation (KCE) (von Smoluchowski, 1916a, 1916b) for the collision-coalescence of liquid drops, (also known as Stochastic 

Coalescence Equation or Kinetic Collection Equation within the cloud physics community), in a previously designed grid, 

which could be over mass or radius. Thus, previous knowledge of the characteristics or parameters of the distributions is not 35 

necessary. This way of solving the KCE is very accurate, but its operational utility is compromised because it is 

computationally very expensive, due to the need to calculate a large number of equations, ranging from several dozens to 

hundreds, at each grid point and time step. Besides, as the KCE has no analytical solution, it has to be solved via numerical 

schemes, which are very diffusive by nature. While diffusive schemes could be appropriate for certain microphysical processes 

such as sedimentation (Khain et al., 2015), it is a disadvantage that has to be dealt with. However, the numerical solutions of 40 

the KCE have evolved in such a way that today we can find  models that are specifically design to limit the diffusiveness of 

these numerical methods (Bott, 1998a). In the case of bulk microphysics, the KCE is parameterized and the evolution of a 

chosen set of statistical moments related to physical variables is calculated, instead of the evolution of the DSD itself. A pioneer 

approach to this kind of parameterizations can be found in Kessler (1969), where a simple but relatively accurate representation 

of the autoconversion process is introduced. One or two-moment parameterizations are common (Cohard and Pinty, 2000; Lim 45 

and Hong, 2010; Milbrandt and McTaggart-Cowan, 2010; Morrison et al., 2009; Thompson et al., 2008). However, recently 

it has been extended to three-moment parameterizations (Huang, 2014; Milbrandt and Yau, 2005). This type of 

parameterization is computationally efficient, which makes it popular within the operational weather forecasting community. 

The main disadvantage of this approach is that the equations for solving the rates of the p-th moment include moments of a 

higher order, so the system of equations employed to calculate the evolution of the moments is not closed (Seifert and Beheng, 50 

2001). This could be avoided by using predefined parameters for the distributions that describe the DSD, which normally take 

the form of exponential (Marshall and Palmer, 1948), gamma (Milbrandt and McTaggart-Cowan, 2010; Milbrandt and Yau, 

2005) or lognormal distributions (Huang, 2014). Besides, artificial categories are often used to separate hydrometeors (cloud 

and rain water), depending on drop radius, values between 20 𝜇𝑚 and 41 𝜇𝑚 are very popular thresholds (Cohard and Pinty, 

2000; Khairoutdinov and Kogan, 2000), with the moments for each category being calculated by means of partial integration 55 

of the KCE.  

An additional approach to modelling microphysical processes is the particle-based one, which is based on the application of a 

stochastic model such as the Monte Carlo method to the coagulation (coalescence) of drop particles inside a cloud. This method 

has been approached from a number of perspectives. For example Alfonso et al. (2008) analysed the possible ways of solving 

the KCE by using a Monte Carlo algorithm and several collision kernels, with good correspondence between the analytical 60 

and numerical approaches for all the kernels, by estimating the KCE following Gillespie’s Monte Carlo algorithm (Gillespie, 

1972) and several analytical solutions. Also, the possible implications of this approach for cloud physics are discussed. Other 
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variants of this approach are analysed in Alfonso et al. (2011), and it has also been used to simulate the subprocesses of 

autoconversion and accretion applying a Monte Carlo-based algorithm within the framework of Lagrangian cloud models (Noh 

et al., 2018). This approach is accurate, and represents well the stochastic nature of the collision-coalescence of drops, but it 65 

is very expensive computationally.   

An alternative to these main approaches is a hybrid approach to parameterize the cloud microphysical processes. This approach 

simulates the explicit approach in the way that it describes the shape of the DSD through a linear combination of basis functions 

(Clark, 1976; Clark and Hall, 1983), and it could be considered a middle point between bulk and bin microphysics. This is 

done by having time-varying distribution parameters, instead of fixed ones, as is common in conventional bulk approaches. A 70 

system of prognostic equations is solved to obtain the parameters’ tendencies related to the statistical distribution functions 

based on the evolution of their total moments (the combination of the statistical moments with same order of all distribution 

functions involved), describing their tendencies due to condensation and collision-coalescence. Since the integration process 

covers the entire size spectrum, the artificial separation of the droplet spectrum is avoided, making the terms cloud droplet and 

rain drop meaningless (they are just drops), and it is possible to solve a fully closed system of equations without the need to 75 

keep any parameter of the distribution constant. However, this integration can be made only once for all parameters at each 

time step. Another advantage of this approach is its independence from a specific collision kernel type, as is common in the 

bulk approach; in order to obtain analytical expressions from the integrals of the KCE, a polynomial type kernel such as the 

one derived by Long(1974) is frequently used. Having said that, a limitation of this approach is that the total moment tendencies 

have to be solved at each time step for the needed parameters. An alternative solution for this shortcoming is previously 80 

calculating the moment’s rates by including a sufficiently wide range of parameters, and store the results in lookup tables that 

should be consulted several times at every time step. 

Machine Learning (ML) is the study of computer algorithms that improve automatically through experience and by the use of 

data (training) (Mitchell, 1997). ML algorithms build a model based on sample data in order to make predictions or decisions 

without being explicitly programmed to do so (Koza et al., 1996). They are used in a wide variety of applications, such as in 85 

medicine, email filtering, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform 

the needed tasks. In particular, neural networks (NN) are especially well suited for solving non-linear fitting problems and for 

establishing relationships within complex data such as the outputs of the KCE. In the field of atmospheric sciences, the use of 

DNNs has been extended to the parameterization of subgrid processes in climate models (Brenowitz and Bretherton, 2018; 

Rasp et al., 2018), while in cloud microphysics, the autoconversion process was parameterized using DNNs with a superior 90 

level of accuracy when compared with equivalent bulk models (Alfonso and Zamora, 2021; Sobhani et al., 2018). Also, a 

partial parameterization of collision-coalescence was tested in Seifert and Rasp(2020), which developed a ML 

parameterization that includes the processes of autoconversion and accretion, describing the droplet spectra as a gamma 

distribution, and establishing a comparative study that exposed the advantages and disadvantages of the use of ML techniques 

on cloud microphysics. 95 

https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision
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In order to eliminate the need to solve the rate equations for the total moments of the KCE at every time step (Thompson, 

1968), or resort to the use of lookup tables, we propose to predict the total moment tendencies using a ML approach within 

this parameterization. With this approach, the use of one trained Deep Neural Network (DNN) for each calculated total moment 

tendency will accelerate the calculations without sacrificing precision. Thus, the objective of this study is to apply DNN to the 

parameterized formulation of the collision-coalescence process developed by Clark(1976) in order to replicate the rate 100 

equations for the total moments, eliminating the need of memory expensive lookup tables or processing-time expensive 

numerical solution of integrals. 

The research article is structured as follows: In section 2, the parameterization framework is described, as well as the reference 

model used for comparison purposes; In section 3, the procedures of DNN methodology are explained and the network 

architecture is introduced, the training data set is generated, and the DNN is trained and validated; In section 4, the experiment 105 

design is explained; In section 5, the results are discussed, an assessment of the results is made by contrasting them with the 

reference solution, and the predicted total moment errors are analyzed; and in section 6 several conclusions are drawn.  

 2 Description of the collision-coalescence parameterization 

2.1 Formulation of the total moment tendencies 

 110 

Under the framework of the parameterization developed in this study, any given drop spectrum can be approximated by a 

series of basis functions. Therefore, the distribution that characterizes the evolution of the spectrum is given by a linear 

combination of probability density functions as shown below: 

𝑓〈𝑟〉 = ∑ 𝑓𝑖〈𝑟〉

𝐼

𝑖=1

                                    (1) 

where 𝑓𝑖〈𝑟〉 are the individual members of the set of distributions considered, I stands for the number of distribution functions 115 

that make up the set, and r refers to the radius of drops. In the case at hand, a set of two statistical distributions is employed. 

At each time step, the rates of the parameters of each distribution will be calculated. It should be noted that, in any set of 

distributions considered, all the members have the same type of distribution. For the proposed parameterization, as described 

in Clark(1976), a distribution of log-normal type is used, as follows 

𝑓〈𝑟〉 =
𝑁

√2𝜋𝜎𝑟
𝑒[−(𝑙𝑛 𝑟−𝜇)2/(2𝜎2)]             (2) 120 

Where µ and 𝜎2 stand for the mean and variance of ln 𝑟 respectively, while N represents the number concentration of drops. 

Considering that moment of order p (𝑅𝑝̅̅̅̅ ) of any distribution can be defined as (Straka, 2009) 



5 

 

𝑁𝑅𝑝̅̅̅̅ = ∫ 𝑟𝑝𝑓(𝑟)𝑑𝑟
∞

0

                (3)  

the following analytical solution of eq. (3) can be found for the moments of the lognormal distribution 

𝑅𝑝̅̅̅̅ = 𝑒𝑝𝜇+
1
2

𝑝2𝜎2
          (4) 125 

Combining eqs. (1), (3) and (4), the p-th total moment of a linear combination of lognormal distributions could be expressed 

as (Clark and Hall, 1983) 

𝑁𝑅𝑝̅̅̅̅ = ∑ 𝑁𝑖𝑅𝑖
𝑝̅̅̅̅

𝐼

𝑖=1

= ∑ 𝑁𝑖𝑒
𝑝𝜇𝑖+

1
2

𝑝2𝜎𝑖
2

𝐼

𝑖=1

             (5) 

Where the index i indicates each of the individual members of the set (I=2). Deriving eq. (5) with respect to time, we obtain 

the tendencies of the total moments of a series of log-normal distributions 130 

𝜕𝑁𝑅𝑝̅̅̅̅

𝜕𝑡
= ∑ 𝑁𝑖𝑅𝑖

𝑝̅̅̅̅ (
𝜕 𝑙𝑛 𝑁𝑖

𝜕𝑡
+ 𝑝

𝜕𝜇𝑖

𝜕𝑡
+

𝑝2

2

𝜕𝜎𝑖
2

𝜕𝑡
)

𝐼

𝑖=1

                             (6) 

Equation (6) can be expressed as a system of equations 

𝑨𝑿 = 𝑭                               (7) 

where X is a vector representing the tendencies of the distribution parameters 

𝑋𝑇 = [
𝜕 𝑙𝑛 𝑁1

𝜕𝑡
,
𝜕 𝑙𝑛 𝑁2

𝜕𝑡
, … ,

𝜕 𝑙𝑛 𝑁𝐼

𝜕𝑡
,
𝜕𝜇1

𝜕𝑡
,
𝜕𝜇2

𝜕𝑡
, … ,

𝜕𝜇𝐼

𝜕𝑡
,
𝜕𝜎2

1

𝜕𝑡
,
𝜕𝜎2

2

𝜕𝑡
, … ,

𝜕𝜎2
𝐼

𝜕𝑡
]       (8) 135 

The coefficient’s matrix A is a squared matrix of order 𝜈 (𝜈 = 3 × 𝐼) defined as 

𝐴 = {

𝑎𝑖,𝑗 = 𝑁𝑗𝑅𝑗
𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

𝑎𝑖,𝑗+𝐼 = (𝑖 − 1)𝑁𝑗𝑅𝑗
𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

𝑎𝑖,𝑗+2𝐼 =
1

2
(𝑖 − 1)2𝑁𝑗𝑅𝑗

𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

                (9) 

with 𝑖 = 1,2, … , 𝜈 and 𝑗 = 1,2, … , 𝐼. The components of the independent vector F are the tendencies of the total moments of 

the distributions: 

𝐹𝑇 = [
𝜕 𝑙𝑛 𝑁𝑅0̅̅̅̅

𝜕𝑡
,
𝜕 𝑙𝑛 𝑁𝑅1̅̅ ̅

𝜕𝑡
, … ,

𝜕 𝑙𝑛 𝑁𝑅𝜈−1̅̅ ̅̅ ̅̅

𝜕𝑡
]       (10) 140 

Both A and F are normalized in order to achieve a better numerical stability in the solution of the system of equations. The 

evolution of the distribution functions’ parameters  is calculated by applying a simple forward finite differences scheme (Clark 

and Hall, 1983) 

𝑁𝑖
𝑘+1 = 𝑁𝑖

𝑘𝑒
𝜕 ln 𝑁𝑖

𝑘

𝜕𝑡
∆𝑡                  (11𝑎)  
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𝜇𝑖
𝑘+1 = 𝜇𝑖

𝑘 +
𝜕𝜇𝑖

𝑘

𝜕𝑡
∆𝑡                (11𝑏) 145 

(𝜎2)𝑖
𝑘+1 = (𝜎2)𝑖

𝑘 +
𝜕(𝜎2)𝑖

𝑘

𝜕𝑡
∆𝑡      (11𝑐)        

With k being the time index in the finite difference's notation. 

2.2 Description of the calculation of the total moment tendencies due to collision-coalescence 

The KCE determines the evolution of a DSD due to collision-coalescence. This equation can be expressed in a continuous 

form as a function of mass as follows (Pruppacher and Klett, 2010) 150 

𝜕𝑓

𝜕𝑡
= ∫ 𝑓(𝑚 − 𝑚′)𝑓(𝑚′)𝐾(𝑚 − 𝑚′|𝑚′)𝑑𝑚′

𝑚/2

0

− ∫ 𝑓(𝑚)𝑓(𝑚′)𝐾(𝑚|𝑚′)𝑑𝑚′
∞

0

       (12) 

where 𝐾(𝑚|𝑚′) is the collection kernel. Reformulating eq. (12) in the form of Thompson(1968) and in function of radius, we 

can calculate the total moment tendencies (vector F from the previous section) as follows 

𝑑𝑁𝑅𝑝̅̅̅̅

𝑑𝑡
=

1

2
∫ ∫ 𝐹𝑝(𝑟1, 𝑟2)𝐾(𝑟1|𝑟2)𝑓〈𝑟1〉𝑓〈𝑟2〉𝑑𝑟1𝑑𝑟2

∞

0

∞

0

           (13) 

where 155 

𝐹𝑝(𝑟1, 𝑟2) = (𝑟1
3 + 𝑟2

3)𝑝/3 − 𝑟1
𝑝

− 𝑟2
𝑝

                                                           (14) 

𝐾⟨𝑟1|𝑟2⟩ = 𝜋(𝑟1 + 𝑟2)2𝐸(𝑟1, 𝑟2)|𝑉𝑇(𝑟1) − 𝑉𝑇(𝑟2)|                                    (15) 

Equation (15) represents the hydrodynamic kernel and 𝐸(𝑟1, 𝑟2) stands for the collection efficiencies taken from Hall(1980), 

which is based on a lookup table representing the effectiveness of drop collisions under given environmental conditions. A set 

of two lognormal distributions (eq. (2)) is used as members of the set in eq. (1). Hence, the prognostic variables under the 160 

parameterization formulation will be the corresponding parameters of both distribution functions: 𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2. 

At this point in the parameterization the total moment tendencies should be calculated either by solving eq. (13) at each time 

step for all the moments involved, or by searching in a lookup table calculated a priori. Instead, the following section explains 

in detail the ML approach proposed and its implementation. 

2.3 Description of the reference model 165 

To obtain a reference solution (KCE from now onwards), the explicit model developed by Bott(1998a) was employed. This 

scheme is conservative with respect to mass and very efficient computationally speaking. It is based on the numerical 

integration of the KCE which, rewritten in a more convenient way, is expressed as shown below: 
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𝑑𝑛(𝑥, 𝑡)

𝑑𝑡
= ∫ 𝑛(𝑥𝑐 , 𝑡)𝐾(𝑥𝑐 ,  𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

𝑥1

𝑥0

− ∫ 𝑛(𝑥, 𝑡)𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

∞

𝑥0

                (16) 

where 𝑛(𝑥, 𝑡) stands for the DSD at time t and 𝐾(𝑥𝑐 ,  𝑥′) represents the collection kernel. In order to simplify the calculations, 170 

the mass density function 𝑔(𝑦, 𝑡) is used (Berry, 1967): 

𝑔(𝑦, 𝑡)𝑑𝑦 = 𝑥𝑛(𝑥, 𝑡)𝑑𝑥                                            (17) 

𝑛(𝑥, 𝑡) =
1

3𝑥2
𝑔(𝑦, 𝑡)                                                (18) 

where 𝑦 = ln 𝑟 and r is the radius of a drop of mass x. By substituting (21) in (20) we obtain the KCE for the mass density 

function (Bott, 1998a) 175 

𝑑𝑔(𝑦, 𝑡)

𝑑𝑡
= ∫

𝑥2

𝑥𝑐
2𝑥′

𝑔(𝑦𝑐 , 𝑡)𝐾(𝑦𝑐 ,  𝑦′)𝑔(𝑦′, 𝑡)𝑑𝑦′

𝑦1

𝑦0

− ∫ 𝑔(𝑦, 𝑡)
𝐾(𝑦, 𝑦′)

 𝑥′
𝑔(𝑦′, 𝑡)𝑑𝑦′

∞

𝑦0

    (19) 

The first integral of the right-hand side of eq. (19) represents the gain of drops of mass x due to collision-coalescence of two 

smaller droplets, while the second integral portrays the loss of drops of mass x being captured by bigger drops (Bott, 1998a). 

For the numerical solution of eq. (19), a logarithmic equidistant mass grid is used, and is generated as 

𝑥𝑘+1 = 𝛼𝑥𝑘 , 𝑘 = 1,2, … , 𝑚                                                     (20) 180 

where m is the total number of grid points. The original code for this explicit model can be found at (Bott, 1998b), and can be 

used with authorization of the author. 

3 Machine Learning architecture and training data set 

ML methodology can be classified into three main categories, according to the problem at hand: supervised, unsupervised and 

reinforced learning. In our case, supervised learning is used. Supervised learning algorithms build a mathematical model of a 185 

set of data that contains both the inputs and the desired outputs (Russell and Norvig, 2010). Under this classification, there is 

previous knowledge of the set of input values �⃗�𝑘,  and their corresponding outputs �⃗�𝑘, , with 𝑘 = 1,2, … , 𝑛, where n is the 

amount of input values. The objective is to obtain a function 𝑓(�⃗�), by means of which the new data �⃗�𝑛𝑒𝑤 simulates reasonably 

well the output values. The set {�⃗�𝑘 , �⃗�𝑘};  𝑘 = 1,2, … , 𝑛 is called the training data set. To test the performance of 𝑓(�⃗�), the input 

and output data are separated into two different data sets: training and testing. As NN are able to fit any non-linear function 190 

(Schmidhuber, 2015), a ML parameterization should approximate reasonably well the solution of the KCE in the form of eq. 

(13), given enough layers and neurons in the architecture of the network.  
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3.1 Neural network architecture 

Deep Neural Networks are based on artificial neurons. Each neuron receives a set of input data, processes it and passes it to 

an activation function 𝜎(𝑧),  which returns the activated output (Fig. 1). The activation value of neuron i in layer l is denoted 195 

by 𝑎𝑖
𝑙 and is determined as 

𝑎𝑖
𝑙 = 𝜎(𝑧𝑖

𝑙  )                                         (21) 

𝑧𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ 𝑊𝑖,𝑗
𝑙 𝑥𝑖

𝑙−1 

𝑚𝑙−1

𝑗=!

                  (22) 

In eq. (22), 𝑏𝑖
𝑙 is the bias, 𝑊𝑖,𝑗

𝑙  is the ponderation weight, 𝑚𝑙−1 the number of neurons in layer l-1,, 𝜎(𝑧) is the activation 

function, and z is the processing intermediate value of the variable. Hence, a NN could be defined as a set of input values (�⃗�), 200 

bias values (�⃗⃗�) and weights (�⃗⃗⃗⃗�) integrated in a functional form, i.e. �⃗�(�⃗�, �⃗⃗⃗⃗�, �⃗⃗�), and its training procedure consists of 

minimizing an error function (known as loss function), by optimizing the weights and biases for the available training data. A 

commonly used loss function is the regression mean squared error (MSE). Hence, we need a minimization algorithm to process 

the following expression 

𝐶(�⃗⃗⃗⃗�, �⃗⃗�) =
1

2𝑛
∑‖�⃗�(�⃗�𝑘 , �⃗⃗⃗⃗�, �⃗⃗�) − �⃗�𝑘‖

2

𝑘

                    (23) 205 

 

Figure 1: Schematic representation of an artificial neuron. 
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The selected algorithm for minimization of the loss function (eq. (23)) is the bayesian regularization, which updates the weights 

and biases values according to the Levenberg-Marquardt optimization (Marquardt, 1963). Backpropagation is used to calculate 

the Jacobian of the performance with respect to the weight and bias variables (Dan Foresee and Hagan, 1997; MacKay, 1992). 210 

The used DNN was developed using MATLAB. It is conformed by one layer which receives the input data (input layer), three 

intermediate layers (hidden layers) with 20 neurons each and an output layer with a single neuron which returns the simulated 

target values (Fig. 2).  

 

Figure 2: Schematic representation of the architecture of the trained neural network used to calculate the total moment 215 

tendencies. The neural network receives six inputs and then processes them by means of three hidden layers of 20 

neurons each, and an output layer with a single neuron and one output value.  

3.2 Generation of the training and validation data sets 

The training procedure consists of feeding the DNN with six input values corresponding to the distribution parameters of each 

distribution and the total moment tendency for the p-th order obtained from eq. (13) as a target. The NN training algorithm 220 

then processes those values in order to establish the relationships between the data provided. This process is repeated until all 

input and target data is processed. The resulting trained DNN should be able to estimate the total moment tendencies from a 

given set of distribution parameters that falls within the ranges of the training variables. A schematic representation of the 

trained NN with the inputs and output is shown in Fig. 3.  
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 225 

Figure 3: Neural network parameterization inputs and output. The input data are the six distribution parameters 

(𝑵𝟏, 𝝁𝟏 , 𝝈𝟏, 𝑵𝟐, 𝝁𝟐 and 𝝈𝟐)  needed to feed eq. (13), while the output is the p-th order total moment tendency (
𝒅𝑵𝑹𝒑̅̅ ̅̅

𝒅𝒕
).  

In order to generate the training and test data sets, 100000 drop spectra derived from the input variables are employed, over a 

wide range of distribution parameters (𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2) . Those input parameters are used to calculate the total 

moment rates from eq. (13) and train the DNN. Five DNNs are trained, one for each total moment tendency involved in the 230 

formulation of the parameterization (moment orders ranged from 0 to 5), with exception of the total moment of order 3, as 

total mass is not affected by the collision-coalescence process. The same training input parameters are used to train all NNs, 

varying only the target values corresponding to the total moment tendencies of each order. 

The physical variables related to the input parameters are shown in Fig. 4 for a better representation of the generated training 

clouds. The training and test data is created using an uniformly distributed random number generator, with means and standard 235 

deviations shown in Table 1, as well as the ranges (minimum and maximum values) of each predictor variable.  

Table 1: Statistical description of the input values used in the training and test data sets. The means, standard deviation 

and ranges are shown for each input variable. 

Input Variable Mean Standard Deviation Range [min, max] 

Concentration (N) 250.80 144.13 [1.00; 500.00] 

µ Parameter -7.00 0.58 [-8.00; -6.00] 

σ Parameter 0.20 0.06 [0.10; 0.30] 

 

 240 

 

Figure 4 shows that within the ranges of the training data (concentration from 1 cm-3 to 500 cm-3), the corresponding liquid 

water contents (LWC) are between 10-10 g cm-3 and 10-4 g cm-3, with the majority of the data concentrated between the limits 
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of 10-8 g cm-3 and 10-5 g cm-3. Those values cover a sufficiently wide range of liquid water content to adequately represent 

warm clouds within the parameterization. 245 

  

Figure 4: Scatterplot of liquid water content (LWC) calculated from the input parameters of 𝒇𝟏 (left) and 𝒇𝟐 (right) vs 

drop number concentration. The LWC values are obtained from the statistical moment of order 3 using the parameters 

depicted in Table 1, and were calculated from eq. (4). The red dots represent the initial conditions for the experiment 

case included in Table 4. Only every 100th data point is shown. 250 

3.3 Training and testing of the Deep Neural Network 

From the available data, 80 % is employed in training the DNN, and the remaining 20 % is used for testing purposes. The total 

moment tendencies (eq. 13) are solved using a trapezoidal rule, over a logarithmic radius grid between the ranges of 1 𝜇𝑚 ≤

𝑟 ≤ 104  𝜇𝑚. The solutions of eq. (13) are called the target values. The mean and standard deviation for each calculated total 

moment rate are shown in Table 2. 255 
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Table 2: Means and standard deviations of total moment tendencies (target values) for each statistical moment used. 

The data is calculated from eq. (13) with the distribution parameters (𝑵𝟏, 𝝁𝟏, 𝝈𝟏, 𝑵𝟐, 𝝁𝟐 and 𝝈𝟐)  as input values. 

Total Moment Order Mean Standard Deviation 

M0 -0.0021 0.0014 

M1 -0.0015 0.0011 

M2 -0.0009 0.0006 

M4 0.0011 0.0007 

M5 0.0024 0.0016 

 

Both input and target values are normalized as follows 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − �̅�

𝜎
                   (24) 260 

The input and target values require normalization to facilitate the work of the optimization algorithm. All nodes in each layer 

of the DNN use the MSE as a loss function. The training procedure for a NN consists of processing a fragment of the total 

training data through the network learning architecture, then determining the prognostic error and the gradient of the loss 

function (MSE) back through the network in order to update the weight values. This algorithm is repeated via an iterative 

process over all training data until the performance index (MSE) is small enough or a predefined number of passes through all 265 

data are completed. One pass through all training data is known as an epoch. In this case, a maximum number of 1000 epochs 

is established, and a minimum value of 10−7 is considered for the gradient function.  

Five DNN are trained, one for each total moment tendency involved in the formulation of the parameterization (moment orders 

ranged from 0 to 5). A variant of the training process, known as cascade-forward neural network training, is employed. The 

main difference with the standard training procedure is that it includes a connection from the input and every previous layer 270 

to following layers (see Fig. 2). As with feed-forward networks, a two-or more layer cascade network can learn any finite 

input-target relationship arbitrarily well, given enough hidden neurons. The total moment tendencies for the statistical moment 

of order 3 is not calculated because the collision-coalescence process does not affect total mass.  

Performance (MSE) training records for the total moment tendencies calculated from eq. (13) are depicted in Fig. 5. The speed 

of convergence is similar in all cases, and all networks converged at epoch 1000. This occurs because the gradient value never 275 

was below the minimum, so the training process kept refining the results until it reached the maximum number of epochs 

previously defined. Despite that, a good performance is achieved, with the MSE in the order of 10−4 for all orders of the total 

moment tendencies as shown in Table 3, where the best (final) MSE values for each trained DNN are manifested in detail. 

Since the values of the total moments are normalized in the DNN model (scale of 100), these values of MSE are considered as 

the indications of high accuracies for the scale of the problem. 280 
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Table 3: Best performance in the training process of the DNNs. The performance measures are the Mean Squared 

Error (MSE) and the Pearson Correlation Index. The shown data corresponds to the total moment tendencies obtained 

from the trained neural networks, with input values and reference targets taken from the validation data set.  

Total Moment Order Best Performance (MSE) Correlation Index 

M0 2.59e-04 0.9998 

M1 3.49e-04 0.9998 

M2 2.68e-04 0.9999 

M4 1.80e-04 0.9999 

M5 2.05e-04 0.9998 

 

 285 
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Figure 5: Performance training records of total moment tendencies for the moments from order 0 to 5. The shown data 

corresponds to the total moment tendencies obtained from the trained neural networks, with input values and reference 

targets taken from the validation data set. The performance measure is the Mean Square Error (MSE).  

Regression plots for the trained networks are depicted in Fig. 6. It is a comparison between the outputs obtained from evaluating 290 

the trained neural networks using the test inputs and the targets from the test data set corresponding to each of the total moment 

tendencies obtained from eq. (13). Minor differences can be appreciated from the graphics, with the trained DNN models 

overestimating or underestimating the actual values. However, a good agreement was reached for all trained DNN, with the 

predicted values from the DNN matching the actual output from the solution of eq. (13) with a coefficient of correlation 

between 0.9998 and 0.9999 in all cases (as shown in Table 3). The axis ranges of the graphics vary because the plotted data is 295 

non-normalized, thus, there are different ranges for each of the calculated total moment tendencies.  
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Figure 6: Regression plots for the five DNN trained. It is a comparison between the outputs obtained from evaluating 

the trained neural networks using the test inputs and the targets from the validation data set corresponding to each of 

the total moment tendencies obtained from eq. (13). The order of the statistical moments range from 0 to 5. The y axis 300 

varies for each subplot because the plotted data is non-normalized. 

Experiments with non-normalized training data were performed, yielding results with MSE at least an order of magnitude 

higher. Those results are not shown in the present article due to the lower accuracy of the regression outputs.  

Neural networks give us a better way to estimate the values of the integral (13). If the parameterization was implemented from 

real time calculations of the integral (13) by the trapezoidal rule every time it was necessary, it would be extremely slow. The 305 

neural networks of course do not replace the computation of integrals, but since they have the ability to learn and model 

complex non-linear functions, they allow (once trained) to estimate them efficiently for values of the parameters (𝑁1, 𝜇1 , 𝜎1, 

𝑁2, 𝜇2 and 𝜎2), for which it has not been previously calculated. 
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Before the widespread adoption of machine learning, the alternative previously used by other authors (Clark, 1976; Clark and 

Hall, 1983; Feingold et al., 1998) were the lookup tables, that are tables that stores a list of predefined values (the moment 310 

tendencies in this case). Then, in the context of our work, the lookup table is a mapping function that relates the parameters of 

the basis functions (𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2), with the total moment tendencies  (
𝒅𝑵𝑹𝒑̅̅ ̅̅

𝒅𝒕
).   

However, usually, functions computed from lookup tables have a limited domain. For larger problems, the memory and the 

time required to access the data increase substantially. Furthermore, preferably, we need functions whose domain is a set with 

contiguous values. Additionally, every time we need to calculate the integral (13), a search algorithm must be executed in 315 

order to retrieve the moment tendency for a given set of parameters, and some kind of interpolation will be needed to compute 

moment tendencies for values of the parameters for which it has not been calculated.  

The advantage of the neural networks is that all the computational effort is dedicated to the training phase. Once we trained 

the networks, they replace the lookup tables and are able to map efficiently the parameters of the basis functions with total 

moment tendencies. A significant speed up is expected since we just need to evaluate the input parameters, and there is no 320 

need to execute a searching algorithm in order to retrieve the desired information. 

The codes for generating the training and validation data sets, and training of the neural networks themselves can be 

found at (Rodríguez-Genó and Alfonso, 2021c).4 WDM6 parameterization and experiment design 

An experiment is performed with the objective of illustrating the behaviour of the ML-based parameterized model (P-DNN) 

and how it compares with the results of a traditional bulk parameterization and the reference model (KCE). This experiment 325 

should not be interpreted as an evaluation of the overall behaviour of P-DNN, but as an example of how it predicts the DSD 

and bulk variables. A detailed evaluation of the novel components of the P-DNN scheme was already carried out in the previous 

chapter. 

 

4.1 Initial conditions and experiment design 330 

The simulation lasted for 𝑡 = 900 𝑠 (15 minutes)  is considered for all models, with a time step of ∆𝑡 = 0.1 𝑠. The initial 

parameters for the distribution functions of the parameterized model are as shown in Table 4.  

Table 4: Initial parameters for the distribution functions of P-DNN. Each distribution is characterized by a 

concentration parameter (N), expected value (µ) and standard deviation (σ). The initial parameters are shown for the 

two lognormal distribution functions employed in the formulation of P-DNN. 335 

Parameter f1 f2 

N 190 cm-3 10 cm-3 

µ -7.1505 -6.5219 

σ 0.1980 0.1980 
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The values from Table 4 are well within the parameters established on Table 1, and were set following (Clark, 1976). They 

were chosen, as they are a good representation of the training data on which the neural networks were trained. The initial 

spectrum for the KCE was calculated from these parameters to ensure the same initial conditions for both models. A 300-point 

logarithmic equidistant grid was generated for the integration of the KCE, with radii values in the range of 0.25 𝜇𝑚 ≤ 𝑟 ≤340 

2.6 × 104 𝜇𝑚. Equations (17) and (18) were used to transform the output of both models to make them comparable, while the 

bulk quantities from the KCE were integrated from the calculated spectra. 

4.2 WDM6 parameterization 

To better establish the accuracy of the P-DNN, an extra parameterization was included in the comparison with the reference 

solution. The selected parameterization is the WRF Double Moment 6-class bulk mode (WDM6) (Lim and Hong, 2010), which 345 

was chosen for being commonly used and being implemented in a well-known three-dimensional atmospheric model (WRF). 

The collision-coalescence section of that parameterization is explained in detail in (Cohard and Pinty, 2000), and treats the 

main warm microphysical processes in the context of a two-moment framework. A scheme of such a type is believed to be a 

pragmatic compromise between over-simplified bulk parametrizations of precipitations as proposed by (Kessler, 1969) and 

very detailed bin models that are computationally too cumbersome for practical use in 3D mesoscale models. Inclusion of a 350 

prognostic equation for the number concentration of raindrops provides a better insight into the growth of large drops, which 

in turn can only improve the time evolution of the mixing ratios. 

The scheme makes use of analytical solutions  of some microphysical processes, after reasonable simplifications. This has 

been done with an elaborate function, the generalized gamma distribution that enables fine tuning of droplet/drop spectral 

shape through the adjustment of two free-dispersion parameters. All the tendencies, except the autoconversion of the cloud 355 

droplets, are parametrized on the basis of continuous integrals that encompass the whole range of drop diameters. With this 

method, the treatment of autoconversion is the weakest link in the scheme because this process acts in the diameter range 

where the fuzzy transition between cloud droplets and raindrops is hardly compliant with a bimodal and spectrally wide (from 

zero to infinity) representation of the drops. This model is represented in the following sections as P-CP2000. For comparison 

purposes, all simulations share the same initial conditions. It should be noted that WDM6, being a conventional two-moment 360 

scheme, is focused on the evolution of the moments of order zero and three of a truncated gamma distribution function. The 

code for the WDM6 parameterization and related files can be found at (Rodríguez-Genó and Alfonso, 2021d). 

5 Discussion of results 

The results shown in this section were obtained using the parameterized model COLNETv1.0.0. The source code can be found 

at (Rodríguez-Genó and Alfonso, 2021a), while the scripts for reproducing the figures are archived at (Rodríguez-Genó and 365 

Alfonso, 2021b) 
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5.1 Spectra comparison 

The output of this parameterized Deep Neural Network model (P-DNN) are the updated distribution parameters at every time 

step (𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2). The physical variables related to the moments of the distributions, such as mean radius or 

liquid water content (LWC) are diagnosed from those parameters. Besides, we can calculate the shape and scale of the drop 370 

spectrum at any given time, by integrating the distribution functions defined by its parameters. 

Figure 7 shows a comparison between the mass density spectra derived from P-DNN and KCE models for three chosen times 

(300 s, 600 s and 900 s). 
 

 375 
Figure 7: Mass density functions from P-DNN, P-CP2000 and KCE. The represented times are 300 s, 600 s and 900 s, 

from top to bottom. Equation (17) was used to transform the drop number concentration spectra from P-DNN to the 

mass density spectra. 

At 300 s (first row of Fig. 7), there is a slow development of the total spectrum, with a clear mass transfer between both modes 

of the presented models. The parameter-generated spectrum from P-DNN fits well the reference solution, with a slight 380 
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overestimation of the maximum mass in the second mode. The mean radius of the distributions are well represented by P-

DNN. At 600 s and 900 s (second and third row of Fig. 7), there is a development of a third mode in the evolution of  KCE, 

that is not reproduced by P-DNN, producing instead a wider second mode, representing well the mean radius and mass 

distribution. The first mode is accurately represented at those times. An increase in mean radius can be observed, due to the 

effect of the collision-coalescence process.  385 

The simulation results with P-CP2000 are clearly different from the others. The first noticeable difference is the existence of 

droplets that are smaller than the initial distribution. This is caused by the fixed distribution parameters employed in its 

formulation. The slope parameter is determined by an analytical expression and evolves with time within certain limits, but 

the parameters related to the spectral breadth are held fixed. For more information please refer to (Cohard and Pinty, 2000). 

Besides that,, P-CP2000 performs poorly at all the represented simulation times, when compared with KCE.  It presents  390 

pronounced tendency to go ahead of the KCE, leading to a faster-than-normal development of larger drops. Particularly, the 

mass transfer is very noticeable at the end of the simulation. However, the first mode of P-CP2000 does not decrease 

proportionally, which leads to think that there are a lot of small drops and a few big drops accounting for that increase in mass 

by the end of the simulation.  

Figure 8 shows a comparison between the drop number concentration spectra derived from P-DNN, P-CP2000  and KCE for 395 

three chosen times (300 s, 600 s and 900 s). A generally good agreement is appreciated at all times for P-DNN, with its spectra 

slightly underestimating the results from KCE. As the collision-coalescence process decreases the drop number concentration, 

there is no noticeable increase in the number of drops in the second mode of the distributions. However, an increase in the 

mean radius is observed, that is consistent with the behaviour described in Fig. 7, where a related mass transfer between both 

distribution functions is seen. 400 

 

Regarding P-CP2000, its spectra underestimate the KCE, and the lack of a second mode reaffirms the behaviour shown in Fig. 

7. However, being a conventional bulk parameterization, its strong points are not related to the description of the drop spectra, 

but to the representation of bulk quantities such as the total number concentration and mass content of the clouds. 
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 405 

 

Figure 8: Drop number concentration spectra P-DNN, P-CP2000 and KCE. The selected times are 300 s, 600 s and 900 

s, from top to bottom.  Equation (18) was used to transform the mass density spectra from KCE to the drop number 

concentration spectra. 

5.2 Bulk quantities comparison 410 

Figure 9 shows a comparison of two main bulk quantities (total number concentration and mean radius) obtained from P-DNN, 

P-CP2000 and KCE. The concentration and mean radius of KCE were obtained by integrating the drop number concentration 

spectra for the corresponding moment order (0 and 1 respectively). As expected, number concentration decreases with time, 

due to the coalescence of drops, ranging from an initial value of 200  cm-3 to around 160  cm-3 in KCE. The predicted 

concentration from P-DNN underestimates the KCE values in most of the simulation, with the differences reaching 10  cm-3 415 

at 900 s. A relatively better representation of drop number concentration is achieved by the P-CP2000 model, showing values 

closer to KCE, although it reaches the same differences as P-DNN by the end of the simulation. 
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 A similar behaviour is observed in the mean radius results, with a growth in the drop size consistent with the decreasing values 

on the drop number concentration for P-DNN, but differences are small with the highest error  of 5 𝜇𝑚. However, the results 

fit well enough the reference solution to consider including this microphysical parameterization in a weather model. This 420 

consistent behaviour of the mean radius and number concentration values points to a conservation of mass, a compulsory 

condition in the collision-coalescence process. However, P-CP2000 performs somehow worse than P-DNN for the mean 

radius, with the mean difference almost reaching 10 𝜇𝑚, although it shows a similar monotony to both the KCE and P-DNN 

models. 
 425 

 

Figure 9: Drop number concentration (top) and mean radius (bottom) comparison with KCE. The concentration and 

mean radius of KCE were obtained by integrating the drop number concentration spectra for the corresponding 

moment order (0 and 1 respectively). The data points are plotted every 60 s. 

Figure 10 depicts the evolution of two main bulk quantities (drop number concentration and liquid water content) for the 430 

individual distributions that conform P-DNN (f1 and f2), as well as the combined (total) values of the variables (calculated as 
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𝑓1 + 𝑓2). Regarding concentration, a decrease in f1 values is observed, due to the coalescence process, while a consistent 

increase in f2 is also appreciated. The increase in the concentration of f2 is not as marked due to the collision-coalescence 

process as well. However, a general decrease of the total concentration value  represents well the theory and observations of 

the parameterized process.  435 

The liquid water content (LWC) values (diagnosed) are depicted only to verify that mass is conserved under the formulation 

of P-DNN. The LWC of each of the distribution functions (f1 and f2) were obtained from the corresponding moment (order 3) 

calculated from eq. (4). Effectively, the mass content retains a value of 6.1739 × 10−7 𝑔 𝑐𝑚−3 during the entire simulation, 

with a proportional mass transfer between f1 and f2. 

 440 

Figure 10: Evolution of drop number concentration N (left) and liquid water content LWC (right) of the individual 

distributions that conform P-DNN. The liquid water content of each of the distribution functions (f1 and f2) were 

obtained from the corresponding moment (order 3) calculated from eq. (4). The combined (total) values of the variables 

are also shown and were calculated from eq. (5).  
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5.3 Total moment errors  445 

An analysis of the predicted total moments was performed with the objective to further test the precision of P-DNN, due to the 

importance of the statistical moments in calculating physical variables such as mean radius and LWC. Table 5 shows the mean 

percent errors of the total moments predicted by P-DNN and P-CP2000. The percent error is taken relative to the moments of 

KCE. The data was obtained by calculating the mean of the percent errors of the entire simulation. The moments of KCE were 

calculated by integrating the reference drop number concentration spectra using eq. (3), while the total moments from  P-DNN 450 

and P-CP2000 were calculated using the predicted distribution parameters and solving eq. (5).  The defined gamma distribution 

equations for the moments, are used in the case of P-CP2000. A reasonable degree of accuracy was achieved by P-DNN, with 

the mean error never surpassing the 4 %. However, the data shows that the total moments of order 0 to 2 are usually 

underestimated, while those of order 4 and 5 are slightly overestimated. This could result in the calculations of drop number 

concentration values lower than the actual ones, as seen in Fig. 9.   As for P-CP2000, the model is not formulated to predict 455 

individual moments other than the zeroth and third moments. Thus, it performs badly in representing the other moments of the 

distributions, as observed in the mean percent error, which reaches almost -61% for the moment of order five. That value is a 

great difference from the zeroth moment for example, whose percent error is only -1.3 %. This result indicates that the 

modelling philosophy of P-DNN is adequate to represent the evolution of individual moments within certain ranges, when 

compared with more conventional bulk schemes. 460 

Table 5: Total moment mean errors. The percent error is taken relative to the moments of KCE. The shown data was 

obtained by calculating the mean of the percent errors of the entire simulation.  

Total Moment Order Mean Percent Error P-DNN Mean Percent Error P-CP2000 

M0 -3.3479 -1.2718 

M1 -2.6437 27.0500 

M2 -1.4969 27.0370 

M4 1.1249 9.2037 

M5 0.7205 -60.8886 

 

Figure 11 shows the time evolution of the percent error of the total moments throughout the simulation for P-DNN. The percent 

error is taken relative to the moments of KCE. The moments of KCE were calculated by integrating the reference drop number 465 

concentration spectra using eq. (3), while the total moments from P-DNN were calculated using the predicted distribution 

parameters to solve eq. (5). The error of total moment of order 3 is zero during the entire simulation because mass is not 

affected by the collision-coalescence process. The total moments from order 0, 1 and 2 overestimate the KCE in the first 300 

s of simulation, underestimating them for the rest of the P-DNN run, with the percent error reaching a minimum value of -8 

%. The opposite behaviour is appreciated for the total moments of order 4 and 5, where they initially underestimate the KCE, 470 

overestimating it for the rest of the simulation. However, for these orders the percent error is usually lower, with a maximum 
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of 4 %. Generally, P-DNN is performing well, with the percent error never reaching the 10 % threshold. However, further 

analysis on this topic is recommended, to improve the accuracy of the parameterization.  

 

Figure11: Time evolution of the errors corresponding to the predicted moments from P-DNN. The percent error is 475 

taken relative to the moments of KCE. The moments of KCE were calculated by integrating the reference drop number 

concentration spectra using eq. (3), while the total moments from the P-DNN were calculated using the predicted 

distribution parameters to solve eq. (5).  

6 Conclusions 

A hybrid parameterization for the process of collision-coalescence based on the methodology of basis functions employing a 480 

linear combination of two lognormal distributions was developed and implemented.All the parameters of the distributions are 

derived from the total moment tendencies and calculated by means of five trained deep neural networks. By doing this, we 

obtained a parameterized model that determines the distribution parameters’ evolution, hence, the evolution of the DSD. The 
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physical variables are diagnosed from the distribution moments. Within the framework of this parameterized model, there is 

no artificial separation of the DSD. Instead, we consider a full set of distribution parameters for each of the distribution 485 

functions that are considered in the formulation of the parameterization, in order to describe the DSD in radius space. This 

kind of microphysical parameterization allows the use of an arbitrary number of statistical density functions in linear 

combination to reproduce the drop spectrum.  

The novel components of the P-DNN model were evaluated in Chapter 3, demonstrating the precision and ability of the ML 

method to reproduce the rates of the total moments due to collision-coalescence. One experiment was performed to illustrate 490 

the behaviour of the proposed ML formulation at the initial stages of cloud formation. The simulation results from P-DNN 

showed good agreement when compared to a reference solution (KCE) and a conventional bulk scheme (P-CP2000), for both 

the predicted DSD and the bulk quantities considered. According to the comparison with the bulk model, the main strength of 

the DNN model is the superior ability to represent the evolution of individual moments of the distribution functions, because 

of its formulation based on time-varying distribution parameters. The total moment tendencies were well predicted using the 495 

trained DNNs, improving the computational performance of the original formulation. An analysis of the accuracy of the 

predicted total moments of P-DNN was performed, with the percent error relative to  the KCE never exceeding 10 %. However, 

there is room for improvement in the calculations of the total moments, which is the recommendation of the authors to retrain 

the DNNs with a finer resolution in the parameters’ values, and with a wider range of values in order to cover all possible 

combination of parameters. In addition, the use of ML eliminated the requirement of integrating the total moment tendencies 500 

at each time step, and the use of memory expensive lookup tables for each predicted moment is no longer needed under this 

formulation.  

The presented way to simulate the evolution of the droplet spectra due to collision-coalescence falls within the framework 

developed by Clark(1976) and Clark and Hall(1983). Under this modelling philosophy, a dynamic framework has been 

established in Rodríguez-Genó and Alfonso(2021e). To obtain a full warm cloud model, an extension of this neural network 505 

algorithm applied to condensation is proposed, following the same methodology of series of basis functions. A 

parameterization scheme such as this could be included in regional weather and climate models, as its initial conditions can be 

calculated from variables needed by more traditional bulk models. 
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