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Abstract. A parameterization for the collision-coalescence process is presented, based on the methodology of basis functions. 

The whole drop spectruma is depicted as a linear combination of two lognormal distribution functions, leaving no parameters 

fixed. in which all distribution parameters are formulated by means of six distribution moments included in a system of 10 

equations, thus eliminating the need of fixing any parameters. This basis- functions parameterization avoids the classification 

of drops in artificial categories such as cloud water (cloud droplets) or rain water (raindrops). The total moment tendencies are 

predictedcalculated using a machine learning approach, in which one deep neural network was trained for each of the total 

moment orders involved. The neural networks were trained using randomly generated data following a uniform distribution, 

over a wide range of parameters employed by the parameterization. An analysis of the predicted total moment errors was 15 

performed, aimed to establish the accuracy of the parameterization at reproducing the integrated distribution moments 

representative of physical variables. The applied machine learning approach shows a good accuracy level when compared to 

the output of an explicit collision-coalescence model. 

 

Keywords: cloud microphysics; collision-coalescence; lognormal distribution; microphysics parameterization; numerical 20 

modelling; machine learning; neural networks. 

1 Introduction 

Drop populations are well represented using drop size distributions (DSD). The first attempt at characterizing drop spectra 

using was developed by Marshall and Palmer (1948), who employed exponential distributions based on drop diameter to 

describe the DSDs (Marshall and Palmer, 1948). More recently, the use of a three-parameter gamma distribution has shown a 25 

good agreement with observations (Ulbrich, 1983). However, lognormal distributions have shown a better squared-error fit to 

measurements of rain DSDs than gamma or exponential distributions (Feingold and Levin, 1986; Pruppacher and Klett, 2010). 

The analysis of several important characteristics of the Brownian coagulation process showed that the lognormal distribution 

adequately represents the particle distributions (Lee et al., 1984, 1997). The first attempt at characterizing drop spectra using 
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this approach was developed by Marshall and Palmer, whom employed exponential distributions based on drop diameter to 30 

describe the DSDs (Marshall and Palmer, 1948). Also, the use of a three-parameter gamma distribution have shown a good 

agreement with observations (Ulbrich, 1983). However, lognormal distributions have shown a better squared-error fit to 

measurements of rain DSDs than gamma or exponential distributions (Feingold and Levin, 1986; Pruppacher and Klett, 2010). 

For spherical particles such as cloud drops, a transformation of the DSD leads to a self-preserving form, which can be obtain 

by applying a similarity transformation over the distribution function. This convergence is very fast for particles under a high 35 

Knudsen number regime (in the order of microseconds), when assuming high concentration values in the initial stages of the 

process. However, it has been confirmed that such a behaviour is not observed in low Knudsen number environments (Dekkers 

and Friedlander, 2002; Lee et al., 1997). The analysis of several important characteristics of the Brownian coagulation process 

showed that the lognormal distribution adequately represents the particle distributions. Further, several results indicate that the 

required time to attain a self-preserving form of a particle spectra is related to the initial geometric standard deviation as well 40 

(Lee et al., 1984, 1997). In addition, some authors have employed this type of distribution function (lognormal) to parameterize 

cloud processes with promising results (Clark, 1976; Feingold et al., 1998; Huang, 2014). 

There are two main approaches to modelling cloud processes: the explicit approach (bin microphysics) and the bulk approach 

(bulk microphysics). Bin microphysics is based on the discretization of a droplet size distribution (DSD) into sections (bins), 

and calculates the evolution of the DSD due to the influence of different processes that could be dynamical and/or 45 

microphysical (Berry, 1967; Berry and Reinhardt, 1974; Bott, 1998a; Khain et al., 2004, 2010). The core of this method is the 

solution of the Kinetic Coagulation Equation (KCE) (von Smoluchowski, 1916a, 1916b) for the collision-coalescence of liquid 

drops, (also known as Stochastic Coalescence Equation or Kinetic Collection Equation within the cloud physics community), 

in a previously designed grid, that could be over mass or radius. Thus, previous knowledge of the characteristics or parameters 

of the distributions is not necessary. This way of solving the KCE is very accurate, but its operational utility is compromised 50 

because it is computationally very expensive, due to the need to calculate a huge amount large number of equations, 

rangingwhich number ranges from several dozens to hundreds, at each grid point and time step. Besides, as the KCE has no 

analytical solution, it has to be solved via numerical schemes, which are very diffusive by nature. While diffusive schemes 

could be appropriate for certain microphysical processes (sedimentation) (Khain et al., 2015), it is a disadvantage that have to 

be dealt with. However, the evolution of the numerical solutions of the KCE has evolved in such a way that we can find today 55 

model specifically design to limit the diffusiveness of these numerical methods (Bott, 1998a). 

In the case of bulk microphysics, the KCE is parameterized and the evolution of a chosen set of statistical moments related to 

physical variables is calculated, instead of the evolution of the DSD itself. A pioneer approach to this kind of parameterizations 

can be found at (Kessler, 1969), where it is introduced a simple but accurate representation of the autoconversion process is 

introduced. One or two-moment parameterizations are common (Cohard and Pinty, 2000; Lim and Hong, 2010; Milbrandt and 60 

McTaggart-Cowan, 2010; Morrison et al., 2009; Thompson et al., 2008), however, recently it has been extended to three-

moment parameterizations such as (Huang, 2014; Milbrandt and Yau, 2005). This type of parameterization is computationally 

efficient, which make it popular within the operational weather forecasting community. The main disadvantage of this 
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approach is that the equations for solving the rates of the p-th moment include moments of a higher order, so the system of 

equations employed to calculate the evolution of the moments is not closed (Seifert and Beheng, 2001). This could be avoided 65 

by using predefined parameters for the distributions that describe the DSD, which normally take the form of exponential 

(Marshall and Palmer, 1948), gamma (Milbrandt and McTaggart-Cowan, 2010; Milbrandt and Yau, 2005) or lognormal 

distributions (Huang, 2014). Besides, artificial categories are often used to separate hydrometeorswater substance (cloud and 

rain water), dependent onof the drop radius, being 20 𝜇𝑚 and 41 𝜇𝑚 being very popular thresholds (Cohard and Pinty, 2000; 

Khairoutdinov and Kogan, 2000), with the moments for each category being calculated by means of partial integration of the 70 

KCE.  

An additional approach on this matter is the particle-based one, which is based on the application of a stochastic model such 

as the Monte Carlo method to the coagulation (coalescence) of drop particles inside a cloud. This method have been approached 

from a number of perspectives. For example (Alfonso et al., 2008) analysed the possible ways of solving the KCE by using a 

Monte Carlo algorithm and several collision kernels, with good correspondence between the analytical and numerical 75 

approaches for all the kernels, by estimating the KCE following the Gillespie’s Monte Carlo algorithm (Gillespie, 1972) and 

several analytical solutions. Also, the possible implications of this approach for cloud physics are discussed. Other variants of 

this approach are analysed in (Alfonso et al., 2011), and more it has been used to simulate the subprocesses of autoconversion 

and accretion applying a Monte Carlo-based algorithm within the framework of Lagrangian cloud models (Noh et al., 2018). 

This approach is accurate, and represents well the stochastic nature of the collision-coalescence of drops, but it is very 80 

expensive computationally.   

An alternative to these main approaches can be applied by using a hybrid approach to parameterize the cloud microphysical 

processes. This approach simulates the explicit approach in the way that it describes the shape of the DSD through a linear 

combination of basis functions (Clark, 1976; Clark and Hall, 1983), and it could be considered a middle point between bulk 

and bin microphysics. This is done by having time-varying distribution parameters, instead of fixed ones, as is common in 85 

conventional bulk approaches. A system of prognostic equations is solved to obtain the tendencies of the parameters of the 

statistical distribution functions based on the evolution of its total moments (the combination of the statistical moments of the 

same order of all distribution functions involved), describing their tendencies due to condensation and collision-coalescence. 

Since the integration process covers the entire size spectrumdomain, the artificial separation of the droplet spectrum is avoided, 

making the terms cloud droplet and rain drop meaningless (there is just drops), and it is possible to solve a fully closed system 90 

of equations without the need to keep any parameter of the distribution constant. However, this integration can be made only 

once for all parameters at each time step. Another advantage of this approach is its independence from a specific collision 

kernel type, as is common in the bulk approach, that in order to obtain analytical expressions from the integrals of the KCE, a 

polynomial type kernel such as the one derived by (Long, 1974) is frequently used. Having said that, a limitation of this 

approach is that the total moment tendencies have to be solved at each time step for the needed parameters. An alternative 95 

solution for this , orshortcoming being consist on previously calculatinged the moment’s rates by including a sufficiently wide 
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range of parameters, and store the results that should be stored in lookup tables that shouldmust be consulted several times at 

every time step. 

Machine Learning is the study of computer algorithms that improve automatically through experience and by the use of data 

(training) (Mitchell, 1997). Machine Learning algorithms build a model based on sample data in order to make predictions or 100 

decisions without being explicitly programmed to do so (Koza et al., 1996). Machine learning algorithms are used in a wide 

variety of applications, such as in medicine, email filtering, and computer vision, where it is difficult or unfeasible to develop 

conventional algorithms to perform the needed tasks. In particular, neural networks (NN) are especially well suited for solving 

non-linear fitting problems and for establishing relationships within complex data such as the outputs of the KCE. In the field 

of atmospheric sciences, the use of DNNs has been extended to the parameterization of subgrid processes in climate models 105 

(Brenowitz and Bretherton, 2018; Rasp et al., 2018), while in cloud microphysics, the autoconversion process was 

parameterized using DNNs with a superior level of accuracy when compared with equivalent bulk models (Alfonso and 

Zamora, 2021; Sobhani et al., 2018). Also, a partial parameterization of collision-coalescence was tested in (Seifert and Rasp, 

2020), which developed a ML parameterization that includes the processes of autoconversion and accretion, describing the 

droplet spectra as a gamma distribution, and establishing a comparative study that exposed the advantages and disadvantages 110 

of the use of ML techniques on cloud microphysics. 

In order to eliminate the need to solve the  rate equations for the total moments of the KCE at every time step (Thompson, 

1968), or resort to the use of lookup tables, a Machine Learning (ML) approach is proposed to calculate the total moment 

tendencies within this parameterization. With this approach, the use of one trained Deep Neural Network (DNN) for each 

calculated total moment tendency will accelerate the calculations without sacrificing precision. Thus, the objective of this 115 

study is to apply DNN to the parameterized formulation of the collision-coalescence process developed at (Clark, 1976) in 

order to replicate the rate equations for the total moments, eliminating the need of memory expensive lookup tables or 

processing-time expensive numerical solution of integrals. 

Machine Learning is the study of computer algorithms that improve automatically through experience and by the use of data 

(training) (Mitchell, 1997). Machine Learning algorithms build a model based on sample data in order to make predictions or 120 

decisions without being explicitly programmed to do so (Koza et al., 1996). Machine learning algorithms are used in a wide 

variety of applications, such as in medicine, email filtering, and computer vision, where it is difficult or unfeasible to develop 

conventional algorithms to perform the needed tasks. In particular, neural networks (NN) are specially well suited for solving 

non-linear fitting problems and for stablishing relationships within complex data such as the outputs of the KCE. In the field 

of atmospheric sciences, the use of DNNs has been extended to the parameterization of subgrid processes in climate models 125 

(Brenowitz and Bretherton, 2018; Rasp et al., 2018), while in cloud microphysics, the autoconversion process was 

parameterized using DNNs with a superior level of accuracy when compared with equivalent bulk models (Alfonso and 

Zamora, 2021; Sobhani et al., 2018). Also, a partial parameterization of collision-coalescence was tested in (Seifert and Rasp, 

2020), which developed a ML parameterization that includes the processes of autoconversion and accretion, describing the 

https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision
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droplet spectra as a gamma distribution, and establishing a comparative study that exposed the advantages and disadvantages 130 

of the use of ML techniques on cloud microphysics. 

The research article is structured as follows: In section 2, the parameterization framework is described, as well as the reference 

model used for comparison purposes; In section 3, the procedures of DNN methodology are explained and the network 

architecture is introduced, the training data set is generated, and the DNN is trained and validated; section 4 includes a 

description of the explicit model used as reference solution; In section 45, the experiment design is explained; In section 56, 135 

the results are discussed, an assessment of the results is made by contrasting them with the reference solution, and the predicted 

total moment errors are analyzed; and in section 67 several conclusions are drawn.  

 2 Description of the collision-coalescence parameterization 

2.1 Formulation of the total moment tendencies 

 140 

Under the framework of this parameterization, any given drop spectrum can be approximated by a series of basis functions. 

Therefore, the distribution that characterizes the evolution of the spectrum is given by a linear combination of probability 

density functions as shown below: 

𝑓〈𝑟〉 = ∑ 𝑓𝑖〈𝑟〉

𝐼

𝑖=1

                                    (1) 

where 𝑓𝑖〈𝑟〉 are the individual members of the set of distributions considered, and I stands for the number of distributions 145 

functions that make up the set, and r refers to the radius of drops. In the case at hand, a set of two statistical distributions is 

employed. At each time step, the rates of the parameters of each distribution will be calculated. It should be noted that, in any 

set of distributions considered, all its members will be of the same type of distribution. For the proposed parameterization, as 

described in (Clark, 1976), a distribution of log-normal type is used, as follows 

𝑓〈𝑟〉 =
𝑁

√2𝜋𝜎𝑟
𝑒[−(𝑙𝑛 𝑟−𝜇)2/(2𝜎2)]             (2) 150 

Where µ and 𝜎2 stand for the mean and variance of ln 𝑟 respectively, while N represents the number concentration of drops. 

Considering that moment of order p (𝑅𝑝̅̅̅̅ ) of any distribution can be defined as (Straka, 2009) 

𝑁𝑅𝑝̅̅̅̅ = ∫ 𝑟𝑝𝑓(𝑟)𝑑𝑟
∞

0

                (3)  

the following analytical solution of eq. (3) can be found for the moments of the lognormal distribution 

𝑅𝑝̅̅̅̅ = 𝑒𝑝𝜇+
1
2

𝑝2𝜎2
          (4) 155 
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Combining eqs. (1), (3) and (4), the p-th total moment of a linear combination of lognormal distributions could be expressed 

as (Clark and Hall, 1983) 

𝑁𝑅𝑝̅̅̅̅ = ∑ 𝑁𝑖𝑅𝑖
𝑝̅̅̅̅

𝐼

𝑖=1

= ∑ 𝑁𝑖𝑒
𝑝𝜇𝑖+

1
2

𝑝2𝜎𝑖
2

𝐼

𝑖=1

             (5) 

Where the index i indicates each of the individual members of the set (I=2). Deriving eq. (5) with respect to time, we obtain 

the tendencies of the total moments of a series of log-normal distributions 160 

𝜕𝑁𝑅𝑝̅̅̅̅

𝜕𝑡
= ∑ 𝑁𝑖𝑅𝑖

𝑝̅̅̅̅ (
𝜕 𝑙𝑛 𝑁𝑖

𝜕𝑡
+ 𝑝

𝜕𝜇𝑖

𝜕𝑡
+

𝑝2

2

𝜕𝜎𝑖
2

𝜕𝑡
)

𝐼

𝑖=1

                             (6) 

Equation (6) can be expressed as a system of equations 

𝐴𝑋 = 𝐹                               (7) 

being X a vector representing the tendencies of the distribution parameters 

𝑿𝑻 = [
𝜕 𝑙𝑛 𝑁1

𝜕𝑡
,
𝜕 𝑙𝑛 𝑁2

𝜕𝑡
, … ,

𝜕 𝑙𝑛 𝑁𝐼

𝜕𝑡
,
𝜕𝜇1

𝜕𝑡
,
𝜕𝜇2

𝜕𝑡
, … ,

𝜕𝜇𝐼

𝜕𝑡
,
𝜕𝜎2

1

𝜕𝑡
,
𝜕𝜎2

2

𝜕𝑡
, … ,

𝜕𝜎2
𝐼

𝜕𝑡
]       (8) 165 

The coefficient’s matrix A is a squared matrix of order 𝜈 (𝜈 = 3 × 𝐼) defined as 

𝑨 = {

𝑎𝑖,𝑗 = 𝑁𝑗𝑅𝑗
𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

𝑎𝑖,𝑗+𝐼 = (𝑖 − 1)𝑁𝑗𝑅𝑗
𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

𝑎𝑖,𝑗+2𝐼 =
1

2
(𝑖 − 1)2𝑁𝑗𝑅𝑗

𝑖−1̅̅ ̅̅ ̅̅ /(𝑁𝑅𝑖−1̅̅ ̅̅ ̅̅ )

                (9) 

with 𝑖 = 1,2, … , 𝜈 and 𝑗 = 1,2, … , 𝐼. The components of the independent vector F are the tendencies of the total moments of 

the distributions: 

𝑭𝑻 = [
𝜕 𝑙𝑛 𝑁𝑅0̅̅̅̅

𝜕𝑡
,
𝜕 𝑙𝑛 𝑁𝑅1̅̅ ̅

𝜕𝑡
, … ,

𝜕 𝑙𝑛 𝑁𝑅𝜈−1̅̅ ̅̅ ̅̅

𝜕𝑡
]       (10) 170 

Both A and F are normalized in order to achieve a better numerical stability in the solution of the system of equations. The 

evolution of the values of the parameters of the distribution functions is done by applying a simple forward finite differences 

scheme (Clark and Hall, 1983) 

𝑁𝑖
𝑘+1 = 𝑁𝑖

𝑘𝑒
𝜕 ln 𝑁𝑖

𝑘

𝜕𝑡
∆𝑡                  (11𝑎)  

𝜇𝑖
𝑘+1 = 𝜇𝑖

𝑘 +
𝜕𝜇𝑖

𝑘

𝜕𝑡
∆𝑡                (11𝑏) 175 

(𝜎2)𝑖
𝑘+1 = (𝜎2)𝑖

𝑘 +
𝜕(𝜎2)𝑖

𝑘

𝜕𝑡
∆𝑡      (11𝑐)        

Field Code Changed
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With k being the time index in the finite differences notation. 

2.21 Description of the calculation of the total moment tendencies due to collision-coalescence 

The KCE determines the evolution of a DSD due to collision-coalescence. This equation can be expressed in a continuous 

form dependent of the mass as follows (Pruppacher and Klett, 2010) 180 

𝜕𝑓

𝜕𝑡
= ∫ 𝑓(𝑚 − 𝑚′)𝑓(𝑚′)𝐾(𝑚 − 𝑚′|𝑚′)𝑑𝑚′

𝑚/2

0

− ∫ 𝑓(𝑚)𝑓(𝑚′)𝐾(𝑚|𝑚′)𝑑𝑚′
∞

0

       (12) 

being 𝐾(𝑚|𝑚′) the collection kernel. Reformulating eq. (12) in the form of (Thompson, 1968) and in function of radius, we 

can calculate the total moment tendencies (vector F from the previous section) as follows 

𝑑𝑁𝑅𝑝̅̅̅̅

𝑑𝑡
=

1

2
∫ ∫ 𝐹𝑝(𝑟1, 𝑟2)𝐾(𝑟1|𝑟2)𝑓〈𝑟1〉𝑓〈𝑟2〉𝑑𝑟1𝑑𝑟2

∞

0

∞

0

           (13) 

where 185 

𝐹𝑝(𝑟1, 𝑟2) = (𝑟1
3 + 𝑟2

3)𝑝/3 − 𝑟1
𝑝

− 𝑟2
𝑝

                                                           (14) 

𝐾⟨𝑟1|𝑟2⟩ = 𝜋(𝑟1 + 𝑟2)2𝐸(𝑟1 , 𝑟2)|𝑉𝑇(𝑟1) − 𝑉𝑇(𝑟2)|                                    (15) 

Equation (15) represents the hydrodynamic kernel and 𝐸(𝑟1, 𝑟2) stands for the collection efficiencies taken from (Hall, 1980), 

which is based on a lookup table representing the effectiveness of drop collisions under given environmental conditions. A set 

of two lognormal distributions (eq. (2)) is used as members of the set at eq. (1). Hence, the prognostic variables under the 190 

parameterization formulation will be the corresponding parameters of both distribution functions: 𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2. 

At this point in the parameterization the total moment tendencies should be calculated either by solving eq. (13) at each time 

step for all the moments involved, or by searching in a lookup table calculated a priori. Instead, the following section explains 

in detail the ML approach proposed and its implementation. 

2.34 Description of the reference model 195 

To obtain a reference solution, the explicit model developed by (Bott, 1998a) was employed. This scheme is conservative with 

respect to mass and very efficient computationally speaking. It is based on the numerical integration of the KCE which, 

rewritten in a more convenient way, is expressed as shown below: 

𝑑𝑛(𝑥, 𝑡)

𝑑𝑡
= ∫ 𝑛(𝑥𝑐 , 𝑡)𝐾(𝑥𝑐 ,  𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

𝑥1

𝑥0

− ∫ 𝑛(𝑥, 𝑡)𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

∞

𝑥0

                (1620) 

where 𝑛(𝑥, 𝑡) stands for the DSD at time t and 𝐾(𝑥𝑐 ,  𝑥′) represents the collection kernel. In order to simplify the calculations, 200 

the mass density function 𝑔(𝑦, 𝑡) is used (Berry, 1967): 

𝑔(𝑦, 𝑡)𝑑𝑦 = 𝑥𝑛(𝑥, 𝑡)𝑑𝑥                                            (1721) 
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𝑛(𝑥, 𝑡) =
1

3𝑥2
𝑔(𝑦, 𝑡)                                                (1822) 

where 𝑦 = ln 𝑟 and r is the radius of a drop of mass x. By substituting (21) in (20) we obtain the KCE for the mass density 

function (Bott, 1998a) 205 

𝑑𝑔(𝑦, 𝑡)

𝑑𝑡
= ∫

𝑥2

𝑥𝑐
2𝑥′

𝑔(𝑦𝑐, 𝑡)𝐾(𝑦𝑐,  𝑦′)𝑔(𝑦′, 𝑡)𝑑𝑦′

𝑦1

𝑦0

− ∫ 𝑔(𝑦, 𝑡)
𝐾(𝑦, 𝑦′)

 𝑥′
𝑔(𝑦′, 𝑡)𝑑𝑦′

∞

𝑦0

    (1923) 

The first integral of the right-hand side of eq. (1923) represents the gain of drops of mass x due to collision-coalescence of two 

smaller droplets, while the second integral portrays the loss of drops of mass x being captured by bigger drops (Bott, 1998a). 

For the numerical solution of eq. (1923), a logarithmic equidistant mass grid is used, and is generated as 

𝑥𝑘+1 = 𝛼𝑥𝑘 , 𝑘 = 1,2, … , 𝑚                                                     (2024) 210 

where m is the total number of grid points. The original code for this explicit model can be found at (Bott, 1998b), and can be 

used with authorization of the author. 

 

3 Machine Learning architecture and training data set 

Machine Learning methodology can be classified into three main categories, according to the problem at hand: supervised, 215 

unsupervised and reinforced learning. In our case, supervised learning is used. Supervised learning algorithms build a 

mathematical model of a set of data that contains both the inputs and the desired outputs (Russell and Norvig, 2010). Under 

this classification, there is previous knowledge of the set of input values 𝑥⃗𝑘,  and their corresponding outputs 𝑦⃗𝑘, , with 𝑘 =

1,2, … , 𝑛, where n is the amount of  input values. The objective is to obtain a function 𝑓(𝑥⃗), by means of which the new data 

𝑥⃗𝑛𝑒𝑤  simulates reasonably well the output values. The set {𝑥⃗𝑘 , 𝑦⃗𝑘};  𝑘 = 1,2, … , 𝑛 is called the training data set. To test the 220 

performance of 𝑓(𝑥⃗), the input and output data is separated into two different data sets : training and testingvalidation. As NN 

are able to fit any non-linear function (Schmidhuber, 2015), a ML parameterization should approximate reasonable well the 

solution of the KCE in the form of eq. (13), given enough layers and neurons in the architecture of the network.  .  

3.1 Neural network architecture 

Deep Neural Networks are based on artificial neurons. Each neuron receives a set of input data, process it and pass it to an 225 

activation function 𝜎(𝑧),  which returns the activated output (Fig. 1). The activation value of neuron i in layer l is denoted by 

𝑎𝑖
𝑙 and is determined as 

𝑎𝑖
𝑙 = 𝜎(𝑧𝑖

𝑙  )                                         (2116) 

𝑧𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ 𝑊𝑖,𝑗
𝑙 𝑎𝑖

𝑙−1 

𝑚𝑙−1

𝑗=!

                  (2217) 
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In eq. (2217), 𝑏𝑖
𝑙 is the bias, 𝑊𝑖,𝑗

𝑙  is the ponderation weight, 𝑚𝑙−1 the number of neurons in layer l-1, ,and 𝜎(𝑧) is the activation 230 

function, and z is the processing intermediate value of the variable. Hence, a NN could be defined as a set of input values (𝑥⃗), 

bias values (𝑏⃗⃗) and weights (𝑊⃗⃗⃗⃗) integrated in a functional form, i.e. 𝑦⃗(𝑥⃗, 𝑊⃗⃗⃗⃗, 𝑏⃗⃗), and its training procedure consists ofn 

minimizing an error function (known as loss function), by optimizing the weights and biases for the available training data. A 

commonly used loss function is the regression mean squared error (MSE). Hence, we need a minimization algorithm to process 

the following expression 235 

𝐶(𝑊⃗⃗⃗⃗, 𝑏⃗⃗) =
1

2𝑛
∑‖𝑦⃗(𝑥⃗𝑘 , 𝑊⃗⃗⃗⃗, 𝑏⃗⃗) − 𝑦⃗𝑘‖

2

𝑘

                    (2318) 

 

Figure 1: Schematic representation of an artificial neuron. 

The selected algorithm for minimization of the loss function (eq. (2318)) is the bayesian regularization, which updates the 

weights and biases values according to the Levenberg-Marquardt optimization (Marquardt, 1963). Backpropagation is used to 240 

calculate the Jacobian of the performance with respect to the weight and bias variables (Dan Foresee and Hagan, 1997; 

MacKay, 1992). 

The used DNN was developed using MATLAB. It is conformed by one layer which receives the input data (input layer), three 

intermediate layers (hidden layers) with 20 neurons each and an output layer with a single neuron  which returns the simulated 

target values (Fig. 2).  245 
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Figure 2: Schematic representation of the architecture of the trained neural network used to calculate the total moment 

tendencies. The neural network receives six inputs, th0enand then processes them by means of three hidden layers of 

20 neurons each, and an output layer with a single neuron and one output value.  

3.2 Generation of the training and validation data sets 250 

The training procedure consists on feeding the DNN with six input values corresponding to the distribution parameters of each 

distribution and the total moment tendency for the p-th order obtained from eq. (13) as target. The NN training algorithm then 

processes those values in order to establish the relationships between the data provided. This process is repeated until all input 

and target data is processed. The resulting trained DNN should be able to estimate the total moment tendencies from a given 

set of distribution parameters that falls within the ranges of the training variables. A schematic representation of the trained 255 

NN with the inputs and output is shown in Fig. 3.  
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Figure 3: Neural network parameterization inputs and output. The input data are the six distribution parameters 

(𝑵𝟏, 𝝁𝟏 , 𝝈𝟏, 𝑵𝟐, 𝝁𝟐 and 𝝈𝟐)  needed to feed eq. (13), while the output is the p-th order total moment tendency (
𝒅𝑵𝑹𝒑̅̅ ̅̅

𝒅𝒕
).  

In order to generate the training and testvalidation data sets, 100000 drop spectra derived from the input variables are employed, 260 

over a wide range of distribution parameters (𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2) (See Fig. 4). Those input parameters will be used to 

calculate the total moment rates from eq. (13) and train the DNN. Five DNNs will be trained, one for each total moment 

tendency involved in the formulation of the parameterization (moment orders ranged from 0 to 5), with exception of the total 

moment of order 3, as total mass is not affected by the collision-coalescence process. The same training input parameters are 

used to train all NNs, varying only the target values corresponding to the total moment tendencies of each order. 265 

The physical variables related to the input parameters are shown in Fig. 45 for a better representation of the generated training 

clouds. The training and testvalidation data was created using an uniformly distributed random number generator, with means 

and standard deviations shown in Table 1, as well as the ranges (minimum and maximum values) of each predictor variable.  

Table 1: Statistical description of the input values used in the training and testvalidation data sets. The means, standard 

deviation and ranges are shown for each input variable. 270 

Input Variable Mean Standard Deviation Range [min, max] 

Concentration (N) 250.80 144.13 [1.00; 500.00] 

µ Parameter -7.00 0.58 [-8.00; -6.00] 

σ Parameter 0.20 0.06 [0.10; 0.30] 
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Figure 4: Scatterplot of the input parameters (𝑵𝟏, 𝝁𝟏, 𝝈𝟏, 𝑵𝟐, 𝝁𝟐 and 𝝈𝟐) of the lognormal distributions used to calculate 

the total moment tendencies. Parameters for distribution function 𝒇𝟏 are shown in the first row, while parameters for 275 

𝒇𝟐 are shown in the second row. Only every 100th data point is shown. 

Figure 45 shows that within the ranges of the training data (concentration from 1 cm-3 to 500 cm-3), the corresponding liquid 

water contents (LWC) are between 10-10 g cm-3 and 10-4 g cm-3, with the majority of the data concentrated between the limits 

of 10-8 g cm-3 and 10-5 g cm-3. Those values cover a sufficiently wide range of liquid water content to adequately represent 

warm clouds within the parameterization. 280 
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Figure 54: Scatterplot of liquid water content (LWC) calculated from the input parameters of 𝒇𝟏 (left) and 𝒇𝟐 (right) 

vs drop number concentration. The LWC values are obtained from the statistical moment of order 3 using the 

parameters depicted in Table 1 Fig. (4), and were calculated from eq. (4). Only every 100th data point is shown. 

3.3 Training and testingvalidation of the Deep Neural Network 285 

From the available data, 80 % was employed in training the DNN, and the remaining 20 % was used for testingvalidation 

purposes. The total moment tendencies (eq. 13) were solved using a trapezoidal rule, over a logarithmic radius grid between 

the ranges of 1 𝜇𝑚 ≤ 𝑟 ≤ 104  𝜇𝑚. The results of solving eq. (13) are called the target values. The means and standard 

deviation for each calculated total moment rate are shown in Table 2. 

Table 2: Total moment tendencies (target values) means and standard deviations for each statistical moment used. The 290 

data is calculated from eq. (13) with the distribution parameters (𝑵𝟏, 𝝁𝟏, 𝝈𝟏, 𝑵𝟐, 𝝁𝟐 and 𝝈𝟐)  as input values. 

Total Moment Order Mean Standard Deviation Formatted Table
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M0 -0.0021 0.0014 

M1 -0.0015 0.0011 

M2 -0.0009 0.0006 

M3 0.0000 0.0000 

M4 0.0011 0.0007 

M5 0.0024 0.0016 

 

Both input and target values are normalized as follows 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥̅

𝜎
                   (2419) 

The input and target values require a normalization process to facilitate the work of the optimization algorithm. All the nodes 295 

in each layer of the DNN use the MSE as loss function. The training procedure for a NN consist of processing a fragment of 

the total training data through the network learning architecture , then determining the prognostic error and the gradient of the 

loss function (MSE) back through the network in order to update the weight values. This algorithm is repeated via an iterative 

process over all training data until the performance index (MSE) is small enough or a predefined number of passes through all 

data are completed. One pass through all training data is known as an epoch. In this case, a maximum number of 1000 epochs 300 

is established, and a minimum value of 10−7 is considered for the gradient function.  

Five DNN were trained, one for each total moment tendency involved in the formulation of the parameterization (moment 

orders ranged from 0 to 5). A variant of the training process, known as cascade-forward neural network training, was employed. 

The main difference with the standard training procedure is the fact that includes a connection from the input and every 

previous layer to following layers (see Fig. 2). As with feed-forward networks, a two-or more layer cascade network can learn 305 

any finite input-target relationship arbitrarily well, given enough hidden neurons. The total moment tendencies for the 

statistical moment of order 3 was not calculated because the collision-coalescence process does not affect total mass.  

Performance (MSE) training records for the total moment tendencies calculated from eq. (13) are depicted in Fig. 56. The 

speed of convergence is similar in all cases, and all networks converged at epoch 1000. This occurs becausedue to the gradient 

value never was below the minimum, so the training process kept refining the results until it reached the maximum number of 310 

epochs previously defined. Despite that, a good performance was achieved, being the MSE in the order of 10−4 for all orders 

of the total moment tendencies, as shown in Table 3, where the best (final) MSE values for each trained DNN are manifested 

in detail. Since the values of the total moments are normalized in the DNN model (scale of 100), these values of MSE are 

considered good for the scale of the problem. 

Table 3: Best performance in the training process of the DNNs. The shown data corresponds to the total moment 315 

tendencies obtained from the trained neural networks, with input values and reference targets taken from the 

validation data set. The performance measure is the Mean Squared Error (MSE). 

Total Moment Order Best Performance (MSE) Correlation Index Formatted Table
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M0 2.59e-04 0.9998 

M1 3.49e-04 0.9998 

M2 2.68e-04 0.9999 

M4 1.80e-04 0.9999 

M5 2.05e-04 0.9998 

 

 

Figure 65: Performance training records of total moment tendencies for the moments from order 0 to 5. The shown 320 

data corresponds to the total moment tendencies obtained from the trained neural networks, with input values and 

reference targets taken from the validation data set. The performance measure is the Mean Square Error (MSE). The 

performance for the moment of order 3 is not included because the collision-coalescence process does not affect total 

mass. 

Regression plots for the trained networks are depicted in Fig. 67. The comparison is established between the outputs obtained 325 

from evaluating the trained neural networks using the testvalidation inputs and the targets from the validation test data set 
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corresponding to each of the total moment tendencies obtained from eq. (13). Minor differences can be appreciated from the 

graphics, with the trained DNN models overestimating or underestimating the actual values. However, a good agreement was 

reached for all trained DNN, with the predicted values from the DNN matching the actual output from the solution of eq. (13) 

with a coefficient of correlation between 0.9998 and 0.9999 in all cases (as shown in Table 3). The axis ranges of the graphics 330 

varies because the plotted data is not normalized, thus, there are different ranges for each of the calculated total moment 

tendencies.  

 

Figure 76: Regression plots for the five DNN trained. The comparison is established between the outputs obtained from 

evaluating the trained neural networks using the testvalidation inputs and the targets from the validation data set 335 

corresponding to each of the total moment tendencies obtained from eq. (13). The order of the statistical moments range 

from 0 to 5. Regression for the moment of order 3 is not shown because the collision-coalescence process does not affect 

total mass. The y axis varies for each subplot because the plotted data is not normalized. 

Experiments with not normalized training data were performed, yielding results with MSE at least an order of magnitude 

higher. Those results are not shown in the present article due to the lower accuracy of the regression outputs. The codes for 340 
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generating the training and validation data sets, and training of the neural networks themselves can be found at (Rodríguez-

Genó and Alfonso, 2021c). 

4 Description of the reference model 

To obtain a reference solution, the explicit model developed by (Bott, 1998a) was employed. This scheme is conservative with 

respect to mass and very efficient computationally speaking. It is based on the numerical integration of the KCE which, 345 

rewritten in a more convenient way, is expressed as shown below: 

𝑑𝑛(𝑥, 𝑡)

𝑑𝑡
= ∫ 𝑛(𝑥𝑐 , 𝑡)𝐾(𝑥𝑐 ,  𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

𝑥1

𝑥0

− ∫ 𝑛(𝑥, 𝑡)𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)𝑑𝑥′

∞

𝑥0

                (20) 

where 𝑛(𝑥, 𝑡) stands for the DSD at time t and 𝐾(𝑥𝑐 ,  𝑥′) represents the collection kernel. In order to simplify the calculations, 

the mass density function 𝑔(𝑦, 𝑡) is used (Berry, 1967): 

𝑔(𝑦, 𝑡)𝑑𝑦 = 𝑥𝑛(𝑥, 𝑡)𝑑𝑥                                            (21) 350 

𝑛(𝑥, 𝑡) =
1

3𝑥2
𝑔(𝑦, 𝑡)                                                (22) 

where 𝑦 = ln 𝑟 and r is the radius of a drop of mass x. By substituting (21) in (20) we obtain the KCE for the mass density 

function (Bott, 1998a) 

𝑑𝑔(𝑦, 𝑡)

𝑑𝑡
= ∫

𝑥2

𝑥𝑐
2𝑥′

𝑔(𝑦𝑐, 𝑡)𝐾(𝑦𝑐,  𝑦′)𝑔(𝑦′, 𝑡)𝑑𝑦′

𝑦1

𝑦0

− ∫ 𝑔(𝑦, 𝑡)
𝐾(𝑦, 𝑦′)

 𝑥′
𝑔(𝑦′, 𝑡)𝑑𝑦′

∞

𝑦0

    (23) 

The first integral of the right-hand side of eq. (23) represents the gain of drops of mass x due to collision-coalescence of two 355 

smaller droplets, while the second integral portray the loss of drops of mass x being captured by bigger drops (Bott, 1998a). 

For the numerical solution of eq. (23), a logarithmic equidistant mass grid is used, and is generated as 

𝑥𝑘+1 = 𝛼𝑥𝑘 , 𝑘 = 1,2, … , 𝑚                                                     (24) 

where m is the total number of grid points. The original code for this explicit model can be found at (Bott, 1998b), and can be 

used with authorization of the author. 360 

45 Initial conditions and experiment design 

A total time of 𝑡 = 900 𝑠 (15 minutes) is simulated for both the parameterized and reference models, with a time step of ∆𝑡 =

0.1 𝑠. The initial parameters for the distribution functions of the parameterized model were established as shown in Table 4., 

following (Clark, 1976): 
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Table 4: Initial parameters for the distribution functions of the parameterized model. Each distribution is characterized 365 

by a concentration parameter (N), expected value (µ) and standard deviation (σ). The initial parameters are shown for 

the two lognormal distribution functions employed in the formulation of the parameterization. 

Parameter f1 f2 

N 190 cm-3 10 cm-3 

µ -7.1505 -6.5219 

σ 0.1980 0.1980 

The values from Table 4 are well within the parameters established on Table 1, and were set following (Clark, 1976). They 

were chosen as they make for a good representation of the training data on which the neural networks were trained. The initial 

spectrum for the reference solution was calculated from these parameters to ensure the same initial conditions for both models. 370 

A 300 points logarithmic equidistant grid was generated for the integration of the reference model, with radii values in the 

range of 0.25 𝜇𝑚 ≤ 𝑟 ≤ 2.6 × 104 𝜇𝑚. Equations (1721) and (1822) were used to transform the output of both models to 

make them compatible for comparison, while the bulk quantities from the reference models were integrated from the calculated 

spectra. 

4.1 WDM6 parameterization 375 

To better establish the accuracy of the developed parameterization, an extra parameterization was included in the comparison 

with the reference solution. The selected parameterization is the WRF Double Moment 6-class bulk mode (WDM6), which 

was chosen for being a commonly used parameterization implemented in a well-known three-dimensional atmospheric model. 

The collision-coalescence section of that parameterization is explained in detail in (Cohard and Pinty, 2000), and treats the 

main warm microphysical processes in the context of a two-moment framework. A scheme of such a type is believed to be a 380 

pragmatic compromise between over-simplified bulk parametrizations of precipitations as proposed by (Kessler, 1969) and 

very detailed bin models that are computationally too cumbersome for practical use in 3D mesoscale models. Inclusion of a 

prognostic equation for the number concentration of raindrops provides a better insight into the growth of large drops which 

in turn can only improve the time evolution of the mixing ratios. 

The scheme allows analytical solutions to a reasonably simplified version of some microphysical processes. This has been 385 

done with an elaborate function, the generalized gamma distribution that enables fine tuning of droplet/drop spectral shape 

through the adjustment of two free-dispersion parameters. All the tendencies, except the autoconversion of the cloud droplets, 

are parametrized on the basis of continuous integrals that encompass the whole range of drop diameters. With this method, the 

treatment of autoconversion remains clearly the weakest link in the scheme because this process acts precisely in the diameter 

range where the fuzzy transition between droplets and drops is hardly compliant with a bimodal and spectrally wide (from zero 390 

to infinity) representation of the drops. This model will be represented in the following sections as P-CP2000. 

For comparison purposes, both simulations shared the same initial conditions. It should be noted that WDM6, being a 

conventional two-moment scheme, it is focused on the evolution of the moments of order zero and three of a truncated gamma 
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distribution function. The code for the WDM6 parameterization and related files can be found at (Rodríguez-Genó and Alfonso, 

2021d). 395 

56 Discussion of results 

The results shown in this section were obtained using the parameterized model COLNETv1.0.0. The source code can be found 

at (Rodríguez-Genó and Alfonso, 2021a), while the scripts for reproducing the figures are archived at (Rodríguez-Genó and 

Alfonso, 2021b) 

56.1 Spectra comparison 400 

The output of this parameterized Deep Neural Network model (P-DNN) are the updated distribution parameters at every time 

step (𝑁1, 𝜇1 , 𝜎1, 𝑁2, 𝜇2 and 𝜎2). The physical variables related to the moments of the distributions, such as mean radius or 

liquid water content (LWC) are diagnosed from those parameters. Besides, we can derive the shape and scale of the drop 

spectrum at any given time, by integrating the functions and supported on the evolution of its parameters.  

Figure 78 shows a comparison between the mass density spectra derived from the parameterized and explicit models for three 405 

chosen times (300 s, 600 s and 900 s). 
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Figure 87: Mass density spectra from the Deep Neural Networkparameterized model (P-DNNPredicted), the WDM6 

parameterization (P-CP2000) and the reference solution (KCEActual). The represented times are 300 s, 600 s and 900 410 

s, from top to bottom. Equation (1721) was used to transform the drop number concentration spectra from the 

parameterized model to the mass density spectra. 

At 300 s (first row of Fig. 78), there is a slow development of the total spectrum, with a clear mass transfer between both 

modes of the presented modelsfrom distribution function 𝑓1 to 𝑓2. The parameter-generated spectrum from P-DNN fits well 

the reference solution, with a slight overestimation of the maximum mass in the second mode. The mean radius of the 415 

distributions are well represented by the parameterization. At 600 s and 900 s (second and third row of Fig. 78), there is a 

development of a third mode in the evolution of the KCE-generated spectra, that is not reproduced by the parameterization, 

producing instead as a wider second mode, representing well the mean radius and mass distribution. The first mode is 

accurately represented at those times. An increase on mean radius can be observed, due to the effect of the collision-coalescence 

process.  420 
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However, in comparison, P-CP2000 performs poorly at all the represented simulation times. It can be seen a pronounced 

tendency to go ahead of the reference solution, leading to a faster-than-normal development of larger drops. Particularly, the 

mass transfer is very noticeable at the end of the simulation. However, the first mode of P-CP2000 does not decrease 

proportionally, which leads to think that there are a lot of small drops and a few big drops accounting for that increase in mass 

by the end of the simulation.  425 

Figure 89 shows a comparison between the drop number concentration spectra derived from the parameterized and explicit 

models for three chosen times (300 s, 600 s and 900 s). A generally good agreement is appreciated at all times for P-DNN, 

with the parameterization-generated spectra slightly underestimating the results from the explicit model. As the collision-

coalescence process decreases the drop number concentration, there is not a noticeable increase in the number of drops in the 

second mode of the distributions. However, an increase in the mean radius is observed, that is consistent with the behaviour 430 

described in Fig. 78, where is a related mass transfer between both distribution functions is seen. 

 

Regarding the P-CP2000 model, its spectra underestimates the reference solution, and the lack of a second mode reaffirms the 

behaviour shown in Fig. 7. However, being a conventional bulk parameterization, its strong points are not related to the 

description of the drop spectra, but to the representation of bulk quantities such as the total number concentration or mass 435 

content of the clouds. 
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Figure 98: Drop number concentration spectra from the parameterized Deep Neural Network model (P-

DNNPredicted), the WDM6 parameterization (P-CP2000) and the reference solution (KCEActual). The selected times 440 

are 300 s, 600 s and 900 s, from top to bottom.  Equation (1822) was used to transform the mass density spectra from 

the reference solution to the drop number concentration spectra. 

56.2 Bulk quantities comparison 

Figure 910 shows a comparison of two main bulk quantities (total number concentration and mean radius) obtained from the 

parameterization and the reference models. The concentration and mean radius of the reference solution were obtained by 445 

integrating the drop number concentration spectra for the corresponding moment order (0 and 1 respectively). As expected, 

number concentration decreases with time, due to the coalescence of drops, ranging from an initial value of 200 drops by cm-

3 to around 160 by cm-3 in the KCE model. The predicted concentration from P-DNN underestimates the KCEactual values in 

most of the simulation, with the differences reaching 10 drops by cm-3 at 900 s. A relatively better representation of drop 
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number concentration is achieved by the P-CP2000 model, being more closely located to the reference solution, although it 450 

reaches the same differences than P-DNN by the end of the simulation. 

 A similar behaviour is observed in the mean radius results, with a growth in the drop size consistent with the decreasing values 

on the drop number concentration for P-DNN, but differences are small with the highest error with a value of 5 × 10−5 𝑐𝑚. 

However, the results fit well enough the reference solution to consider including this microphysical parameterization in a 

weather model. This consistent behaviour of the mean radius and number concentration values points to a conservation of 455 

mass, a compulsory condition in the collision-coalescence process. However, the P-CP2000 model performs somehow worse 

than P-DNN for the mean radius, reaching difference of almost 1 × 10−4 𝑐𝑚, although it shows a similar behaviour to both 

the reference and P-DNN models. 
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 460 

Figure 910: Drop number concentration (top) and mean radius (bottom) comparison with the reference solution. The 

concentration and mean radius of the reference solution were obtained by integrating the drop number concentration 

spectra for the corresponding moment order (0 and 1 respectively). The data points are plotted every 60 s. 

Figure 1011 depicts the evolution of two main bulk quantities (drop number concentration and liquid water content) for the 

individual distributions that conform the parameterization P-DNN (f1 and f2), as well as the combined (total) values of the 465 

variables (calculated as 𝑓1 + 𝑓2). Regarding concentration, a decrease in f1 values is observed, due to the coalescence process, 

while a consistent increase in f2 is also appreciated. The increase in the concentration of f2 is not as marked due to the collision-

coalescence process as well. However, a general decrease of the total concentration value (the only distribution parameter with 

physical meaning in the formulation of the parameterization) represents well the theory and observations of the parameterized 

process.  470 

The liquid water content (LWC) values (diagnosed) are depicted to verify that mass is conserved under the formulation of the 

parameterization. The liquid water content of each of the distribution functions (f1 and f2) were obtained from the corresponding 
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moment (order 3) calculated from eq. (4). Effectively, the mass content retains a value of 6.1739 × 10−7 𝑔 𝑐𝑚−3 during the 

entire simulation, with a proportional mass transfer between f1 and f2. 

 475 

Figure 1110: Evolution of drop number concentration N (left) and liquid water content LWC (right) of the individual 

distributions that conform the parameterized model. The liquid water content of each of the distribution functions (f1 

and f2) were obtained from the corresponding moment (order 3) calculated from eq. (4). The combined (total) values 

of the variables are also shown and were calculated from eq. (5).  

56.3 Total moment errors  480 

An analysis of the predicted total moments was performed with the objective toof further test the precision of the P-DNN 

collision-coalescence parameterization, due to the importance of the statistical moments in calculating physical variables such 

as mean radius and LWC. Table 5 shows the mean percent errors of the calculations of the total moments of the 

parameterization and the P-CP2000 model. The percent error is taken relative to the moments of the reference solution. The 

data was obtained by calculating the mean of the percent errors of the entire simulation. The moments of the reference solution 485 
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were calculated by integrating the reference drop number concentration spectra using eq. (3), while the total moments from 

the parameterized models P-DNN and P-CP2000 were calculated using the predicted distribution parameters and solving eq. 

(5) and using the defined gamma distribution equations for the moments, respectively. A reasonable degree of accuracy was 

achieved by P-DNN, with the mean error never surpassing the 4 %. However, the data shows that the total moments of order 

0 to 2 are usually underestimated, while those of order 4 and 5 are slightly overestimated. This could result in the calculations 490 

of drop number concentration values lower than the actual ones, as seen in Fig. 910.    

Regarding P-CP2000, the model is not formulated to predict individual moments different from the zeroth and third moments. 

Thus, it performs badly in representing the other moments of the distributions, as observed in the mean percent error, which 

reaches almost -61% for the moment of order five. That value is a great difference from the zeroth moment for example, which 

percent error is only -1.3 %. This result indicates that the modelling philosophy of P-DNN is adequate to represent the evolution 495 

of individual moments within certain ranges, when compared with more conventional bulk schemes. 

Table 5: Total moment mean errors. The percent error is taken relative to the moments of the reference solution. The 

shown data was obtained by calculating the mean of the percent errors of the entire simulation. The moments of the 

reference solution were calculated by integrating the reference drop number concentration spectra using eq. (3), while 

the total moments from the parameterized model were calculated using the predicted distribution parameters to solve 500 

eq. (5).  

Total Moment Order Mean Percent Error P-DNN Mean Percent Error P-CP2000 

M0 -3.3479 -1.2718 

M1 -2.6437 27.0500 

M2 -1.4969 27.0370 

M3 0  

M4 1.1249 9.2037 

M5 0.7205 -60.8886 

 

Figure 1112 shows the time evolution of the percent error of the total moments throughout the parameterization simulation for 

P-DNN. The percent error is taken relative to the moments of the reference solution. The moments of the reference solution 

were calculated by integrating the reference drop number concentration spectra using eq. (3), while the total moments from 505 

the parameterized model were calculated using the predicted distribution parameters to solve eq. (5). The error of total moment 

of order 3 is zero during the entire simulation because mass is not affected by the collision-coalescence process. The total 

moments from order 0, 1 and 2 overestimate the reference solution in the first 300 s of simulation, underestimating them for 

the rest of the parameterization run, with the percent error reaching a minimum value of -8 %. The opposite behaviour is 

appreciated for the total moments of order 4 and 5, where they initially underestimate the reference solution, overestimating it 510 

for the rest of the simulation. However, for these orders the percent error is usually lower, with a maximum of 4 %. Generally, 

the parameterization is performing well, with the percent error never reaching the 10 % threshold. However, further analysis 

on this topic is recommended, to improve the accuracy of the parameterization.  
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Figure 1112: Time evolution of the errors corresponding to the predicted moments from the parameterized model. The 515 

percent error is taken relative to the moments of the reference solution. The moments of the reference solution were 

calculated by integrating the reference drop number concentration spectra using eq. (3), while the total moments from 

the parameterized model were calculated using the predicted distribution parameters to solve eq. (5).  

67 Conclusions 

A hybrid parameterization for the process of collision-coalescence based on the methodology of basis functions employing a 520 

linear combination of two lognormal distributions was developed and implemented, with all the parameters of the distributions 

derived from the total moment tendencies calculated by means of five trained deep neural networks. By doing this, we obtained 

a parameterized model that determines the distribution parameters evolution, hence, the evolution of the DSD. The physical 

variables related to the moments of the distributions are diagnosed. Within the framework of this parameterized model, there 

is no artificial separation of the DSD, thus, terms such as cloud droplet and raindrops loose meaning as there are just “drops”. 525 
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Instead, we consider a full set of distribution parameters for each of the distribution functions that are considered in the 

formulation of the parameterization, in order to describe the DSD in radius space. This kind of microphysical parameterization 

allows the use of an arbitrary number of statistical density functions in linear combination to reproduce the drop spectrum.  

One experiment was performed to test the proposed ML formulation at the initial stages of cloud formation. The simulation 

results showed good agreement when compared to a reference solution and a conventional bulk scheme, for both the predicted 530 

DSD and the bulk quantities considered. However, the DNN model main highlight from the comparison with the bulk model 

was its superior ability to represent the evolution of individual moments of the distribution functions, because of its formulation 

based on time-varying distribution parameters. The total moment tendencies were well predicted using the trained DNNs, 

improving the computational performance of the original formulation. An analysis of the accuracy of the predicted total 

moments of the parameterized model was performed, with the percent error relative to the moments of the reference solution 535 

never reaching the 10 % threshold. However, there is room for improvement in the calculations of the total moments, being 

the recommendation of the authors to retrain the DNNs with a finer parameter domain, and with a larger range of values in 

order to cover all possible combination of parameters. In addition, the use of Machine Learning eliminated the requirement of 

integrating the total moment tendencies at each time step, and the use of memory expensive lookup tables for each predicted 

moment is no longer needed under this formulation., fact that leads to an improvement in precision, compared with standard 540 

interpolation methods.   

The presented way to simulate the evolution of the droplet spectra due to collision-coalescence falls within the framework of 

the methodology of series of basis functions developed by (Clark, 1976; Clark and Hall, 1983). Under this modelling 

philosophy, a dynamic framework has been established in (Rodríguez-Genó and Alfonso, 2021e). To obtain a full warm cloud 

model, an extension of this neural network algorithm applied to condensation is proposed, following the same methodology 545 

of series of basis functions. A parameterization scheme such as this could be included in regional weather and climate models, 

as its initial conditions can be calculated from the ones needed by for more traditional bulk models. 
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also included. The scripts used in the generation of training data sets and for training the neural networks used in 

COLNETv1.0.0 can be found on Zenodo (https://doi.org/10.5281/zenodo.4740129), while the codes for plotting the figures are 

stored at https://doi.org/10.5281/zenodo.4740184. The original code of the explicit bin model is archived at 

https://www2.meteo.uni-bonn.de/forschung/gruppen/tgwww/people/abott/fortran/coad1d.f, and have been used with the 

permission of the author. The code used for the WDM6 parameterization simulation can be found on Zenodo 560 

(https://doi.org/10.5281/zenodo.5196706). The models and related scripts were writtendeveloped using MATLAB R2020a 

under license number 40816183, with exception of the explicit model, which is coded on FORTRAN 77.  
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