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Abstract. Recent proceedings in the radiation belt studies have proposed new requirements for numerical methods to solve

the kinetic equations involved. In this article, we present a numerical solver that can solve the general form of radiation belt

Fokker-Planck equation and Boltzmann equation in arbitrarily provided coordinate systems, and with user-specified boundary

geometry, boundary conditions, and equation terms. The solver is based upon the mathematical theory of stochastic differential

equations, whose computational accuracy and efficiency are greatly enhanced by specially designed adaptive algorithms and5

variance reduction technique. The versatility and robustness of the solver is exhibited in four example problems. The solver

applies to a wide spectrum of radiation belt modeling problems, including the ones featuring non-diffusive particle transport

such as that arises from nonlinear wave-particle interactions.

1 Introduction

In space plasma environment, the radiation belts refer to torus-shaped regions surrounding Earth and other magnetized planets10

that are filled with highly energetic charged particles trapped in the planetary magnetic field. Since their discovery (Van Allen

and Frank, 1959; Vernov et al., 1959), the radiation belts have been the focus of intense research due to the innumerable

unknowns concerning their extremely dynamic behavior and their damaging effects on spacecraft (e.g., Baker, 2000; Welling,

2010). During slowly changing conditions, radiation belt particles undergo three types of periodic motion: gyration about field

lines, bounce along field lines, and drift about the planet. With each periodic motion there is a corresponding adiabatic invariant,15

defined through Hamiltonian action integral (e.g., Goldstein, 1980, Chap. 10), that is only violated when the conditions are

changing on time scales shorter than the period. A widely adopted method to study the dynamics of radiation belts is to solve a

kinetic equation describing the evolution of particle phase space density. In quasi-linear theory, this kinetic equation is usually

a Fokker-Planck equation that takes the general covariant form (Schulz, 1991)
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where f̄ is the phase-averaged phase space density, G= det( ∂J
α

∂Qβ
) is the Jacobian determinant for the transformation from20

canonical action-integral variables Jα (α= 1,2,3) to the generalized coordinates Qα, and Dαβ , hα, S and v are coefficients
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of the equation. Summation on repeated Greek indices is implied throughout this paper. In different radiation belts, the number

of terms emerging on the right-hand side of Eq. (1) and their respective physical backgrounds may be different. For the Earth’s

outer radiation belt, the second and the fourth terms are usually missing; the first term represents diffusion caused by wave-

particle interactions, and the third term is often a loss characterized by the particle lifetime (e.g., Li and Hudson, 2019, and25

the reference therein). In the low-altitude inner radiation belt where wave-particle interactions are not as significant, the first

and the second terms are often provided by the diffusion and dynamic friction caused by inter-particle Coulomb collisions

(e.g., Selesnick, 2012), and the fourth term may be a source from cosmic ray albedo neutron decay (CRAND, e.g., Selesnick,

2015; Li et al., 2017). For radiation belts of the gas giants, all terms could be present (e.g., Horne et al., 2008; Lorenzato et al.,

2012). The first two terms may be attributable to both wave-particle interactions and inter-particle collisions, and in addition,30

synchrotron radiation, which is negligible in Earth’s radiation belts, bleeds energy for the ultra-relativistic electrons and thus

also contributes to the second term (e.g., Bolton et al., 2002, 2004). The third term could represent the moon-sweeping loss,

and the fourth term may come from moon volcanic activities as a plasma source (e.g., Nénon et al., 2017).

In some circumstances, the dependence of phase space density on certain phases ϕι could be discerned, and the radiation

belt kinetic equation takes the form35
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where a dot over ϕι indicates its time derivative. The phase space density f̄ here is only averaged over the phases varying

faster than ϕι, and the mutually exclusive indices ι and µ together form the complete set of α. The most common situation is

perhaps the dependence of f̄ on the drift phase ϕ3, which in the Earth’s outer radiation belt may be caused by the wave activity

dependence on magnetic local time (e.g., Shprits et al., 2009), and in the inner belt by the longitudinal variation of drift shell

altitude (e.g., Tu et al., 2010; Xiang et al., 2019). With the spatial derivative term on the left-hand side, Eq. (2) appears as a40

Boltzmann equation for f̄ ; but by Hamiltonian mechanics, the conjugating term Q̇ι(∂f̄/∂Qι) should have also appeared on

the left-hand side. Its absence is due to the fact that, for particles in the radiation belt energy range, the drift-phase-dependent

electric potential energy is usually negligible in the unperturbed particle Hamiltonian, so that ϕ3 becomes a cyclic variable.

Appendix A provides a more comprehensive explanation on this equation; and we will return to the general case where ϕ3 is

not cyclic in the discussion section.45

Various numerical models have been built to solve a specific form of either Eq. (1) or Eq. (2) (e.g., Beutier et al., 1995;

Selesnick et al., 2003; Tao et al., 2008; Albert et al., 2009; Subbotin et al., 2010; Tu et al., 2013; Wang et al., 2017; Xiang et al.,

2020, to name a few). Though their underlying numerical schemes might not restrict, these existing models have in practice

been implemented with hard-coded choices of coordinates, relatively simple boundary geometry, and roughly fixed number of

equation terms; therefore, each model is only applicable to a specific set of problems. This situation could become quite incon-50

venient when adiabatic invariants of particle motion are used as coordinates of phase space to model radiation belt dynamics,

as promoted by Schulz (1996). The reasons are two-fold: first, due to their vast range of magnitude and dramatically varying

resolution, adiabatic invariant coordinates often require some kind of rescaling and transformation (e.g., Zheng et al., 2014),

specific to the problem, to be computationally efficient; and second, boundary geometry becomes complicated in adiabatic
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invariant coordinates, which could be challenging for finite difference methods and had led Subbotin and Shprits (2012) to55

seek for new coordinates from combinations of the adiabatic invariants. However, the use of adiabatic invariant coordinates is

crucial for some compelling problems in the radiation belts, for example the mechanisms of storm-time electron loss in which

adiabatic modulations due to magnetic field configuration change must be separated from non-adiabatic processes (Kim and

Chan, 1997; Turner and Ukhorskiy, 2020), and the relative significance of Earthward diffusion versus CRAND as possible

inner belt electron source where drift shell splitting effect contributes (Cunningham et al., 2018). It is the purpose of this article60

to present a numerical code, named UBER (for “universal Boltzmann equation solver”), that solves Eq. (1) and Eq. (2) in an

arbitrarily user-specified coordinate system up to three dimensions, with great freedom in specifying boundary geometry and

boundary conditions, and with various combinations of equation terms. Therefore, it is expected that the solver can be applied

to a wide spectrum of radiation belt modeling problems. More importantly, the freedom of specifying equation terms implies

that, in an asymptotic manner, UBER can even solve the integro-differential kinetic equations arising from non-diffusive parti-65

cle transport, such as that formulated in Artemyev et al. (2018) for nonlinear wave-particle interactions, and thereby provides

a viable means to incorporate non-diffusive transport into global radiation belt modeling.

The underlying mathematical theory of the solver is stochastic differential equation (SDE) theory. The SDE method had

been utilized by Tao et al. (2008), Selesnick et al. (2013) and Zheng et al. (2014) in their modeling of the radiation belts. The

method is grid-free, and enjoys unparalleled advantages in dealing with cross diffusion components and complicated boundary70

geometry (e.g., Zheng et al., 2016), but is meanwhile notorious for low efficiency ascribed to its Monte Carlo nature. In this

article, we also describe specially designed numerical techniques that have enhanced the computational speed of the SDE

method by an order of magnitude, thus making the solver much affordable to large-scale simulations. Four example problems

with distinct physical backgrounds are provided in this article to demonstrate the abilities and versatility of the solver.

2 Mathematical Theory75

The kinetic equations (1) and (2) are parabolic partial differential equations (PDEs). Written in the Kolmogorov backward form

(see below), a parabolic PDE corresponds to a multi-dimensional SDE that describes the motion of an Itô stochastic process

whose certain functional expectation satisfies the PDE; and the PDE can then be solved by calculating path integrals of the

corresponding stochastic process (e.g., Freidlin, 1985; Øksendal, 1998).

Let us consider the following partial differential problem composed of a Kolmogorov backward equation and a general set80

of initial and boundary conditions:

∂tf =
1

2
aαβ(t,x)∂α∂βf + bα(t,x)∂αf + c(t,x)f +u(t,x), (3)

f(0,x) = g0(x), x ∈ Ω̄, (4)

f(t,x) = g1(t,x), x ∈ ∂1Ω, (5)

γ̂(x) · ∇f −λ(t,x)f = 0, x ∈ ∂Ω \ ∂1Ω, (6)
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where ∂t and ∂α are shorthands for the partial differentials with respect to t and the α-th coordinate, respectively. In Eqs. (4)-

(6), Ω̄ denotes the closure of the domain and ∂Ω its boundary. In particular, ∂1Ω are the boundary pieces of the first type

(Dirichlet) boundary condition, and ∂Ω \ ∂1Ω indicate the boundary pieces excluding those in ∂1Ω, which are of the second

(Neumann, λ≡ 0) or the third type (Robin, λ 6= 0) boundary conditions. The unit vector γ̂ points into Ω̄ and is not tangent to85

the local boundary.

The mathematical theory of SDEs establishes a relation between Eqs. (3)-(6) and the Itô stochastic process, whose spatial

positions are denoted by the random variableXs in Ω, that obeys the reflected SDE

dXs = b(t− s,Xs)ds+σ(t− s,Xs) · dW s + γ̂(Xs)dks, (7)

where the dot product on the right-hand side is between a rank-2 tensor and a vector, and the parameter s runs from 0 to t, so

that the stochastic process retrogrades in time from t to 0. The first term on the right-hand side describes the ballistic part of its90

motion. The second term describes the stochastic part, with the coefficient tensor σ satisfying σ ·σT = a (whose components

are aαβ). Note that this condition does not uniquely determine σ, but all satisfying σ’s are equivalent (Levi’s theorem, Freidlin,

1985; Zheng et al., 2014).W s is a vector Wiener process of the same dimensions asXs, with each dimension an independent

Gaussian stochastic variable that has zero mean and variance s. The third term describes reflection of the stochastic process

in the direction given by γ̂ on the boundary ∂Ω \ ∂1Ω, and ks is a monotonic stochastic variable that only increases when the95

stochastic process is on that boundary to force Xs to stay in Ω̄. ks can thus be considered as a measure of the time that the

stochastic process spent on ∂Ω \ ∂1Ω, and hence has the name local time. The Itô process stops either in Ω̄ when s= t, or on

∂1Ω at s= τ < t.

A formal solution of the problem in Eqs. (3)-(6) is given by the Feynman-Kac formula (e.g., Kac, 1949; Øksendal, 1998;

Klebaner, 2005)100

f(t,x) = E
[
F t,x[Xs]

]
, (8)

in which E is the expectation operator, and F t,x[Xs] is a functional of the stochastic path Xs started from t and x, and has

the expression

F t,x[Xs] = Iτ≥t g0(Xt)exp

[ˆ t

0

c(t− s,Xs)ds−
ˆ t

0

λ(t− s,Xs)dks

]
+Iτ<t g1(t− τ,Xτ )exp

[ˆ τ

0

c(t− s,Xs)ds−
ˆ τ

0

λ(t− s,Xs)dks

]
+

ˆ t∧τ

0

u(t− s,Xs)exp

[ˆ s

0

c(t− r,Xr)dr−
ˆ s

0

λ(t− r,Xr)dkr

]
ds, (9)

where the symbol Iτ≥t is equal to one when τ ≥ t, which means the stochastic process has stopped in Ω̄ before it had a chance

to reach ∂1Ω, and zero otherwise; and t∧ τ means the smaller between the two. Physically, the functional F t,x[Xs] is a

propagator of contribution carried along the stochastic path from either the initial condition or the first type boundary condition105

to the point of solution, and the exponential functions indicate how this contribution enhances or decays along this path.
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To formally solve the Fokker-Planck equation (1) by the Feynman-Kac formula (8), it remains to transform the equation

together with its proper initial and boundary conditions into the form of Eqs. (3)-(6). To this end, directly expanding Eq. (1)

and collecting terms with the same differentiation order yields its Kolmogorov backward form

∂tf̄ =Dαβ∂α∂β f̄ +
[
(∂βD

αβ +Dαβ∂β lnG)−hα
]
∂αf̄ + [S− (∂αh

α +hα∂α lnG)] f̄ + v. (10)

Comparing Eq. (10) with Eq. (3) and taking Qα equivalent to xα, we thus have the correspondences of coefficients that:110 
a = 2D,

b =∇ ·D−h,
c = S−∇ ·h,
u = v,

(11)

where in curvilinear coordinates, the divergence operator on a tensor field Γ is

∇ ·Γ = ∂αΓα... + Γα...∂α lnG, (12)

in which the dots stand for all other indices irrelevant to the operation, and the terms ∂α lnG come from summation of the

Christoffel symbols in a covariant derivative (e.g., Mathews and Walker, 1970, Chap. 15). It is worth remarking that −h
appears in the expression for b, so that the Itô process travels against the advection velocity. This is indeed the case since it is

time-backwards. Also, from the expression for c, divergence of the advection serves as a loss of phase space density.115

Initial and boundary conditions to Eq. (1) are transformed as follows. For the initial condition and the first type boundary

condition, values of f̄(t,x) are specified just as in Eqs. (4) and (5). For a flux boundary condition of the form Φ = g2(t,x)f̄ ,

we note that the outward flux Φ across a boundary is given by (n̂ ·D · ∇f̄ − n̂ ·hf̄), with n̂ the unit inward normal vector of

∂Ω \ ∂1Ω. Therefore, the corresponding boundary condition is

n̂ ·D · ∇f̄ − (n̂ ·h+ g2)f̄ = 0. (13)

Comparing Eq. (13) with Eq. (6), we identify that:120 
γ̂ =

n̂ ·D
|n̂ ·D|

,

λ =
n̂ ·h+ g2
|n̂ ·D|

.
(14)

Although the SDE (7) does not prevent σ, and hence D, from being zero, the expressions in Eqs. (14) do become singular

for vanishing D on ∂Ω \ ∂1Ω. In the region where D vanishes, Eq. (3) is no longer parabolic but degenerates to an advection

equation (a first order PDE), for which imposing a Neumann or Robin boundary condition is over-determinant. In this case,

we invoke on the boundary minimal diffusion in the eigen-direction of n̂ so that γ̂ = n̂, and let g2 ≡−n̂ ·h so that λ= 0,

which means the advective flow is free to cross the boundary. The situation that D is finite but |n̂ ·D| vanishes is considered125

pathological to our problem.
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Table 1. User input items to the UBER code

Input items Comments

∂α lnG Vector field to specify the coordinate system

Dαβ , hα, S, v Coefficients to define the PDE

g0(xα) Function to provide the initial condition

ψ(t,xα) = 0 Equation to define a boundary piece’s geometry

g∗(t,xα) Function to provide the boundary condition,

∗= 1 or 2 depending on the type of the boundary

n̂(xα) Inward unit normal vector only for ∂Ω \ ∂1Ω

A set of the boundary-related items for each piece of boundary.

Up to this point, we have transformed the Fokker-Planck equation (1) and its initial and boundary conditions to the problem

in Eqs. (3)-(6), and gathered all expressions in Eqs. (11) and (14) for the constructing components of the SDE (7) as well as

the functional (9). In order to solve the Boltzmann equation (2), it suffices for us to just transform the equation into the form

of Eq. (1). To this end, we expand the phase space by concatenating the coordinates Qµ and ϕι, so that xα = {Qµ,ϕι} (recall130

that α= {µ,ι}), and introduce the new coefficients D̃αβ , h̃α, S̃ and ṽ that satisfy the following conditions:
D̃µν =Dµν , D̃αι = 0,

h̃α = {hµ, ϕ̇ι},
S̃ = S+ ∂ιϕ̇

ι,

ṽ = v.

(15)

It can be verified that Eq. (1) in the new xα coordinates with the new coefficients given by (15) transforms into Eq. (2) after

replacing xα by Qµ and ϕι. The transformation (15) essentially treats ϕι as new dimensions of the stochastic motion, except

that the stochastic part of the motion in these dimensions is identically zero. A new type of boundary condition might emerge

for problems involving Eq. (2), that is the periodic boundary condition for the phases ϕι. From the viewpoint of stochastic135

motion, though, such periodicity is not really a boundary but rather a topology of Ω. The treatment of periodic boundary

condition will be exemplified in the third problem in Section 4 below.

To summarize this section, the above mathematical theory allows us to fully define a PDE problem involving Eq. (1) or

Eq. (2) in an arbitrary coordinate system given the input functions and equations as listed in Table 1, which can be either ana-

lytical or numerical in the UBER code. The equation terms may be freely turned off by setting their corresponding coefficients140

zero. The number of boundary pieces is totally up to choice, which can even be zero to put the boundary at infinity. The bound-

ary geometry may be time-variable for boundary pieces in ∂1Ω in the UBER code, but must be fixed for those in ∂Ω \ ∂1Ω.

Solutions of this problem are obtained once we find a way to evaluate the functional in Eq. (9) for a realization of a stochastic

path, and to estimate the expectation of the functional. These numerical techniques are the subject of the next section.
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3 Numerical Techniques145

We give an outline of the algorithms used by the UBER code in this section, with emphasis on the techniques that improve

both its accuracy and efficiency. Lower-level numerical techniques, such as the generation of pseudo-random variables, linear

algebraic operations, and parallelized computation, are based on the works presented in Zheng (2015). The general idea for

numerically implementing the SDE method is as follows: (i) for a given spatiotemporal position (t,x) where an equation

solution is wanted, a number of stochastic paths starting from this common position are simulated; (ii) for each stochastic150

path, its functional value is evaluated by the path integrals as in Eq. (9); and (iii) from these sampled functional values, their

expectation is estimated, and this gives the solution at (t,x). Therefore, the SDE method is essentially a Monte Carlo method.

It does not rely on a computational grid, and is able to solve the problem locally. However, in many occasions it is still worth

obtaining global solutions on a grid, so that the solutions at time stamp Ti may be used as the initial condition for the solutions

at Ti+1, analogous to the idea of the layer methods (e.g., Tao et al., 2009). In this way, the stochastic processes need only to be155

simulated for a short duration of t= Ti+1−Ti to obtain the new solutions, for which the calculation of functional expectation

would converge much faster than those simulated for the full length t= Ti+1. The only operation on this grid would be

interpolation and possibly extrapolation, therefore unlike in the layer methods, the grid can be irregular, and thus allows for the

use of sophisticated interpolation libraries on irregular grids; although in the present version only nonuniform Cartesian grid

(in the given coordinate system) is implemented with user-specified nodes.160

Integration of the SDE (7) employs the Euler-Maruyama scheme that is order 1 for weak convergence problems such as

ours, meaning that when only the statistical distribution of stochastic paths matters but not the individual path, the expectation

of the schematic error is proportional to the first power of the time stepsize (Kloeden and Platen, 1992). To further reduce the

schematic error, an adaptive time stepsize is used in UBER. It can be shown that (e.g., Zheng, 2015) the root-mean-square

(RMS) distance an Itô stochastic process travels in infinitesimal time ds is165

dX̄s =
√

tr(a)ds. (16)

Numerically, the first order contribution from |b∆s| cannot be neglected due to the finite ∆s. Therefore, we prescribe a

desired RMS spatial stepsize ∆X̄s, which is sufficiently small compared to the size of Ω and any scale length of the equation

coefficients, and then choose the smaller ∆s inferred from either Eq. (16) or ∆X̄s = |b∆s| at every step of integration as

the adaptive stepsize. This scheme evidently reduces to a simple adaptive Euler scheme for integrating ordinary differential

equations when a approaches zero.170

Oblique reflection of the stochastic process on ∂Ω \ ∂1Ω and the calculation of dks follow the projected-half-space algo-

rithm presented in Gobet (2001), which is also order 1 in the weak convergence sense. The idea is that, for an exact half-space

boundary, ks can be proven to share the same probabilistic distribution with a composite stochastic variable involving W s,

coefficients of the SDE, the normal vector n̂, and an independent exponential random variable with parameter (2s)−1 (Lépin-

gle, 1995), and therefore ks can be explicitly calculated by these known quantities. For general smooth boundary geometry, an175

additional contribution to dks may also come from possible projection along the γ̂ direction needed to keep the stochastic pro-
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cess within domain. With dks obtained and the SDE (7) integrated, the functional (9) can be readily evaluated by an ordinary

numerical integration technique implemented along the realized stochastic path.

Expectation of the functionals can be estimated, in principle, from an arithmetic mean of a number N of sampled stochastic

path integrals. The error of this estimation, ε= |E[F t,x]−〈F̃ t,x〉| where a tilde is used to indicate a numerical realization in180

this section and 〈· · · 〉 indicates averaging over samples, can be estimated by dividing the simulation of stochastic processes

into batches (Zheng, 2015). Although the probabilistic distribution of individual F̃ t,x is generally far from normal and largely

unknown, that for the batch-wise mean of F̃ t,x approaches a Gaussian for a large enough sample number per batch due to

the central limit theorem, and thereby a confidence interval can be calculated for the batch-wise means using the Student t-

distribution (e.g., Kloeden and Platen, 1992). We use this confidence interval as an approximation to ε. In this way, UBER185

adaptively stops simulating more batches of stochastic processes when the estimated error meets a prescribed tolerance.

In typical radiation belt problems, the functional values from various stochastic paths may differ by orders of magnitude,

hence their contributions to the arithmetic mean also differ by orders of magnitude, whereas their computational efforts are

of the same order. Therefore, straightforward calculation of their arithmetic mean could result in extremely slow convergence

with N and squander computational power. To reduce statistical variance in this procedure, a process-splitting technique190

is developed based on the idea of importance sampling, i.e., to make “denser” sampling in more important “regions”. In

conventional Monte Carlo methods, the “region” is an “area” in a parameter space, and importance sampling effectively splits

one sample point therein that would have made a huge contribution to the calculation into many sample points nearby, while

weights of these samples are reduced accordingly to keep the probabilistic distribution of samples unbiased (e.g., Press et al.,

1992). But unlike conventional Monte Carlo methods, the samples in the SDE method are paths which belong to a functional195

space. To still implement this idea, we split the stochastic path when it is projected to contribute a large functional value.

Fig. 1 gives an illustration of this technique in a t⊗R2 space. As a stochastic path being integrated from point P , the

functional value of the entire path (from s= 0 to s= t) is continuously predicted based on the partial path that has been

realized. This projected functional value is compared to the value of some quantile (e.g., the 80th percentile) statistically

derived from all previously completed stochastic paths starting from the same position. When at some place Q, the projected200

functional value falls above this quantile, the stochastic process is deemed to make a significant contribution to the arithmetic

mean. It is then split into a number of child processes at Q, and each child process traces down an independent path thereafter.

These child paths, together with their common parent path segment PQ, hence constitute “nearby samples” in the functional

space. This procedure can be further iterated if the projected functional value later falls into an even higher quantile (e.g., the

90th percentile), as shown at R. After all procedures finished, the eventual result is a tree structure of stochastic paths rooted205

at P . For the illustration in Fig. 1, the actual functional value of the path PQA will be weighted by 1/2, and those of PQRB

and PQRC will be weighted by 1/4, when calculating their contributions to the mean. In the UBER code, a practical choice

for the number of children at each splitting is 4, and that for the upper limit of offspring generations is 3, so that a stochastic

process can be split into a maximum of 43 = 64 processes. Effects of the process-splitting technique are studied in the first

problem in the next section.210
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Figure 1. Schematic illustration of process splittings in a t⊗R2 space. A stochastic process travels backward in time from point P and splits

into two at pointQ, where its projected functional value is found to be sufficiently large (see text for exact meaning). One child process splits

again at pointR where its projected functional value is found to be even larger. The independent child processes would eventually stop either

in Ω̄ as at points A and B, or on ∂1Ω as at point C.

It still remains to find a method to project the functional value of a stochastic path when it is only partially realized. For

this purpose, we insert a break point at s= s′ ∈ (0, t) to the integrations in Eq. (9) and see how it transforms. We simplify

the situation by only considering the stochastic processes stopping in Ω̄ for the moment, and denote the following functional

integrals:

U t0 = exp

(ˆ t

0

cds−
ˆ t

0

λdks

)
, (17)

Vt0 =

ˆ t

0

uexp

(ˆ s

0

cdr−
ˆ s

0

λdkr

)
ds, (18)

in which the integrand functions c, λ and u are as those in Eq. (9). Then, the functional F t,x with the above presumptions and215

notations is transformed as

F t,x = g0(Xt)U t0 +Vt0

= g0(Xt)Us
′

0 U ts′ +
(
Vs

′

0 +Us
′

0 Vts′
)

=
[
g0(Xt)U ts′ +Vts′

]
Us

′

0 +Vs
′

0

= F t−s
′,Xs′Us

′

0 +Vs
′

0 , (19)

where F t−s′,Xs′ is the functional for a stochastic process that starts from the break point (t−s′,Xs′) and continues till s= t.

Suppose that a partial path has been realized up to s= s′, from it we can readily evaluate Us′0 and Vs′0 in Eq. (19), and

therefore need an estimated F̄ t−s′,Xs′ to project the functional value F̄ t,x, where a bar is put over all unrealized entities.
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Specifically, we would need these three estimates: X̄t, Ū ts′ and V̄ts′ . In principle, a good estimation of X̄t is given by integrating220

along the streamline of the b(t− s,x) field through Xs′ till s= t, that is, projecting for X̄t along the ballistic trajectory of

motion while ignoring all the stochasticity since the Wiener process has zero mean. However, this integration is not much

cheaper than the realization of F t−s′,Xs′ itself, and thus is unaffordable. In anticipation that the total time length t would not

be too large, especially when using a solution grid, and that b(t−s,x) would not vary drastically in this time interval, mapping

X̄t along the constant vector b(t− s′,Xs′) is a good enough but much cheaper approximation. If X̄t is mapped out of Ω̄ so225

that g0(X̄t) is unable to be evaluated, the particular stochastic process is then disabled from splitting.

The functional values Ū ts′ and V̄ts′ are estimated by assuming that, for all possible stochastic paths belonging to the same

solution point, there exist mean functions c̄, λ̄ and ū that are independent of time, and that the mean local time is proportional

to the total time length of the stochastic process, so that k̄s = k̄s with k̄ the proportionality constant. Under these assumptions,

Ū ts′ and V̄ts′ can be expressed by230

Ū ts′ = exp

(
c̄

ˆ t

s′
ds− λ̄

ˆ t

s′
dks

)
= exp

[
(c̄t− λ̄k̄t)− (c̄s′− λ̄k̄s′)

]
=

Ū t0

exp

(
s′

t
ln Ū t0

) , (20)

and

V̄ts′ =
V̄t0
Ū t0− 1

[
Ū t0− exp

(
s′

t
ln Ū t0

)]
, (21)

if Ū t0 6= 1, or by

Ū ts′ = 1, (22)

V̄ts′ = V̄t0
(

1− s′

t

)
, (23)

if Ū t0 = 1. The values of Ū t0 and V̄t0 can be well estimated respectively by the medians of Ũ t0 and Ṽt0 that are obtained from

all previously completed stochastic paths. Medians are preferred to means here because the probabilistic distributions of these

functionals are usually very skewed and heavy-tailed. This projection mechanism would become statistically more accurate as235

more stochastic processes having been simulated.

4 Example Problems

Four example problems are provided in this section. In the first problem, we solve a Fokker-Planck equation with two source

terms, one proportional to the unknown function and the other independent of the unknown function, in both spherical coor-

dinate system and Cartesian coordinate system. Effects of the process-splitting technique are analyzed in this example. In the240

second problem, an advection-dominated Fokker-Planck equation is considered. We further show that, even for a pure advec-

tion equation, the UBER code still gives the correct solutions, although it is not designed for such an equation and may not be
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the most efficient method. Code behavior with advection equations is further studied in the third problem where the treatment

of periodic boundary condition is also illustrated. In the last problem, we simulate the Earth’s inner radiation belt by solving

its Boltzmann equation involving realistic pitch-angle diffusion and CRAND source.245

4.1 Problem 1: Neutron Generation and Diffusion in Nuclear Material

In this problem, we consider the diffusion and generation of neutrons in a spherical nuclear material at detonation, with an

initially injected Gaussian neutron distribution from a small source at the center, and a neutron-reflecting coat that allows

only one half of the surface neutrons to escape. In a spherical coordinate system, the equation, initial condition and boundary

conditions are (Serber, 1992):250

∂f

∂t
=

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+Sf + v(r), (24)

f(0, r) = exp

(
− r2

0.02

)
, (25)

∂f

∂r

∣∣∣∣
r=0

= 0, (26)(
D
∂f

∂r
+

1

2
f

)∣∣∣∣
r=1

= 0, (27)

where f is neutron density, the constant diffusion coefficient D = 0.1, the constant rate of neutron generation from chain

reaction S = 2.5, and v(r) = 10−6/(1 + r) characterizes a weak source of neutrons spontaneously emitted in the material.

The values and functional forms of these coefficients are solely designed for demonstration purpose and are not meant to be

experimentally accurate.

UBER solutions are obtained at four time stamps, and are compared with those from a staggered-grid finite difference255

method (e.g., Ames, 2014), as shown in Fig. 2a. A turning point is observed in the solutions at T = 0.05, which marks the

transition of the dominating neutron source from chain reaction at high background density to spontaneous emission at low

density. As time goes by, effect of the spontaneous emission is overwhelmed by the fast-growing chain reaction. Even though

the solutions span 8 orders of magnitude, the UBER results are virtually identical to the finite difference ones, and statistical

fluctuation which is a typical feature in Monte Carlo methods is not observed in these solutions due to the adaptive algorithms260

and the variance reduction technique.

To demonstrate UBER’s ability in multiple dimensions with a complicated boundary geometry, the same problem is also

solved in a three-dimensional Cartesian coordinate system along a sphere radius. In this coordinate system, the diffusion

coefficient becomes a 3-by-3 matrix with each diagonal component equal to D, and the boundary condition in Eq. (27) is

applied to the only boundary that is a sphere with unit radius. The solutions are over-plotted in Fig. 2a. Consistence between265

the one-dimensional and the three-dimensional results is quite evident.

To analyze the effects of the process-splitting technique, we repeated the three-dimensional solutions at T = 0.05, but with

a fixed number of stochastic processes (2048 samples per batch, 200 batches) for each solution point and with various upper

limits of the offspring generations ν. ν = 0 indicates that process-splitting technique is disabled. For a fixed number of samples,
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(a) (b) (c)

Figure 2. (a) UBER and finite difference solutions (dashed line) to the problem in Eqs. (24)-(27). The UBER 1D solutions (circles) are ob-

tained in a one-dimensional spherical coordinate system, and the UBER 3D solutions (triangles) are obtained in three-dimensional Cartesian

coordinates along a sphere radius. (b) Left y-axis: The relative errors of the UBER 3D solutions at T = 0.05, respectively obtained with

the same total number of stochastic processes (2048 per batch) but different upper limits of offspring generations (ν) in the process-splitting

technique. ν = 0 means the process-splitting is turned off. Right y-axis: The percentage of stochastic processes undergone splitting for ν = 4.

(c) The reduction of relative errors with increasing number of stochastic processes at the slowest converging solution point (r = 0.76), for

ν = 0 (dashed line and squares) and 4 (solid line and triangles). Colors denote different numerical experiments.

the relative error of a solution is proportional to the square-root of the variance of sampled functional values, and determines270

how fast the calculation of expectation converges. The relative errors as functions of r are plotted against the left y-axis

of Fig. 2b, and each curve is in fact formed by the medians from eight independent and identical numerical experiments

to be more statistically representative. In the range 0.4< r < 0.9, the relative errors are consistently reduced with higher

offspring generations. At the slowest converging point r = 0.76, the process-splitting technique with a maximum of 4 offspring

generations could reduce the relative error by an order of magnitude compared to that without splitting. For this curve (ν = 4),275

the percentages of stochastic processes undergone splitting are plotted as shaded area against the right y-axis. For r < 0.4, the

relative errors are small and computational convergence is fast enough, process-splitting is automatically suppressed by the

code to achieve an optimal speed. When the relative errors would have been large, usually a small fraction of split stochastic

processes could be rather effective.

To further reveal the behavior of the process-splitting technique, Fig. 2c plots how the relative error reduces with increasing280

number of samples (N ) in the Monte Carlo procedure for the solution point at r = 0.76. There are eight independent and iden-

tical numerical experiments respectively for ν = 0 and 4, and each line represents the results from one numerical experiment.
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Table 2. Normalized wall clock time versus maximum offspring generations (ν) for the UBER 3D solutions at T = 0.05

ν Normalized wall clock time*

0 1

1 0.40

2 0.18

3 0.13

4 0.13

* Median value from eight independent numerical tests.

The general trend is that the relative error reduces linearly in a log-log scale plot, resembling its dependence on N−1/2. How-

ever, without process-splitting, the relative error often jumps up sharply due to the occurrence of a very low probability sample

that made a very large contribution, which severely slows down the computational convergence. With process-splitting, such285

jumps are largely avoided; and on average, the code uses just a little more than 1/100 of the samples without process-splitting

to achieve the same relative error of 0.1.

In practical UBER usage, solutions are achieved with a prescribed tolerance of relative error and an adaptive number of

samples. Therefore, the fast convergence with process-splitting technique could save a significant amount of computational

effort even with its extra computational burden. Table 2 lists the normalized wall clock time consumed by UBER for obtaining290

the solution curve in three dimensions at T = 0.05 with a relative error tolerance of 0.1 and a range of maximum offspring

generations in process-splitting. Again, each of these numbers is the median from eight independent and identical numerical

experiments. With ν = 3 and 4, the code is nearly an order of magnitude faster than that without process-splitting. The same

wall clock time in these two cases indicates that the faster convergence with more offspring generations starts to be traded off

by the computational overhead associated with more complicated splitting, and therefore further increasing ν would not be295

optimal.

4.2 Problem 2: Magnetized Plasma Evolution Under Instability

In the second problem, we consider a Fokker-Planck equation for the pitch-angle distribution of a magnetized plasma (e.g.,

Dendy, 1990). Suppose that the electrons are initially in a sin2(x) background pitch-angle distribution where x is the pitch

angle. An electron beam is injected into the system centered at pitch angle x= 0.4. In addition to pitch-angle diffusion, the300

injected beam excites some kind of plasma instability that kinetically transports the distribution toward π/2 pitch angle. The
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(a) (b)

Figure 3. (a) UBER (circles) and staggered-grid finite difference (dashed line) solutions to the problem in Eqs. (28)-(31). (b) UBER (circles)

and Lax-Wendroff (dashed line) solutions to the same problem but with zero diffusion.

equation, initial condition and boundary conditions are written as:

∂f

∂t
=

1

G

∂

∂x

[
GD(t,x)

∂f

∂x

]
− 1

G

∂

∂x
[Gh(x)f ] , (28)

f(0,x) = sin2(x) + exp

[
− (x− 0.4)2

0.02

]
, (29)

f |x=0.05 = 0, (30)
∂f

∂x

∣∣∣∣
x=π/2

= 0, (31)

where f is the electron distribution function, the Jacobian determinantG= sin(x), the diffusion coefficientD(t,x) = (1/2π2)erf(t/2)[1+

sin2(2x)], and the advection coefficient h(x) = cos(x). Note that, in most of the x range, the advection coefficient is about an

order of magnitude larger in value than the diffusion coefficient. Eq. (30) indicates a loss cone at pitch angle x= 0.05. UBER305

solutions for this problem are plotted in Fig. 3a as circles, and are in excellent agreement with those from the staggered-grid

finite difference method. In these solutions, the beam evolves toward x= π/2 because of the kinetic advection. As the system

relaxes, the beam eventually merges into the background, and a final stable distribution is then approached.

Eq. (28) degenerates to a continuity equation if pitch-angle diffusion is turned off by setting D(t,x) to zero. Even for such

a pure advection problem, UBER can still obtain accurate and robust solutions as compared to the widely used Lax-Wendroff310

method (e.g., Ames, 2014), as shown in Fig. 3b. Before T = 2, an advection of the beam toward x= π/2 is seen in the solutions

without dispersion, and UBER results are almost identical to the Lax-Wendroff ones. The system, however, is unstable due

to the positive advection velocity at x < π/2 and the zero advection velocity at x= π/2, so that the electron distribution will

be piled up near x= π/2 and ultimately evolve into a singularity. For this reason, the Lax-Wendroff method begins to fail at

T = 2 by generating unphysical negative solutions near x= 1.3 and will be divergent henceforth, which problem would require315
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careful choices of additional flux limiters to overcome. UBER nontheless gives the correct results that still resolve the peak

height and position of the beam.

4.3 Problem 3: Particle Adiabatic Drift Around Earth

In this problem, we study the UBER code behavior when solving the advection equation resulted from Eq. (2) but without

any non-adiabatic process or source and loss, which describes the adiabatic drift of radiation belt particles around Earth. To be320

specific, the equation and boundary condition are:

∂f̄

∂t
+ ϕ̇

∂f̄

∂ϕ
= 0, (32)

f̄ |ϕ=0 = f̄ |ϕ=2π, (33)

and an idealized initial condition g0(ϕ) consisting of a step function, a triangle and a semicircle is given as that in Fig. 4a, which

can induce unphysical negative solutions to finite difference methods due to its discontinuities and infinite gradients (e.g., Aseev

et al., 2016). Eq. (33) specifies the periodic boundary condition for the drift phase ϕ. In the UBER code, the periodic boundary

condition is not really considered a boundary condition; rather, it is dealt with by extending the computational domain to325

include multiple periods, so that the Itô stochastic processes would not move out of the domain within the given time duration,

except for stopping on other first type boundaries. In this specific problem, the time stamp for obtaining solutions is every one

half drift period; therefore, the computational domain is extended for one extra period of ϕ from 0 to −2π since the stochastic

processes retrograde in time. However, solutions are only sought in the right half of the domain for ϕ between 0 and 2π at each

time stamp, and after that, they are copied to the left half to form the entire initial condition for the next time stamp.330

By the method of characteristics, Eq. (32) is trivially solved for a constant drift frequency ϕ̇= 2π, and the solution f̄(t,ϕ) =

g0(ϕ−2πt) preserves its shape and returns to its initial position after each period of t= 1. As shown in Fig. 4a, this is exactly

what the UBER solutions do. Unlike finite difference methods which would often introduce numerical dispersion to advection

equations, the UBER solutions could be exact because, without the stochastic terms, the solver of the SDE (7) is actually

integrating along the characteristic curves of the advection equation, and for constant advection velocity, these characteristic335

curves are straight lines for which the Euler scheme is exact.

The Euler scheme is well known to overshoot when integrating along a curve that consistently curls to one side; and this

would cause error to UBER solutions. To show this, we replace the drift frequency by ϕ̇= 2πt in Eq. (32), for which the

characteristic curves are now a family of parabolas whose equations are ϕ−ϕ0 = πt2, with ϕ0 the parameter. Note that

the drift is no longer periodic but forever accelerating. UBER solutions after the first round (T =
√

2) and the 20th round340

(T = 2
√

10) of drift are plotted in Fig. 4b. Compared with the initial condition, the UBER solutions are slightly displaced due

to the overshoot, and the solution shapes are very slightly distorted, too. For radiation belt applications, though, any frequency

ϕ̇ι must meanwhile be an approximate periodic function of ϕι, hence the corresponding characteristic curves would at most

wobble rather than curling, and the Euler scheme overshoot largely cancels rather than accumulating. Therefore, we would not

expect the UBER solution errors in those applications to be worse than that illustrated in this case.345
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Figure 4. (a) Initial condition (solid black line) and UBER solutions of Eqs. (32) and (33) for a constant drift frequency after 1 round (T = 1,

blue dashed line) and 20 rounds (T = 20, red dotted line) of drift around Earth. (b) Initial condition and UBER solutions of the same problem

but with an accelerating drift frequency after 1 round (T =
√

2) and 20 rounds (T = 2
√

10) of drift around Earth.

4.4 Problem 4: Earth’s Inner Radiation Belt Simulation

In the last problem, we demonstrate UBER’s ability to solve a radiation belt Boltzmann equation by performing an inner

radiation belt simulation involving both the stably trapped (out of the drift loss cone) and the quasi-trapped (in the drift loss

cone) electron populations. Inspired by Xiang et al. (2020), we consider the 304-keV electrons at McIlwain’s LM = 1.25,

which are subject to pitch-angle scattering caused by Coulomb collisions with upper atmospheric neutrals and ionospheric ions350

and electrons. The equation, initial condition and boundary conditions are:

∂f̄

∂t
+ ϕ̇

∂f̄

∂ϕ
=

1

G

∂

∂α0

(
GDαα

∂f̄

∂α0

)
+
Se
p2
, (34)

f̄(0,ϕ,α0) = 0, (35)

f̄ |ϕ=0 = f̄ |ϕ=2π, (36)

f̄ |α0=αL = 0, (37)
∂f̄

∂α0

∣∣∣∣
α0=π/2

= 0. (38)

In Eq. (34), drift frequency

ϕ̇=
3cLRE
eµE

p2

me

D(sinα0)

T (sinα0)
(39)

is evaluated using dipole-field approximation (Schulz, 1991), in which c is the speed of light in vacuum, L is dipole L-shell,

RE is the radius of Earth, e is the elementary charge, µE is the magnetic moment of Earth’s intrinsic dipole field, me is
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electron mass, p is electron momentum, α0 is electron equatorial pitch angle, and the functions D(sinα0) and T (sinα0) are355

bounce motion integrals in dipole field that are given in Schulz (1991, pp. 205-210). For simplicity, we ignore the dependence

of drift frequency on ϕ, so that the drift phase becomes equivalent to geomagnetic longitude. The Jacobian determinant G=

T (sinα0)sin(2α0). The bounce-averaged pitch-angle diffusion rate is empirically given by

Dαα = 10−5 exp
{

92.55
[
cos4α0− cos4αL(ϕ)

]}
+ 10−9 (s−1), (40)

which features quantitative resemblance with that calculated by realistic atmosphere and ionosphere models in Xiang et al.

(2020). In this expression, αL(ϕ) is the bounce loss cone angle dependent on geomagnetic longitude that is determined by360

drift-shell tracing in the International Geomagnetic Reference Field (IGRF, Finlay et al., 2010). Dαα as a function of ϕ and

α0 is plotted in Fig. 5a: it is only significant near the bounce loss cone and in the South Atlantic Anomaly (SAA) centered at

about 20◦ geomagnetic longitude, due to the closer proximity of the drift shell to the upper atmosphere in these regions. The

CRAND source rate Se/p2 is approximated by (Lenchek et al., 1961; Selesnick, 2015)

Se
p2
≈ 1.7× 10−12

(Emax−E)2

L2.7 sinα0
(c3cm−3MeV−3s−1), (41)

where Emax is the maximum kinetic energy (782 keV) available to electrons from neutron β-decay and E is the electron365

kinetic energy in question, both are measured in unit of the electron rest energy (511 keV), and L is the dipole L-shell, which

is a variable dependent on geomagnetic longitude due to multipoles of the Earth’s magnetic field. Fig. 5b plots the CRAND

source rate as well as the dipole L-shell values corresponding to McIlwain’s LM = 1.25 obtained from drift-shell tracing in

IGRF, which vary from less than 1.2 in the SAA to above 1.3 near 180◦ geomagnetic longitude.

Eq. (36) specifies the periodic boundary condition for the drift phase ϕ. In the UBER code, the periodic boundary condition is370

not really considered a boundary condition; rather, it is dealt with by extending the computational domain to include multiple

periods, so that the Itô stochastic processes would not move out of the domain within the given time duration, except for

stopping on other first type boundaries. For this specific problem, the time stamp for obtaining solutions is every 2 hours, and

the 304-keV electrons drift eastwards with drift periods a little longer than 2 hours. Therefore, the computational domain is

extended for one extra period of ϕ from 0 to−2π since the stochastic processes retrograde in time. However, solutions are only375

sought in the right half of the domain for ϕ between 0 and 2π at each time stamp, and after that, they are copied to the left half

to form the entire initial condition for the next time stamp.

The simulation is performed with an initially empty radiation belt as indicated by Eq. (35), and electrons are gradually

generated by the CRAND source and meanwhile lost to the bounce loss cone. Fig. 5c and 5d show the solution electron fluxes

calculated from j̄ = f̄p2 after 2 hours (about one drift period) and 10 hours, respectively. The characteristic west-east electron380

flux gradient is formed for the quasi-trapped population (α0 < 60◦) within the first 2 hours, and changes very little over time

because the SAA sweeps these electrons out every drift period. Weak pitch-angle diffusion of electron fluxes from the quasi-

trapped population toward the stably trapped population can be observed at T = 2 hours when the stably trapped fluxes are

still low, due to the stronger source rate in the quasi-trapped region. At T = 10 hours, direction of the pitch-angle diffusion is

reversed. Even with atmospheric loss, the CRAND source is strong enough to continuously contribute to the trapped electron385

fluxes, which are increased by one order of magnitude in 8 hours.

17



(a) (b)

(c) (d)

Figure 5. (a) Bounce-averaged pitch-angle diffusion coefficient Dαα (s−1) for 304-keV electrons. Blank area is in the bounce loss

cone. (b) CRAND electron source rate Se/p2 (c3cm−3MeV−3s−1) for 304-keV electrons. Black line plots the variation of dipole L-

shell versus geomagnetic longitude against the right y-axis, corresponding to the McIlwain’s LM = 1.25. (c) Calculated electron fluxes

(cm−2s−1sr−1MeV−1) at T = 2 hours. (d) Calculated electron fluxes (cm−2s−1sr−1MeV−1) at T = 10 hours.

5 Conclusion and Discussion

In conclusion, we have built a numerical solver for the general form of kinetic equations that appear in radiation belt studies.

Based on the SDE method, the solver is coded to work in arbitrarily provided coordinate systems up to three dimensions, with

user-specified boundary geometry, boundary conditions, and equation terms. We have also designed adaptive algorithms and a390

variance reduction technique for the SDE method, which had enhanced its computational speed by one order of magnitude in

our test. The example problems in this article demonstrated the solver’s versatility and robustness in dealing with a range of

problems that might each require a different solver in other methods. The solver, named UBER, has been programmed into a

FORTRAN library that can be easily incorporated with other more complicated space physics models.
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Strengths of the SDE method lie in its abilities to solve problems that are difficult for other methods, but not in its speed.395

Even with the presented improvements, the SDE method is in general nowhere near to the finite-difference counterparts in

terms of speed due to its Monte Carlo nature. However, Monte Carlo methods are perfectly parallelized for no communication

among parallel tasks, therefore the UBER code gains handsome speedup from parallel computation. Fig. 6 displays the UBER

code speedup, measured as the ratio between wall clock time of serial and parallel executions, against different number of

parallel threads employed in solving Problem 1 in spherical coordinates. For a fixed amount of computation, speedup is limited400

by the portion of work that cannot be parallelized; and this is described by Amdahl’s law (inset formula in Fig. 6; Amdahl,

1967) which fits the numerical experiment data with parameter p= 0.85, meaning that effectively 85% of the total work

has been parallelized. With 86 threads, the code approaches its theoretical maximum speedup of 6.7 for this problem, which

uses about 620 s of wall clock time on a Linux server. The referenced finite difference code uses 65 s in serial execution to

solve the problem on the same server. In other words, the UBER code, in its ideal parallelization, is an order of magnitude405

slower than serial finite difference methods; and it is also roughly the case for Problem 4 (Xiang, personal communication) in

which the UBER code spends 22 min to simulate one drift period. This conclusion, however, is rather qualitative, because in

these comparisons different methods have used quite different grids. Finite difference methods generally require a much finer

grid than the SDE method in order to deal with short-wavelength components of the solution, and time spacing is restricted

accordingly by the Courant-Friedrichs-Lewy condition (e.g., Press et al., 1992). On the other hand, the SDE method affords410

a grid that is only concentrated in interesting areas as long as global interpolation can be warranted, and the time stamps for

dumping solutions are up to user choice. Moreover, if only local solutions are sought over a short time period, the SDE method

could totally disregard the uninteresting solutions and might be more efficient. For radiation belt simulations in particular, finite

difference models usually rely on the operator splitting technique (e.g., Press et al., 1992) to solve tensorial diffusion in three

dimensions, which involves frequent interpolation between two sets of grid and hence greatly hinders speed, whereas problem415

dimensionality has little effect on the SDE method.

Several other forms of radiation belt kinetic equation should also be solvable by the method presented in this article. In

formulating the Boltzmann equation (2), we have assumed that the unperturbed particle Hamiltonian H0 is independent of

phases of particle motion. For lower-energy ring current particles, the convective electric field potential energy is not negligible

in their Hamiltonian, and therefore H0 would be dependent on the drift phase. As such, expanding the Poisson bracket [f̄,H0]420

on the left-hand side of the Boltzmann equation will result in additional terms involving partial differentials with respect to

the generalized momenta Qι (cf. Appendix A). For a radiation belt model including ring current particles, the general form of

Boltzmann equation will be

∂f̄

∂t
+ ϕ̇ι

∂f̄

∂ϕι
+ Q̇ι

∂f̄

∂Qι
= . . . , (42)

in which the omitted right-hand side is exactly the same as that of Eq. (2). The Boltzmann equations of the so-called four-

dimensional radiation belt models, such as the CIMI model (Fok et al., 2014), the VERB-4D model (Aseev et al., 2016), and425

the K2 MHD-particle model (Elkington et al., 2019) are of this type. Similar to the treatment of Eq. (2), Eq. (42) can be

obtained from Eq. (1) by introducing the new coordinates xξ = {Qµ,Qι,ϕι} ≡ {xµ,xκ}, which enlarges the index set from α
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Figure 6. Left y-axis: UBER code speedup, defined as the ratio between wall clock time of serial and parallel executions, as a function of

parallel threads for solving Problem 1 in spherical coordinates. Each data point (cross) is the median from eight independent and identical

numerical experiments, with the associating error bar covering the range of those eight experiments. Dashed line gives a fit to the data

points using Amdahl’s law with parameter p= 0.85 (see text for its meaning). Right y-axis marks the actual wall clock time in seconds for

the numerical experiments on a Linux server with a maximum of 86 CPUs (the right-most data point) at 2.1 GHz floating point operation

frequency per processor.

to ξ, and performing the following transformation of equation coefficients:
D̃µν =Dµν , D̃ξκ = 0,

h̃ξ = {hµ, ẋκ},
S̃ = S+ ∂κẋ

κ + Q̇ι∂ι lnG,

ṽ = v.

(43)

Therefore, the Boltzmann equation (42) can also be solved by the method presented in this article in principle. However, such

four-dimensional simulations are beyond the current scope of the UBER code since it is only coded for up to three dimensions430

in space.

Nonlinear evolution of phase space density occurs when the particle scatterings are not only small-scale but also large-scale,

usually as a result of trapping by intense plasma waves (e.g., Bortnik et al., 2008; Albert et al., 2013). In this case, the right-hand

side of the kinetic equation must include terms of non-local transport of phase space density by these large-scale scatterings,

and the equation is formulated as (Artemyev et al., 2016; Zheng et al., 2019)435

∂f̄

∂t
=

1

G

∂

∂Qα

(
GDαβ ∂f̄

∂Qβ

)
− 1

G

∂

∂Qα
(
Ghαf̄

)
−
(ˆ

PQ→Q̃G̃dQ̃
α

)
f̄ +

ˆ
PQ̃→Qf̃ G̃dQ̃

α, (44)

in which f̃ is a shorthand for the function f̄(t, Q̃α), and G̃ is the Jacobian determinant evaluated at Q̃α. With nonlinear

wave-particle interactions, phase bunching effect gives rise to the advection characterized by the coefficients hα. The function
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PQ→Q̃ is the trapping probability density per unit time from Qα to Q̃α, that is, particles are trapped by the wave field at Qα

and subsequently escape from trapping at Q̃α, and is considered a known function which can be evaluated from single particle

behaviors by either perturbation theory of Hamiltonian mechanics (e.g., Artemyev et al., 2016) or test-particle simulations440

(e.g., Vainchtein et al., 2018). Note that, since the unknown function is contained in the last integral term, Eq. (44) is an

integro-differential equation. However, formal similarity between Eq. (44) and the Fokker-Planck equation (1) suggests that an

asymptotic solution of Eq. (44) may be achieved by Taylor expanding f̃ as

f̃ = f̃0 + f̃ ′0t+ . . . , (45)

where f̃0 = f̄(0, Q̃α) and f̃ ′0 indicates its time-derivative function evaluated at t= 0. When applying the SDE method with a

solution grid, the functions f̃0 and f̃ ′0 can be obtained from solutions of previous time stamps. Then, by defining the following445

coefficients

S(Qα) =−
ˆ
PQ→Q̃G̃dQ̃

α, (46)

v(t,Qα) =

ˆ
PQ̃→Qf̃0G̃dQ̃

α + t

ˆ
PQ̃→Qf̃

′
0G̃dQ̃

α + . . . , (47)

which are now known functions, Eq. (44) is transformed into the form of Eq. (1), and is readily solvable by the UBER code.

In this way, the simulations of nonlinear wave-particle interactions in the radiation belts could hence be unified with the well-

developed simulations in the quasi-linear theory.

Code and data availability. The UBER library is free and open source. The current version of UBER is available from the GitHub repository450

https://github.com/zheng-lh/UBER (last access 14 April 2021) under the MIT license. The exact version of the UBER library used to produce

the results used in this paper is archived on Zenodo (https://doi.org/10.5281/zenodo.4671646, Zheng, 2021), as are input data and scripts to

run the library and produce the plots and tables for all the simulations presented in this paper (https://doi.org/10.5281/zenodo.5221599,

Zheng et al., 2021).

Appendix A: A Formal Derivation of Radiation Belt Kinetic Equations455

We consider, for simplicity, a hypothetical radiation belt whose particle motion has two well-separated periods which define

two pairs of action-angle variables {ϕ1,ϕ2,J1,J2}. We assume that the phase angle ϕ1 changes much faster than ϕ2, and

hence call {ϕ1,J1} the fast variables and {ϕ2,J2} the slow variables. We further assume, for a moment, that the Hamiltonian

of particle motion

H(ϕ1,ϕ2,J1,J2, t) =H0(ϕ2,J1,J2, t) + δH(ϕ1,J1,J2, t) (A1)

is constituted of an unperturbed partH0 that depends on the slow phase and a perturbation δH that is caused by electromagnetic460

forces whose variation time scale is shorter than the periodicity 2π/ϕ̇1. Apparently, δH is a periodic function of ϕ1. Upon
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averaging over ϕ1, the perturbation cancels out, so that

〈δH〉 ≡ 1

2π

ˆ 2π

0

δHdϕ1 = 0. (A2)

These presumptions allow the particle phase space density

f(ϕ1,ϕ2,J1,J2, t) = f̄(ϕ2,J1,J2, t) + δf(ϕ1,J1,J2, t) (A3)

to be so decomposed into a fast-phase-averaged part f̄ ≡ 〈f〉 and a perturbation δf , also periodic in ϕ1, which has 〈δf〉= 0

by definition.465

For a collisionless plasma, evolution of f is governed by the Vlasov equation

∂f

∂t
+ ϕ̇α

∂f

∂ϕα
+ J̇α

∂f

∂Jα
= 0, (A4)

in which the index α= 1,2. Expressing ϕ̇α and J̇α by Hamilton’s canonical equations, the Vlasov equation can be expanded

in light of (A1) and (A3). When averaging the expanded equation over ϕ1, all terms to the first order in perturbation vanish

due to either their null phase average or periodicity in ϕ1, and the remaining terms form the equation

∂f̄

∂t
+
∂H0

∂J2

∂f̄

∂ϕ2
− ∂H0

∂ϕ2

∂f̄

∂J2
=−

〈
∂δH

∂J1

∂δf

∂ϕ1
− ∂δH

∂ϕ1

∂δf

∂J1

〉
, (A5′)

or organized into Poisson brackets with respect to the canonical coordinates {ϕα,Jα},470

∂f̄

∂t
+ [f̄,H0] =−〈[δf,δH]〉 . (A5)

In fact, this equation form is more neatly derived from Liouville’s theorem (e.g., Goldstein, 1980, Chap. 9) which says

df

dt
=
∂f

∂t
+ [f,H] = 0. (A6)

Phase averaging Eq. (A6) over ϕ1 and noting that 〈[δf,H0]〉= 〈[f̄, δH]〉= 0 directly gives Eq. (A5).

Eq. (A5) appears in a form of a Boltzmann equation for the phase-averaged phase space density: the left-hand side describes

evolution of the unperturbed system in the slow variables; whereas the right-hand side, involving only the perturbed quantities

and the fast variables, serves the role of a collision integral: indeed, it can be viewed upon as “collisions” between particles475

and the perturbing electromagnetic field. In this regard, we symbolically denote the right-hand side
〈(∂f

∂t

)
w

〉
in analogy to

that caused by real collisions, with the subscript designating wave-particle interaction.

Eq. (A5) is closed when its right-hand side can be expressed in terms of f̄ under certain approximations. If both δH and δf

are small compared to their unperturbed counterparts, δf can be directly solved from the linearized Vlasov equation retaining

only the first-order terms in expansion, and after mathematical transformations, gives the expression (e.g., Lerche, 1968;480

Kaufman, 1972)〈(
∂f

∂t

)
w

〉
=

∂

∂J1

(
Dw

∂f̄

∂J1

)
, (A7)
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where the coefficient Dw is a functional of δH . The corresponding theory is called the quasi-linear theory. However, when

the perturbing electromagnetic wave is sufficiently coherent, δf may become large even if δH remains small. In this situation,〈(∂f
∂t

)
w

〉
is estimated by considering particle phase trajectories near the resonance point (e.g., Artemyev et al., 2016). The

result would then contain corrections to Eq. (A7) which are due to particles trapped in phase with the wave, whose formulation485

in the current setup could be inferred from that of Eq. (44) in the body; and we hereby do not elaborate.

Taking account collisions in the plasma would introduce to Eq. (A4) a collision term not describable by the single-particle

Hamiltonian, so that the transport equation becomes the Boltzmann equation

∂f

∂t
+ ϕ̇α

∂f

∂ϕα
+ J̇α

∂f

∂Jα
=

(
∂f

∂t

)
c

. (A8)

Following the same treatment from (A4) to (A5), Eq. (A8) leads to the fast-phase-averaged equation

∂f̄

∂t
+ [f̄,H0] =

〈(
∂f

∂t

)
w

〉
+

〈(
∂f

∂t

)
c

〉
. (A9)

For Coulomb collisions, small-angle scatterings at large impact parameters dominate due to the long range of Coulomb force,490

and consequently the phase-averaged collision integral can be expanded into a Fokker-Planck form in the generalized momenta

that are changed by the collisions (Lifshitz and Pitaevskii, 1981, Chap. 2 and 4), i.e.,〈(
∂f

∂t

)
c

〉
=

∂

∂J1

(
Dc

∂f̄

∂J1

)
− ∂

∂J1

(
hcf̄
)
, (A10)

which usually only involves the fast momentum J1 on time scales much shorter than 2π/ϕ̇2. The transport coefficients Dc and

hc are determined from the particle species and their collision cross-sections. We note again that, in the phase-averaged kinetic

equation (A9), slow and fast variables are separated onto each side of the equation.495

Neglecting the source and loss terms, the quasi-linear kinetic equations in the body of this paper could all be recovered

from Eqs. (A7), (A9) and (A10), which are already in the same form as Eq. (42). If there are no slow variables, the Poisson

bracket on the left-hand side of Eq. (A9) vanishes, and the equation reduces to the Fokker-Planck equation (1). If there are

slow variables but ϕ2 is cyclic to the unperturbed Hamiltonian, the left-hand side of Eq. (A9) would then contain the first two

terms shown in Eq. (A5′), which is in the form of Eq. (2). In this case, the dependence of f̄ on ϕ2 is introduced by means other500

than the Hamiltonian, such as the ϕ2-dependent boundary geometry, boundary conditions or collision terms.
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