
Authors comments on gmd-2021-122

On behalf of all authors of the manuscript, I would like to express our great appreciation to
the referees for their careful evaluation of our manuscript and the very thoughtful comments
on its improvement. The manuscript has gone through revisions per their suggestions, and the
changes are highlighted in blue color in the tracked-change version. In this response, I will be
referring to the line numbers in the tracked-change version.

All three referees have suggested adding discussion on the UBER code efficiency as com-
pared to finite difference methods. In the revised manuscript, a new paragraph is added in the
discussion section between Line 395–416 and a new figure (Fig. 6) is added for this purpose.
The main conclusion from that paragraph is that the fully parallelized UBER code is roughly
an order of magnitude slower than its serial finite-difference counterpart. Caveats to this con-
clusion are also discussed. In the following, I will respond to the referees’ comments point by
point.

RC1
“I would clarify around line 20 that Js are the canonical momentums; otherwise alpha would
go from 1 to 6.”

Thank you for this careful pick. In both Goldstein [1980] and Landau and Lifshitz [1976],
J is named the action variable and ϕ the angle variable, and they are collectively called the
action-angle variables. In obedience to this nomenclature, I have changed the inaccurate
“action-integral variables” in Line 21 to “action variables”, and given a reference to Gold-
stein [1980, Chap. 10] earlier in Line 16 when Hamiltonian mechanics is first mentioned.

“I thought that we neglect the phases of J simply because we assume isotropy in all phis . I
could not precisely follow the argument of electric potential energy. Please elaborate.”

I assume this comment is referring to the paragraph between Line 34–45. Appendix A
gives a detailed explanation on the forms of the kinetic equations. There are two dependent
functions on ϕ here, one is the phase space density f̄ , and the other is the particle Hamiltonian
H0. These two dependences are not equivalent. For example, if H0 is independent on ϕ (ϕ is
a cyclic variable), f̄ could still be dependent on ϕ for the reasons listed in the last sentence of
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Appendix A; and in this situation the corresponding kinetic equation take the form as given
by Eq. (2). Conversely, if assuming f̄ isotropic in ϕ but H0 dependent on ϕ, the left-hand side
of the kinetic equation would then be like

∂f̄

∂t
+ Q̇

∂f̄

∂Q
= . . . , (C1)

according to Eq. (A5′) in Appendix A. The argument between Line 40–44 on electric potential
energy explains why for radiation belt particles the term Q̇∂f̄/∂Q should vanish, i.e., why H0

should be independent on ϕ.

Writing explicitly, the particle unperturbed Hamiltonian takes the form

H0 =
p2

2m
+ eΦ(ϕ), (C2)

in which the only dependence on drift phase ϕ comes from the electric potential energy eΦ.
Variation of Φ along the particle drift path can be roughly estimated by the cross polar cap
potential, since the magnetic field lines connecting the polar ionosphere and the drift path can
be well approximated as equipotentials. For Earth, cross polar cap potential is usually a few
tens of kilovolts in quiet times, and rarely reaches above 200 kV during disturbances [e.g.,
Gao, 2012]. Consequently, the electric potential energy variation is in the order of 101 keV,
which is much less than the kinetic energy (p2/2m) of radiation belt particles (102 ∼ 104

keV for electrons, 101 ∼ 102 MeV for protons). Therefore, for particles in the radiation belt
energy range, the term eΦ can be neglected in H0, resulting in its independence on ϕ, and the
disappearance of Q̇∂f̄/∂Q in the kinetic equation. However, for ring current electrons, eΦ is
no longer negligible, and this case is discussed in the discussion section.

I struggled on whether to include these numerical ranges in the manuscript to make it
more explicit. On a second thought, since these ranges specifically refer to Earth, whereas the
introduction section talks about the general radiation belts of magnetized planets, I think it
is better to leave them for the readers of different walks to digest; otherwise the introduction
would become embarrassingly verbose.

“While the paper discusses in detail the advantages of this approach, it omits the disadvan-
tages. I would suggest clearly saying how long the presented runs take to run on a regular PC
and on a supercomputer. I would also specify how much wall clock computing would take to
calculate one day charging along a given satellite orbit. Also, specify how much slower this
approach than more traditional approaches for the multi-dimensional diffusion equations.”

Thanks for these good suggestions. And they are addressed in the added paragraph be-
tween Line 395–416 to my best resources.
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“The presented tests all show examples that are initiated with smooth initial conditions. Please
provide examples similar to Aseev et al., 2016 with strong gradients in initial conditions.”

This example is provided as the new example Problem 3 in the revised manuscript. The
conclusion from that example is, for advection equations with constant advection velocity, the
UBER code could achieve exact solutions regardless of the discontinuities and infinite gradi-
ents in the initial condition; for variant advection velocity, the UBER solution errors will be
small. The reasons for these UBER code performances are also discussed there. Since now
this is the example problem where the periodic boundary condition first appears, the explana-
tion on its treatment is moved from Problem 4 to here.

RC2
“1, The main problem I have with the paper is that it failed to discuss the main concern of the
the SDE method: its speed, especially compared with finite difference methods etc. Clearly,
the SDE code with newer techniques is much much more efficient than the traditional one.
But how does it compare with simple finite difference methods in the three cases discussed?
I think the authors could discuss the comparison in different situations; e.g., when one cares
about only a few snapshots, and when needs to know the whole history of evolution. Having a
fair discussion about the disadvantage of the method does not make the paper less significant,
but instead show future directions where improvements can be made.”

Thank you for these suggestions. I have addressed comparisons of code efficiency in the
newly added paragraph between Line 395–416 to my best resources.

“2, Lines 45-50: These listed numerical codes use either finite difference type methods or
SDE/layer methods. None of the methods are limited by the choice of coordinates. Those
authors chose a particular choice of coordinates probably because they did not intend to build
a general library or because they tended to demonstrate a new method. I think it would nice
for the authors to take this into consideration when discussing previous models.”

Thanks for this thoughtful comment. The sentence in Line 48–49 is modified to take this
point in consideration.

“3, Lines 53-55: The complicated geometry is a problem for some of the models, mainly
because radiation belt people seem to have a preference for finite difference methods. There
exist general powerful finite volume/elements methods that can handle complicated bound-
ary geometry. So here ‘. . . would be challending for numerical methods’ should really be
‘. . . would be challenging for finite difference methods.’ ”

Corrected.

Authors comments on gmd-2021-122



4

“4, In Table 1, the UBER library input, can the current code handle time-dependent D? I know
the method can, but not sure if it has been implemented by the code.”

Yes, the code can, as also implied by the curved cylinder in Fig. 1. To make it more ex-
plicit, the phrase “in the UBER code” is added to the sentence in Line 142.

“5, Lines 158: No, the grids in the layer method need NOT to be uniform. It was simply
chosen for simplicity for estimating error and demonstration purposes.

“6, Lines 155-159: Yes, in SDE methods, one can design this kind of method to obtain the
global solutions of f and its history. However, the key to implementing this in SDE is actually
about finding an appropriate interpolation method. ‘The only operation . . . would be interpo-
lation’ sounds like finding such an interpolation method is easy, while in fact it is NOT. For
the described choice of irregular domain or nonuniform domain, the interpolation method still
needs to be of high order to reduce systematic error from interpolation, and to preserve pos-
itivity of the solution. For example, if a simple 4th order polynomial interpolation method is
used, one might introduce oscillation of f, and hence negative value s of f, from interpolation,
and hence violates one of the key advantage of the SDE method. That is why Tao et al., 2016
(doi:10.1002/2015JA022064) introduced those higher-order positivity-preserving methods to
be used with layer method.”

The sentence between Line 158–160 has been modified. “The only operation” refers to
that there is no grid-scale differentiation or averaging as in finite difference methods and layer
methods, therefore it allows for the use of irregular grids. It also hints at the possibility to
entirely leave the interpolation part to sophisticated libraries on irregular grids, such as those
based on Delaunay triangulation, so that the SDE method could achieve to some extent the
features of finite element methods, although the current version has not reached that level of
sophistication. A convenient way to preserve positivity of f is to interpolate in its logarithm
rather than f itself (except where f = 0), and then take exponential of the interpolated value,
and this is how the UBER code deals with this problem now. If you’d bother diving into
UBER’s source code, you would find that the grid and the interpolation code does constitute
a big part of it.

“7: Lines 310-315: There actually exists flux-limited Lax-Wendroff methods that can avoid
introducing unphysical negative solutions. And in the case of forming steep gradients, it is
well-known that one should add flux-limiters to Lax-Wendroff type methods.”

Thank you for pointing out. A caveat is added to the sentence in Line 315–316.

RC3
“1. Could the authors clarify or discuss further if the UBER solver can handle boundary
conditions at varying locations or not? If we look at the radial diffusion model as a simple
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example, in the traditional solvers based on finite different method, it is often driven by data-
driven outer boundary conditions at a fixed L*. However, the L* location of the satellite data
providing the outer boundary is actually varying in time, which could lead to data gaps in
the outer boundary condition and uncertainties in the model results. Discussions on if and
how this type of boundary conditions can be implemented in UBER will further increase the
significance of the work.”

Yes, the UBER code can handle time-variable boundary locations. This is now explic-
itly indicated in Line 142. Boundary geometry, boundary conditions as well as other in-
put items as listed in Table 1 are specified to the UBER library by a user-editable template
file named user input.F90, whose usage is explained in detail in the library’s README file
(https://github.com/zheng-lh/UBER). The user specifies the time-variable boundary locations
to the code by giving its equation ψ(t, xα) = 0 (as a FORTRAN function) in the template file,
which can be either analytical or numerical.

“2. The reviewer is also curious how the coordinate conversion between adiabatic invariants
and energy and pitch angle can be implemented in UBER. As discussed in Subbotin and
Shprits [JGR, 2012], several 3D diffusion radiation belt models ‘utilized two grids to solve
the Fokker-Planck equation; one grid, which keeps the first and second adiabatic invariants
constant, was used for the computation of the radial diffusion, and the other grid, orthogonal
in energy and pitch angle at each fixed radial distance, was used for the computation of energy
diffusion, pitch angle diffusion, and mixed energy and pitch angle diffusion.’ At each time
step, the results were converted and interpolated between the two grids, which could lead
to uncertainties in the model results depending on how the conversion and interpolation are
performed. Is this coordinate conversion still needed in UBER? If not, why?”

This coordinate conversion is not needed in UBER. The “two grids” you mentioned here
come from the operator splitting technique that finite difference models usually employ to deal
with three-dimensional diffusion. Although one can write the Fokker-Planck equation in the
variable set {α0, E, L

∗}, these variables do not form a coordinate system of the phase space.
The variables that constitute a coordinate system are the adiabatic invariants {µ,K,L∗}. The
conversion between {µ,K} and {α0, E} at fixed L∗ depends on the magnetic field model
(usually assumed a dipole), and intrinsically excludes the drift-shell splitting effects which
would cause diffusion in the µ-L∗ and K-L∗ directions. Nonetheless, finite different models
still use {α0, E, L

∗} as equation variables because the computational domain is much more
regular in the {α0, E} coordinates than in the {µ,K} coordinates at a fixed L∗, which makes
ease for their numerical schemes. For the UBER code, problem dimensionality and domain
irregularity are not problems, therefore it can directly solve the equation in the coordinates of
adiabatic invariants, and hence the coordinate conversion you mentioned is totally unneces-
sary for the UBER code.
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“3. It will greatly enhance the significance of the paper if discussions are included in com-
paring the efficiency, stability, and accuracy between the UBER code and traditional finite
difference codes. It is demonstrated the UBER is more efficient than previous SDE codes, but
how does it compare with the traditional solvers based on the finite difference method? Is it
still much less efficient if global distributions of radiation belt electrons in L, energy, and pitch
angle are targeted? How about if we only need to solve for the distribution locally at certain
L, energy, and pitch angle? The authors could perhaps use example problem 3 to compare
the efficiency, stability, and the accuracy between the two different types of solvers and then
expand the discussion to higher-dimension models such as 3D diffusion models.”

Thank you for these good suggestions. A discussion on UBER’s efficiency as compared to
finite different methods is added in the paragraph between Line 395–416 to the author’s best
resources, as mentioned in the very beginning of this response. In general, the SDE method,
even with parallel computation, is still much slower than finite difference ones (about an order
of magnitude in the tests). However this conclusion has many caveats as you mentioned here,
which are further discussed in that paragraph. I hope that paragraph adequately addresses
your comments.
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