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Abstract   Karst trough and valley landforms are prone to flooding, primarily because of the 13 

unique hydrogeological features of karst landforms, which are conducive to the spread of 14 

rapid runoff. Hydrological models that represent the complicated hydrological processes in 15 

karst regions are effective for predicting karst flooding, but their application has been 16 

hampered by their complex model structures and associated parameter sets, especially for 17 

distributed hydrological models, which require large amounts of hydrogeological data. 18 

Distributed hydrological models for predicting flooding are highly dependent on distributed 19 

modelling processes, complicated boundary parameter settings, and extensive 20 

hydrogeological data processing steps, which are time consuming and computationally 21 

expensive. In this study, a distributed physically based karst hydrological model called the 22 
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QMG (Qingmuguan) model is proposed. The structural design of this model is relatively 23 

simple, and it is generally divided into surface and underground double-layered structures. 24 

The parameters that represent the structural functions of each layer have clear physical 25 

meanings, and fewer parameters are required than are need for other distributed models. This 26 

approach allows karst areas to be modelled with only a small amount of necessary 27 

hydrogeological data. Eighteen flood processes associated with the karst underground river 28 

in the Qingmuguan karst trough valley are simulated by the QMG model, and the simulated 29 

values agree well with observations, for which the average value of the Nash–Sutcliffe 30 

coefficient is 0.92. A sensitivity analysis shows that the infiltration coefficient, permeability 31 

coefficient, and rock porosity are the most important parameters in model calibration and 32 

optimization. The improved predictions of karst flooding obtained with the proposed QMG 33 

model enhance the mechanistic understanding of runoff generation and flow in karst trough 34 

valleys. 35 

Keywords: Simulation and forecasting of karst floods; Karst trough valleys; QMG 36 

(Qingmuguan) model; Parametric optimization; Parameter sensitivity analysis 37 

1   Introduction 38 

Karst trough and valley landforms are very common in China, especially in the southwest. In 39 

general, these karst areas are water scarce during most of the year because their surfaces 40 

store very little rainfall, but they are also potential sources of floods because the local trough 41 

and valley landforms and topographic features facilitate the formation and propagation of 42 

floods (White, 2002; Li et al., 2021). The coexistence of drought and flood is a typical 43 

phenomenon in these karst trough and valley areas. For example, in the present study area, 44 

the Qingmuguan karst trough valley, floods were historically prevalent during the rainy 45 

season. In recent years, with more extreme rainfall events and the increased area of 46 
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construction land in the region, rainfall infiltration has decreased, and rapid runoff over 47 

impervious surfaces has increased, resulting in frequent catastrophic flooding in the basin 48 

(Liu et al., 2009). Excess water flows from karst sinkholes and underground river outlets 49 

during floods (Jourde et al., 2007, 2014; Martinotti et al., 2017), flooding large areas of 50 

farmland and residential areas and causing serious economic losses (Gutierrez, 2010; Parise, 51 

2010; Yu et al., 2020). Therefore, it is both important and urgent to simulate and predict 52 

karst flooding events in karst trough and valley regions, such as the study area. 53 

Hydrological models can be effective for forecasting floods and evaluating water 54 

resources in karst areas (Bonacci et al., 2006; Ford and Williams, 2007; Williams, 2008, 55 

2009). However, modelling floods in karst regions is extremely difficult because of the 56 

complex hydrogeological structures of these regions. Karst water-bearing systems consist of 57 

multiple media and are influenced by complex karst development dynamics (Worthington 58 

et al., 2000; Kovács and Perrochet, 2008; Gutierrez, 2010), such as karst caves, conduits, 59 

fissures and pores; thus, such systems are usually highly spatially heterogeneous (Chang and 60 

Liu, 2015; Teixeiraparente et al., 2019). In addition, the complex surface hydrogeological 61 

conditions and the hydrodynamic conditions inside karst water-bearing media result in 62 

significant temporal and spatial differences in the hydrological processes in karst areas 63 

(Geyer et al., 2008; Bittner et al., 2020). 64 

In early studies of flood forecasting in karst regions, simplified lumped hydrological 65 

models were commonly used to describe the rainfall–discharge relationship (e.g., Kovács 66 

and Sauter, 2007; Fleury et al., 2007b; Jukić and Denić, 2009; Hartmann et al., 2014a). With 67 

the development of physical exploration technology and the progress made in mathematics, 68 

computing and other interdisciplinary disciplines, the level of modelling has gradually 69 

improved (Hartmann and Baker, 2017; Hartmann, 2018; Petrie et al., 2021). Subsequently, 70 

distributed hydrological models have been widely used in karst areas. The main difference 71 

between lumped and distributed hydrological models is that the latter divide the entire basin 72 

into many subbasins to simulate runoff generation and confluence characteristics, thereby 73 

effectively describing the physical properties of the hydrological processes that occur in 74 

karst water-bearing systems (Jourde et al., 2007; Hartmann, 2018; Epting et al., 2018). 75 



4 

 

Because of their simple structure and low demand for modelling data, lumped 76 

hydrological models have been used widely in karst areas (Kurtulus and Razack, 2007; 77 

Ladouche et al., 2014). In a lumped model, a river basin is considered as a whole when 78 

simulating runoff generation and flow paths, and there is no division into subbasins 79 

(Dewandel et al., 2003; Bittner et al., 2020). Lumped models usually consider the inputs and 80 

outputs of the study area (Liedl and Sauter, 2003; Hartmann and Bake, 2013, 2017). In 81 

addition, most of the model parameters are not optimized in a lumped model, and the 82 

physical meaning of each parameter may be unclear (Chen, 2009; Bittner et al., 2020). 83 

Distributed hydrological models are of high interest in flood simulation and forecasting 84 

research (Ambroise et al., 1996; Beven and Binley, 2006; Zhu and Li, 2014). Compared with 85 

lumped models, distributed models provide clear physical meaning regarding the model 86 

structure and mechanisms (Meng and Wang, 2010; Epting et al., 2018). In a distributed 87 

hydrological model, an entire karst basin can be divided into many subbasins (Birk et al., 88 

2005) using high-resolution digital elevation map (DEM) data. In the rainfall-runoff 89 

algorithm of a model, the hydrogeological conditions and karst aquifer characteristics can be 90 

fully considered to precisely simulate runoff generation and flow processes (Martinotti et 91 

al.,2017; Gang et al., 2019). Additionally, some basin-scale distributed hydrological models 92 

(not specific groundwater numerical models, such as MODFLOW) have been applied in 93 

karst areas, and they include the SHE/MIKE SHE model (Abbott et al., 1986a,b; Doummar 94 

et al., 2012), the SWMM model (Peterson and Wicks, 2006; Blansett and Hamlett, 2010; 95 

Blansett, 2011), TOPMODEL (Ambroise et al., 1996; Suo et al., 2007; Lu et al., 2013; Pan, 96 

2014) and the SWAT model (Peterson and Hamlett, 1998; Ren, 2006). 97 

The commonly used distributed hydrological models have various structures and 98 

numerous parameters (Lu et al., 2013; Pan, 2014), and a model may require vast amounts of 99 

data to build a framework for simulations in karst regions. For example, the distributed 100 

groundwater model MODFLOW-CFPM1 requires detailed data regarding the distribution of 101 

karst conduits in a study area (Reimann et al., 2009). Another example is the Karst–Liuxihe 102 

model (Li et al., 2019); notably, there are fifteen parameters and five underground vertical 103 

structures in the model. Such a complex structure increases the data demand, and modelling 104 
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in karst areas is extremely difficult. In addition, a special borehole pumping test may be 105 

required to obtain the rock permeability coefficient. 106 

To overcome the large data demands of distributed hydrological models in karst areas, a new 107 

physically based distributed hydrological model—known as the QMG (Qingmuguan) 108 

model-V1.0—was developed in the present study. Other commonly used karst groundwater 109 

models with complex structures and parameters, such as the aforementioned 110 

MODFLOW-CFPM1 model, require considerable hydrogeological data for modelling in 111 

karst areas (Qin and Jiang, 2014). The new QMG model has high potential for application in 112 

karst hydrological simulation and forecasting; it has certain advantages related to its 113 

framework and structural design, such as a double-layer structure and few parameters. The 114 

horizontal structure is divided into river channel units and slope units, and the vertical 115 

structure below the surface is divided into shallow karst aquifer and deep karst aquifer 116 

systems. This relatively simple model structure reduces the demand for modelling data in 117 

karst areas, and limited hydrogeological data are needed for modelling. To ensure that the 118 

QMG model works well in karst flood simulation and prediction despite its relatively simple 119 

structure and few parameters, we carefully designed the algorithms for runoff generation and 120 

flow in the model. Additionally, to verify the applicability of the QMG model in flood 121 

simulation in karst basins, we selected the Qingmuguan karst trough valley in Chongqing, 122 

China, as the study area for flood simulation and uncertainty analysis. In particular, we 123 

analysed the sensitivity of the model parameters. 124 

2   Study area and data 125 

2.1 Landform and topography 126 

The Qingmuguan karst trough valley is located in the southeastern part of the Sichuan Basin, 127 

China, at the junction of the Beibei and Shapingba districts in Chongqing, with the 128 

coordinates 29°40′N–29°47′N and 106°17′E–106°20′E. The basin covers an area of 129 

13.4 km2 and is part of the southern extension of the anticline at Wintang Gorge in the 130 

Jinyun Mountains, with the anticlinal axis of Qingmuguan located in a parallel valley in 131 
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eastern Sichuan (Yang et al., 2008). The surface of the anticline is heavily fragmented, and 132 

faults are extremely well developed with large areas of exposed Triassic carbonate rocks. 133 

Under the long-term erosion of karst water, a typical karst trough landform has formed, 134 

which looks like a pen-holder structure, means 'three ridges with two troughs' (Liu et al., 135 

2009). This karst trough landform provides ideal conditions for flood propagation, and the 136 

development of karst landforms is extremely common in this karst region of Southwest 137 

China, especially in the karst region of Chongqing. 138 

The basin is oriented in a narrow band of slightly curved arcs and is ~12 km long from 139 

north to south. The direction of the mountains in the region is generally consistent with the 140 

direction of the tectonic line. The map in Figure 1 gives an overview of the Qingmuguan 141 

karst basin. 142 

Figure 1. The Qingmuguan karst basin. 143 

2.2 Hydrogeological conditions 144 

The Qingmuguan basin is located within the subtropical humid monsoon climate zone, with 145 

an average temperature of 16.5°C and an average precipitation of 1250 mm concentrated 146 

mainly from May–September. An underground river system has developed in the karst 147 

trough valley, with a length of 7.4 km, and the water supply of the underground river is 148 

mainly rainfall recharge (Zhang, 2012). Most of the precipitation collects in hillslope areas 149 

and flows into the karst depressions at the bottom of the trough valley, where it provides 150 

recharge to the underground river through dispersed infiltration via surface karst fissures and 151 

sinkholes (Fig. 1a). An upstream surface river forms in a gentle valley and enters the 152 

underground river through the Yankou sinkhole (elevation 524 m). Surface water in the 153 

middle and lower reaches of the river system enters the underground river system mainly 154 

through cover-collapse sinkholes (Gutierrez et al., 2014) and fissures. 155 

The stratigraphic and lithological characteristics of the basin are dominated largely by 156 

carbonate rocks of the Lower Triassic Jialingjiang Group (T1j) and Middle Triassic Leikou 157 

Slope Group (T2l) on both sides of the slope, with some quartz sandstone and mudstone 158 
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outcrops of the Upper Triassic Xujiahe Group (T3xj) (Zhang, 2012). The topography of the 159 

basin presents a general anticline (Fig. 1b), where carbonate rocks on the surface are 160 

corroded and fragmented and have high permeability. Compared with the core of the 161 

anticline, the shale of the anticline is less eroded and forms a good waterproof layer. 162 

To investigate the distribution of karst conduits in the underground river system, we 163 

conducted a tracer test in the study area. The tracer was placed into the Yankou sinkhole and 164 

recovered in the Jiangjia spring (Fig. 1a,c). According to the tracer test results (Gou et al., 165 

2010), the karst water-bearing medium in the aquifer was anisotropic, the karst conduits in 166 

the underground river were extremely well developed, and there was a large single-channel 167 

underground river approximately five metres wide. The response of the underground river to 168 

rainfall was very fast, with the peak flow observed at the outlet of Jiangjia spring 6–8 h after 169 

rainfall based on the tracer test results. The flood peak rose quickly, and the duration of the 170 

peak flow was short. The underground river system in the study area is dominated by large 171 

karst conduits, which are not conducive to water storage in water-bearing media but are very 172 

conducive to the propagation of floods. 173 

2.3 Data 174 

To build the QMG model to simulate karst flood events, the necessary modelling 175 

baseline data had to be collected, and they included 1) high-resolution DEM data and 176 

hydrogeological data (e.g., the thickness of the epikarst zone, rainfall infiltration coefficient 177 

for different karst landforms, and permeability coefficient of rock); 2) land use and soil type 178 

data; and 3) rainfall data in the basin and water flow data for the underground river. The 179 

DEM data were downloaded from a free internet database and had an initial spatial 180 

resolution of 30  30 m. The spatial resolution of the land use and soil type data was 1000 181 

 1000 m, and these data were also downloaded from the internet. After considering the 182 

applicability and computational strength of the model, as well as the size of the basin in the 183 

study area (13.4 km2), the spatial resolution of the three types of data was resampled 184 

uniformly in the QMG model and downscaled to 15  15 m based on the spatial discrete 185 

method proposed by Berry et al. (2010). 186 
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The hydrogeological data necessary for modelling were obtained in three simple ways. 187 

1) A basin survey was conducted to obtain the thickness of the epikarst zone, which was 188 

achieved by observing the rock formations on hillsides following cutting for road 189 

construction. Information was collected regarding the location, general shape, and size of 190 

karst depressions and sinkholes, and these data were combined with DEM data and used to 191 

determine the convergence process of these depressions. The sinkholes in the basin are 192 

cover-collapse sinkholes (Gutierrez et al., 2014) according to the basin survey. There are 3 193 

large sinkholes (more than 3 metres in diameter) and 12 small sinkholes (less than 1 metre in 194 

diameter). The rest of the sinkholes, 5 in total, are between 1 and 3 metres in diameter. The 195 

confluence calculations for sinkholes in the model were based on the results of a previous 196 

study (Meng et al., 2009). 2) Empirical equations developed for similar basins were used to 197 

obtain the rainfall infiltration coefficient for different karst landforms and the permeability 198 

coefficient of rock. For example, the rock permeability coefficient was calculated based on 199 

an empirical equation established based on a pumping test in a coal mine in the study area 200 

(Li et al., 2019, 2022). 3) A tracer experiment was conducted in the study area (Gou et al., 201 

2010) to obtain information on the underground flow direction and flow velocity; for 202 

instance, underground karst conduits are well developed in the area, and an underground 203 

river approximately five metres wide is present. There is no hydraulic connection between 204 

the underground river system in the area and the adjacent basin, which means that there is no 205 

overflow recharge. 206 

Rainfall and flood data are important model inputs and represent the driving factors of 207 

hydrological models. In the study area, rainfall data were acquired with two rain gauges 208 

located in the basin (Fig. 1a). Point rainfall was then spatially interpolated to obtain 209 

basin-level rainfall (for such a small basin area, the rainfall results obtained from two rain 210 

gauges were considered representative). There were 18 karst flood events from 14 April 211 

2017 to 10 June 2019. We built a rectangular open channel at the underground river outlet 212 

and set up a river gauge in the channel (Fig. 1a) to record the water level and flow data every 213 

15 minutes. 214 
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3   Methodology 215 

3.1   Hydrological model framework and algorithms 216 

The hydrological model developed in this study was named the QMG model after the basin 217 

for which it was developed and to which it was first applied, i.e., the Qingmuguan basin. The 218 

QMG model has a two-layer structure, including a surface part and an underground part. The 219 

surface part mainly performs the runoff generation and surface routing calculations, and the 220 

underground part performs the routing calculations for the underground river system. 221 

The structure of the QMG model is divided into a two-layer structure with horizontal 222 

and vertical components. The horizontal structure of the model is divided into river channel 223 

units and slope units. The vertical structure below the surface is divided into a shallow karst 224 

aquifer (including soil layers, karst fissures and conduit systems in the epikarst zone) and a 225 

deep karst aquifer system (bedrock and underground river system). With this relatively 226 

simple model structure, only a small amount of hydrogeological data is needed in karst 227 

regions. Figure 2 shows a flowchart of the modelling and calculation procedures required for 228 

the QMG model. 229 

Figure 2. Modelling flow chart of the QMG (Qingmuguan) model. 230 

To accurately show the runoff generation and routing processes at the grid scale, the 231 

karst subbasins are further divided into many karst hydrological response units (KHRUs) 232 

based on the high-resolution (15 × 15 m) DEM data in the model. The specific steps 233 

involved in the division were adopted by referring to a study of hydrological response units 234 

(HRUs) in TOPMODEL by Pan (2014). As the smallest basin units for computing, KHRUs 235 

can effectively mitigate the spatial differences in karst development within units and reduce 236 

the uncertainty in the classification of model units. Figure 3 shows the spatial structure of 237 

the KHRUs. 238 

Figure 3. Spatial structure of karst hydrological response units (KHRUs) (Li et al., 2021). 239 

The right-hand side of Figure 3 shows a three-dimensional spatial model of KHRUs 240 

established in the laboratory to visually reflect the storage and movement of water in a karst 241 

water-bearing medium with spatial anisotropy and to provide technical support for 242 
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establishing the hydrological model. 243 

The modelling and operation of the QMG model involve three main stages: 1) spatial 244 

interpolation and the establishment of rainfall and evaporation calculations; 2) runoff 245 

generation and routing calculations for the surface river; and 3) routing calculations for 246 

underground runoff, including in the shallow karst aquifer and the underground river system. 247 

3.1.1 Rainfall and evaporation calculations 248 

In the QMG model, the spatial interpolation of rainfall is accomplished with a kriging 249 

method using ArcGIS 10.2 software. In some cases, the Thiessen polygon method may be a 250 

simpler method for rainfall interpolation if the number of rainfall gauges in the basin is 251 

sufficient. The point rainfall observed with the two rainfall gauges in the basin (Fig. 1a) was 252 

interpolated spatially into areal rainfall for the entire basin. 253 

Basin evapotranspiration in the KHRUs was mainly from vegetation, the soil and water 254 

surfaces. These evapotranspiration components were calculated using the following 255 

equations (modified from Li et al., 2020): 256 
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where Ev [mm] is the vegetal discharge, 
t t tV V
+

−  [mm] is the rainfall variation due 258 

to vegetation interception, Pv [mm] is the interception of rainfall by vegetation and Es 259 

[mm] is the actual soil evaporation. The term λ is the evaporation coefficient. The term 260 

Ep [mm] is potential evaporation, which can be measured experimentally or estimated 261 

with a water surface evaporation equation for Ew. The term F [mm] is the actual soil 262 

moisture, Fsat [mm] is the saturation moisture content, Fc [mm] is the field capacity, Ew 263 

[mm/d] is the evaporation from a water surface and e  = e0−e150 [hPa] is the draught 264 

head between the saturation vapour pressure of a water surface and the air vapour 265 

pressure 150 m above the water surface. The term T  = t0−T150 [°C] is the temperature 266 
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difference between a water surface and a location 150 m above the water surface,   is 267 

the relative humidity 150 m above the water surface and   [m/s] is the wind speed 268 

150 m above the water surface. 269 

3.1.2 Runoff generation 270 

In the QMG model, the surface runoff generation in river channel units is associated with the 271 

rainfall in the basin that enters the river system after subtracting evaporation losses. This 272 

portion of the runoff is directly involved in the routing process through the river system 273 

rather than undergoing infiltration. In contrast, the process of runoff generation in slope units 274 

is more complex and related to the developmental characteristics of the surface karst 275 

features in the basin, the rainfall intensity and soil moisture. For example, when the soil is 276 

saturated, there is the potential for excess infiltration-based surface runoff in exposed karst 277 

slope units. Surface runoff generation in river channel units and slope units in KHRUs can 278 

be described by the following equations (modified from Chen, 2009, 2018; Li et al., 2020): 279 
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where Pr(t) [mm] is the net rainfall (subtracting evaporation losses) in the river channel units 281 

at time t [h], Pi(t) [mm] is the rainfall in the river channel units, L [m] is the length of the 282 

river channel, maxW  [m] is the maximum width of the river channel selected and A [m2] is 283 

the cross-sectional area of the river channel. Rsi [mm] is the excess infiltration runoff in the 284 

QMG model when the vadose zone is nonsaturated. Notably, the infiltration capacity fmax 285 

varies in different karst landform units. α and β are the parameters of the Holtan model, and 286 

Fs [mm] is the stable depth of soil water infiltration. 287 

In the KHRUs (Fig. 3), underground runoff is generated primarily from the infiltration 288 

of rainwater and direct confluence recharge from sinkholes or karst windows. In the QMG 289 

model, underground runoff is calculated by the following equations (modified from Chen, 290 

2018): 291 
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Here, Rg [mm] is the underground runoff depth (this part of underground runoff is mainly 295 

directly from karst sinkholes or karst windows in the study area), R0 [mm] is the average 296 

depth of underground runoff, p and m are attenuation coefficients that were calculated by 297 

conducting a tracer test in the study area, Re [L/s] is the underground runoff generated from 298 

rainfall infiltration in the epikarst zone, Iw [mm] is the width of the underground runoff zone 299 

in the KHRUs, z [mm] is the thickness of the epikarst zone, Rr [mm2/s] is the runoff-based 300 

recharge in the KHRUs during period t, Repi [mm2/s] is the water infiltration from rainfall, 301 

ev  [mm/s] is the flow velocity of underground runoff, K [mm/s] is the permeability 302 

coefficient and   is the hydraulic gradient of underground runoff. If the soil moisture level 303 

is less than the field capacity, cF F , and the vadose zone is not yet full, there will be no 304 

underground runoff generation, and rainfall infiltration will fill the vadose zone before it 305 

becomes saturated, at which point runoff is generated. 306 

3.1.3 Channel routing and convergence 307 

In the QMG model, runoff routing in KHRUs includes the confluence of the surface river 308 

channel and underground runoff. There are already many classic algorithms available for 309 

performing runoff routing calculations in river channel units and slope units, such as the 310 

Saint-Venant equations and Muskingum convergence model. In this study, the Saint-Venant 311 

equations were adopted to assess flow routing for the surface river and in hill slope units, 312 

and a wave movement equation was adopted for convergence calculations in slope units 313 

(Chen, 2009): 314 
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Here, we customized two variables a and b: 318 
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Equation (7) was substituted into Eq. (5) and discretized with a finite-difference method, 320 

yielding 321 
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The Newton–Raphson method was used for the iterative calculation using Eq. (8): 323 
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 (9) 324 

where Q [L/s] is the convergence of water flow in slope units, L [dm] is the width of the 325 

runoff zone in a slope unit, h [dm] is the runoff depth and q [dm2/s] is the lateral inflow in 326 

the KHRUs. Here, the friction slope fS  equals the hill slope 
0S , and the inertia term and 327 

the pressure term in the motion equation of the Saint-Venant equation set were ignored. The 328 

term v [dm/s] is the flow velocity of surface runoff in the slope units, as calculated by the 329 

Manning equation. Additionally, n is the roughness coefficient of the slope units, 
1t

iQ +
 [L/s] 330 

is the slope inflow in a KHRU at time t+1 and 
1

1

t

iQ +

+  [L/s] is the slope discharge in the 331 

upper adjacent KHRU at time t+1. 332 
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Similarly, surface river channel convergence was described based on the Saint-Venant 333 

equations, and a diffusion wave movement equation was adopted; therefore, the inertia term 334 

in the motion equation was ignored: 335 
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                          (10) 336 

A finite-difference method and the Newton–Raphson method were used to iteratively solve 337 

the above equation set: 338 
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  (11) 339 

where Q [L/s] is the water flow in surface river channel units, A [dm2] is the cross-sectional 340 

area of discharge, c is a custom intermediate variable and   [dm] is the wetted perimeter 341 

of the discharge cross-section. 342 

The underground runoff area in the model includes the convergence region of the 343 

epikarst zone and underground river. In the epikarst zone, the karst water-bearing media are 344 

highly heterogeneous (Williams, 2008). For example, anisotropic karst fissure systems and 345 

conduit systems consist of corrosion fractures. When rainfall infiltrates into the epikarst 346 

zone, water moves slowly through the small (less than 10 cm in this study) karst fissure 347 

systems, and it flows rapidly in larger (more than 10 cm) conduits. The key to estimating the 348 

flow velocity lies in determining the width of karst fractures. In the KHRUs (Fig. 3), a 349 

fracture width of 10 cm was used as a threshold value (Atkinson, 1977) based on a borehole 350 

pumping test in the basin. Thus, if the fracture width exceeded 10 cm, then the water 351 

movement in the fracture was defined as rapid flow; otherwise, it was defined as slow flow. 352 

The flow in the epikarst zone was calculated by the following equation (modified from 353 

Beven and Binley, 2006): 354 
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Here, ( )
ijk

Q t  [L/s] is the flow in the epikarst zone at time t, 
ijkb  [dm] is the width of the 358 

runoff zone, 




h

l
 is the dimensionless hydraulic gradient, ( )

slow/rapid
T t  is the 359 

dimensionless hydraulic conductivity,   [g/L] is the density of water, g [m/s2] is 360 

gravitational acceleration, n is the number of valid computational units, 
i j kR C L  [L] is the 361 

volume of the ijk-th KHRU, v  is the kinematic viscosity coefficient, fij is the attenuation 362 

coefficient in the epikarst zone, hij [dm] is the depth of shallow groundwater and zij [dm] is 363 

the thickness of the epikarst zone. 364 

The distinction between rapid and slow flows in the epikarst zone is not absolute. 365 

Notably, the established fracture threshold of 10 cm may be underrepresentative because 366 

pumping tests were conducted in only five boreholes in the region. In fact, there is usually 367 

water exchange between the rapid and slow flow zones at the junctions of large and small 368 

fissures in karst aquifers. In the QMG model, this water exchange can be described with the 369 

following equation (modified from Li et al., 2021): 370 
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Here, , ,i j k  [dm2/s] is the water exchange coefficient in the ijk-th KHRU, ( ), ,n i j kh h−  372 

[dm] is the water head difference between the rapid and slow flow zones at the junction of 373 

large and small fissures in KHRUs, np is the number of fissure systems connected to the 374 
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adjacent conduit systems, ( )
, ,w i j k

K  [dm/s] is the permeability coefficient at the junction of 375 

a fissure and conduit, 
ipd  and ipr  [dm] are the conduit diameter and radius, respectively 376 

ipl  [dm] is the length of the connection between conduits i and p, and 
ip  is the conduit 377 

curvature. Some of the parameters in this equation, such as ( )
, ,w i j k

K  and ( ), ,n i j kh h− , 378 

were obtained by conducting an infiltration test in the study area. 379 

The convergence patterns in the underground river system have an important influence 380 

on the flow regime at the basin outlet. To facilitate the routing calculations in the QMG 381 

model, the underground river system can be generalized into large multiple-conduit systems. 382 

During floods, these conduit systems are mostly under pressure. Whether the water flow is 383 

laminar or turbulent depends on the flow regime at that time. The water flow into these 384 

conduits is calculated based on the Hagen–Poiseuille equation and the Darcy–Weisbach 385 

equation (Shoemaker et al., 2008): 386 
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Here,  laminarQ  [L/s] is the laminar flow in the conduit systems, A [dm2] is the conduit 388 

cross-sectional area, d [dm] is the conduit diameter,   [kg/dm3] is the density of water, 389 

= /    is the coefficient of kinematic viscosity, /h l   is the hydraulic slope of the 390 

conduits,  is the dimensionless conduit curvature, turbulentQ  [L/s] is the turbulent flow in 391 

the conduit systems and Hc [dm] is the average conduit wall height. 392 

3.2 Parameter optimization 393 

In total, the QMG model has 12 parameters, of which flow direction and slope are 394 

topographic parameters that can be determined from the DEM without parametric 395 
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optimization, and the remaining 10 parameters require calibration. Other distributed 396 

hydrological models with multiple structures usually have many parameters. For example, 397 

the Karst–Liuxihe model (Li et al., 2021) has 15 parameters that must be calibrated. In the 398 

QMG model, each parameter is normalized as 399 

0* /i i ix x x= ,                           (16) 400 

where ix  is the dimensionless parameter value for i after it is normalized, *ix  is the 401 

parameter value for i in actual physical units, and 0ix  is the initial or final value of ix . 402 

Through the processing of Eq. (16), the value range of the model parameters is limited to a 403 

hypercube Kn = (X ∣ 0 ≤ xi ≤ 1, i = 1, 2, ..., n), and K is a dimensionless value. This 404 

normalization process ignores the influence of the spatiotemporal variation in the underlying 405 

surface attributes on the parameters while also simplifying parameter classification and the 406 

number of model parameters to a certain extent. Accordingly, the model parameters can be 407 

further divided into rainfall-evaporation parameters, epikarst zone parameters and 408 

underground river parameters. Table 1 lists the parameters of the QMG model. 409 

Table 1. Parameters of the QMG model. 410 

Because the QMG model has relatively few parameters, it is possible to calibrate them 411 

manually, which is easy and does not require a special program for parameter optimization. 412 

However, the disadvantage is that this manual approach is subjective, which can lead to 413 

uncertainty in the manual parameter calibration process. To compare the effects of parameter 414 

optimization on model performance, both manual parameter calibration and the improved 415 

chaotic particle swarm optimization algorithm (IPSO) were used for the automatic 416 

calibration of model parameters, and the effects of both on flood simulation were compared. 417 

In general, the structure and parameters of a standard particle swarm optimization 418 

algorithm (PSO) are simple, with the initial parameter values obtained at random. For 419 

parameter optimization in high-dimensional multipeak hydrological models, the standard 420 

PSO is easily limited to local convergence and cannot achieve the optimal effect, and the late 421 

evolution of the algorithm may also cause problems, such as premature convergence or 422 

stagnant evolution, due to the ‘inert’ aggregation of particles, which seriously affects the 423 
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efficiency of parameter selection. It is necessary to overcome the above problems so that the 424 

algorithm can converge to the global optimal solution with a high probability. In parameter 425 

optimization for the QMG model, we improved the standard PSO algorithm by adding chaos 426 

theory and developed the IPSO method; notably, 10 cycles of chaotic disturbances were 427 

added to improve the activity of the particles. The inverse mapping equation for the chaotic 428 

variable is 429 

min max min

' *

( )*

(1 )

ij ij

ij ij

X X X X Z

Z Z Z 

= + −


= − +

                   (17) 430 

where Xij is the optimization variable for the model parameters, max min( )X X−  is the 431 

difference between the maximum and minimum values of Xij, Zij is the variable before the 432 

disturbance is added, Z’
ij is the chaotic variable after a disturbance is added,   is a variable 433 

determined by the adaptive algorithm (0 ≤ α ≤ 1), and Z* is the chaotic variable formed when 434 

the optimal particle is mapped to the interval [0,1]. The flowchart of IPSO is shown in 435 

Figure 4. 436 

Figure 4. Algorithm flow chart of IPSO. 437 

3.3 Uncertainty analysis 438 

Uncertainties in hydrological model simulation results usually originate from three factors: 439 

the input data, the model structure and the model parameters (Krzysztofowicz, 2014). In the 440 

present study, the input data (e.g., rainfall, flood and hydrogeological data) were first 441 

validated and preprocessed based on observations to reduce uncertainty. 442 

Second, we simplified the structure of the QMG model to reduce the structural 443 

uncertainty. As a mathematical and physical model, a hydrological model is characterized by 444 

some uncertainty in flood simulation and forecasting because of the errors in the system 445 

structure and selected algorithm (Krzysztofowicz and Kelly, 2000). The model in this study 446 

was designed with full consideration of the relationship between the amount of data required 447 

to build the model and model performance in flood simulation and forecasting in karst 448 



19 

 

regions. The entire model framework was integrated through simple structures and 449 

easy-to-implement algorithms based on the concept of distributed hydrological modelling. 450 

Conventionally, the level of uncertainty increases with the growing complexity of the model 451 

structure. We therefore ensured that the structure of the QMG model was simple when it was 452 

designed, and the double-layer model was divided into surface and underground structures to 453 

reduce structural uncertainty. 454 

Third, we focused on analysing the uncertainty and sensitivity of model parameters and 455 

the applied optimization method; specifically, a multiparametric sensitivity analysis method 456 

(Choi et al., 1999; Li et al., 2020) was used to analyse the sensitivity of the parameters in the 457 

QMG model. The steps in the parameter sensitivity analysis are as follows. 458 

1) Selection of the appropriate objective function 459 

The Nash–Sutcliffe coefficient is widely used to evaluate the performance of 460 

hydrological models (Li et al., 2020, 2021); therefore, it was used to assess the QMG model 461 

in this study. Because the most important factor in flood forecasting is the peak discharge, it 462 

is used in the Nash coefficient equation: 463 
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where NSC is the Nash–Sutcliffe coefficient, Qi [L/s] is the observed flow discharge, Qi' [L/s] 465 

is the simulated discharge, Q  [L/s] is the average observed discharge and n [h] is the 466 

observation period. 467 

2) Parameter sequence sampling 468 

The Monte Carlo sampling method was used to sample 8000 groups of parameter 469 

sequences. The parametric sensitivity of the QMG model was analysed and evaluated by 470 

comparing the differences between the a priori and a posteriori distributions of the 471 

parameters. 472 

3) Parameter sensitivity assessment 473 
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The a priori distribution of a model parameter is its probability distribution, and the 474 

a posteriori distribution refers to the conditional distribution calculated after sampling, 475 

which can be calculated based on the results of parameter optimization. If there is a 476 

significant difference between the a priori distribution and the a posteriori distribution of a 477 

parameter, then the parameter being tested is characterized by high sensitivity; conversely, if 478 

there is no obvious difference, then the parameter is insensitive. The a priori distribution of a 479 

parameter is calculated as 480 
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where Pi,j is the probability associated with a given a priori distribution when 482 

, 0.85i jNSC  . We used a simulated Nash coefficient of 0.85 as the threshold value, and n 483 

was the number of occurrences of a Nash coefficient greater than 0.85 in flood simulations. 484 

In each simulation, only a certain parameter was changed, and the remaining parameters 485 

remained unchanged. If the Nash coefficient of a simulation exceeded 0.85, then the flood 486 

simulation results were considered acceptable. The term i
 
is the difference between an 487 

acceptable value and the overall mean, which represents the parametric sensitivity 488 

(0 < i  < 1). The higher the i  value is, the more sensitive the parameter. In this study, N 489 

denotes the 8000 parameter sequences, and ,i jP  is the average value of the a priori 490 

distribution. 491 

3.4 Model settings 492 

After the model was built and before it was run, some of the initial conditions, such as 493 

the basin division scheme, the initial soil moisture levels, and the initial parameter ranges, 494 

were set. 1) In the study area, the entire Qingmuguan karst basin was divided into 893 495 

KHRUs, including 65 surface river units, 466 hill slope units, and 362 underground river 496 

units. The division of these units formed the basis for runoff generation and convergence 497 

calculations. 2) The initial soil moisture level was set to 0–100% of the saturated moisture 498 
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content in the basin, and the specific soil moisture level before each flood was determined 499 

through a trial calculation. 3) The hydraulic head boundary conditions for the groundwater 500 

zone were determined by a tracer test in the basin, and a perennial stable water level in area 501 

adjacent to the groundwater divide was used as the fixed head value at the model boundary. 502 

The base flow of the underground river was determined to be 35 L/s based on the perennial 503 

average dry season runoff. 4) The ranges of initial parameters and the convergence 504 

conditions were set before parameter optimization (Figure 4). 5) Parameter optimization and 505 

flood simulation were performed to validate the performance of the QMG model in karst 506 

basins. 507 

4  Results and discussion 508 

4.1 Parameter sensitivity results 509 

The number of parameters in a distributed hydrological model is generally large, and it 510 

is important to perform a sensitivity analysis of each parameter to quantitatively assess the 511 

impact of the different parameters on model performance. In the QMG model, each 512 

parameter was divided into four categories according to its sensitivity: (i) highly sensitive, 513 

(ii) sensitive, (iii) moderately sensitive, and (v) insensitive. In the calibration of model 514 

parameters, insensitive parameters do not need to be calibrated, which can greatly reduce the 515 

number of calculations and improve the efficiency of model operations. 516 

The flow process in the calibration period (14 April to 10 May 2017) was adopted to 517 

calculate the sensitivity of the model parameters, and calculations were based on 518 

equation (19). The parameter sensitivity results are listed in Table 2. 519 

Table 2 Parametric sensitivity results for the QMG model. 520 

In Table 2, the value of i  [equation (19)]
 
represents a parameter’s sensitivity, and the 521 

higher the value is, the more sensitive the parameter. The results in Table 2 indicate that the 522 

rainfall infiltration coefficient, rock permeability coefficient, rock porosity, and parameters 523 

related to the soil water content, such as the saturated water content and field capacity, are 524 

sensitive parameters. The order of parameter sensitivity is as follows: infiltration coefficient > 525 

permeability coefficient > rock porosity > specific yield > saturated water content > field 526 
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capacity > flow direction > thickness > slope > soil coefficient > channel roughness > 527 

evaporation coefficient. 528 

In the QMG model, parameters are classified as highly sensitive, sensitive, moderately 529 

sensitive, and insensitive according to their influence on the flood simulation results. In 530 

Table 4, we divide the sensitivity of model parameters into four levels based on the i value: 531 

1) highly sensitive parameters, 0.8 < i  < 1; 2) sensitive parameters, 0.65 < i  < 0.8; 3) 532 

moderately sensitive parameters, 0.45 < i  < 0.65; and 4) insensitive parameters, 533 

0 < i  < 0.45. The highly sensitive parameters are the infiltration coefficient, permeability 534 

coefficient, rock porosity, and specific yield. The sensitive parameters are the saturated 535 

water content, field capacity, and thickness of the epikarst zone. The moderately sensitive 536 

parameters are the flow direction, slope, and soil coefficient. The insensitive parameters are 537 

channel roughness and the evaporation coefficient. 538 

4.2 Parametric optimization 539 

In total, the QMG model includes 12 parameters, of which only eight need to be 540 

optimized, which is relatively few for distributed models. The flow direction and slope, as 541 

channel roughness and the evaporation coefficient, which are insensitive parameters, need 542 

not be calibrated; this approach can improve the convergence efficiency of the model 543 

parameter optimization process. 544 

In the study area, 18 karst floods from 14 April 2017 to 10 June 2019 were recorded at 545 

the underground river outlet to validate the effects of the QMG model in karst hydrological 546 

simulations. The calibration period was 14 April to 10 May 2017 at the beginning of the 547 

flow process, with the remainder of the period used as the validation period. In the QMG 548 

model, the IPSO algorithm was used to optimize the model parameters. To demonstrate the 549 

need for parameter optimization for the distributed hydrological model, the flood simulation 550 

results obtained using the initial parameters of the model (without parameter calibration) and 551 

the optimized parameters were compared. Figure 5 shows the iterative parameter 552 

optimization process for the QMG model. 553 
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Figure 5 Iterative parameter optimization process. 554 

Figure 5 shows that almost all parameters considerably fluctuate at the beginning of the 555 

optimization, and after approximately 15 iterative optimization calculations, most of the 556 

linear fluctuations become significantly less variable, which indicates that the algorithm 557 

tends to converge (possibly only locally). When the number of iterations exceeded 25, all 558 

parameters remain essentially unchanged, suggesting that the algorithm converged (at this 559 

point, global convergence was achieved). It took only 25 iterations to achieve definite 560 

convergence for parameters in the applied IPSO algorithm; thus, this approach is extremely 561 

efficient in terms of parameter optimization for distributed hydrological models. In previous 562 

studies of the optimization of the parameters of the Karst-Liuxihe model in similar basin 563 

areas, 50 iterative steps were required to reach convergence in automatic parameter 564 

optimization (Li et al., 2021), demonstrating the effectiveness of the IPSO algorithm. 565 

To evaluate the effect of parameter optimization, the convergence efficiency of the 566 

algorithm and, more importantly, the parameters after calibration were assessed in flood 567 

simulation cases. Figure 6 shows the flood simulation results. 568 

Figure 6 Flow simulation results of the QMG model based on parameter optimization. 569 

Figure 6 shows that the flows simulated following parameter optimization were better 570 

than those obtained with the initial model parameters. The simulated flow values based on 571 

the initial parameters were relatively small, with the simulated peak flows being notably 572 

smaller than the observed values; additionally, there were large errors between the simulated 573 

and observed values. In contrast, the simulated flows produced by the QMG model after 574 

parameter optimization were very similar to the observed values, which indicates that 575 

calibration of the model parameters was necessary and that there was an improvement in 576 

parameter optimization achieved through the use of the IPSO algorithm in this study. In 577 

addition, the flow simulation effect was better in the calibration periods than in the 578 

validation periods (Fig. 6). 579 

To compare the results of the flow process simulations with the initial model parameters 580 

and the optimized parameters, six evaluation indices (Nash–Sutcliffe coefficient, correlation 581 
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coefficient, relative flow process error, flood peak error, water balance coefficient, and peak 582 

time error) were applied in this study, and the results are presented in Table 3. 583 

Table 3 Flood simulation evaluation indices following parametric optimization. 584 

Table 3 shows that the evaluation indices of the flood simulations after parameter 585 

optimization were better than those obtained with the initial model parameters. The average 586 

values of the initial parameters for these six indices were 0.81, 0.74, 27%, 31%, 0.80, and 587 

5 h, respectively. For the optimized parameters, the average values were 0.90, 0.91, 16%, 588 

14%, 0.94, and 3 h, respectively. The flood simulation effects after parameter optimization 589 

clearly improved, implying that parameter optimization for the QMG model is necessary and 590 

that the IPSO algorithm for parameter optimization is an effective approach that can greatly 591 

improve the convergence efficiency of parameter optimization and ensure that the model 592 

performs well in flood simulations. 593 

4.3 Model validation in flood simulations 594 

Following parameter optimization, we simulated the whole flow process (14 April 2017 595 

to 10 June 2019) based on the optimized and initial parameters of the QMG model (Fig. 6). 596 

This approach allowed us to visually assess a long series of flow processes obtained with the 597 

model. To reflect the simulation effect of the model for different flood events, we divided the 598 

whole flow process into 18 flood events and then used the initial parameters of the model 599 

and the optimized parameters to verify the model performance in flood simulations. Figure 7 600 

and Table 4 show the flood simulation effects and the calculated evaluation indices using 601 

both the initial and optimized parameters. 602 

Figure 7 Flood simulation effects based on the initial and optimized parameters. 603 

Table 4 Flood simulation indices for model validation. 604 

Figure 7 shows that the flood simulation values obtained using the initial parameters 605 

were smaller than the observed values, and the model performance improved in flood 606 

simulations after parameter optimization. The simulated flood processes were in good 607 

agreement with observations, and flood peak flows were especially well simulated. From the 608 

flood simulation indices in Table 4, the average water balance coefficient based on the initial 609 
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parameters was 0.69, i.e., much less than 1, indicating that the simulated water in the model 610 

was unbalanced. After parameter optimization, the average value was 0.92, indicating that 611 

parameter optimization had a significant impact on the water balance calculation. 612 

Table 4 shows that the average values of the six indices (Nash–Sutcliffe coefficient, 613 

correlation coefficient, relative flow process error, flood peak error, water balance 614 

coefficient, and peak time error) for the initial parameters were 0.79, 0.74, 26%, 25%, 0.69, 615 

and 5 h, respectively, while for the optimized parameters, the average values were 0.92, 0.90, 616 

10%, 11%, 0.92, and 2 h, respectively. All evaluation indices improved after parameter 617 

optimization, with the average values of the Nash coefficient, correlation coefficient, and 618 

water balance coefficient increasing by 0.13, 0.16, and 0.23, respectively. Additionally, the 619 

average values of the relative flow process error, flood peak error, and peak time error 620 

decreased by 15%, 14%, and 3 h, respectively. These reasonable flood simulation results 621 

confirmed that parameter optimization with the IPSO algorithm was necessary and effective 622 

for the QMG model. 623 

Compared with the overall flow process simulation shown in Figure 6, each flood 624 

process was better simulated by the QMG model (Fig. 7). Notably, in the QMG model and 625 

the applied algorithm, the main consideration is flood process calculations, and the 626 

correlation algorithm for dry-season runoff was not sufficiently described. For example, 627 

equations (12)–(15) are used in the flood convergence algorithm. Consequently, the model is 628 

not good at simulating other flow processes, such as dry-season runoff, leading to low 629 

accuracy in simulations of the overall flow process. The next phase of our research will 630 

focus on refining the algorithm related to dry-season runoff and improving the 631 

comprehensive performance of the model. 632 

4.4 Uncertainty analysis 633 

4.4.1 Assessment and reduction of uncertainty 634 

In general, the uncertainty in model simulation is due mainly to three factors: (i) the 635 

uncertainty of input data, (ii) the uncertainty of the model structure and algorithm and (iii) 636 

the uncertainty of the model parameters. In the practical application of a hydrological model, 637 
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these three uncertainties are usually interwoven, which leads to overall uncertainty in the 638 

final simulation results (Krzysztofowicz, 2014). Therefore, this study focused on the 639 

uncertainties in the input data, the model structure and the parameters to reduce the overall 640 

uncertainty of the simulation results. 641 

First, the input data—mainly rainfall-runoff data and hydrogeological data—were 642 

preprocessed, which substantially reduced their uncertainty. Second, we simplified the 643 

structure of the QMG model, with only two structural layers in the horizontal and vertical 644 

directions. This relatively simple structure greatly reduced the modelling uncertainty. In 645 

contrast, our previous Karst–Liuxihe model (Li et al., 2021) included five layers, which led 646 

to considerably uncertainty. Third, appropriate algorithms for runoff generation and 647 

confluence were selected. In general, different models are designed for different purposes, 648 

which leads to notable differences in the algorithms used. In the QMG model, most of the 649 

rainfall-runoff algorithms used have been validated by the research results of others, and 650 

some of them were improved for karst flood simulation and forecasting with the QMG 651 

model. For example, the algorithm for the generation of excess infiltration runoff [Eq. (2)] 652 

was an improvement of the version used in the Liuxihe model (Chen, 2009, 2018; Li et al., 653 

2020). Finally, the algorithm for parameter optimization was improved. Considering the 654 

shortcomings of the standard PSO algorithm, which tends to converge locally, IPSO for 655 

parameter optimization was developed in this study by adding chaotic perturbation factors. 656 

The flood simulation results after parameter optimization were much better than those 657 

obtained with the initial model parameters (Figs. 6 and 7 and Tables 2 and 3), which 658 

indicates that parameter optimization is necessary for distributed hydrological models and 659 

can reduce the uncertainty of model parameters. 660 

4.4.2 Sensitivity analysis 661 

The parameter sensitivity results in Table 2 show that the rainfall infiltration coefficient in 662 

the QMG model was the most sensitive parameter and was the key to the generation of 663 

excess infiltration surface runoff and the separation of surface runoff from subsurface runoff. 664 

If the rainfall infiltration coefficient is greater than the infiltration capacity, excess 665 

infiltration surface runoff will be generated on exposed karst landforms; otherwise, all 666 
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rainfall will infiltrate into the vadose zone and then continue to seep into the underground 667 

river system, eventually flowing out of the basin through the underground river outlet. The 668 

flow modes of surface runoff and underground runoff were completely different, resulting in 669 

a large difference in the simulated flow results. Therefore, the rainfall infiltration coefficient 670 

had the greatest impact on the final flood simulation results. 671 

Other highly sensitive parameters, such as the rock permeability coefficient, rock 672 

porosity and specific yield, were used as the basis for dividing between slow flow in karst 673 

fissures and rapid flow in conduits. The division of slow and rapid flows also had a 674 

considerable impact on the discharge at the outlet of the basin. Slow flow plays an important 675 

role in water storage in karst aquifers and is very important for the replenishment of river 676 

base flow in the dry season. Rapid flow in large conduit systems dominates flood runoff and 677 

is the main component of the flood water volume in the flood season. 678 

Parameters related to the soil water content, including the saturated water content, field 679 

capacity and thickness, were sensitive parameters and had a large influence on the flood 680 

simulation results. Notably, the soil moisture content prior to flooding affects how flood 681 

flows rise and when peaks occur. If the soil is already very wet or even saturated before 682 

flooding, a flood will rise quickly and reach a peak, and the flood peak flow will be sharp 683 

and short. This type of flood can easily occur and can lead to a disaster-causing flood event. 684 

In contrast, if the soil in the basin is very dry before flooding, the rainfall will first saturate 685 

the vadose zone; then, the rainfall will infiltrate into the underground river. The flood peak at 686 

the river basin outlet is therefore delayed. 687 

The moderately sensitive parameters were the flow direction, slope and soil coefficient; 688 

they had a specific influence on the flood simulation results, but the influence was not as 689 

great as that of the highly sensitive and sensitive parameters. The insensitive parameters 690 

were channel roughness and the evaporation coefficient. The amount of water lost via 691 

evapotranspiration is very small compared to the total volume of flood water, and 692 

evapotranspiration was therefore the least-sensitive parameter in the QMG model. 693 
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5   Conclusions 694 

In this study, a new distributed physically based hydrological model, i.e., the QMG model, 695 

was proposed to accurately simulate floods in karst trough and valley landforms. The main 696 

conclusions of this paper are as follows. 697 

The QMG model has high application potential in karst hydrology simulations. Other 698 

distributed hydrological models usually have multiple structures, resulting in the need for a 699 

large amount of data to build models in karst areas (Kraller et al., 2014). The QMG model 700 

has only a double-layer structure, with clear physical meaning, and a small amount of basic 701 

data, such as some necessary hydrogeological data, is needed to build the model in karst 702 

areas. For example, the distribution and flow direction of underground rivers must be known 703 

and can be inferred from tracer tests at low cost. There are fewer parameters in the QMG 704 

model than in other distributed hydrological models, with only 10 parameters that need to be 705 

calibrated. 706 

The flood simulations after parameter optimization were much better than those based 707 

on the initial model parameters. After parameter optimization, the average values of the 708 

Nash coefficient, correlation coefficient and water balance coefficient increased by 0.13, 709 

0.16 and 0.23, respectively, and the average relative flow process error, flood peak error and 710 

peak time error decreased by 15%, 14% and 3 h, respectively. Parameter optimization is 711 

necessary for distributed hydrological models, and the improved IPSO algorithm in this 712 

study was effective. 713 

In the QMG model, the rainfall infiltration coefficient Ic, the rock permeability 714 

coefficient K, the rock porosity Rp and the parameters related to the soil water content were 715 

sensitive parameters. The order of parameter sensitivity was infiltration coefficient > 716 

permeability coefficient > rock porosity > specific yield > saturated water content > field 717 

capacity > flow direction > thickness > slope > soil coefficient > channel roughness > 718 

evaporation coefficient. 719 

This QMG model is suitable for karst trough and valley landforms, such as those in the 720 

study area, where the topography is conducive to the spread of flood water. In the future, it 721 
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must be verified whether this model is applicable to other karst areas and landforms. In 722 

addition, although the studied basin area is very small, but the hydrological similarity among 723 

different small basin areas varies greatly (Kong and Rui, 2003). The size of the area to be 724 

modelled has a great influence on the choice of spatial resolution for modelling (Chen et al., 725 

2017). Therefore, it must be determined whether the QMG model is suitable for flood 726 

forecasting in large karst basins. 727 

Model development. 728 

The QMG model presented in this study uses Visual Basic language programming. The 729 

general framework of the model and the algorithm consist of three parts: the modelling 730 

approach, the rainfall-runoff generation and convergence algorithm, and the parameter 731 

optimization algorithm. As a free and open-source hydrological modelling program (QMG 732 

model-V1.0), we provide all modelling packages, including the model code, installation 733 

package, simulation data package and user manual, free of charge. It is important to note that 734 

the model we provide is for scientific research purposes only and should not be used for any 735 

commercial purposes (Creative Commons Attribution 4.0 International). 736 

The model installation program can be downloaded from Zenodo and should be cited as (JI 737 

LI. (2021, June 16). QMG model-V1.0. Zenodo. http://doi.org/10.5281/zenodo.4964701 and 738 

http://doi.org/10.5281/zenodo.4964697) (registration required). The user manual can be 739 

downloaded from http://doi.org/10.5281/zenodo.4964754. 740 

Code availability. 741 

All codes for the QMG model-V1.0 in this paper are available and free, and the code can be 742 

downloaded from Zenodo at http://doi.org/10.5281/zenodo.4964709 (registration required) 743 

(Cite as JI LI. (2021, June 16). QMG model-V1.0 code (Version v1.0). Zenodo). 744 

Data availability. 745 

All data used in this paper are available, findable, accessible, interoperable, and reusable. 746 

The simulation data and modelling data package can be downloaded from 747 

http://doi.org/10.5281/zenodo.4964727. The DEM was downloaded from the Shuttle Radar 748 

Topography Mission database at http://srtm.csi.cgiar.org. The land use-type data were 749 

downloaded from http://landcover.usgs.gov, and the soil-type data were downloaded from 750 

http://www.isric.org. These data were last accessed on 15 October 2020. 751 
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Tables 982 

Table 1 Parameters of the QMG model. 983 

Parameters Variable name Physical property 

Infiltration coefficient Ic Meteorological 

Evaporation coefficient λ Vegetation cover 

Soil thickness h Karst aquifer 

Soil coefficient Sb Soil type 

Saturated water content Sc Soil type 

Rock porosity Rp Karst aquifer 

Field capacity Fc Soil type 

Permeability coefficient K Karst aquifer 

Flow direction Fd Landform 

Slope S0 Landform 

Specific yield Sy Karst aquifer 

Channel roughness n Landform 

Table 2 Parametric sensitivity results in the QMG model. 984 

Ic λ h Sb Sc Sy Fd S0 Rp Fc K n 

0.92 0.24 0.71 0.58 0.8 0.83 0.74 0.68 0.86 0.78 0.89 0.36 

Table 3 Flood simulation evaluation index through parametric optimization. 985 

Parameter 

optimization 

Parameter 

types 

Nash 

coefficient 

Correlation 

coefficient 

Relative 

flow 

process 

error/% 

Flood 

peak 

error/% 

Water 

balance 

coefficient 

Peak 

time 

error 

(hours) 

Calibration 

periods 

Initial 0.82 0.77 24 29 0.82 4 

Optimized 0.91 0.94 14 12 0.95 2 

Validation 

periods 

Initial 0.79 0.71 29 32 0.77 6 

Optimized 0.88 0.87 18 16 0.92 3 

Average 

value 

Initial 0.81 0.74 27 31 0.8 5 

Optimized 0.9 0.91 16 14 0.94 3 

Table 4 Flood simulation indices for model validation. 986 

Floods 
Parameter 

types 

Nash 

coefficient 

Correlation 

coefficient 

Relative 

flow 

process 

error/% 

Flood 

peak 

error/% 

Water 

balance 

coefficient 

Peak time 

error/(hours) 

2017042408 
Initial 0.77 0.7 28 29 0.71 -5 

Optimized 0.95 0.89 11 15 0.88 -2 

2017050816 
Initial 0.78 0.71 19 19 0.76 -4 

Optimized 0.92 0.88 11 9 0.94 -2 

2017061518 Initial 0.76 0.6 25 32 0.63 -5 
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Optimized 0.91 0.93 12 11 0.95 -3 

2017071015 
Initial 0.78 0.82 25 37 0.64 -4 

Optimized 0.92 0.87 8 7 0.94 -2 

2017091512 
Initial 0.81 0.62 21 16 0.78 -5 

Optimized 0.9 0.92 13 10 0.9 -4 

2017100815 
Initial 0.75 0.68 30 26 0.62 -2 

Optimized 0.94 0.86 11 15 0.92 -1 

2018052016 
Initial 0.78 0.68 25 21 0.67 5 

Optimized 0.91 0.93 10 13 0.94 2 

2018060815 
Initial 0.82 0.79 27 22 0.69 -6 

Optimized 0.9 0.92 11 12 0.93 -4 

2018071212 
Initial 0.84 0.75 26 24 0.61 5 

Optimized 0.91 0.88 8 15 0.92 3 

2018081512 
Initial 0.71 0.78 26 24 0.78 -4 

Optimized 0.89 0.94 12 11 0.89 -3 

2018090516 
Initial 0.85 0.68 28 23 0.68 -5 

Optimized 0.93 0.87 12 10 0.92 -2 

2018092514 
Initial 0.79 0.78 23 19 0.59 5 

Optimized 0.88 0.88 9 11 0.89 2 

2018101208 
Initial 0.78 0.81 28 25 0.63 5 

Optimized 0.92 0.94 11 10 0.94 2 

2018111208 
Initial 0.79 0.81 25 24 0.65 -6 

Optimized 0.94 0.86 13 12 0.92 -2 

2019042512 
Initial 0.78 0.8 26 36 0.8 5 

Optimized 0.89 0.94 9 16 0.93 2 

2019051513 
Initial 0.84 0.77 32 27 0.79 4 

Optimized 0.91 0.88 9 13 0.95 2 

2019052516 
Initial 0.74 0.75 29 26 0.63 -5 

Optimized 0.92 0.86 7 15 0.96 -2 

2019060518 
Initial 0.85 0.83 28 25 0.78 -4 

Optimized 0.95 0.96 10 12 0.92 -2 

Average 

value 

Initial 0.79 0.74 26 25 0.69 5 

Optimized 0.92 0.9 10 11 0.92 2 
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Figures 987 

 988 

1- stratigraphic boundary, 2- sinkhole, 3- karst depression, 4- underground river, 5- 989 

karst spring, 6- surface river, 7- river gauge, 8- rain gauge, and 9- geographical name 990 

a. Qingmuguan karst basin (modified from Yu et al., 2016) 991 

 992 

b. Lithologic cross section AA' of the Yankou sinkhole (modified from Zhang, 2012) 993 
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 994 

c. Longitudinal profile of the study area (modified from Yang et al.,2008) 995 

Figure 1 The Qingmuguan karst basin. 996 

 997 

Figure 2 Modelling flowchart of the QMG (Qingmuguan) model. 998 
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 999 

Figure 3 Spatial structure of the KHRUs (Li et al., 2021). 1000 

 1001 
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Figure 4 Algorithm flowchart of IPSO.1002 

 1003 

Figure 5 Iterative process of parameter optimization. 1004 

 1005 

Figure 6 Flow simulation results of the QMG model based on parameter optimization. 1006 
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  1007 

a. flood 201704240800                   b. flood 201705081600 1008 

  1009 

c. flood 201706151800                      d. flood 201707101530 1010 

  1011 

e. flood 201709151200                f. flood 201710081500 1012 
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  1013 

g. flood 201805201600                    h. flood 201806081500 1014 

1015 

i. flood 201808151200                     j. flood 201905251600 1016 

Figure 7 Flood simulation effects based on the initial and optimized parameters. 1017 


