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Abstract   Karst trough valleysand valley landforms are prone to flooding, primarily 13 

because of the unique hydrogeological features of karst landformlandforms, which are 14 

conducive to the spread of rapid runoff. Hydrological models that represent the complicated 15 

hydrological processes in karst regions are effective for predicting karst flooding, but their 16 

application has been hampered by their complex model structures and associated parameter 17 

setsets, especially so for distributed hydrological models, which require large amounts of 18 

hydrogeological data. Distributed hydrological models for predicting the Karst flooding 19 

isare highly dependent on distributed structrues modelingmodelling processes, complicated 20 

boundary parameters settingparameter settings, and tremendousextensive hydrogeological 21 

data processing that is bothsteps, which are time and computational power consuming.  22 
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Proposed here is and computationally expensive. In this study, a distributed physically- 23 

based karst hydrological model, known as called the QMG (Qingmuguan) model is 24 

proposed. The structural design of this model is relatively simple, and it is generally divided 25 

into surface and underground double-layered structures. The parameters that represent the 26 

structural functions of each layer have clear physical meanings, and thefewer parameters are 27 

lessrequired than those of the currentare need for other distributed models. This approach 28 

allows modeling in karst areas to be modelled with only a small amount of necessary 29 

hydrogeological data. 18Eighteen flood processes acrossassociated with the karst 30 

underground river in the Qingmuguan karst trough valley are simulated by the QMG model, 31 

and the simulated values agree well with observations, for which the average value of the 32 

Nash–Sutcliffe coefficient wasis 0.92. A sensitivity analysis shows that the infiltration 33 

coefficient, permeability coefficient, and rock porosity are the most important parameters 34 

that require the most attention in model calibration and optimization. The improved 35 

predictabilitypredictions of karst flooding byobtained with the proposed QMG model 36 

promotes a better enhance the mechanistic depictingunderstanding of runoff generation and 37 

confluenceflow in karst trough valleys. 38 

Keywords: Simulation and forecasting of karst floods; Karst trough valleys; QMG 39 

(Qingmuguan) model; Parametric optimization; Parameter sensitivity analysis 40 

1   Introduction 41 

Karst trough valleysand valley landforms are very common in China, especially in the 42 

southwest. In general, these karst areas are water scarce during most of the year because 43 

their surfaces store very little rainfall, but they are also potential birthplaces forsources of 44 

floods because the local trough and valley landforms and topographic features facilitate the 45 
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formation and propagation of floods (White, 2002; Li et al., 2021). Taking theThe 46 

coexistence of drought and flood is a typical phenomenon in these karst trough and valley 47 

areas. For example of, in the present study area, i.e. the Qingmuguan karst trough valley, 48 

floods used to happen here constantlywere historically prevalent during the rainy season. In 49 

recent years, with more extreme rainfall events and the increased area of construction land in 50 

the region, rainfall infiltration has decreased, and rapid runoff over impervious surfaces has 51 

increased, resulting in frequent catastrophic flooding in the basin (Liu et al., 2009). Excess 52 

water overflowsflows from karst sinkholes and underground river outlets often occur during 53 

floods, (Jourde et al., 2007, 2014; Martinotti et al., 2017), flooding large areas of farmland 54 

and residential areas and causing serious economic losses (Gutierrez, 2010; Parise, 2010; Yu 55 

et al., 2020). Therefore, it is both important and urgent to simulate and predict karst flooding 56 

events in karst trough valleysand valley regions, such as the study area. 57 

Hydrological models can be effective for forecasting floods and evaluating water 58 

resources in karst areas (Bonacci et al., 2006; Ford and Williams, 2007; Williams, 2008, 59 

2009). However, modelling floods in karst regions is extremely difficult because of the 60 

complex hydrogeological structure.structures of these regions. Karst water-bearing systems 61 

consist of multiple media under the influence ofand are influenced by complex karst 62 

development dynamics (Worthington et al., 2000; Kovács and Perrochet, 2008; Gutierrez, 63 

2010), such as karst caves, conduits, fissures and pores, and; thus, such systems are usually 64 

highly spatially heterogeneous (Chang and Liu, 2015; MarioTeixeiraparente et al., 2019). In 65 

addition, the intricatecomplex surface hydrogeological conditions and the hydrodynamic 66 

conditions inside the karst water-bearing mediummedia result in significant temporal and 67 

spatial differences in the hydrological processes in karst areas (Geyer et al., 2008; Bittner 68 

et al., 2020). 69 

In early studies of flood forecasting in karst regions, simplified lumped hydrological 70 

models were commonly used to describe the rainfall–discharge relationship (e.g.., Kovács 71 

and Sauter, 2007; Fleury et al., 2007b; Jukić and Denić, 2009; Hartmann et al., 2014a). With 72 

the development of physical exploration technology and the progress made in mathematics, 73 

computing and other interdisciplinary disciplines, the level of modelling has gradually 74 
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improved (Hartmann and Baker, 2017; Hartmann, 2018; Petrie et al., 2021), and). 75 

Subsequently, distributed hydrological models have subsequently becomebeen widely used 76 

in karst areas. The main difference between lumped and distributed hydrological models is 77 

that the latter divide the entire basin into many sub-basinssubbasins to calculate thesimulate 78 

runoff generation and confluence characteristics, thereby bettereffectively describing the 79 

physical properties of the hydrological processes inside thethat occur in karst water-bearing 80 

system (systems (Jourde et al., 2007; Hartmann, 2018; Epting et al., 2018). 81 

Because of their simple structure and littlelow demand for modelling data, lumped 82 

hydrological models have been used widely in karst areas (Kurtulus and Razack, 2007; 83 

Ladouche et al., 2014). In a lumped model, thea river basin is considered as a whole to 84 

calculate thewhen simulating runoff generation and confluenceflow paths, and there is no 85 

division running into sub-basinssubbasins (Dewandel et al., 2003; Bittner et al., 2020). 86 

Lumped models usually consider the inputs and outputs of the modelstudy area (Liedl and 87 

Sauter, 2003; Hartmann and Bake, 2013, 2017). In addition, most of the model parameters 88 

are not optimized in a lumped model, and the physical meaning of each parameter ismay be 89 

unclear (Chen, 2009; Bittner et al., 2020). 90 

Distributed hydrological models are of activehigh interest in flood simulation and 91 

forecasting research (Ambroise et al., 1996; Beven and Binley, 2006; Zhu and Li, 2014). 92 

Compared with a lumped model, amodels, distributed model has a more definitemodels 93 

provide clear physical significance formeaning regarding the model structure in terms of its 94 

mechanismand mechanisms (Meng and Wang, 2010; Epting et al., 2018). In a distributed 95 

hydrological model, an entire karst basin can be divided into many sub-basinssubbasins 96 

(Birk et al., 2005) using high-resolution digital elevation map (DEM) data. In the 97 

rainfall-runoff algorithm of thea model, the hydrogeological conditions and karst aquifer 98 

characteristics can be fully considered fully to simulate precisely thesimulate runoff 99 

generation and confluence (flow processes (Martinotti et al.,2017; Gang et al., 2019). The 100 

commonly usedAdditionally, some basin-scale distributed hydrological models (i.e. not a 101 

specialspecific groundwater numerical modelmodels, such as MODFLOW) have also been 102 

applied widely in karst areas, and they include the SHE/MIKE SHE model (Abbott et al., 103 
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1986a,b; Doummar et al., 2012), the SWMM model (Peterson and Wicks, 2006; Blansett 104 

and Hamlett, 2010; Blansett, 2011), TOPMODEL (Ambroise et al., 1996; Suo et al., 2007; 105 

Lu et al., 2013; Pan, 2014) and the SWAT model (Peterson and Hamlett, 1998; Ren, 2006). 106 

The commonly used distributed hydrological models have multiplevarious structures 107 

and numerous parameters (Lu et al., 2013; Pan, 2014), which means thatand a distributed 108 

model may needrequire vast amounts of data to build itsa framework for simulations in karst 109 

regions. For example, the distributed groundwater model MODFLOW-CFPM1 requires 110 

detailed data regarding the distribution of karst conduits in a study area (Reimann et al., 111 

2009). Another example is the Karst–Liuxihe model (Li et al., 2019), which has ); notably, 112 

there are fifteen parameters and five underground vertical layersstructures in the model. 113 

Such a complex structure and has 15 parameters, thereby making it difficult to 114 

modelincreases the data demand, and modelling in karst areas is extremely difficult. In 115 

addition, a special borehole pumping test may be required to obtain the rock permeability 116 

coefficient. 117 

To overcome the difficulty of the large modelling-data demands forof distributed 118 

hydrological models in karst areas, a new physically based distributed hydrological 119 

model—known as the QMG (Qingmuguan) model-V1.0—was developed in the present 120 

study. Other commonly used karst groundwater models with complex structurestructures and 121 

parameters—, such as the aforementioned MODFLOW-CFPM1 model—, require a lot 122 

ofconsiderable hydrogeological data for modelling in karst areas (Qin and Jiang, 2014). The 123 

new QMG model has a high potential for application in karst hydrological simulation and 124 

forecasting. It; it has certain advantages inrelated to its framework and structural design, 125 

havingsuch as a double-layer structure and fewerfew parameters. The horizontal structure is 126 

divided into river channel units and slope units, and the vertical structure below the surface 127 

is divided into a shallow karst aquifer and a deep karst aquifer systemsystems. This 128 

relatively simple model structure reduces the demand for modelling data in karst areas, and 129 

only a small amount oflimited hydrogeological data isare needed for modelling.  130 

To ensure that the QMG model work well in karst flood simulation and prediction in the  131 
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case of relatively simple structure and parameters. We carefully designed the algorithms of 132 

runoff generation and confluence in the model. To ensure that the QMG model works well in 133 

karst flood simulation and prediction despite its relatively simple structure and few 134 

parameters, we carefully designed the algorithms for runoff generation and confluenceflow 135 

in the model. AlsoAdditionally, to verify the applicability of the QMG model toin flood 136 

simulation in karst basins, we selected the Qingmuguan karst trough valley in Chongqing, 137 

China, as the study area for a flood simulation and uncertainty analysis. In particular, we 138 

analysed the sensitivity of the model parameters. 139 

2   Study area and data 140 

2.1 Landform and topography 141 

The Qingmuguan karst trough valley is located in the southeastern part of the Sichuan Basin, 142 

China, at the junction of the Beibei and Shapingba districts in Chongqing, with the 143 

coordinates of 29°40′N–29°47′N, and 106°17′E–106°20′E. The basin covers an area of 144 

13.4 km2 and is part of the southern extension of the anticline at Wintang Gorge in the 145 

Jinyun Mountains, with the anticlinal axis of Qingmuguan located in a parallel valley in 146 

eastern Sichuan (Yang et al., 2008). The surface of the anticline is heavily fragmented, and 147 

faults are extremely well developed with large areas of exposed Triassic carbonate rocks 148 

exposed. Under the long-term erosion of karst water, a typical karst trough landform pattern 149 

of ‘three mountains and two troughs’ has formed, which looks like a pen-holder structure, 150 

means 'three ridges with two troughs' (Liu et al., 2009). This karst trough landform provides 151 

convenientideal conditions for flood propagation, and the development of karst landforms is 152 

extremely common in thethis karst region of southwestSouthwest China, especially in the 153 

karst region of Chongqing. Similar regions include the karst trough valley of the Zhongliang 154 

Mountains and the Laolongdong karst basin in Nanshan, Chongqing. 155 

The basin is oriented north-north-east and south-south-west in a narrow band of slightly 156 

curved arcs and is ~12 km long from north to south. The direction of the mountains in the 157 

region is basicallygenerally consistent with the same as thatdirection of the tectonic line. The 158 
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difference in relative elevation is 200–300 m. The map in Fig.Figure 1 gives an overview of 159 

the Qingmuguan karst basin. 160 

Figure 1. The Qingmuguan karst basin. 161 

2.2 Hydrogeological conditions 162 

The Qingmuguan basin is located within the subtropical humid monsoon climate zone, with 163 

an average temperature of 16.5°C and an average precipitation of 1250 mm that is 164 

concentrated mainly infrom May–September. An underground river system has developed in 165 

the karst trough valley, with a length of 7.4 km, and the water supply of the underground 166 

river is mainly rainfall recharge (Zhang, 2012). Most of the precipitation is collected along 167 

the hill slopecollects in hillslope areas and flows into the karst depressions at the bottom of 168 

the trough valley, where it is rechargedprovides recharge to the underground river through 169 

the dispersed infiltration ofvia surface karst fissures and concentrated injection from 170 

sinkholes (Fig. 1a). An upstream surface river collectsforms in a gentle valley and enters the 171 

underground river through the Yankou sinkhole (elevation 524 m). Surface water in the 172 

middle and lower reaches of the river system enters the underground river system mainly 173 

through catenuliformcover-collapse sinkholes or(Gutierrez et al., 2014) and fissures. 174 

The stratigraphic and lithologiclithological characteristics of the basin are dominated 175 

largely by carbonate rocks of the Lower Triassic Jialingjiang Group (T1j) and Middle 176 

Triassic Leikou Slope Group (T2l) on both sides of the slope, with some quartz sandstone 177 

and mudstone outcrops of the Upper Triassic Xujiahe Group (T3xj) (Zhang, 2012). The 178 

topography of the basin presents a general anticline (Fig. 1b), where carbonate rocks on the 179 

surface are corroded and fragmented, with a large and have high permeability coefficient. 180 

Compared with the core of the anticline, the rocks of the two wingsshale of the anticline 181 

areis less eroded and formforms a good waterproof layer. 182 

To investigate the distribution of karst conduits in the underground river system, we 183 

conducted a tracer test in the study area. The tracer was placed into the Yankou sinkhole and 184 

recovered in the Jiangjia spring (Fig. 1a,c). According to the tracer test results (Gou et al., 185 
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2010), the karst water-bearing medium in the aquifer was anisotropic, whereas the soluble 186 

carbonate rocks were extremely permeable. Thethe karst conduits in the underground river 187 

were extremely well developed, and there was a large single-channel underground river. 188 

approximately five metres wide. The response of the underground river to rainfall was very 189 

fast, with the peak flow observed at the outlet of Jiangjia spring 6–8 h after rainfall. based on 190 

the tracer test results. The flood peak rose quickly, and the duration of the peak flow was 191 

short. The underground river system in the study area is dominated by large karst conduits, 192 

which isare not conducive to water storage in water-bearing media, but isare very conducive 193 

to the propagation of floods. 194 

2.3 Data 195 

To build the QMG model to simulate the karst flood events, the necessary modelling 196 

baseline data had to be collected, including:and they included 1) high-resolution DEM data 197 

and hydrogeological data (e.g., the thickness of the epikarst zone, rainfall infiltration 198 

coefficient onfor different karst landforms, and permeability coefficient of rock); 2) land- 199 

use and soil type data; and 3) rainfall data in the basin and water flow data offor the 200 

underground river. The DEM data waswere downloaded from a free internet database on the 201 

public Internet, withand had an initial spatial resolution of 30  30 m. The spatial resolution 202 

of landusethe land use and soil types were type data was 1000  1000 m, and theythese data 203 

were also downloaded from the Internetinternet. After considering the applicability of 204 

modelling and computational strength of the model, as well as the size of the basin in the 205 

study area (13.4 km2), the spatial resolution of the three types of data was resampled 206 

uniformly in the QMG model and downscaled to 15  15 m based on athe spatial discrete 207 

method proposed by Berry et al. (2010). 208 

The hydrogeological data necessary for modelling waswere obtained in three simple 209 

ways. 1) A basin survey was conducted to obtain the thickness of the epikarst zone, which 210 

was achieved by observing the rock formations on hillsides following cutting for road 211 

construction. Information was collected regarding the location, general shape, and size of 212 

karst depressions and sinkholes, which had a significant impact on compiling the DEM data 213 
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and determining the convergence process of surface runoff.and these data were combined 214 

with DEM data and used to determine the convergence process of surface runoff. The 215 

sinkholes in the basin are cover-collapse sinkholes (Gutierrez et al., 2014) according to the 216 

basin survey. There are 3 large sinkholes (more than 3 metres in diameter) and 12 small 217 

sinkholes (less than 1 metre in diameter). The rest of the sinkholes, 5 in total, are between 1 218 

and 3 metres in diameter. The confluence calculations for sinkholes in the model were based 219 

on the results of a previous study (Meng et al., 2009). 2) Empirical equations developed for 220 

similar basins were used to obtain the rainfall infiltration coefficient for different karst 221 

landforms and the permeability coefficient of rock. For example, the rock permeability 222 

coefficient was calculated based on an empirical equation fromestablished based on a 223 

pumping test in a coal mine in the study area (Li et al., 2019, 2022). 3) A tracer experiment 224 

was conducted in the study area (Gou et al., 2010) to obtain information on the underground 225 

river direction and flow velocityflow direction and flow velocity; for instance, underground 226 

karst conduits are well developed in the area, and an underground river approximately five 227 

metres wide is present. There is no hydraulic connection between the underground river 228 

system in the area and the adjacent basin, which means that there is no overflow recharge. 229 

Rainfall and flood data are important model inputs, and represent the driving factors 230 

that allowof hydrological models to operate. In the study area, rainfall data waswere 231 

acquired bywith two rain gauges located in the basin (Fig. 1a). Point rainfall was then 232 

spatially interpolated intoto obtain basin-level rainfall (for such a small basin area, the 233 

rainfall results obtained from two rain gauges waswere considered representative). There 234 

were 18 karst flood events in the period offrom 14 April 2017 to 10 June 2019. We built a 235 

rectangular open channel at the underground river outlet and set up a river gauge on itin the 236 

channel (Fig. 1a) to record the water level and flow data every 15 minutes. 237 

3   Methodology 238 

3.1   Hydrological model framework and algorithms 239 

The hydrological model developed in this study was named the QMG model after the basin 240 

for which it was developed and to which it was first applied, i.e.., the Qingmuguan basin. 241 
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The QMG model proposed in this study has a two-layer structure, including a surface part 242 

and an underground part, with the former. The surface part mainly performingperforms the 243 

calculation of runoff generation and surface routing calculations, and the underground part 244 

performs the confluence of the surface river, while the latter performs the confluence 245 

calculation ofrouting calculations for the underground river system. 246 

The structure of the QMG model is divided into a two-layer structure, both horizontally 247 

with horizontal and verticallyvertical components. The horizontal structure of the model is 248 

divided into river channel units and slope units. The vertical structure below the surface is 249 

divided into a shallow karst aquifer (including soil layers, karst fissures and conduit systems 250 

in the epikarst zone) and a deep karst aquifer system (rock stratumbedrock and underground 251 

river system). ThisWith this relatively simple model structure means that, only a small 252 

amount of hydrogeological data is needed when modelling in karst regions. Figure 2 shows a 253 

flowchart of the modelling and calculation procedures required for the QMG model. 254 

Figure 2. Modelling flow chart of the QMG (Qingmuguan) model. 255 

To describe accurately show the runoff generation and confluence on a routing 256 

processes at the grid scale, thesethe karst sub-basinssubbasins are further divided into many 257 

karst hydrological response units (KHRUs).) based on the high-resolution (15 × 15 m) DEM 258 

data in the model. The specific steps involved in the division were adopted by referring to 259 

studiesa study of hydrological response units (HRUs) in TOPMODEL by Pan (2014). As the 260 

smallest basin units for computing units, the, KHRUs can effectively ignoremitigate the 261 

spatial differences ofin karst development within the units and reduce the uncertainty in the 262 

classification of model units. Figure 3 shows the spatial structure of the KHRUs. 263 

Figure 3. Spatial structure of karst hydrological response units (KHRUs) (Li et al., 2021). 264 

The right-hand side of Fig.Figure 3 shows a three-dimensional spatial model of KHRUs 265 

established in the laboratory to reflect visually reflect the storage and movement of water in 266 

thea karst water-bearing medium with each spatial anisotropy, and to provide technical 267 

support for establishing the hydrological model. 268 

The modelling and operation of the QMG model consists ofinvolve three main stages: 1) 269 
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spatial interpolation, and the retentionestablishment of rainfall and evaporation calculations; 270 

2) runoff generation and confluence calculationrouting calculations for the surface river; and 271 

3) confluence calculationrouting calculations for the underground runoff, including the 272 

confluence in the shallow karst aquifer and the underground river system. 273 

3.1.1 Rainfall and evaporation calculationcalculations 274 

In the QMG model, the spatial interpolation of rainfall is accomplished bywith a kriging 275 

method using the ArcGIS 10.2 software. The TysonIn some cases, the Thiessen polygon 276 

method may be a simpler method for rainfall interpolation if the number of rainfall gauges in 277 

the basin is sufficient. The point rainfall observed bywith the two rainfall gauges in the basin 278 

(Fig. 1a) was interpolated spatially into areal rainfall for the entire basin. 279 

Basin evapotranspiration in the KHRUs was mainly vegetal, from vegetation, the soil 280 

evaporation and water surface evaporation. Theysurfaces. These evapotranspiration 281 

components were calculated using the following equations (modified from Li et al., 2020):  282 
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Here,where Ev [mm] is the vegetal discharge, 
t t tV V
+

−  [mm] is the rainfall variation 284 

bydue to vegetation interception, Pv [mm] is the vegetation interception of rainfall by 285 

vegetation and Es [mm] is the actual soil evaporation. The term λ is the evaporation 286 

coefficient. The term Ep [mm] is thepotential evaporation capability, which can be 287 

measured experimentally or estimated by thewith a water surface evaporation equation 288 

for Ew. The term F [mm] is the actual soil moisture, Fsat [mm] is the saturation moisture 289 

content, Fc [mm] is the field capacity, Ew [mm/d] is the evaporation of thefrom a water 290 

surface and e e  = e0−e150 [hPa] is the draught head between the saturation vapour 291 

pressure of thea water surface and the air vapour pressure 150 m above the water 292 
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surface (150 m above the water surface was selected here because the altitude for 293 

temperature and humidity observations in the southwestern karst regions of China is 294 

usually set at 150–200 m).. The term T T  = t0−T150 [°C] is the temperature 295 

difference between thea water surface and the temperaturea location 150 m above the 296 

water surface,    is the relative humidity 150 m above the water surface and    297 

[m/s] is the wind speed 150 m above the water surface. 298 

3.1.2 Runoff generation 299 

In the QMG model, the surface runoff generation in river channel units meansis associated 300 

with the rainfall in the basin that enters the river system after deductingsubtracting 301 

evaporation losses. This portion of the runoff will participateis directly involved in the 302 

confluencerouting process directly through the river system, rather than undergoing 303 

infiltration. In contrast, the process of runoff generation in slope units is more complex, and 304 

its classification is related to the developmental characteristics of the surface karst features 305 

in the basin, the rainfall intensity and soil moisture. For example, when the soil moisture 306 

content is alreadyis saturated, there is the potential for excess infiltration-based surface 307 

runoff in exposed karst slope units. The surfaceSurface runoff generation of the KHRUs in 308 

the river channel units and slope units in KHRUs can be described by the following 309 

equations (modified from Chen, 2009, 2018; Li et al., 2020): 310 
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(2) 312 

Here,where Pr(t) [mm] is the net rainfall (deductingsubtracting evaporation losses) in the 313 

river channel units at time t [h], Pi(t) [mm] is the rainfall in the river channel units, L [m] is 314 

the length of the river channel, maxW  [m] is the maximum width of the river channel 315 

selected and A [m2] is the cross-sectional area of the river channel. Rsi [mm] is termed the 316 

excess infiltration runoff in the QMG model, when the vadose zone is short of water and has 317 
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not been filled. The nonsaturated. Notably, the infiltration capacity fmax is differentvaries in 318 

different karst landform units,. α, and β are the parameters of the Holtan model, and Fs [mm] 319 

is the stable depth of soil water infiltration. 320 

In the KHRUs (Fig. 3), underground runoff is generated primarily from the infiltration 321 

of rainwater and direct confluence recharge from sinkholes or skylights.karst windows. In 322 

the QMG model, the underground runoff is calculated by the following equations (modified 323 

from Chen, 2018): 324 
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Here, Rg [mm] is the underground runoff depth (this part of the underground runoff is mainly 328 

directly from the direct confluence supply of the karst sinkholes or skylightskarst windows 329 

in the study area), R0 [mm] is the average depth of the underground runoff, p and m are 330 

attenuation coefficients that were calculated by conducting a tracer test in the study area, Re 331 

[L/s] is the underground runoff generated from rainfall infiltration in the epikarst zone, Iw 332 

[mm] is the width of the underground runoff onzone in the KHRUs, z [mm] is the thickness 333 

of the epikarst zone, Rr [mm2/s] is the runoff-based recharge onin the KHRUs during period 334 

t, Repi [mm2/s] is the water infiltration from rainfall, ev  [mm/s] is the flow velocity of the 335 

underground runoff, K [mm/s] is the current permeability coefficient and    is the 336 

hydraulic gradient of the underground runoff. If the current soil moisture level is less than 337 

the field capacity, i.e. cF F , then cF F , and the vadose zone is not yet full, there will 338 

be no underground runoff generation, and rainfall infiltration at this time will continue to 339 

compensate for the lack of water infill the vadose zone until it is full and before it becomes 340 
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saturated, at which point runoff is generated. 341 

3.1.3 Channel routing and confluenceconvergence 342 

In the QMG model, the calculation of runoff confluence on therouting in KHRUs includes 343 

the confluence of the surface river channel and underground runoff. There are already many 344 

mature and classicalclassic algorithms available for calculating theperforming runoff 345 

confluencerouting calculations in river channel units and slope units, such as the 346 

Saint-Venant equations and Muskingum convergence model. In this study, the Saint-Venant 347 

equations were adopted to describe the confluence in assess flow routing for the surface 348 

river and in hill slope units, for whichand a wave movement equation was adopted to 349 

calculate confluencefor convergence calculations in slope units (Chen, 2009): 350 
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where  352 
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Here, we customized two variables a and b: 354 
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Equation (7) was substituted into Eq.  (5) and discretized bywith a finite-difference 356 

method, giving yielding 357 
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         (8) 359 

The Newton–Raphson method was used for the iterative calculation using Eq.  (8): 360 
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where Q [L/s] is the confluenceconvergence of water flow in slope units, L [dm] is its the 363 

width of the runoff widthzone in a slope unit, h [dm] is the runoff depth and q [dm2/s] is the 364 

lateral inflow onin the KHRUs. Here, the friction slope fS fS  equals the hill slope 
0S 0S , 365 

and the inertia term and the pressure term in the motion equation of the Saint-Venant 366 

equationsequation set were ignored. The term v [dm/s] is the flow velocity of surface runoff 367 

in the slope units, as calculated by the Manning equation. Additionally, n is the roughness 368 

coefficient of the slope units, 
1t

iQ + 1t

iQ +
 [L/s] is the slope inflow in thea KHRU at time t+1 369 

and 
1

1

t

iQ +

+

1

1

t

iQ +

+  [L/s] is the slope discharge in the upper adjacent KHRU at time t+1. 370 

Similarly, the surface river channel confluenceconvergence was described based on the 371 

Saint-Venant equation, where equations, and a diffusion wave movement equation was 372 

adopted, meaning that; therefore, the inertia term in the motion equation was ignored:  373 
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                          (10) 374 

A finite-difference method and the Newton–Raphson method were used for the iterative 375 

calculation ofto iteratively solve the above equation: 376 
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  (11) 378 

where Q [L/s] is the water flow in surface river channel units, A [dm2] is the cross-sectional 379 

area of discharge section area, c is a custom intermediate variable and   [dm] is the 380 

wetted perimeter of the discharge cross-section area. 381 

The underground runoff area in the model includes the confluenceconvergence region 382 

of the epikarst zone and underground river. In the epikarst zone, the karst water-bearing 383 

media are highly heterogeneous. (Williams, 2008). For example, the crisscrossedanisotropic 384 

karst fissure systems and conduit systems consist of large corrosion fractures. When rainfall 385 

infiltrates into the epikarst zone, water moves slowly through the small (less than 10 cm in 386 

this study) karst fissure systems, whileand it flows rapidly in larger (more than 10 cm) 387 

conduits. The key to determiningestimating the confluenceflow velocity lies in determining 388 

the width of karst fractures. In the KHRUs (Fig. 3), the 10-cma fracture width of the 389 

fracture10 cm was used as a threshold value (Atkinson, 1977), meaning that) based on a 390 

borehole pumping test in the basin. Thus, if the fracture width exceeded 10 cm, then the 391 

water movement into itin the fracture was defined as rapid flow; otherwise, it was defined as 392 

slow flow. The confluenceflow in the epikarst zone was calculated by the following equation 393 

(modified from Beven and Binley, 2006): 394 
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(12) 396 

where 397 
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Here, ( )
ijk

Q t ( )
ijk

Q t  [L/s] is the flow confluence in the epikarst zone at time t, 
ijkb ijkb  399 

[dm] is the width of the runoff widthzone, 




h

l





h

l
 is the dimensionless hydraulic gradient, 400 

( )
slow/rapid

T t  is the dimensionless hydraulic conductivity,    [g/L] is the density of the 401 

water flow, g [m/s2] is gravitational acceleration, n is the number of valid computational 402 

units, 
i j kR C L i j kR C L  [L] is the volume of the ijk-th KHRU, v  is the kinematic viscosity 403 

coefficient, fij is the attenuation coefficient in the epikarst zone, hij [dm] is the depth of 404 

shallow groundwater and zij [dm] is the thickness of the epikarst zone. 405 

The distinction between rapid and slow flows in the epikarst zone is not absolute. The 406 

10-cm width of a karstNotably, the established fracture as the dividing threshold also has 407 

some subjectivity.of 10 cm may be unrepresentative because pumping tests were conducted 408 

in only five boreholes in the region. In fact, there is usually water exchange between the 409 

rapid and slow flowsflow zones at the junctionjunctions of large and small fissures in karst 410 

aquifers. In the QMG model, this water exchange can be described with thisthe following 411 

equation (modified formfrom Li et al., 2021): 412 
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(14) 414 

Here, , ,i j k  [dm2/s] is the water exchange coefficient in the ijk-th KHRU, ( ), ,n i j kh h−415 

( ), ,n i j kh h−  [dm] is the water head difference between the rapid and slow flowsflow zones 416 

at the junction of large and small fissures in KHRUs, np is the number of fissure systems 417 

connected to the adjacent conduit systems, ( )
, ,w i j k

K ( )
, ,w i j k

K  [dm/s] is the permeability 418 
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coefficient at the junction of a fissure and conduit, 
ipd ipd  and ipr ipr  [dm] are the 419 

conduit diameter and radius, respectively, 
ipl ipl  [dm] is the length of the connection 420 

between conduits i and p, and 
ip ip  is the conduit curvature. Some of the parameters in 421 

this equation, such as ( )
, ,w i j k

K ( )
, ,w i j k

K  and ( ), ,n i j kh h− ( ), ,n i j kh h− , were obtained by 422 

conducting an infiltration test in the study area. 423 

The confluence ofconvergence patterns in the underground river system playshave an 424 

important role forinfluence on the confluenceflow regime at the basin outlet. To facilitate the 425 

calculation of confluencerouting calculations in the QMG model, the underground river 426 

systemssystem can be generalized into large multiple -conduit systems. During floods, these 427 

conduit systems are mostly under pressure. Whether the water flow is laminar or turbulent 428 

depends on the flow regime at that time. The water flow into these conduits is calculated 429 

bybased on the Hagen–Poiseuille equation and the Darcy–Weisbach equation (Shoemaker 430 

et al., 2008): 431 
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     (15) 433 

Here,  laminarQ  laminarQ  [L/s] is the water flow of the laminar flow in the conduit systems, A 434 

[dm2] is the conduit cross-sectional area, d [dm] is the conduit diameter,    [kg/dm3] is 435 

the density of the underground riverwater, = /   = /    is the coefficient of 436 
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kinematic viscosity, /h l  /h l   is the hydraulic slope of the conduits,   is the 437 

dimensionless conduit curvature, turbulentQ turbulentQ  [L/s] is the turbulent flow in the conduit 438 

systems and Hc [dm] is the average conduit wall height. 439 

3.2 Parameter optimization 440 

In total, the QMG model has 12 parameters, of which flow direction and slope are 441 

topographic parameters that can be determined from the DEM without parametric 442 

optimization, whileand the remaining 10 parameters require calibration. Other distributed 443 

hydrological models with multiple structures usually have many parameters. For example, 444 

the Karst–Liuxihe model (Li et al., 2021) has 15 parameters that must be calibrated. In the 445 

QMG model, each parameter is normalized as 446 

0* /i i ix x x= ,                            (16) 447 

where ix  is the dimensionless parameter value for i after it is normalized, *ix  is the 448 

parameter value for i in actual physical units, and 0ix 0ix  is the initial or final value of ix . 449 

Through the processing of Eq.  (16), the value range of the model parameters is limited to a 450 

hypercube Kn = (X∣0 ≤  xi ≤  1, i = 1, 2, ..., n), and K is a dimensionless value. This 451 

normalized treatmentnormalization process ignores the influence of the spatiotemporal 452 

variation ofin the underlying surface attributes on the parameters, while also simplifying 453 

theparameter classification and the number of the model parameters to a certain extent. 454 

Accordingly, the model parameters can be further divided further into rainfall-evaporation 455 

onesparameters, epikarst- zone onesparameters and underground- river onesparameters. 456 

Table 1 lists the parameters of the QMG model. 457 

Table 1. Parameters of the QMG model. 458 

Because the QMG model has relatively few parameters, it is possible to calibrate them 459 

manually, which has the advantage that the operation is easy to implementis easy and does 460 

not require a special program for parameter optimization. However, the disadvantage is that 461 

itthis manual approach is subjective, which can lead to great uncertainty in the manual 462 

parameter calibration process. To compare the effects of parameter optimization on model 463 
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performance, this study used both manual parameter calibration and the improved chaotic 464 

particle swarm optimization algorithm (IPSO) were used for the automatic calibration of 465 

model parameters, and compared the effects of both on flood simulation were compared. 466 

In general, the structure and parameters of a standard particle swarm optimization 467 

algorithm (PSO) are simple, with the initial parameter values obtained at random. For 468 

parameter optimization in high-dimensional multi-peakmultipeak hydrological models, the 469 

standard PSO is easily limited to a local convergence and cannot achieve the optimal effect, 470 

whileand the late evolution of the algorithm may also cause problems, such as precocity 471 

andpremature convergence or stagnant evolution, due to the ‘inert’ aggregation of particles, 472 

which seriously affects the efficiency of parameter selection. It is necessary to overcome the 473 

above problems and makeso that the algorithm can converge to the global optimal solution 474 

with a high probability. In parameter optimization for the QMG model, we improved the 475 

standard PSO algorithm by adding chaos theory, and developed the IPSO, where method; 476 

notably, 10 cycles of chaotic disturbances were added to improve the activity of the particles. 477 

The inverse mapping equation offor the chaotic variable is 478 

min max min

' *

( )*

(1 )

ij ij

ij ij

X X X X Z

Z Z Z 

= + −


= − +

                   (17) 479 

where Xij is the optimization variable for the model parameters, max min( )X X−480 

max min( )X X−  is the difference between itsthe maximum and its minimum values of Xij, Zij is 481 

the variable before the disturbance is added and, Z’
ij representsis the chaotic variablesvariable 482 

after a disturbance is added,    is a variable determined by the adaptive algorithm,  483 

(0 ≤ α ≤ 1,), and Z* is the chaotic variable formed when the optimal particle mapsis mapped 484 

to the interval [0,1]. In parameter optimization, theThe flowchart of the IPSO is shown in 485 

Fig.Figure 4. 486 

Figure 4. Algorithm flow chart of IPSO. 487 
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3.3 Uncertainty analysis 488 

Uncertainties in hydrological model simulation results usually originate from three 489 

aspects:factors: the input data, the model structure and the model parameters 490 

(Krzysztofowicz, 2014). In the present study, the input data (e.g.., rainfall, flood events and 491 

some hydrogeological data) were first validated and pre-processed throughpreprocessed 492 

based on observations to reduce their uncertaintiesuncertainty. 493 

Second, we simplified the structure of the QMG model to reduce the structural 494 

uncertainty. As a mathematical and physical model, a hydrological model hasis characterized 495 

by some uncertainty in flood simulation and forecasting because of the errors in the system 496 

structure and theselected algorithm (Krzysztofowicz and Kelly, 2000). The model in this 497 

study was designed with full consideration of the relationship between the amount of data 498 

required to build the model and itsmodel performance forin flood simulation and forecasting 499 

in karst regions, and the model’s. The entire model framework was integrated through 500 

simple structures and easy-to-implement algorithms, using based on the concept of 501 

distributed hydrological modelling. Conventionally, the extentlevel of uncertainty is 502 

increasedincreases with the growing complexity of the model structure. We therefore 503 

ensured that the structure of the QMG model was simple when it was designed, and the 504 

double-layer model was divided into surface and underground double-layer structures to 505 

reduce its structural uncertainty. 506 

Third, we focusfocused on analysing the uncertainty and sensitivity of the model 507 

parameters and theirthe applied optimization method, for which; specifically, a 508 

multi-parametricmultiparametric sensitivity analysis method (Choi et al., 1999; Li et al., 509 

2020) was used to analyse the sensitivity of the parameters in the QMG model. The steps in 510 

the parameter sensitivity analysis are as follows. 511 

1) Selection of the appropriate objective function 512 

The Nash–Sutcliffe coefficient is widely used as the objective function to evaluate the 513 

performance of hydrological models (Li et al., 2020, 2021). It was); therefore, it was used to 514 

assess the QMG model in this study. Because the most important factor in flood forecasting 515 
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is the peak discharge, it is used in the Nash coefficient equation: 516 
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where NSC is the Nash–Sutcliffe coefficient, Qi [L/s] areis the observed flow 518 

dischargesdischarge, Qi' [L/s] areis the simulated dischargesdischarge, Q Q  [L/s] is the 519 

average observed discharge and n [h] is the observation period. 520 

2) Parameter sequence sampling 521 

The Monte Carlo sampling method was used to sample 8000 groups of parameter 522 

sequences. The parametric sensitivity of the QMG model was analysed and evaluated by 523 

comparing the differences between the a priori and a posteriori distributions of the 524 

parameters. 525 

3) Parameter sensitivity assessment 526 

The a priori distribution of a model parameter meansis its probability distribution, 527 

whileand the a posteriori distribution refers to the conditional distribution calculated after 528 

sampling, which can be calculated based on the simulation resultresults of the parametric 529 

parameter optimization. If there is a significant difference between themthe a priori 530 

distribution and the a posteriori distribution of a parameter, then the parameter being tested 531 

has ais characterized by high sensitivity, whereas; conversely, if there is no obvious 532 

difference, then the parameter is insensitive. The parametrica priori distribution of a 533 

parameter is calculated as 534 
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where Pi,j is the a priori distribution’s probability associated with a given a priori distribution 536 

when 
, 0.85i jNSC  .

, 0.85i jNSC  . We used a simulated Nash coefficient of 0.85 as the 537 

threshold value, and n was the number of occurrences of a Nash coefficient greater than 0.85 538 



23 

 

in flood simulations. In each simulation, only a certain parameter was changed, whileand the 539 

remaining parameters remained unchanged. If the Nash coefficient of thisa simulation 540 

exceeded 0.85, then the flood simulation results were considered acceptable. The term i
 

541 

is the difference between thean acceptable value and itsthe overall mean, which represents 542 

the parametric sensitivity (0 < i  < 1). The higher the i  value is, the more sensitive the 543 

parameter. N isIn this study, N denotes the 8000 parameter sequences, and ,i jP ,i jP  is the 544 

average value of the a priori distribution. 545 

3.4  Model Settingsettings 546 

OnceAfter the model was built and before it was run, some of the initial conditions had 547 

to be set before running it to simulate and forecast floods, such as the basin division scheme, 548 

the setting of initial soil moisture levels, and the assumption of the initial parameter 549 

rangeranges, were set. 1) In the study area, the entire Qingmuguan karst basin was divided 550 

into 893 KHRUs, including 65 surface river units, 466 hill slope units, and 362 underground 551 

river units. The division of these units formed the basis for calculating the process of runoff 552 

generation and convergence. calculations. 2) The initial soil moisture level was set to 0–100% 553 

of the saturationsaturated moisture content in the basin, and the specific soil moisture level 554 

before each flood had to bewas determined bythrough a trial calculation. 3) The 555 

waterheadhydraulic head boundary conditions offor the groundwater zone were determined 556 

by a tracer test in the basin, whereand a perennial stable water level in area adjacent to the 557 

groundwater- divide was used as the fixed waterheadhead value at the model boundary. The 558 

base flow of the underground river was determined to be 35 L/s frombased on the perennial 559 

average dry season runoff. 4) The rangeranges of initial parameters and the convergence 560 

conditions were assumedset before parameter optimization (Figure 4). 5) Parameter 561 

optimization and flood simulation validatedwere performed to validate the performance of 562 

the QMG model in karst basins. 563 
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4  Results and discussion 564 

4.1 Parameter Sensitivity Resultssensitivity results 565 

The number of parameters in a distributed hydrological model is generally large, and it 566 

is important to perform a sensitivity analysis of each parameter to quantitatively assess the 567 

impact of the different parameters on model performance. In the QMG model, each 568 

parameter was divided into four categories according to its sensitivity: (i) highly sensitive, 569 

(ii) sensitive, (iii) moderately sensitive, and (v) insensitive. In the calibration of model 570 

parameters, insensitive onesparameters do not need to be calibrated, which can greatly 571 

reduce the amountnumber of calculationcalculations and improve the efficiency of model 572 

operationoperations. 573 

The flow process in the calibration period (14 April to 10 May 2017) was adopted to 574 

calculate the sensitivity of the model parameters, for which the calculation principle wasand 575 

calculations were based on equation (19), and the). The parameter sensitivity results are 576 

calculatedlisted in Table 2. 577 

Table 2 Parametric sensitivity results infor the QMG model. 578 

In Table 2, the value of i i  [equation (19)]
 
represents a parameter’s sensitivity, and 579 

the higher the value is, the more sensitive the parameter is. From the . The results in Table 2, 580 

it was found indicate that the rainfall infiltration coefficient, rock permeability coefficient, 581 

rock porosity,  and the related parameters ofrelated to the soil water content, such as the 582 

saturated water content, and field capacity, wereare sensitive parameters. The order of 583 

parameter sensitivity wasis as follows: infiltration coefficient > permeability coefficient > 584 

rock porosity > specific yield > saturated water content > field capacity > flow direction > 585 

thickness > slope > Soilsoil coefficient > channel roughness > evaporation coefficient. 586 

In the QMG model, parameters are classified as highly sensitive, sensitive, moderately 587 

sensitive, and insensitive according to their influence on the flood simulation results. In 588 

Table 4, we divideddivide the sensitivity of model parameters into four levels based on the 589 

i i value: 1) highly sensitive parameters, 0.8 < i i  < 1; 2) sensitive parameters, 590 
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0.65 < i i  < 0.8; 3) moderately sensitive parameters, 0.45 < i i  < 0.65; and 4) 591 

insensitive parameters, 0 < i i  < 0.45. The highly sensitive parameters wereare the 592 

infiltration coefficient, permeability coefficient, rock porosity, and specific yield. The 593 

sensitive parameters wereare the saturated water content, field capacity, and thickness of the 594 

epikarst zone. The moderately sensitive parameters wereare the flow direction, slope, and 595 

soil coefficient. The insensitive parameters wereare channel roughness and the evaporation 596 

coefficient. 597 

4.2 Parametric Optimizationoptimization 598 

In total, the QMG model hasincludes 12 parameters, of which only eight need to be 599 

optimized, which is relatively few for distributed models. The parameters of flow direction 600 

and slope as well as the insensitive parameters of, as channel roughness and the evaporation 601 

coefficient, which are insensitive parameters, need not be calibrated, which ; this approach 602 

can improve the convergence efficiency of the model parameter optimization process. 603 

In the study area, 18 karst floods during the period offrom 14 April 2017 to 10 June 604 

2019 were recorded at the underground river outlet to validate the effects of the QMG model 605 

in karst hydrological simulations. The calibration period was 14 April to 10 May 2017 at the 606 

beginning of the flow process, with the remainder of the time beingperiod used as the 607 

validation period. In the QMG model, the IPSO algorithm was used to optimize the model 608 

parameters. To showdemonstrate the necessity ofneed for parameter optimization for the 609 

distributed hydrological model, the study specifically compared the flood 610 

simulationssimulation results obtained using the initial parameters of the model (without 611 

parameter calibration) and the optimized parameters. Fig. were compared. Figure 5 shows 612 

the iteration process ofiterative parameter optimization process for the QMG model. 613 

Figure 5 Iteration process of parametricIterative parameter optimization process. 614 

Fig.Figure 5 shows that almost all parameters fluctuated widelyconsiderably fluctuate at 615 

the beginning of the optimization, and then after aboutapproximately 15 iterations of 616 

theiterative optimization calculationcalculations, most of the linear fluctuations become 617 

significantly less volatilevariable, which indicatedindicates that the algorithm tendedtends to 618 
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converge (possibly only locally). When the number of iterations exceeded 25, all parameters 619 

remainedremain essentially unchanged, meaningsuggesting that the algorithm had converged 620 

(at this point there was, global convergence was achieved). It took only 25 iterations to reach 621 

aachieve definite convergence of for parameters in the parameter rates with this applied 622 

IPSO algorithm, which; thus, this approach is extremely efficient in terms of the parameter 623 

optimization offor distributed hydrological models. In previous studies of the parametric 624 

optimization forof the parameters of the Karst-Liuxihe model in similar basin areas, 50 625 

automatic parameter optimization iterationsiterative steps were required to reach 626 

convergence in automatic parameter optimization (Li et al., 2021), demonstrating the 627 

effectiveness of the IPSO algorithm. 628 

To evaluate the effect of parameter optimization, the convergence efficiency of the 629 

algorithm, and, more importantly, the parameters after calibration were used to simulate 630 

floods. Fig.assessed in flood simulation cases. Figure 6 shows the flood simulation 631 

effectsresults. 632 

Figure 6 Flow simulation results of the QMG model based on parameter optimization. 633 

Fig.Figure 6 shows that the flows simulated byfollowing parameter optimization were 634 

better than those simulated byobtained with the initial model parameters. The simulated flow 635 

processesvalues based on the initial parameters were relatively small, with the simulated 636 

peak flows in particular being notably smaller than the observed values, and ; additionally, 637 

there were large errors between the twosimulated and observed values. In contrast, the 638 

simulated flows produced by the QMG model after parameter optimization were very 639 

similar to the observed values, which indicates that calibration of the model parameters 640 

iswas necessary and that there was an improvement in parameter optimization achieved 641 

through the use of the IPSO algorithm in this study. In addition, it was found that the flow 642 

simulation effect was better in the calibration periods than in the validation periods (Fig. 6). 643 

To compare the results of the flow processes simulationprocess simulations with the 644 

initial model parameters and the optimized parameters, six evaluation indices (Nash–645 

Sutcliffe coefficient, correlation coefficient, relative flow process error, flood peak error, 646 
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water balance coefficient, and peak time error) were applied in this study, and the results are 647 

presented in Table 3. 648 

Table 3 Flood simulation evaluation index throughindices following parametric 649 

optimization. 650 

Table 3 shows that the evaluation indices of the flood simulations after 651 

parametricparameter optimization were better than those ofobtained with the initial model 652 

parameters. The average values of the initial parameters for these six indices were 0.81, 0.74, 653 

27%, 31%, 0.80, and 5 h, respectively. For the optimized parameters, the average values 654 

were 0.90, 0.91, 16%, 14%, 0.94, and 3 h, respectively. The flood simulation effects after 655 

parameter optimization clearly improved, implying that parameter optimization for the 656 

QMG model is necessary, and that the IPSO algorithm for parameter optimization is an 657 

effective approach that can greatly improve the convergence efficiency of parameter 658 

optimization, and also ensure that the model performs well in flood simulations. 659 

4.3 Model Validationvalidation in Flood Simulationsflood simulations 660 

Following parameter optimization, we simulated the whole flow process (14 April 2017 661 

to 10 June 2019 ) based on the optimized and initial parameters of the QMG model (Fig. 6), 662 

which enabled a visual reflection of the model used in the simulation of6). This approach 663 

allowed us to visually assess a long series of flow processes obtained with the model. To 664 

reflect the simulation effect of the model for different flood events, we divided the whole 665 

flow process into 18 flood events, and then used the initial parameters of the model and the 666 

optimized parameters, respectively, to verify the model performance in flood simulations. 667 

Fig.Figure 7 and Table 4 show the flood simulation effects and theirthe calculated evaluation 668 

indices using both the initial and the optimized parameters. 669 

Figure 7 Flood simulation effects based on the initial and optimized parameters. 670 

Table 4 Flood simulation indices for model validation. 671 

Fig.Figure 7 shows that the flood simulation resultsvalues obtained using the initial 672 

parameters were smaller than the observed values, and the model performance improved in 673 

flood simulations after parameter optimization. The simulated flood processes were in good 674 
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agreement with observations, and flood peak flows were especially effective for simulating 675 

flood peak flows.well simulated. From the flood simulation indices in Table 4, the average 676 

water balance coefficient based on the initial parameters was 0.69, i.e., much less than 1, 677 

indicating that the simulated water in the model was unbalanced. After parameter 678 

optimization, the average value was 0.92, indicating that parameter optimization had a 679 

significant impact on the model water balance calculation. 680 

Table 4 shows that the average values of the six indices (Nash–Sutcliffe coefficient, 681 

correlation coefficient, relative flow process error, flood peak error, water balance 682 

coefficient, and peak time error) for the initial parameters were 0.79, 0.74, 26%, 25%, 0.69, 683 

and 5 h, respectively, while for the optimized parameters, the average values were 0.92, 0.90, 684 

10%, 11%, 0.92, and 2 h, respectively. All evaluation indices improved after parameter 685 

optimization, with the average values of the Nash coefficient, correlation coefficient, and 686 

water balance coefficient increasing by 0.13, 0.16, and 0.23, respectively. TheAdditionally, 687 

the average values of the relative flow process error, flood peak error, and peak time error 688 

decreased by 15%, 14%, and 3 h, respectively. These reasonable flood simulation results 689 

confirmed that parameter optimization bywith the IPSO algorithm was necessary and 690 

effective for the QMG model. 691 

Compared with the overall flow process simulation shown in Figure 6, each flood 692 

process was better simulated by the QMG model (Fig. 7). This was becauseNotably, in the 693 

function of the QMG model and itsthe applied algorithm design, the main consideration was 694 

the calculation of the is flood process, but calculations, and the correlation algorithm of 695 

thefor dry -season runoff was not sufficiently described well enough. For example, 696 

equations (12)–(15) are used in the flood convergence algorithm. As a resultConsequently, 697 

the model is not good at simulating other flow processes, such as dry -season runoff, leading 698 

to a low accuracy in simulations of the overall flow process. The next phase of our research 699 

will focus on refining the algorithm related to dry -season runoff and improving the 700 

comprehensive performance of the model. 701 
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4.4 Uncertainty analysis 702 

4.4.1 Assessment and reduction of uncertainty 703 

In general, the uncertainty in model simulation is due mainly to three aspects of the 704 

modelfactors: (i) the uncertainty of its input data, (ii) the uncertainty of itsthe model 705 

structure and algorithm and (iii) the uncertainty of itsthe model parameters. In the practical 706 

application of a hydrological model, these three uncertainties are usually interwoven, which 707 

leads to the overall uncertainty ofin the final simulation results (Krzysztofowicz, 2014). 708 

Therefore, the presentthis study focused on the uncertainties in the input data, the model 709 

structure and the parameters to reduce the overall uncertainty of the simulation results. 710 

First, the input data—mainly rainfall-runoff data and hydrogeological data—were 711 

pre-processed, preprocessed, which substantially reduced their uncertainty. Second, we 712 

simplified the structure of the QMG model, which is reflected in the fact that it haswith only 713 

two structural layers of spatial structure in the horizontal and vertical directions. This 714 

relatively simple structure greatly reduced greatly the modelling uncertainty due to the 715 

model structure.. In contrast, the underground structure of our previous Karst–Liuxihe model 716 

(Li et al., 2021) hasincluded five layers, which leadsled to greatconsiderably uncertainty. 717 

Third, appropriate algorithms for runoff generation and confluence were selected. Different 718 

In general, different models wereare designed for different purposes, which leads to 719 

greatnotable differences in the algorithms used. In the QMG model, most of the 720 

rainfall-runoff algorithms used have been validated by the research results of others, and 721 

some of them were improved to suitfor karst flood simulation and forecasting bywith the 722 

QMG model. For example, the algorithm for the generation of excess infiltration runoff 723 

[Eq.  (2)] was an improvement of the version used in the Liuxihe model (Chen, 2009, 2018; 724 

Li et al., 2020). Finally, the algorithm for parameter optimization was improved. 725 

Considering the shortcomings of the standard PSO algorithm that, which tends to converge 726 

locally, this study developed the IPSO for parameter optimization was developed in this 727 

study by adding chaotic perturbation factors. The flood simulation results after parameter 728 

optimization were much better than those ofobtained with the initial model parameters 729 

(Figs. 6 and 7 and Tables 2 and 3), which indicates that parameter optimization is necessary 730 
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for a distributed hydrological modelmodels and can reduce the uncertainty of the model 731 

parameters. 732 

4.4.2 Parameter sensitivity Sensitivity analysis 733 

The parameter- sensitivity results in Table 2 show that the rainfall- infiltration coefficient in 734 

the QMG model was the most sensitive parameter. It and was the key to determining the 735 

generation of excess infiltration surface runoff and separatingthe separation of surface runoff 736 

from subsurface runoff. If the rainfall infiltration coefficient wasis greater than the 737 

infiltration capacity, excess infiltration surface runoff waswill be generated on the exposed 738 

karst landforms; otherwise, all rainfall wouldwill infiltrate to meet the water deficit ininto 739 

the vadose zone, and then continue to seep down into the underground river system, 740 

eventually flowing out of the basin through the underground river outlet. The 741 

confluenceflow modes of surface runoff and underground runoff were completely different, 742 

resulting in a large difference in the simulated flow results. Therefore, the rainfall infiltration 743 

coefficient had the greatest impact on the final flood simulation results. 744 

Other highly sensitive parameters, such as the rock permeability coefficient, rock 745 

porosity and specific yield, were used as the basis for dividing between slow flow in karst 746 

fissures and rapid flow in conduits. The division of slow and rapid flows also had a 747 

greatconsiderable impact on the discharge at the outlet of the basin. Slow flow plays an 748 

important role in water storage in a karst aquiferaquifers and is very important for the 749 

replenishment of river base flow in the dry season. Rapid flow in large conduit systems 750 

dominates the flood runoff and is the main component of the flood water volume in the flood 751 

season. 752 

Parameters related to the soil water content, including the saturated water content, field 753 

capacity and thickness, were sensitive parameters and had a large influence on the flood 754 

simulation results. This is becauseNotably, the soil moisture content prior to flooding affects 755 

how flood flows rise and when peaks occur. If the soil is already very wet or even saturated 756 

before the flooding, thea flood will rise quickly toand reach a peak, and the process line of 757 

the flood peak flow will be sharp and thinshort. This type of flood process forms can easily 758 
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occur and can lead to a disaster-causing flood eventsevent. In contrast, if the soil in the basin 759 

is very dry before the flooding, the rainfall will first meet the water shortage ofsaturate the 760 

vadose zone, and after it is replenished; then, the rainfall will infiltrate into the underground 761 

river. The flood peak ofat the river basin outlet is therefore delayed. 762 

The moderately sensitive parameters were the flow direction, slope and the soil 763 

coefficient. They; they had a specific influence on the flood simulation results, but the 764 

influence was not as great as that of the highly sensitive and sensitive parameters. The 765 

insensitive parameters were channel roughness and the evaporation coefficient. The amount 766 

of water lost byvia evapotranspiration is very small incompared to the total volume of flood 767 

water, and itevapotranspiration was therefore the least -sensitive parameter in the QMG 768 

model. 769 

5   Conclusions 770 

ThisIn this study proposed, a new distributed physically based hydrological model, i.e.., the 771 

QMG model, was proposed to accurately simulate floods accurately in karst trough and 772 

valley landforms. The main conclusions of this paper are as follows. 773 

ThisThe QMG model has a high application potential in karst hydrology simulations. 774 

Other distributed hydrological models usually have multiple structures, resulting in the need 775 

for a large amount of data to build models in karst areas (Kraller et al., 2014). The QMG 776 

model has only a double-layer structure, with a clear physical meaning, and a small amount 777 

of basic data is needed to build the model in karst areas, such as some necessary 778 

hydrogeological data., is needed to build the model in karst areas. For example, the 779 

distribution and flow direction of underground rivers is required, whichmust be known and 780 

can be inferred from a tracer test, leading to atests at low modelling cost. There wereare 781 

fewer parameters in the QMG model than in other distributed hydrological models, with 782 

only 10 parameters that neededneed to be calibrated. 783 

The flood simulationsimulations after parameter optimization waswere much better 784 

than the simulation usingthose based on the initial model parameters. After parameter 785 

optimization, the average values of the Nash coefficient, correlation coefficient and water 786 
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balance coefficient increased by 0.13, 0.16 and 0.23, respectively, whileand the average 787 

relative flow process error, flood peak error and peak time error decreased by 15%, 14% and 788 

3 h, respectively. Parameter optimization is necessary for a distributed hydrological 789 

modelmodels, and the improvement of theimproved IPSO algorithm in this study was an 790 

effective way to achieve this. 791 

In the QMG model, the rainfall infiltration coefficient Ic, the rock permeability 792 

coefficient K, the rock porosity Rp and the parameters related to the soil water content were 793 

sensitive parameters. The order of parameter sensitivity was infiltration coefficient > 794 

permeability coefficient > rock porosity > specific yield > saturated water content > field 795 

capacity > flow direction > thickness > slope > soil coefficient > channel roughness > 796 

evaporation coefficient. 797 

This QMG model is suitable for karst trough and valley basinslandforms, such as those 798 

in the study area, where the topography is conducive to the spread of flood water. WhetherIn 799 

the future, it must be verified whether this model is applicable to other karst areas in 800 

non-trough valley regions still needs to be verified in the future studies.and landforms. In 801 

addition, although the studied basin area is very small, wherebut the hydrological similarity 802 

betweenamong different small basin areas varies greatly (Kong and Rui, 2003). The size of 803 

the area to be modelled has a great influence on the choice of model spatial resolution for 804 

modelling (Chen et al., 2017). Therefore, it must be determined whether the QMG model is 805 

suitable for flood forecasting in large karst basins needs to be determined. 806 

Model development. 807 

ThisThe QMG model presented in this study uses the Visual Basic language programming. 808 

The general framework of the model and the algorithm consist of three parts: the 809 

modelingmodelling approach, the algorithm of rainfall-runoff generation and 810 

confluenceconvergence algorithm, and the parameter optimization algorithm. As a free and 811 

open -source hydrological modelingmodelling program (QMG model-V1.0), we provide all 812 

modelingmodelling packages, including the model code, installation package, simulation 813 

data package and user manual, free of charge. It is important to note that the model we 814 

provide areis for scientific research purposes only and should not be used for any 815 

commercial purposes.  (Creative Commons Attribution 4.0 International.). 816 

ModelThe model installation program can be downloaded from ZENODO, citeZenodo and 817 

should be cited as (JI LI. (2021, June 16). QMG model-V1.0. Zenodo. 818 
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http://doi.org/10.5281/zenodo.4964701, and http://doi.org/10.5281/zenodo.4964697) 819 

(registration required). UserThe user manual can be downloaded from 820 

http://doi.org/10.5281/zenodo.4964754.  821 
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Tables 1070 

Table 1 Parameters of the QMG model. 1071 

Parameters  Variable name Physical property 

Infiltration coefficient Ic MeteorologyMeteorological 

Evaporation coefficient λ Vegetation cover 

Soil thickness h Karst aquifer 

Soil coefficient Sb Soil type 

Saturated water content Sc Soil type 

Rock porosity Rp Karst aquifer 

Field capacity Fc Soil type 

Permeability coefficient K Karst aquifer 

Flow direction Fd Landform 

Slope S0 Landform 

Specific yield Sy Karst aquifer 

Channel roughness n Landform  

Table 2 Parametric sensitivity results in the QMG model. 1072 

Ic λ h Sb Sc Sy Fd S0 Rp Fc K n 

0.92 0.24 0.71 0.58 0.8 0.83 0.74 0.68 0.86 0.78 0.89 0.36 

Table 3 Flood simulation evaluation index through parametric optimization. 1073 

Parameter 

optimization 

Parameter types Nash 

coefficient 

Correlation 

coefficient 

Relative 

flow 

process 

error/% 

Flood 

peak 

error/% 

Water 

balance 

coefficient 

Peak 

time 

error 

(hours) 

calibrationCalibration 

periods 

initialInitial 0.82 0.77 24 29 0.82 4 

optimizedOptimized 0.91 0.94 14 12 0.95 2 

validationValidation 

periods 

initialInitial 0.79 0.71 29 32 0.77 6 

optimizedOptimized 0.88 0.87 18 16 0.92 3 

averageAverage 

value 

initialInitial 0.81 0.74 27 31 0.8 5 

optimizedOptimized 0.9 0.91 16 14 0.94 3 

Table 4 Flood simulation indices for model validation. 1074 

Floods Parameter types 
Nash 

coefficient 

Correlation 

coefficient 

Relative 

flow 

process 

error/% 

Flood 

peak 

error/% 

Water 

balance 

coefficient 

Peak 

time 

error/ 

(/(hours) 

2017042408  
initialInitial 0.77 0.7 28 29 0.71 -5 

optimizedOptimized 0.95 0.89 11 15 0.88 -2 

2017050816  
initialInitial 0.78 0.71 19 19 0.76 -4 

optimizedOptimized 0.92 0.88 11 9 0.94 -2 

2017061518  initialInitial 0.76 0.6 25 32 0.63 -5 
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optimizedOptimized 0.91 0.93 12 11 0.95 -3 

2017071015  
initialInitial 0.78 0.82 25 37 0.64 -4 

optimizedOptimized 0.92 0.87 8 7 0.94 -2 

2017091512  
initialInitial 0.81 0.62 21 16 0.78 -5 

optimizedOptimized 0.9 0.92 13 10 0.9 -4 

2017100815  
initialInitial 0.75 0.68 30 26 0.62 -2 

optimizedOptimized 0.94 0.86 11 15 0.92 -1 

2018052016  
initialInitial 0.78 0.68 25 21 0.67 5 

optimizedOptimized 0.91 0.93 10 13 0.94 2 

2018060815  
initialInitial 0.82 0.79 27 22 0.69 -6 

optimizedOptimized 0.9 0.92 11 12 0.93 -4 

2018071212  
initialInitial 0.84 0.75 26 24 0.61 5 

optimizedOptimized 0.91 0.88 8 15 0.92 3 

2018081512  
initialInitial 0.71 0.78 26 24 0.78 -4 

optimizedOptimized 0.89 0.94 12 11 0.89 -3 

2018090516  
initialInitial 0.85 0.68 28 23 0.68 -5 

optimizedOptimized 0.93 0.87 12 10 0.92 -2 

2018092514  
initialInitial 0.79 0.78 23 19 0.59 5 

optimizedOptimized 0.88 0.88 9 11 0.89 2 

2018101208  
initialInitial 0.78 0.81 28 25 0.63 5 

optimizedOptimized 0.92 0.94 11 10 0.94 2 

2018111208  
initialInitial 0.79 0.81 25 24 0.65 -6 

optimizedOptimized 0.94 0.86 13 12 0.92 -2 

2019042512  
initialInitial 0.78 0.8 26 36 0.8 5 

optimizedOptimized 0.89 0.94 9 16 0.93 2 

2019051513  
initialInitial 0.84 0.77 32 27 0.79 4 

optimizedOptimized 0.91 0.88 9 13 0.95 2 

2019052516  
initialInitial 0.74 0.75 29 26 0.63 -5 

optimizedOptimized 0.92 0.86 7 15 0.96 -2 

2019060518  
initialInitial 0.85 0.83 28 25 0.78 -4 

optimizedOptimized 0.95 0.96 10 12 0.92 -2 

averageAverage 

value 

initialInitial 0.79 0.74 26 25 0.69 5 

optimizedOptimized 0.92 0.9 10 11 0.92 2 
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Figures 1075 

 1076 

 1077 

1- stratigraphic boundary, 2- sinkhole, 3- karst depression, 4- underground river, 5- 1078 

karst spring, 6- surface river，, 7- river gauge, 8- rain gauge, and 9- geographical name 1079 

a. Qingmuguan karst basin (modified from Yu et al., 2016) 1080 
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 1081 

 1082 

b. Lithologic cross section AA' of the Yankou sinkhole/AA' (modified from Zhang, 1083 

2012) 1084 

 1085 
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 1086 

c. Longitudinal profile of the study area (modified from Yang et al.,2008) 1087 

Figure 1 The Qingmuguan karst basin. 1088 

 1089 

Figure 2 Modeling flow chartModelling flowchart of the QMG (Qingmuguan) model. 1090 
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 1091 

 1092 

Figure 3 Spatial structure of the KHRUs (Li et al., 2021).  1093 
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Figure 4 Algorithm flow chartflowchart of the IPSO.1096 

1097 

 1098 

Figure 5 IterationIterative process of parametricparameter optimization. 1099 



53 

 

 1100 

 1101 

Figure 6 Flow simulation results of the QMG model based on parameter optimization. 1102 
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a. flood 201704240800                   b. flood 201705081600 1105 
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e. flood 201709151200                f. flood 201710081500  1111 
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g. flood 201805201600                    h. flood 201806081500 1114 
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1116 

i. flood 201808151200                     1117 

j. flood 201905251600 1118 

Figure 7 Flood simulation effects based on the initial and optimized parameters. 1119 


