Supplementary Information: Improvements to the representation of BVOC chemistry-climate interactions in UKCA (vn11.5) with the CRI-Strat 2 mechanism: Incorporation and Evaluation

James Weber¹, Scott Archer-Nicholls¹, Nathan Luke Abraham¹,², Youngsub M. Shin¹, Thomas J. Bannan², Carl J. Percival³, Asan Bacak³, Paulo Artaxo⁴, Michael Jenkin⁵, M. Anwar H. Khan⁶, Dudley E. Shallcross⁷, Rebecca H. Schwantes⁸,⁹, Jonathan Williams¹⁰,¹¹, Alex T. Archibald¹,²

Correspondence to: James Weber (jmw240@cam.ac.uk)

¹Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
²National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, CB2 1EW, UK
³School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
⁴NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
⁵Turkish Accelerator & Radiation Laboratory, Ankara University Institute of Accelerator Technologies, Gölbaşı Campus, 06830 Gölbaşı, Ankara, Turkey.
⁶Physics Institute, University of São Paulo, Rua do Matão 1371, CEP 05351-015, São Paulo, Brazil
⁷Atmospheric Chemistry Services, Okehampton, Devon, EX20 4BQ, UK
⁸Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
⁹Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
¹⁰Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
¹¹Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, 55128, Germany.
¹²Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus

Section S1

1.1 Updates to CS to produce CS2

CRI-STRAT (CS) reactions are shown in black, CRI-STRAT 2 (CS2) reactions in red. Pairings show a direct swap while struck-through black reactions indicate CS reactions which were removed with no direct replacement. Red reactions without a black partner reaction are new reactions to the CS2. For termolecular reactions, complex rate constants are used and in these cases the low pressure limit (k_0), high pressure limit (k_1) and F_C value are specified.

Termolecular Reactions

O(3P) + NO = NO2: $k_0 = 9 \times 10^{-12} [M](T/300)^{-1/2}$, $k_1 = 3 \times 10^{-17}$ $F_C = 0.6$

O(3P) + NO = NO2: $k_0 = 1 \times 10^{-11} [M](T/300)^{-1/2}$, $k_1 = 5 \times 10^{-11}(T/300)^{-1/2} F_C = 0.85$

O(3P) + NO2 = NO3: $k_0 = 9 \times 10^{-22} [M](T/300)^{-2}$, $k_1 = 2.2 \times 10^{-11}$ $F_C = 0.6$

O(3P) + NO2 = NO3: $k_0 = 1.30 \times 10^{-31} [M](T/300)^{-2}$, $k_1 = 2.30 \times 10^{-11}(T/300)^{0.24} F_C = 0.6$

HO2 + NO2 = HO2NO2: $k_0 = 1.80 \times 10^{-31} [M](T/300)^{-3/2}$, $k_1 = 4.70 \times 10^{-12}$ $F_C = 0.6$

HO2 + NO2 = HO2NO2: $k_0 = 1.40 \times 10^{-31} [M](T/300)^{-3/2}$, $k_1 = 4.00 \times 10^{-12}$ $F_C = 0.4$
OH + NO = HONO: \(k_0 = 7.40 \times 10^{-31} \text{[M]}(T/300)^{-2.4}, k_1 = 3.30 \times 10^{-11} (T/300)^{-0.3} F_C = e^{-\frac{T}{1420}} \)

OH + NO = HONO: \(k_0 = 7.40 \times 10^{-31} \text{[M]}(T/300)^{-2.4}, k_1 = 3.30 \times 10^{-11} (T/300)^{-0.3} F_C = 0.81 \)

OH + NO2 = HONO2: \(k_0 = 2.60 \times 10^{-30} \text{[M]}(T/300)^{-1.2}, k_1 = 2.40 \times 10^{-11} (T/300)^{-1.3} F_C = 0.6 \)

OH + NO2 = HONO2: \(k_0 = 3.20 \times 10^{-30} \text{[M]}(T/300)^{-4.5}, k_1 = 3.00 \times 10^{-11} F_C = 0.41 \)

MeCO + NO2 = PAN: \(k_0 = 8.50 \times 10^{-29} \text{[M]}(T/300)^{-6.50}, k_1 = 1.10 \times 10^{-11} (T/300)^{-1.0} F_C = 0.60 \)

MeCO + NO2 = PAN: \(k_0 = 3.28 \times 10^{-29} \text{[M]}(T/300)^{-6.68}, k_1 = 1.125 \times 10^{-11} (T/300)^{-1.105} F_C = 0.30 \)

EtCO + NO2 = PPAN: \(k_0 = 8.50 \times 10^{-29} \text{[M]}(T/300)^{-6.50}, k_1 = 1.10 \times 10^{-11} (T/300)^{-1.0} F_C = 0.60 \)

EtCO + NO2 = PPAN: \(k_0 = 3.28 \times 10^{-29} \text{[M]}(T/300)^{-6.68}, k_1 = 1.125 \times 10^{-11} (T/300)^{-1.105} F_C = 0.30 \)

NO2 + N2O5: \(k_0 = 2.20 \times 10^{-30} \text{[M]}(T/300)^{-1.90}, k_1 = 1.50 \times 10^{-12} (T/300)^{-0.7} F_C = 0.60 \)

NO2 + N2O5: \(k_0 = 3.60 \times 10^{-10} \text{[M]}(T/300)^{-6.10}, k_1 = 1.90 \times 10^{-12} (T/300)^{-0.2} F_C = 0.35 \)

HOCH2CO3 + NO2 = PHAN: \(k_0 = 8.50 \times 10^{-29} \text{[M]}(T/300)^{-6.50}, k_1 = 1.10 \times 10^{-11} (T/300)^{-1.0} F_C = 0.60 \)

HOCH2CO3 + NO2 = PHAN: \(k_0 = 3.28 \times 10^{-29} \text{[M]}(T/300)^{-6.68}, k_1 = 1.125 \times 10^{-11} (T/300)^{-1.105} F_C = 0.30 \)

RTN26O2 + NO2 = RTN26PAN: \(k_0 = 6.14 \times 10^{-29} \text{[M]}(T/300)^{-6.68}, k_1 = 7.94 \times 10^{-12} (T/300)^{-1.0} F_C = 0.60 \)

RTN26O2 + NO2 = RTN26PAN: \(k_0 = 2.388 \times 10^{-29} \text{[M]}(T/300)^{-6.50}, k_1 = 8.123 \times 10^{-12} (T/300)^{-1.105} F_C = 0.30 \)

RU12O2 + NO2 = RU12PAN: \(k_0 = 5.19 \times 10^{-30} \text{[M]}(T/300)^{-6.50}, k_1 = 6.71 \times 10^{-12} (T/300)^{-1.00} F_C = 0.60 \)

RU12PAN = RU12O2 + NO2: \(k_0 = 1.10 \times 10^{-10} \text{[M]} \times e^{-10100/T}, k_1 = 1.90 \times 10^{17} \times e^{-14100/T} F_C = 0.30 \)

RU12O2 = DHICARB9 + CO + OH: \(k = 2.40 \times 10^{3} e^{-5300/T} \)

MACO3 + NO2 = MPAN: \(k_0 = 3.28 \times 10^{-29} \text{[M]}(T/300)^{-6.68}, k_1 = 1.125 \times 10^{-11} (T/300)^{-1.105} F_C = 0.60 \)

MPAN = RU1002 + NO2: \(k_0 = 1.105 \times 10^{-10} \text{[M]} \times e^{-10100/T}, k_1 = 1.90 \times 10^{17} \times e^{-14100/T} F_C = 0.30 \)

MPAN = MACO3 + NO2: \(k = 1.60 \times 10^{18} e^{-13500/T} \)

RU14O2 = 0.5DHPR12O2 + 0.5 HPUCARB12 + 0.5 HO2 : \(k = 2.76 \times 10^{6} e^{-6977/T} \)

RU14O2 = UCARB10 + OH + CO: \(k = 1.24 \times 10^{11} e^{-8570/T} \)

DHPR12O2 = DHPICARB9 + CO + OH: \(k = 3.0 \times 10^{7} e^{-5300/T} \)

RU10AO2 = CARB7 + CO + OH: \(k = 3.0 \times 10^{7} e^{-5300/T} \)

*This reaction, along with 4 bimolecular reactions, allows the \(k_{\text{bimolec}} \) rate constant to be represented in the framework of UKCA.

Photolysis Reactions

CARB3 + PHOTON = CO + CO + HO2 + HO2 : 9.46*jhchoa

CARB3 + PHOTON = CO + CO + HO2 + HO2 : Glyxla from Prather et al (2013)

CARB3 + PHOTON = CO + CO + HO2 : Glyxlb from Prather et al (2013)

CARB3 + PHOTON = HCHO + HO2 : Glyxlc from Prather et al (2013)

TNCARB12 + PHOTON = RN90O2 + HOCH2CO3 : 5.47e-4*jno2

TNCARB11 + PHOTON = RTN1002 + CO + HO2 : 0.015*jno2

UCARB12 + PHOTON = MeCO3 + HOCH2CHO + CO + HO2 : jhchoa

UCARB12 + PHOTON = MeCO3 + HOCH2CHO + CO + HO2 : 0.25*jhchoa

UCARB12 + PHOTON = RU12O2 + HO2 : 0.5*jmacr

UCARB12 + PHOTON = CARB7 + CO + CO + HO2 + HO2 : 0.25*jmacr

NUCARB12 + PHOTON = NOA + CO + CO + HO2 : jmacr

NUCARB12 + PHOTON = HUCARB9 + CO + NO2 : 0.6066*jno2

NRU12OOH + PHOTON = NOA + CO + HO2 + OH: jmhp
MeOO + NO = HCHO + NO2 + HO2:
OH + MeONO2 = HCHO + NO2 + H2O:
OH + MPAN = CARB7 + CO + NO2 :
OH + HO2NO2 = H2O + NO2 + O2 :
HO2 + NO = OH + NO2 :
O(1D) + O2 = OH + OH :
O(1D) + N2 = OH + OH :
O(1D) + H2O = OH + OH :
CS:
CRI v2.2

these changes are not listed here. Where the reactions changed in the branching ratio and/or products, the reactions are shown.

Bimolecular Reactions
A significant number of the RO2 + NO and RO2 + NO2 reactions changed only in their rate constants (rate constant changes shown below) and these changes are not listed here. Where the reactions changed in the branching ratio and/or products, the reactions are shown.

CS: $k_{APNO} = 8.1 \times 10^{-12} e^{290/T}$
CRI v2.2 $k_{APNO} = 7.5 \times 10^{-12} e^{290/T}$
CS: $k_{RO2+RO} = 2.4 \times 10^{-12} e^{360/T}$
CRI v2.2 $k_{RO2+NO} = 2.7 \times 10^{-12} e^{360/T}$
CS: $k_{RO2+NO3} = 2.5 \times 10^{-12}$
CRI v2.2 $k_{RO2+NO3} = 2.3 \times 10^{-12}$
O(1D) + H2O = OH + OH : $k = 2.20 \times 10^{-10} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$
O(1D) + H2O = OH + OH : $k = 2.14 \times 10^{-10} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$
O(1D) + N2 = OH + OH : $k = 1.80 \times 10^{-10} e^{10/T} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$
O(1D) + N2 = OH + OH : $k = 2.00 \times 10^{-11} e^{10/T} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$
O(1D) + O2 = OH + OH : $k = 3.20 \times 10^{-11} e^{7/T} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$
O(1D) + O2 = OH + OH : $k = 3.20 \times 10^{-11} e^{8/T} \text{cm}^3 \text{molecules}^{-1} \text{s}^{-1}$

HO2 + NO = OH + NO2 : $k = 3.60 \times 10^{-12} e^{270/T}$
HO2 + NO = OH + NO2 : $k = 3.45 \times 10^{-12} e^{270/T}$
OH + HO2NO2 = H2O + NO2 + O2 : $k = 1.90 \times 10^{-12} e^{270/T}$
OH + HO2NO2 = H2O + NO2 + O2 : $k = 3.20 \times 10^{-13} e^{680/T}$
OH + PAN = HCHO + CO + NO2 : $k = 9.50 \times 10^{-14} e^{-650/T}$
OH + PAN = HCHO + CO + NO2 : $k = 3.40 \times 10^{-14}$
OH + MPAN = CARB7 + CO + NO2 : $k = 3.60 \times 10^{-12}$
OH + MPAN = CARB7 + CO + NO2 : $k = 6.38 \times 10^{-12}$
OH + MeONO2 = HCHO + NO2 + H2O: $k = 1.00 \times 10^{-14} e^{-1060/T}$
OH + MeONO2 = HCHO + NO2 + H2O: $k = 4.00 \times 10^{-13} e^{-843/T}$
MeOO + NO = HCHO + NO2 + HO2: $k = 3.00 \times 10^{-12} e^{-280/T}$
MeOO + NO = HCHO + NO2 + HO2: $k = 2.298 \times 10^{-12} e^{-300/T}$
MeOO + NO = MeONO2; \(k = 3.00 \times 10^{-15} e^{-260/T} \)
MeOO + NO = MeONO2; \(k = 2.30 \times 10^{-14} e^{-360/T} \)
MeOO + NO = HO2 + HCHO + NO2; \(k = 1.00 \times 10^{-12} \)
MeOO + NO3 = HO2 + HCHO + NO2; \(k = 1.20 \times 10^{-12} \)
NO3 + C5H8 = 0.09UCARB12 + 0.94OH + 0.85
NO3 + C5H8 = UCARB12 + OH:
O3 + UCARB10 = HOCH2CHO + CARB6 + H2O2:
O3 + UCARB10 = HOCH2CHO + MeCO3 + CARB3 + OH:
O3 + UCARB10 = HOCH2CHO + MeCO3 + CO + OH:
NO3 + UCARB10 = RU10O2 + HONO2:
OH + UCARB10 = RU10O2:
O3 + UCARB10 = HCHO + MeCO3 + CO + OH:
O3 + UCARB10 = HCHO + MeCO3 + CARB3 + OH:
O3 + UCARB10 = HCHO + CARB6 + H2O2:
O3 + UCARB10 = HCHO + CARB6:
NO3 + C5H8 = NRU14O2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
MeOO + NO3 = 0.84 Ru14OOH + 0.16 Ru10OOH:
Ru10O2 + HONO2:
RU1002 + NO3 = CARB7 + HCHO + HO2 + NO2 : \(k = 5.00 \times 10^{-13} \)

RU10AO2 + NO3 = CARB7 + HCHO + HO2 + NO2 : \(k = 2.30 \times 10^{-12} \)

RU1002 + RO2 = CARB7 + HCHO + HO2 : \(k = 4.00 \times 10^{-13} \)

RU10AO2 + RO2 = CARB7 + CO + HO2 : \(k = 3.60 \times 10^{-13} \)

RU10AO2 + NO = CARB7 + CO + HO2 : \(k = 2.665 \times 10^{-12}e^{660/\mathrm{T}} \)

RU10AO2 + HO2 = RU100OH + CO + HO2 : \(k = 1.819 \times 10^{-13}e^{1300/\mathrm{T}} \)

OH + CARB3 = CO + OH : \(k = 6.2 \times 10^{-13}e^{440/\mathrm{T}} \)

DHPR12O2 + NO = CARB3 + RN8OOH + OH + NO2 : \(k = 2.70 \times 10^{-12}e^{660/\mathrm{T}} \)

DHPR12O2 + NO3 = CARB3 + RN8OOH + OH + NO2 : \(k = 2.30 \times 10^{-12} \)

DHPR12O2 + HO2 = DHPR12OOH : \(k = 2.91 \times 10^{-11}e^{1300/\mathrm{T}} \times 0.706 \)

DHPR12O2 + RO2 = CARB3 + RN8OOH + OH : \(k = 7.60 \times 10^{-13} \)

OH + HUCARB9 = CARB6 + CO + HO2 : \(k = 5.78 \times 10^{-11} \)

OH + DHCARB9 = CARB6 + HO2 : \(k = 3.42 \times 10^{-11} \)

OH + DHPCARB9 = RN8OOH + CO + OH : \(k = 3.64 \times 10^{-11} \)

RU12O2 + NO = CARB7 + HOCH2CO3 + NO2 : \(k = 4.59 \times 10^{-13}e^{660/\mathrm{T}} \)

RU10AO2 + NO3 = CARB7 + HCHO + HO2 + NO2 : \(k = 4.05 \times 10^{-13} \)

OH + IEPOX = RU12O2 : \(k = 1.16 \times 10^{-11} \)

OH + HMML = CARB6 + OH : \(k = 4.33 \times 10^{-12}e^{0.7} \)

OH + HMML = HOOCO + CH3CO3 : \(k = 4.33 \times 10^{-12}e^{0.3} \)

OH + DHP12OOH = DHPCARB9 + CO + OH : \(k = 5.64 \times 10^{-11} \)

OH + RU12NO3 = CARB7 + CARB3 + NO2 : \(k = 2.50 \times 10^{-12} \)

OH + RU10NO3 = CARB7 + CO + NO2 : \(k = 5.26 \times 10^{-13} \)

RU10AO2 + NO = RU10NO3 : \(k = 2.70 \times 10^{-12}e^{660/\mathrm{T}} \times 0.013 \)

RU10AO2 + NO = CARB7 + CO + HO2 + NO2 : \(k = 2.70 \times 10^{-12}e^{660/\mathrm{T}} \times 0.987 \)

RU10AO2 + NO3 = CARB7 + CO + HO2 + NO2 : \(k = 2.30 \times 10^{-12} \)

RU10OA2 + H2O = RU100OH : \(k = 2.91 \times 10^{-13}e^{1300/\mathrm{T}} \times 0.625 \)

RU10AO2 + RO2 = CARB7 + CO + HO2 : \(k = 3.60 \times 10^{-13} \)

MACO3 + NO = CH3O2 + CO + HCHO + HO2 + NO2 : \(k = 7.50 \times 10^{-12}e^{200/\mathrm{T}} \times 0.65 \)

MACO3 + NO = CH3CO3 + CHCHO + HO2 + NO2 : \(k = 7.50 \times 10^{-12}e^{200/\mathrm{T}} \times 0.35 \)

MACO3 + NO = CH3O2 + CO + HCHO + HO2 + NO2 : \(k = 2.30 \times 10^{-12}e^{1.74} \times 0.65 \)

MACO3 + NO = CH3CO3 + HCHO + HO2 + NO2 : \(k = 2.30 \times 10^{-12}e^{1.74} \times 0.35 \)

MACO3 + H2O = RU100OH : \(k = 5.20 \times 10^{-11}e^{600/\mathrm{T}} \times 0.56 \)

MACO3 + NO = CH3O2 + CO + HCHO + OH : \(k = 5.20 \times 10^{-11}e^{600/\mathrm{T}} \times 0.44 \)

OH + HPCARB12 = HUCARB9 + CO + OH : \(k = 5.20 \times 10^{-11} \)

O3 + HPCARB12 = CARB3 + CARB6 + OH + OH : \(k = 2.4 \times 10^{-17} \)

NO3 + HPCARB12 = HUCARB9 + CO + OH + HNO3 : \(k = 1.44 \times 10^{-12}e^{1882/\mathrm{T}} \times 4.25 \)

NRU12O2 + NO = NOA + CARB3 + HO2 + NO2 : \(k = 1.35 \times 10^{-12}e^{660/\mathrm{T}} \)

NRU12O2 + NO3 = NO3 + CARB3 + HO2 + NO2 : \(k = 1.15 \times 10^{-12} \)

NRU12O2 + RO2 = NOA + CARB3 + HO2 + NO2 : \(k = 4.80 \times 10^{-13} \)

RU12O2 + RO2 = CARB7 + HOCH2CO3 : \(k = 7.392 \times 10^{-14} \)
HOCH2CO3 + HO2 = HCHO + HO2 + OH : \(k = 2.288 \times 10^{-12} e^{0.600/T} \)

RU14NO3 + OH = RU12NO3 + HO2 : \(k = 5.40 \times 10^{-12} \)

RU14NO3 + OH = RU10NO3 + HCHO + HO2 : \(k = 1.44 \times 10^{-11} \)

*RU14O2 + NO = 0.5HPUCARB12 + 0.5HO2 + 0.5DHPR12O2 + NO : \(k = 1.399 \times 10^{-13} e^{1.640/T} \)

*RU14O2 + NO3 = 0.5HPUCARB12 + 0.5HO2 + 0.5DHPR12O2 + NO3: \(k = 1.191 \times 10^{-13} e^{1.108/T} \)

*RU14O2 + HO2 = 0.5HPUCARB12 + 0.5HO2 + 0.5DHPR12O2 + HO2 : \(k = 1.064 \times 10^{-13} e^{1.668/T} \)

*RU14O2 + RO2 = 0.5HPUCARB12 + 0.5HO2 + 0.5DHPR12O2 + RO2 : \(k = 6.527 \times 10^{-16} e^{1.108/T} \)

*These reactions, when combined with the unimolecular reaction RU14O2 = 0.5HPUCARB12 + 0.5HO2 + 0.5DHPR12O2, represents the \(k_{\text{bulk1,6H}} \) rate constant in the framework of UKCA.

EtOO + NO = MeCHO + HO2 + NO2 : \(k = 2.58 \times 10^{-12} e^{0.655/T} \)

EtOO + NO = RU10NO3 + HCHO + HO2 : \(k = 2.53 \times 10^{-12} e^{0.580/T} \)

EtCO3 + HO2 = EtCO3H : \(k = 4.40 \times 10^{-13} e^{0.680/T} \)

EtCO3 + HO2 = EtCO3H + HCHO + HO2 : \(k = 4.30 \times 10^{-13} e^{1.040/T} \)

EtOO + HO2 = EtOOH : \(k = 7.50 \times 10^{-13} e^{0.700/T} \)

EtOO + HO2 = EtOOH + OH : \(k = 4.30 \times 10^{-13} e^{0.870/T} \)

MeCO3 + HO2 = MeCO3H : \(k = 4.31 \times 10^{-13} e^{1.040/T} \)

MeCO3 + HO2 = MeCO3H + HCHO + HO2 : \(k = 2.91 \times 10^{-13} e^{0.500/T} \)

MeCO3 + HO2 = MeOO + OH : \(k = 2.29 \times 10^{-13} e^{0.500/T} \)

NO + HO2 = NO2 + OH : \(k = 3.60 \times 10^{-12} e^{0.700/T} \)

NO + HO2 = NO2 + OH : \(k = 3.45 \times 10^{-12} e^{0.700/T} \)

MeOO + NO = HCHO + HO2 + NO2 : \(k = 3.00 \times 10^{-12} e^{2.800/T} \)

MeOO + NO = HCHO + HO2 + NO2 : \(k = 2.998 \times 10^{-15} e^{0.500/T} \)

MeOO + NO = MeONO2 : \(k = 3.00 \times 10^{-15} e^{2.800/T} \)

MeOO + NO = MeONO2 : \(k = 2.30 \times 10^{-15} e^{0.500/T} \)

MeOO + NO3 = HO2 + HCHO + NO2 : \(k = 1.00 \times 10^{-12} \)

MeOO + NO3 = HO2 + HCHO + NO2 : \(k = 1.20 \times 10^{-12} \)

HCHO + NO3 = HONO2 + HO2 + CO : \(k = 5.80 \times 10^{-16} \)

HCHO + NO3 = HONO2 + HO2 + CO : \(k = 5.50 \times 10^{-16} \)

MeCHO + NO3 = HONO2 + HO2 + CO : \(k = 1.44 \times 10^{-12} e^{-3362/T} \)

MeCHO + NO3 = HONO2 + HO2 + CO : \(k = 1.40 \times 10^{-12} e^{-3860/T} \)

EtCHO + OH = H2O + EtCO3 : \(k = 1.96 \times 10^{-11} \)

EtCHO + OH = H2O + EtCO3 : \(k = 4.90 \times 10^{-12} \)

MeCHO + OH = H2O + MeCO3 : \(k = 5.55 \times 10^{-12} e^{311/T} \)

MeCHO + OH = H2O + MeCO3 : \(k = 4.70 \times 10^{-12} e^{0.543/T} \)

MeOOH + OH = H2O + HCHO + OH : \(k = 1.02 \times 10^{-12} e^{1.900/T} \)

MeOOH + OH = H2O + HCHO + OH : \(k = 2.12 \times 10^{-12} e^{1.900/T} \)

O3 + C2H4 = H2O + HCHO + OH : \(k = 1.19 \times 10^{-15} e^{-2380/T} \)

O3 + C2H4 = H2O + HCHO + OH : \(k = 1.18 \times 10^{-15} e^{-2850/T} \)

O3 + C2H4 = H2O + HCOOH : \(k = 7.95 \times 10^{-15} e^{-2580/T} \)
O3 + C2H4 = HCHO + HCOOH : $k = 7.91 \times 10^{-15} e^{-2850/T}$

NO3 + C2H4 = N RN602 : $k = 2.10 \times 10^{-16}$

NO3 + C2H4 = NRN902 : $k = 3.30 \times 10^{-12} e^{-2600/T}$

OH + TOLUENE = AROH17 + HO2 : $k = 3.26 \times 10^{-11} e^{-138/T}$

OH + TOLUENE = AROH17 + HO2 : $k = 3.24 \times 10^{-12} e^{-490/T}$

OH + TOLUENE = RA1602 : $k = 1.48 \times 10^{-12} e^{158/T}$

OH + TOLUENE = RA1602 : $k = 1.48 \times 10^{-12} e^{-440/T}$

NO3 + APINE = NRTN28O2 : $k = 1.19 \times 10^{-12} e^{-490/T}$

NO3 + APINE = NRTN28O2 : $k = 1.20 \times 10^{-12} e^{-490/T}$

O3 + APINE = OH + Me2CO + RN18AO2 : $k = 8.08 \times 10^{-16} e^{-732/T}$

O3 + APINE = OH + Me2CO + RN18AO2 : $k = 6.44 \times 10^{-16} e^{-644/T}$

O3 + APINE = TNCARB26 + H2O2 : $k = 1.26 \times 10^{-16} e^{-732/T}$

O3 + APINE = TNCARB26 + H2O2 : $k = 1.41 \times 10^{-16} e^{-644/T}$

O3 + APINE = TNCARB26 + H2O2 : $k = 2.01 \times 10^{-17} e^{-644/T}$

O3 + BPINE = RTX24O2 + OH : $k = 5.25 \times 10^{-18}$

O3 + BPINE = RTX24O2 + OH : $k = 4.73 \times 10^{-16} e^{-1270/T}$

O3 + BPINE = HCHO + TXCARB24 + H2O2 : $k = 3.00 \times 10^{-18}$

O3 + BPINE = HCHO + TXCARB24 + H2O2 : $k = 2.70 \times 10^{-16} e^{-1270/T}$

O3 + BPINE = HCHO + TXCARB22 : $k = 3.75 \times 10^{-18}$

O3 + BPINE = HCHO + TXCARB22 : $k = 3.38 \times 10^{-16} e^{-1270/T}$

O3 + BPINE = CO + TXCARB24 : $k = 3.00 \times 10^{-18}$

O3 + BPINE = CO + TXCARB24 : $k = 2.70 \times 10^{-16} e^{-1270/T}$

OH + BENZENE = RA13O2 : $k = 1.10 \times 10^{-12} e^{-193/T}$

OH + BENZENE = RA13O2 : $k = 1.08 \times 10^{-12} e^{-193/T}$

OH + BENZENE = AROH14 + HO2 : $k = 1.23 \times 10^{-12} e^{-193/T}$

OH + BENZENE = AROH14 + HO2 : $k = 1.22 \times 10^{-12} e^{-199/T}$

OH + n-ProOH = EtCHO + HO2 : $k = 2.71 \times 10^{-12}$

OH + n-ProOH = EtCHO + HO2 : $k = 2.27 \times 10^{-12} e^{-70/T}$

OH + n-ProOH = RN9O2 : $k = 2.82 \times 10^{-12}$

OH + n-ProOH = RN9O2 : $k = 2.33 \times 10^{-12} e^{-70/T}$

RU1002 + NO3 = CARB7 + HCHO + HO2 + NO2 : $k = 5.00 \times 10^{-13}$

RU1002 + NO3 = CARB7 + HCHO + HO2 + NO2 : $k = 2.30 \times 10^{-13}$

HOC12O3 + HO2 = HOC12O3H : $k = 4.30 \times 10^{-13} e^{1040/T}$

HOC12O3 + HO2 = HOC12O3H : $k = 2.912 \times 10^{-13} e^{980/T}$

NRU1402 + HO2 = NRU140OH : $k = 2.24 \times 10^{-13} e^{1300/T}$

NRU1402 + HO2 = NRU140OH : $k = 2.05 \times 10^{-13} e^{1300/T}$
CH3O2 + RO2 = HCHO + HO2 ; \(k = 1.28 \times 10^{-12} \)

CH3O2 + RO2 = UCARB10 + RO2 + HCHO + HO2 ; \(k = 1.13 \times 10^{-12} \)

RU12O2 + RO2 = MeCO3 + HOCH2CHO ; \(k = 1.40 \times 10^{-12} \)

RU12O2 + RO2 = MeCO3 + HOCH2CHO ; \(k = 1.772 \times 10^{-13} \)

RU12O2 + RO2 = HCHO + HO2 + CARB7 + CARB3 ; \(k = 6.00 \times 10^{-13} \)

RU12O2 + RO2 = HCHO + CARB7 + CARB3 ; \(k = 1.668 \times 10^{-13} \)

RU1002 + RO2 = MeCO3 + HOCH2CHO ; \(k = 1.28 \times 10^{-11} \)

RU1002 + RO2 = CARB6 + HCHO + HO2 ; \(k = 6.00 \times 10^{-13} \)

RU1002 + RO2 = CARB6 + HCHO + HO2 ; \(k = 5.49 \times 10^{-13} \)

RU1002 + RO2 = CARB7 + CO + HO2 ; \(k = 4.00 \times 10^{-13} \)

RU1002 + RO2 = CARB7 + CO + HO2 ; \(k = 3.60 \times 10^{-13} \)

NRU12O2 + RO2 = NOA + CO + HO2 ; \(k = 9.60 \times 10^{-13} \)

NRU12O2 + RO2 = NOA + CO + HO2 ; \(k = 4.80 \times 10^{-13} \)

RTN26O2 + RO2 = RTN25O2 ; \(k = 2.00 \times 10^{-12} \)

RTN26O2 + RO2 = RTN25O2 ; \(k = 1.00 \times 10^{-11} \)

RTN26O2 + RO2 = RTN25O2 ; \(k = 2.00 \times 10^{-12} \)

RTN26O2 + RO2 = RTN25O2 ; \(k = 1.00 \times 10^{-11} \)

OH + CARB3 = CO + CO + HO2 ; \(k = 1.14 \times 10^{-11} \)

OH + CARB3 = CO + CO + HO2 ; \(k = 2.48 \times 10^{-12} \)

OH + CARB6 = MeCO3 + CO ; \(k = 1.72 \times 10^{-11} \)

OH + CARB6 = CO + CO + HO2 ; \(k = 1.90 \times 10^{-12} \) e^{575/T}
\[\text{OH} + \text{RU14NO}_3 = \text{UCARB12} + \text{NO}_2 : k = 5.55 \times 10^{-11} \]
\[\text{OH} + \text{RU14NO}_3 = \text{UCARB12} + \text{NO}_2 : k = 1.02 \times 10^{-11} \]
\[\text{OH} + \text{RN8OOH} = \text{CARB}6 + \text{OH} : k = 1.02 \times 10^{-11} \]
\[\text{RTN23O}_2 + \text{NO} = \text{RTN23NO}_3 : k = 2.83 \times 10^{-13} e^{360/T} \]
\[\text{RU12O}_2 + \text{NO} = \text{RN12NO}_3 : k = 9.45 \times 10^{-14} e^{360/T} \]

Wet Deposition Parameters

Table S1 - New or updated wet deposition parameters. Text/figures in parentheses show values used in CRI-STRAT (Archer-Nicholls et al., 2021)

<table>
<thead>
<tr>
<th>Species</th>
<th>Surrogate</th>
<th>Reference</th>
<th>k(298K)</th>
<th>(-\Delta H/R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOC2H4OOH</td>
<td>HOC2H4OOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.9e6 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>CARB7</td>
<td>Hydroxyacetone</td>
<td>Schwantes et al (2020)</td>
<td>1.46e3 (1.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>CARB10</td>
<td>Hydroxyacetone</td>
<td>Schwantes et al (2020)</td>
<td>1.46e3 (1.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>CARB13</td>
<td>Hydroxyacetone</td>
<td>Schwantes et al (2020)</td>
<td>1.46e3 (1.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>CARB16</td>
<td>Hydroxyacetone</td>
<td>Schwantes et al (2020)</td>
<td>1.46e3 (1.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>CARB3</td>
<td>Glyoxal (Methylglyoxal)</td>
<td>Schwantes et al (2020)</td>
<td>4.19e5 (3.5e3)</td>
<td>7.48e3 (7.2e3)</td>
</tr>
<tr>
<td>RA13NO3</td>
<td>RU14NO3 (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RA16NO3</td>
<td>RU14NO3 (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RA19NO3</td>
<td>RU14NO3 (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RN8OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RN11OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>Compound</td>
<td>Formula</td>
<td>Reference</td>
<td>K (10^4)</td>
<td>B (10^3)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>RN14OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RN17OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RU14OOH</td>
<td>RU14OOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>3.5e6 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RU12OOH</td>
<td>MVKOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.24e6 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RU10OOH</td>
<td>MVKOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.24e6 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>NRU14OOH</td>
<td>ISOPNOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>8.75e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>NRU12OOH</td>
<td>MVKN (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.84e5 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RN9OOH</td>
<td>HOC3H7OOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.5e6 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RA13OOH</td>
<td>BENZOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>2.3e3 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RA16OOH</td>
<td>BENZOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>2.3e3 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RA19OOH</td>
<td>BENZOOH (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>2.3e3 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTN28OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTN26OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTN25OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTN14OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTX28OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>Compound</td>
<td>Description</td>
<td>Authors</td>
<td>K (cm³/mol/s)</td>
<td>k (cm³/mol/s)</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>RTX24OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e5 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTX28OOH</td>
<td>Hydroperoxy acetone (EtOOH)</td>
<td>Schwantes et al (2020)</td>
<td>1.16e4 (3.4e2)</td>
<td>6.01e3 (5.70e3)</td>
</tr>
<tr>
<td>RTN26PAN</td>
<td>TERPA2PAN (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>9.59e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RTN23NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RN9NO3</td>
<td>HONITR (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>2.64e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RN12NO3</td>
<td>HONITR (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>2.64e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RN15NO3</td>
<td>HONITR (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>2.64e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RN18NO3</td>
<td>HONITR (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>2.64e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RU14NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RTN28NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RTN25NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RTX28NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep before)</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>RTX22NO3</td>
<td>Beta Isoprene hydroxy nitrate (no wet dep</td>
<td>Schwantes et al (2020)</td>
<td>8.34e3 (N/A)</td>
<td>6.01e3 (N/A)</td>
</tr>
<tr>
<td>Species</td>
<td>Source(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Natural, anthropogenic (surface and high)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S2 - Emitted species and their sources. All biogenic emissions are 2011-201 MEGAN-MACC climatologies and oceanic emissions are POET 1990 emissions.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS</td>
<td>Natural, biomass burning</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>C₃H₆</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>C₄H₁₀</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>C₅H₈</td>
<td>Biomass burning, biogenic</td>
</tr>
<tr>
<td>CO</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>EtCHO (propionaldehyde)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>EtOH</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>HCHO</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>HCOOH (methanoic acid)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>MEK (methyl ethyl ketone)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>Me₂CO (acetone)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>MeCHO (acetaldehyde)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>MeCO₂H (ethanoic acid)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>MeOH (methanol)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>TBUT2ENE (trans but-2-ene)</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>Toluene</td>
<td>Anthropogenic, biomass burning, biogenic</td>
</tr>
<tr>
<td>NO</td>
<td>Anthropogenic, biomass burning, biogenic, soil</td>
</tr>
<tr>
<td>NH₃</td>
<td>Anthropogenic, biomass burning, biogenic, oceanic</td>
</tr>
<tr>
<td>Alpha pinene</td>
<td>Biomass burning, biogenic</td>
</tr>
<tr>
<td>Beta pinene</td>
<td>Biomass burning, biogenic</td>
</tr>
<tr>
<td>Compound</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Black Carbon</td>
<td>Biofuel, biomass burning (surface and high), fossil fuels</td>
</tr>
<tr>
<td>Benzene</td>
<td>Biomass burning, anthropogenic</td>
</tr>
<tr>
<td>C₂H₃</td>
<td>Biomass burning, anthropogenic</td>
</tr>
<tr>
<td>CH₄</td>
<td>Biomass burning</td>
</tr>
<tr>
<td>HOCH₂CHO</td>
<td>Biomass burning</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>Biofuel, biomass burning (surface and high), fossil fuels</td>
</tr>
<tr>
<td>Toluene</td>
<td>Biogenic, anthropogenic, biomass burning</td>
</tr>
<tr>
<td>Oxylene</td>
<td>Anthropogenic, biomass burning</td>
</tr>
</tbody>
</table>

* Lower boundary condition imposed in model

For the observation-model comparisons, the CS and CS2 runs used anthropogenic timeseries emissions for all runs up to and including 2014 and 2014 timeslice emissions for the runs in 2016 due to a current lack of post-2014 emissions for CRI. All emissions were based on the CMIP6 CEDS inventories (Hosely et al. 2018). The ST runs used timeseries anthropogenic emissions based on the CMIP6 CEDS inventories for all runs up to 2014 and then time series emissions based on SSP370 for runs in 2016.

Section S2 Sensitivity Test Changes

CRI v2.2 reactions are shown in red, the changes made for each sensitivity test are shown in black. For termolecular reactions, complex rate constants are used and in these cases the low pressure limit (k_0), high pressure limit (k_1) and F_C value are specified.

CRI_v2_2_old

O(1D) + H₂O = OH + OH : $k_0 = 2.14 \times 10^{-10}$ cm³ molecules⁻¹ s⁻¹

O(1D) + H₂O = OH + OH : $k_1 = 2.20 \times 10^{-10}$ cm³ molecules⁻¹ s⁻¹

O(1D) + N₂ = OH + OH : $k_0 = 2.00 \times 10^{-11} e^{30/7} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$

O(1D) + N₂ = OH + OH : $k_1 = 1.80 \times 10^{-10} e^{10/7} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$

O(1D) + O₂ = OH + OH : $k_0 = 3.20 \times 10^{-11} e^{67/7} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$

O(1D) + O₂ = OH + OH : $k_1 = 3.20 \times 10^{-11} e^{67/7} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$

CRI_v2_2_inorgN

O(3P) + NO = NO₂ : $k_0 = 5 \times 10^{-13} [M](T/300)^{-1.2} F_c = 0.85$

O(3P) + NO = NO₂ : $k_1 = 3 \times 10^{-11} [M](T/300)^{-1.2} F_c = 0.6$

O(3P) + NO₂ = NO₃ : $k_0 = 1.30 \times 10^{-13} [M](T/300)^{-1.5} F_c = 0.6$

O(3P) + NO₂ = NO₃ : $k_1 = 2.30 \times 10^{-11} [M](T/300)^{-0.24} F_c = 0.6$
MeOO + NO3 → HO2 + HCHO + NO2:

MeOO + NO → MeONO2:

MeOO + NO → HCHO + NO2 + HO2:

OH + MeONO2 → HCHO + NO2 + H2O:

HO2 + NO = HO2 + NO:

OH + MeONO2 → MeONO2:

HO2 + NO = HO2 + NO:

Note that RU12PAN, which exists in CS but not in CS2, was not added back into the mechanism for this test. In addition, the formation of MPAN, which involves RU10O2+NO2 in CS but MACO3+NO2 in CS2, was kept as MACO3+NO2 but the CS value of KFPAN was used. These changes are unlikely to have a significant impact since PAN dominated the total concentration of all PAN-type species.

MACO3 + NO2 = MPAN:

MACO3 + NO2 = MP:

HO2 + NO = OH + NO2:

OH + H2O2 + H2O = 3.20 × 10^{-13} e^{-270.7T}

OH + H2O2 + O2 + H2O = 1.90 × 10^{-12} e^{-270.7T}

OH + PAN + HCHO + CO + NO2:

OH + MPAN + CARB7 + CO + NO2:

OH + MeONOOH + HCHO + NO2 + H2O:

MeOO + NO + HCHO + NO2 + H2O:

MeOO + NO + MeONOOH:

MeOO + NO3 = HO2 + HCHO + NO2:

1.20 × 10^{-12}
MeOO + NO = HOC + HCHO + NO2 : \(k = 1.00 \times 10^{-12} \)

\[\text{CRI_v2_2_isoprene} \]

In this branch, changes were made to the isoprene oxidation scheme to bring it as close as was practicable to that used in CRI-STRAT. The major changes were the removal of the isomerisation reactions of the isoprene peroxy radical, RU14O2, and the updated oxidation pathway of the species UCARB10 which represents the major isoprene oxidation products methacrolein (MACR) and methyl vinyl ketone (MVK).

In this branch RU14O2 only underwent reactions with HO2, NO, NO3 and RO2. This meant the production of 10 of the 12 new CRI_v2.2 species (IEPOX, HMML, HPUCARB12, HUCARB9, DHP12OOH, DHP12OB, DHCARB9, MACO3, DHP12O2 and RU10AO2) and their subsequent reactions, which are key in the HOX-recycling process, were removed from the mechanism. Note that the production of two new organonitrate species, RU12NO3 and RU10NO3, and their subsequent reaction were maintained as these had much less to do with the HOX-recycling feature under examination. It should also be noted that where there was a difference between the rate constants in CS and CS2 for a given reaction (e.g. changes in the RO2+NO and RO2+NO3 rate constants), the rate constant from CRI_v2.2 was used to minimise the other drivers for difference that was observed between this branch and the full CRI_v2.2 branch.

In addition, all isoprene oxidation reactions with OH, O3 and NO3 were reverted to those in CS.

\[\text{NO3 + C5H8 = NRU14O2 ; } k = 3.15 \times 10^{-12} e^{-450/T} \]
\[\text{NO3 + C5H8 = NRU14O2 ; } k = 3.0 \times 10^{-11} e^{-486/T} \]

\[\text{O3 + C5H8 = UCARB10 + CO + HO2 + OH ; } k = 1.288 \times 10^{-15} e^{-1995/T} \]
\[\text{O3 + C5H8 = HCHO + MeOO + CO + HO2 ; } k = 9.79 \times 10^{-15} e^{-1995/T} \]
\[\text{O3 + C5H8 = UCARB10 + HCOOH ; } k = 1.80 \times 10^{-15} e^{-1995/T} \]
\[\text{O3 + C5H8 = UCARB10 + HCHO + H2O2 ; } k = 3.97 \times 10^{-15} e^{-1995/T} \]
\[\text{O3 + C5H8 = MeCO3 + HCHO + CO + OH ; } k = 1.29 \times 10^{-15} e^{-1993/T} \]
\[\text{O3 + C5H8 = UCARB10 + CO ; } k = 9.785 \times 10^{-16} e^{-1995/T} \]
\[\text{O3 + C5H8 = UCARB10 + CO + HO2 + OH ; } k = 2.12 \times 10^{-15} e^{-1993/T} \]
\[\text{O3 + C5H8 = UCARB10 + HCOOH ; } k = 5.74 \times 10^{-15} e^{-1993/T} \]

\[\text{OH + C5H8 = RU14O2 ; } k = 2.70 \times 10^{-12} e^{100/T} \]
\[\text{OH + C5H8 = RU14O2 ; } k = 2.54 \times 10^{-12} e^{100/T} \]
\[\text{OH + UCARB10 = RU1002 ; } k = 3.84 \times 10^{-14} e^{531/T} \]
\[\text{OH + UCARB10 = RU1002 ; } k = 2.50 \times 10^{-11} \]
\[\text{NO3 + UCARB10 = RU1002 + HONO2 ; } k = 5.98 \times 10^{-11} e^{-1582/T} \]
\[\text{NO3 + UCARB10 = RU1002 + HONO2 ; } k = 1.44 \times 10^{-12} e^{-1862/T} \]
\[\text{O3 + UCARB10 = HCHO + MeCO3 + CO + OH ; } k = 3.84 \times 10^{-16} e^{-1700/T} \]
\[\text{O3 + UCARB10 = HCHO + MeCO3 + CO + OH ; } k = 1.68 \times 10^{-18} \]
\[\text{O3 + UCARB10 = HCHO + CARB6 ; } k = 8.16 \times 10^{-16} e^{-1710/T} \]
\[\text{O3 + UCARB10 = HCHO + CARB6 + H2O2 ; } k = 1.17 \times 10^{-18} \]
\[\text{OH + UCARB12 = RU1002 ; } k = 6.42 \times 10^{-11} \]
\[\text{OH + UCARB12 = RU1002 ; } k = 4.52 \times 10^{-11} \]
NO3 + UCARB12 = RU1002 : $k = 6.42 \times 10^{-14}$
NO3 + UCARB12 = RU1002 : $k = 4.52 \times 10^{-14}$

O3 + UCARB12 = HOCH2CHO + MeCO3 + CARB3 + OH : $k = 6.00 \times 10^{-18}$
O3 + UCARB12 = HOCH2CHO + MeCO3 + CO + OH : $k = 2.14 \times 10^{-17}$

O3 + UCARB12 = CARB6 + CO + OH + HO2 : $k = 1.20 \times 10^{-17}$
O3 + UCARB12 = HOCH2CHO + CARB6 + H2O2 : $k = 2.64 \times 10^{-18}$

UCARB12 = MeCO3 + HOCH2CHO + CO + HO2:0.25 * jmacr
UCARB12 = MeCO3 + HOCH2CHO + CO + HO2: jmacr

UCARB12 = RU1202 + HO2:0.5 * jmacr

UCARB12 = RU1202 + CARB7 + CO:0.25 * jmacr

NRU12OOH = NOA + CARB3 + HO2 + OH : jhmp
NRU12OOH = NOA + CO + HO2 + OH : jhmp

NUCARB12 = HUCARB9 + CO + NO2 + OH: jmacr
NUCARB12 = NOA + 2*CO + 2*HO2 : jmacr

NUCARB12 = CARB7 + CO + HO2 + NO2:8 * jnoa

No replacement

All reactions of HUCARB9, HPUCARB12, DHCARB9, DHPCARB9, RU10AO2, MACO3, DHP12O2, DHP12OOH and IEP0X and HMML were removed. Reactions which produced these species reverted to their CS equivalents.

OH + RU1400H = 0.09UCARB12 + 0.94OH + 0.85IEPOX + 0.06RU1402: $k = 7.14 \times 10^{-11}$
OH + RU1400H = UCARB12 + OH: $k = 7.51 \times 10^{-11}$

OH + RU1200H = RU100OH + CO + HO2: $k = 3.50 \times 10^{-11}$
OH + RU1200H = RU1202: $k = 3.00 \times 10^{-11}$

OH + RU100OH = CARB7 + CO + OH: $k = 3.84 \times 10^{-11}$
OH + RU100OH = RU1002: $k = 3.00 \times 10^{-11}$

MPAN + OH = HMML + NO3: $k = 2.262 \times 10^{-11}$
No replacement

MPAN = MACO3 + NO2: $k = 1.60 \times 10^{16}e^{-13500/T}$
MPAN = RU1002 + NO2: $k_0 = 1.10 \times 10^{-3}e^{-10100/T}$, $k_1 = 1.90 \times 10^{15}e^{-14100/T}$ $F_C = 0.30$

MACO3 + NO2 = MPAN: $k_0 = 3.28 \times 10^{-20}[M](T/300)^{-0.87}$, $k_1 = 1.125 \times 10^{-17}(T/300)^{-1.05} F_C = 0.30$
MACO3 + NO2 = MPAN: $k_0 = 8.50 \times 10^{-29}[M](T/300)^{-6.50}$, $k_1 = 1.10 \times 10^{-17}(T/300)^{-1.0} F_C = 0.60$

RU1402 = UCARB10 + HCHO + OH
No replacement

RU1402 = 0.5 HPUCARB12 + 0.5 HO2 + 0.5 DHP1202
No replacement

RU10AO2 + NO3 = CARB7 + HCHO + HO2 + NO2 : $k = 2.30 \times 10^{-12}$
RU1002 + NO3 = CARB7 + HCHO + HO2 + NO2 : $k = 5.00 \times 10^{-13}$

RU10AO2 + RO2 = CARB7 + CO + HO2 : $k = 3.60 \times 10^{-13}$
RU10O2 + RO2 = CARB7 + HCHO + HO2 : $k = 4.00 \times 10^{-13}$

The only change made to the mechanism for this test was reversion of the rate constants of RO2 with NO and NO3. Where branching ratios had changed between CS and CS2, the CRI v2.2 were maintained with rate constants scaled accordingly. The red rate constants below were changed to those in black:

- $k_{RO2NO} = 2.70 \times 10^{-12} e^{360/T}$
- $k_{RO2NO} = 2.40 \times 10^{-12} e^{360/T}$
- $k_{RO2NO3} = 2.30 \times 10^{-12}$
- $k_{RO2NO3} = 2.50 \times 10^{-12}$

Five acyl peroxy species in CRI featured a different RO2 + NO rate constant, k_{APNO}, which decreased by 7.5% in CRI v2.2.

- $k_{APNO} = 7.50 \times 10^{-12} e^{290/T}$
- $k_{APNO} = 8.10 \times 10^{-12} e^{290/T}$

Section S3 iBVOC and Megan-MACC Emissions

The difference between two possible BVOC emissions approaches, the iBVOC approach and the non-interactive MEGAN-MACC emission approach, was considered. Globally, the annual average non-interactive isoprene emissions were 5.9% higher (576.9 Tg yr$^{-1}$ vs. 545.0 Tg yr$^{-1}$) while MT emissions were 29% lower (97.5 Tg yr$^{-1}$ v. 137.3 Tg yr$^{-1}$, cf 95±3 Tg yr$^{-1}$ Sindelarova et al., 2014) (Fig. S1). Emissions at three of the surface observational sites, ATTO, Z2F and Borneo, were also compared with a specific focus on the months where model-observational comparisons were performed. At the ATTO and Z2F sites monthly MEGAN-MACC isoprene emissions were lower than iBVOC emissions (~40% for the months considered). Non-interactive MT emissions at the ATTO sites were also lower than iBVOC emissions (35% Feb and 25% Sept) but slightly higher in June for the Z2F site. In Borneo, MEGAN-MACC isoprene and MT emissions were ~25% and ~15% lower than iBVOC over the April-July period respectively.

A spatial comparison of the emission approaches was also performed (Fig. S2). Annually averaged, iBVOC exhibited greater isoprene emissions in the northern part of South America but lower emissions at more southern latitudes as well as general southern migration of isoprene emissions in Africa. Isoprene emissions in Australia were significantly lower. These differences were more pronounced in the June-July-August (JJA) period while in the December-January-February (DJF) period iBVOC also exhibited increased emissions over China and South East Asia and the northern hemisphere boreal forests but lower emissions over the South East USA. For monoterpenes, iBVOC simulated greater JJA emissions in the boreal forest, South East USA and South East Asia and greater DJF emissions in much of South America.
Figure S1. Global emissions of (a) isoprene and (b) MT from the non-interactive MEGAN-MACC MM dataset and iBVOC (shading shows standard deviations in iBVOC emissions over period)
2005-2013). Emissions per unit area for isoprene and MT at the ATTO (c, d), Bannan (e, f) and Borneo (g, h) observational sites. Black dots indicate months when model-observational comparisons were performed at the corresponding site.

Figure S2. Difference in emissions between the iBVOC and MEGAN-MACC 2001-2010 climatologies (MM) emission approaches for isoprene and monoterpenes. Annual average (top panels), DJF average (middle panels) and JJA average (lower panels).
Figure S3. Location of the two in-situ Amazon observation sites (Bannan and ATTO), city of Manuas and GABRIEL aircraft campaign paths (upper left), OP3 observation tower and FAAM aircraft campaign flights over Borneo (upper right) and SEAC4RS flight campaign over the South East USA (lower). Map Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

Table S3 – Additional information regarding observational data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE4C4RS</td>
<td>All data points below limit of detection set to zero</td>
</tr>
<tr>
<td>GABRIEL</td>
<td>Estimated LODs: Isoprene 0.1 ppb, MVK 0.09 ppb, Acetone 0.09 ppb Non-zero data points below the LOD were not removed.</td>
</tr>
<tr>
<td>FAAM</td>
<td>Estimated LOD: Isoprene 0.1 ppb Data marked as low quality was ignored</td>
</tr>
<tr>
<td>Borneo</td>
<td>Data marked as low quality was ignored</td>
</tr>
<tr>
<td>ATTO</td>
<td>Monoterpene LOD: 0.05 ppb (Sept 2013) 0.06 ppb (March 2014) Isoprene LOD: 0.09 ppb (Feb 2013), 0.1 ppb (Sept 2013) Acetone LOD: 0.03 ppb (Feb 2013), 0.05 ppb (Sept 2013) Isoprene oxidation products LOD: 0.13 ppb (Feb 2013), 0.07 ppb (Sept 2013)</td>
</tr>
</tbody>
</table>
A suite of online measurement techniques was deployed in Central Amazonia, at the ZF2 site located 61 km north upwind of Manaus (60°11'W, 2°5'S) in June and July 2016. This is a site that at the transition between wet and dry seasons that is mostly influenced by natural biogenic emissions, with virtually no biomass burning and no anthropogenic pollution at the time of experiment. A high-resolution TOF-CIMS using iodide-adduct ionization was coupled to an Aerodyne Research Incorporated FIGAERO (Lee et al., 2014, Lopez-Hilfiker et al., 2015, Bannan et al., 2019), and was utilized for the semi-simultaneous measurement of a range of oxygenated species in the gas and particle phase. An Aerodyne ACSM (Aerosol Chemical Speciation Monitor) monitored the bulk submicron organic and inorganic aerosol composition and a PTR-MS (proton transfer reaction mass spectrometer) was used to measure isoprene and a subset of isoprene oxidation products. Routine measurements including NOx, SO2 and O3 and key meteorological conditions were also made. Further details of all aspects of the field measurements are given in the sections that follow.

TOF-CIMS technique

Configuration and operating technique

The gas-phase measurements of the Manchester time-of-flight chemical ionization mass spectrometer (TOF-CIMS) instrument have been described in detail previously (Priestley et al., 2015) but the specific setup and operation procedures used in the present work is described herein. The instrument comprises an Aerodyne FIGAERO inlet attached to a reduced pressure ion molecule reaction (IMR) region in front of a Tofwerk atmospheric pressure interface high resolution time-of-flight mass spectrometer (Lopez-Hilfiker et al., 2015) together these facilitate simultaneous gas and particle phase measurements. In the present work, a Tofwerk X-Ray ionization source was used in place of the Po-210 source normally used with iodine CIMS. The instrument performance was tracked daily by monitoring the baseline, single ion signal measurements, m/z calibrations, regular gas-phase calibrations and high-frequency filter and gas-phase background measurements.

The Aerodyne FIGAERO is a two-port inlet with the first dedicated to gas sampling (PFA Teflon tubing, 20 SLM measured flow rate) and the second to aerosol sampling (stainless steel inlet, 10 SLM measured flow rate). The sampling lines were situated at an altitude just above the canopy to avoid sampling being compromised by trees or structures. Recently, Liu et al. (2016) discussed in detail the effect of inlets on species quantification - the inlets used in the present work were chosen due to the limitations of the measurement site.

The FIGAERO couples both inlets with the chemical ionization region of the mass spectrometer and operates in two modes: (A) ambient air sampling for trace gas analysis using CIMS and simultaneous particle collection on a PFTE filter via a separate inlet, and, (B) thermal desorption of the collected particles in nitrogen, allowing detection of the desorbed vapors via CIMS.

The IMR was held at a constant pressure by a scroll pump (Agilent SH-112), regulated with a servo control valve placed between the scroll pump and IMR. The ionizing reagent, I-, was generated via X-ray ionization of CH3I. 10 sccm of N2 was flowed over a methyl iodide (CH3I) permeation tube (held at 40°C) and the resultant CH3I-entrained N2 carried by a 2 SLM N2 flow through the X-ray ionizer into the IMR, orthogonally to the sample flow. The ionizer and ambient air flows were allowed to mix, such that trace chemical species within the ambient air sample were ionized by I-, generating iodine adducts. The resultant flow was sampled via a critical orifice into the first of four differentially pumped chambers in the TOF-CIMS. The first chamber was held at a set pressure (1.6 mbar) by a scroll pump (Triscroll 600)
and the subsequent chambers were pumped by a split flow turbo molecular drag pump. Quadrupole ion
guides transmitted the ions through these chambers while simultaneously providing additional collisional
cooling and energetic homogenization of the ions as they entered the extractor region. The electric fields
were set to optimize the total ion signal and transmission of the iodide adducts.

CIMS Calibrations and background measurements

Mass calibration was performed using 5 known masses (I, I·H₂O, I·HCOOH, I₂ and I₃⁻) that cover a
range of m/z 127 to 380. The mass calibration was fitted by a 3rd order polynomial and was accurate to
within 1 ppm, ensuring peak identification for all species was accurate below 1 ppm. The Tofware-specific FIGAERO-CIMS analysis software (version 3.1) was utilized to attain high-resolution 1Hz time
series of all of the species identified here, in both the gas- and particle-phases. Further analysis was done
using software developed in-house.

Gas-phase background measurements were made once every 30 minutes for 30 seconds by overflowing
the IMR just above the pinhole with wetted high-purity nitrogen. Data was background-subtracted using
an interpolation of the two background measurements recorded either-side of data collection. An example
of the data processing for an arbitrary mass is shown in Figure S1.

Fig. S4 Retrieval of background-corrected data from raw data for a subset of the measurement campaign
for an arbitrary mass. The background counts obtained during the background period (blue dots) are
interpolated to yield the interpolated background data (orange line). This is subtracted from the raw signal
(red line) to obtain the corrected measurement (black line). All data are in units of counts per second
(CPS).

Background filter measurements comprised a ramp, soak and cool cycle matching that of the ambient air
sampling method. Each background measurement was applied to the thermogram measurements made
until the next background filter measurement was recorded. In the event of a break in FIGAERO-CIMS
measurements (i.e., due to temporary failure or power shortages), a new filter was placed into the
instrument. The new filter was cleaned by ramping the temperature to 200°C for a duration of 20 mins
and subsequently cooled, with a complete cycle immediately after. Where there was no break in the
measurements for ~2 days, the cleaning process was undertaken for the existing installed filter. Detailed analysis during the measurements was undertaken to ensure that all of the collected material was being volatilized during normal operation.

Offline calibrations after the field work campaign were performed specific to the isoprene oxidation species that were observed at the ZF2 site. 2-Methyltetrols, 2-methylglyceric acid, and IEPOX were synthesized by the University of North Carolina, Department of Environmental Sciences & Engineering according to procedures outline in Bondy et al. (2018), Budisulistiorini et al. (2015), and Zhang et al. (2012), respectively. These standards were dissolved in acetone at known concentrations and using a micro-syringe were deposited on the FIGAERO filter and thermally desorbed using a known continuous flow of nitrogen over the filter. This was performed following the methodology devised in Lee et al. (2014). The measured sensitivities for C_5H_{10}O_3, C_4H_8O_4, C_5H_{12}O_4 varied by a maximum of 25% from each other with the mean sensitivity of the 3 isoprene oxidation standards being only 8% higher than that of acetic acid. The mean sensitivity of the 3 isoprene oxidation standards in the gas and particle phase is therefore applied to the full data set presented here.

All species sensitivities reported herein were deduced assuming a linear response between reported and formic acid calibrations in the field (where day-to-day calibrations were performed) and the laboratory. A range of other species were calibrated for after the campaign, and relative calibration factors were derived using the measured formic acid sensitivity during these calibrations, as has been performed previously (Le Breton et al., 2018; Bannan et al., 2015).

Supporting measurements

Several supporting measurements were made that allow for interpretation of the TOF-CIMS measurements. These include gas-phase measurements of biogenic volatile organic compounds (BVOCs) from a proton transfer time-of-flight mass spectrometer (PTR-ToF-MS; Ionicon Analytik) and particle-phase measurements using an aerosol chemical speciation monitor (ACSM)(DeCarlo et al., 2006). Operation and analysis procedures are outlined elsewhere for the PTR-TOFMS (Liu et al., 2016) and for the ACSM (de Sá et al., 2017). The chemical composition of submicrometer aerosols was measured on-line by mass spectrometry using an Aerosol Chemical Speciation Monitor (ACSM). The aerosol mass spectrometer was used to characterize a wide range of non-refractory sub-micron aerosol particles such as organics, nitrate, sulfate, ammonium, and chloride in real-time with time-resolution of <15 minutes.

Sulfur dioxide, NO_x and O_3 mixing ratios were monitored at both sites using trace gas analyzers (Thermo 43i-TLE, Thermo 42i and Thermo 49i, respectively). Meteorological parameters were measured using two different automatic weather stations (HOBO U30 Station GSM-UDP). Meteorological measurements comprised: temperature (± 0.3 °C), humidity (± 3–5%), rain amount (± 5% for daily accumulation), wind speed (0.3–0.5 ms-1) and direction (± 3°), where the resolution and accuracy are stated in parenthesis.
Figure S5 - Monthly mean ozone from observations (black) and CS (cc297 upper plot, red) and CS2 (cc298 lower plot, red) runs at 10 sites and 4 pressure levels (250 hPa – 1st row, 500 hPa – 2nd row, 700 hPa – 3rd row, 900 hPa – 4th row).

Figure S6 - Median observed and model (CS2) concentrations for (a) O$_3$, (b) CO, (c) Isoprene nitrate, (d) NO$_2$ from the SEAC4RS flight campaign. Panels (e) and (f) show median observed NO (GABRIEL) and NO$_2$ (FAAM) concentrations from observations and all mechanisms. Shading shows IQR.

Section S5 Other Species

CO

As discussed in the context of HO$_x$, Borneo modelled surface CO was high biased for all mechanisms (Fig. S7) with CS and CS2 exhibiting a bias 50-60 ppb in July when observations were low (~100 ppb) and ST a bias of 27 ppb. ST and CS were low and high biased respectively by around 13 ppb while CS2 was high biased by 27 ppb (Fig. S10). Over the Amazon CS and CS2 exhibit a smaller low bias than ST.
while over Borneo, ST and CS perform well with ST high biased by 10-15 ppb (Fig. 3). The CO profile from CS2 performs well against SEAC4RS data (Fig. S5).

Monthly mean surface CO from the longer CS2 runs show a consistent increase across multiple locations in CO concentration compared to CS but, due to the spatially-varying performance of CS (high bias in certain regions and low bias in others), CS2 appeared no better or worse than CS on a global scale. A small increase in low altitude CO was also seen in the annual mean CO vertical profiles.

HONO

Tropospheric vertical profiles of annual mean nitric acid at multiple locations show a small increase in CS2 in a few locations (<~50 ppt) relative to CS, slightly increasing the general model high bias. In the stratosphere, HONO was slightly (0.25-0.5 ppb) lower than CS in the 20-30 km increasing the model low bias.

Benzene and SO

In the Amazon CS and CS2 show reasonable agreement for benzene while all mechanisms have a daytime low bias for SO2 (Fig. S10).

PAN

PAN is high biased in Borneo (Fig S7), with CS and CS2 worse than ST. The increase in PAN in CS is documented by Archer-Nicholls et al (2021) and the general reduction from CS to CS2 is discussed in Section 4.

HCHO

The model high bias for HCHO in Borneo (Fig. S7) increased from ST to the CS due to additional secondary production (Archer-Nicholls et al., 2021) while above the Amazon, CS2 (Fig. S10) did yield an improvement relative to CS at low altitudes (< 1km). The general reduction in HCHO in CS2 relative to CS is discussed further in section 5.

Acetone and Acetaldehyde

All mechanisms are significantly high biased for acetone and acetaldehyde in Borneo and for acetone in the Amazon (Figs S7, S8). Above the Amazon, the three mechanisms are broadly similar for acetone displaying high bias at low altitude (greatest in the CRI mechanisms due to enhanced secondary production) and much smaller bias above ~ 2km. This highlights the importance of the ongoing work to update the photolysis of acetone and acetaldehyde species. These updates which are yet to be incorporated in UKCA have been noted to increase acetone photolysis frequency by 3-5x in the lowest 5km (Prather et al., 2013) and so should help to reduce model high bias.
Figure S7 - Mean modelled (ST, CS and CS2) and observed diurnal profiles of HO$_2$, CO, HCHO, Acetone, MeCHO, PAN and NO$_2$ profiles from Borneo. Observations are from the OP3 tower (ref) and model output from the most relevant grid cell. Shading indicates ±1 standard deviation from the mean and the numbers in bold show the mean diurnal model bias (model - observations) for species/locations where observations were recorded.
Figure S8 - Mean vertical profiles of isoprene, monoterpenes from observations taken at the ATTO tower (Yanez-Serrano et al., 2015) and model output from ST, CS and CS2. Daytime and nighttime
periods are taken as 9:00-15:00 and 21:00-03:00 respectively. Shaded regions indicate ± 1 standard deviation from the mean.

Figure S9 - Mean vertical profiles of isoprene oxidation products (here defined as the sum of methacrolein, methyl vinyl ketone and ISOPOOH) and the ratio of isoprene oxidation products to isoprene from observations taken at the ATTO tower (Yanez-Serrano et al., 2015) and model output from ST, CS and CS2. Daytime and nighttime periods are taken as 9:00-15:00 and 21:00-03:00 respectively. Shaded regions indicate ± 1 standard deviation from the mean.
Figure S10 - Mean modelled (ST, CS and CS2) and observed diurnal profiles of CO, NO2, Benzene and SO2 from the Bannan site in the Amazon. Shading indicates ±1 standard deviation from the observation mean and the numbers in bold show the mean diurnal model bias (model - observations). (Note that the ST mechanism does include benzene as a species.)
Figure S11. Mean modelled (ST, CS, CS2) and observed diurnal profiles of acetone, isoprene oxidation products (here defined as the sum methacrolein, methyl vinyl ketone and ISOPOOH) at the ATTO tower. Observations are from the OP3 tower (e.g. Hewitt et al., 2010, Table 3) and model output from the most relevant grid cell. Shading indicates ±1 standard deviation from the
observation mean and the numbers in bold show the mean diurnal model bias (model - observations).

Figure S12. Zonal mean change in ozone mixing ratio for 2006 for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.
Figure S13. Mean change in ozone mixing ratio for the lowest ~500 m for 2006 for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests.
Figure S14. Tropospheric zonal mean change in the major production and loss Ox fluxes for CS₂-CS. These fluxes make up over 99% and 95% of total production and loss fluxes, respectively.
Figure S15. Mean change in OH concentration for the lowest ~500 m for 2006 for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests.
Figure S16. Tropospheric zonal mean change in OH for 2006 for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.
Figure S17. Zonal mean change in NOx for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.
Figure S18. Tropospheric zonal mean change in PANs for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.
Figure S19. Zonal mean change in HONO$_2$ for CS$_2$ and CS (top left), CS$_2$ and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.
Figure S20. Zonal mean change in RONO$_2$ for CS2 and CS (top left), CS2 and the respective sensitivity tests and the sum of the changes from the sensitivity tests. The purple line shows the mean tropopause height.

Table S3 - Annual mean Ox diagnostics for CS, CS2 and sensitivity tests. Note that these data refer to the single year of analysis used for the sensitivity tests rather than the 4 year mean as in Table 4 so the absolute values for CS and CS2 may differ from Table 4.

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th>CS2</th>
<th>CRI_v2_2_O</th>
<th>CRI_v2_2_inorgN</th>
<th>CRI_v2_2_isoprene</th>
<th>CRI_v2_2_RO2_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$ Burden</td>
<td>324</td>
<td>351</td>
<td>334</td>
<td>334</td>
<td>353</td>
<td>345</td>
</tr>
<tr>
<td>(Tg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O$_3$ Lifetime</td>
<td>17.23</td>
<td>18.63</td>
<td>17.28</td>
<td>18.73</td>
<td>18.62</td>
<td>18.61</td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>6579</td>
<td>6585</td>
<td>6780</td>
<td>6217</td>
<td>6650</td>
<td>6478</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tg year$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CO burden increased by 3.2% from 343 Tg in CS to 354 Tg in CS2 with gains of 4-5 ppb in the SH low altitudes and 2-4 ppb in much of the troposphere (Fig. 10). Tropospheric destruction of CO by OH increased by 3.2% (~100 Tg yr\(^{-1}\)) with increases of 5-10% in the tropical and midlatitude PBL driven by the enhanced oxidising capacity and greater CO production. However, this increased destruction was outweighed by a 4.4% increase in chemical production, driven primarily by the updates to the isoprene scheme, illustrated by the large column increases occurring over the regions with high BVOC emissions (Fig. S26).

Table S4 - Annual mean CO diagnostics for CS and CS2.

<table>
<thead>
<tr>
<th></th>
<th>CRI-STRAT</th>
<th>CRI-STRAT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO burden / Tg</td>
<td>326.8</td>
<td>337.9</td>
</tr>
<tr>
<td>CO lifetime / days</td>
<td>38.1</td>
<td>38.3</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Production / Tg CO year(^{-1})</td>
<td>3227.5</td>
<td>3326.7</td>
</tr>
<tr>
<td>Emissions / Tg CO year(^{-1})</td>
<td>1110.2</td>
<td>1110.7</td>
</tr>
<tr>
<td>HCHO + OH/NO(_3) / Tg CO year(^{-1})</td>
<td>589.3</td>
<td>555.3</td>
</tr>
<tr>
<td>HCHO + hv / Tg CO year(^{-1})</td>
<td>1228.6</td>
<td>1239.4</td>
</tr>
<tr>
<td>Other Chemistry / Tg CO year(^{-1})</td>
<td>86.2</td>
<td>179.7</td>
</tr>
<tr>
<td>Other Photolysis / Tg CO year(^{-1})</td>
<td>213.1</td>
<td>242.2</td>
</tr>
<tr>
<td>Loss / Tg CO year(^{-1})</td>
<td>3158.2</td>
<td>3254.2</td>
</tr>
<tr>
<td>CO + OH / Tg CO year(^{-1})</td>
<td>2994.6</td>
<td>3086.6</td>
</tr>
<tr>
<td>CO Dry Dep / Tg CO year(^{-1})</td>
<td>163.6</td>
<td>167.6</td>
</tr>
<tr>
<td>Net production / Tg CO year(^{-1})</td>
<td>69.3</td>
<td>72.5</td>
</tr>
</tbody>
</table>

HCHO

The HCHO burden decreased by 10% in CS2 (1.20 Tg to 1.08 Tg), driven primarily by the change to isoprene chemistry with a small contribution from the increased HCHO photolysis flux. Added competition from ISOPO2 isomerisation leads to the production of methylglyoxal (CARB6) and hydroxyacetone (CARB7), at the expense of methacrolein and methyl vinyl ketone (lumped together as UCARB10). The former species tend to produce less HCHO than the latter, resulting in the greatest reduction in HCHO column over the regions with the greatest biogenic emissions (Fig. S26).
Section S6 Impact of Photolysis Changes

The CS2 mechanism featured the updates to photolysis described in section 2. To isolate the impacts of these changes on tropospheric ozone and OH, a further run was performed using the CS2 mechanism but with photolysis parameters from the CS mechanism. This run was run for 2 years with the 2nd year analysed and compared to the same year in the longer CS2 run.

The change in photolysis had produced minor changes in tropospheric oxidants. The tropospheric O$_3$ burden decreased by 0.09% (0.32 Tg). Changes in most of the troposphere were below 0.2 ppb (~1%), at least an order of magnitude lower than the simulated changes between CS and CS2 (with updated photolysis) while larger increases of 0.5–1.5 ppb (0.5–1%) were observed around the tropical tropopause (Fig. S27). Therefore, we can conclude the change in O$_3$ between CS and CS2 is being driven predominantly by the change in chemistry rather than photolysis.

Updating the photolysis increased the air mass-weighted OH concentration by 0.98% (1.0 x 104 cm$^{-3}$), compared to a decrease of 1.55% between CS2 relative to CS. Spatially, OH increased in most of the troposphere by less than 2.0 x 104 cm$^{-3}$ (0.2–0.5%) (Fig S28) with the largest absolute increases in at low altitude 40S-50N. By comparison, OH is simulated to decrease from CS to CS2 in the bulk of the
troposphere by at least 2.0×10^4 cm$^{-3}$ and more than 5.0×10^4 cm$^{-3}$ in tropical and midlatitudes (excluding the tropopause). Therefore, the update to the photolysis, by increasing OH in CS2, actually reduces the change in OH from CS to CS2 rather than being a cause of the mechanistic difference.

An important caveat to this is low altitude northern hemisphere midlatitude OH which increased from CS to CS2 and also from the base to updated photolysis setup. The impact on OH of the photolysis update must be compared to the impact of the changes to the chemistry, notably isoprene HOx recycling and changes to O(1D)'s reaction pathways. Crucially, we see that the change in OH averaged over the lowest 500m from CS to CS2 is significantly larger than the change arising from the photolysis update, particularly over the regions with significant BVOC emissions such as the Amazon and other tropical regions (Fig. S28). That said, the impact of updated photolysis may be more significant over the parts of Europe and North America where the OH increase between CS and CS2 is smaller. Overall however we can conclude that the update to the photolysis is not a major driver of the significant changes to low altitude OH, rather the update in chemistry between CS and CS2 is the major driver.

Figure S22. Zonal mean changes in O$_3$ (upper panels) and OH (lower panels) between CS2 and CRI_v2_2_photo. The purple line shows the mean tropopause height.
Figure S23. Change in OH averaged over lowest ~500m between (a) CS2 and CS and (b) CS2 and CRI_v2_2_photo. Note that the scale of (a) is an order of magnitude greater than (b).

References

Y. Liu et al., Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of

