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Abstract. A simple 1-D energy budget model (SIMO) for the prediction of the vertical temperature profiles in small, 

monomictic lakes forced by a reduced number of input meteorological variables is proposed. The model estimates the net heat 

flux and thermal diffusion using only routinely measured hourly mean meteorological variables (namely, the air temperature, 

relative humidity, atmospheric pressure, wind speed, and precipitation), hourly mean ultraviolet B radiation (UVB), and 

climatological monthly mean cloudiness data. Except for the initial vertical temperature profile, the model does not use any 10 

lake-specific variables. The model performance was evaluated against lake temperatures measured continuously during an 

observational campaign in two lakes belonging to the Plitvice Lakes, Croatia (Lake 1 and Lake 12). Temperatures were 

measured at 15 and 16 depths ranging from 0.2 to 27 in Lake 1 (maximum depth of 37.4 m) and 0.2 to 43 m in Lake 12 

(maximum depth of 46 m). A sensitivity analysis of the simulation length was performed for simulation lengths from 1 to 30 

days. The model performed reasonably well and it was able to satisfactorily reproduce the vertical temperature profile at the 15 

hourly scale, the deepening of the thermocline with time, and the annual variation in the vertical temperature profile. A 

yearlong simulation initiated with an approximately constant vertical profile of the lake temperature (≈ 4°C) was able to 

reproduce the onset of stratification and convective overturn. However, the thermocline depth was underestimated while the 

epilimnion temperatures were overestimated. Nevertheless, the values of the model performance measures obtained for a 

yearlong simulation were comparable with those reported for other more complex models. Thus, the presented model can be 20 

used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, 

which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and 

sedimentology. 

1 Introduction 

Water temperature is a critical factor that directly influences a whole range of lake properties. It controls the solubility of gases 25 

and minerals, the rate of chemical reactions, and biological activity and diversity (e.g., Benson and Krause, 1980; Rasconi et 

al., 2017; Krumgalz, 2018). In addition, the vertical temperature profile in a lake (and consequent lake stratification/water 

column stability) and the length of the stratification period play a vital role in the transport pathways of gases and nutrients 

and, consequently, their distribution within a lake (e.g., Vachon et al., 2019; Ladwig et al., 2021). Furthermore, there is a two-

way interaction between lakes and the atmosphere. While the thermodynamic behavior of lakes is mainly driven by 30 
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meteorological conditions, the distinct physical features of lakes (such as surface roughness, albedo, heat capacity/temperature, 

and evaporation rate) introduce surface heterogeneity in the domain of interest. Thus, their presence modifies surface-

atmosphere fluxes and local and regional weather and climate (e.g., MacKay, 2012; Klaić and Kvakić, 2014; Brian et al., 2015; 

Kristovich et al., 2017; Wu et al., 2019). Thus, over the last couple of decades, increasing scientific interest has been focused 

on both modeling the thermal regime of lakes (e.g., Stepanenko et al., 2013, 2016; Thiery et al., 2014; MacKay et al., 2017) 35 

and its sensitivity to climate change (e.g., Vinnå et al., 2021). 

Due to their relative simplicity and computational efficiency, there is a widespread use of one-dimensional (1-D) water 

temperature prediction models. There are different types of 1-D models of varying complexity, although they can generally be 

divided into three groups: (1) mixed layer (usually two-layer) models based on the energy-budget approach, (2) differential 

models based on solving the 1-D heat transfer equation (thermal diffusivity models), and (3) second-order turbulence closure 40 

models. Energy budget-based models assume two distinct well-mixed layers, namely, the epilimnion and hypolimnion, and 

they use the kinetic energy produced by wind shear on the surface to account for the mixing dynamics within these two layers 

and/or to estimate the depths of these layers (e.g., Bell et al., 2006; Mironov et al., 2010; Hipsey et al., 2019). Thermal 

diffusivity-based models usually consist of many well-mixed layers for which the heat transfer equation is solved (e.g., 

Hostetler and Bartlein, 1990; Liston and Hall, 1995; Stefan et al., 1998; Sun et al., 2007). The second-order turbulence closure 45 

models are also known as k-ε, where k is the turbulent kinetic energy per unit mass and ε is the turbulent kinetic energy 

dissipation rate (e.g., Goudsmit et al., 2002). They solve the turbulent kinetic energy transport equation and are computationally 

considerably more expensive than the previous two types (e.g., Goudsmit et al., 2002; Stepanenko et al., 2011, 2014). 

Except in the basic underlying approach, lake models differ in the processes they include, such as wind sheltering, sediment 

heat flux, attenuation of light, phase change, convective mixing and others. Direct implementation of a particular process in a 50 

model or the simplification or even omission of the process is usually justified by the model purpose. Lake models are 

developed for various purposes, including improvement of numerical weather prediction and climate models (e.g., Mirnov et 

al, 2010; MacKay, 2012), evaluation of the effects of climate change (e.g., Stefan et al., 1998; Wu et al., 2020, Vinnå et al., 

2021), or facilitation of specific limnological studies. Some of these specific studies address gas (e.g., methane and/or CO2) 

emissions (e.g., Stepanenko et al., 2011), oxygen and nutrient levels (e.g., Bell et al., 2006), heat and mass exchange between 55 

the atmosphere and a water body (Sun et al., 2007), and evaporation and lake level fluctuation (Hostetler and Bartlein, 1990). 

To run lake models, input data, which are generally not available from routine meteorological measurements, are needed. 

Specifically, these data include both shortwave and longwave radiation component data. The goal of this study is to formulate 

a simplified model for predicting the vertical temperature profile in a small (less than 50 m deep) warm monomictic lake, 

which, except for the ultraviolet B radiation (UVB) and climatological monthly mean cloudiness data, is forced solely by 60 

routinely available observed surface meteorological data (namely, the air temperature, relative humidity, atmospheric pressure, 

wind speed and precipitation). Conversely, other lake-temperature models that are forced with observational data (e.g., Bell et 

al., 2006; Sun et al., 2007; Martynov et al., 2010; MacKay, 2012, 2017) require both shortwave and longwave radiation 

component data. In addition, we examined the sensitivity of the proposed model performance to the length of the simulated 
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time interval. To the best of our knowledge, such a detailed evaluation has not been reported in previous lake-temperature 65 

modeling studies. Since vertical temperature profiles in lakes are not routinely measured, we also addressed the ability of the 

proposed model to simulate the onset and termination of lake stratification by a yearlong simulation initiated with a uniform 

temperature over a completely mixed water column. A similar study was performed by Martynov et al. (2010) for two small 

dimictic lakes in the USA using an eddy diffusivity model and a two-layer model, Goudsmit et al. (2002) analyzed the 

performance of a k-ε model in a two-year length simulation, while Bruce et al. (2018) analyzed a set of 32 lakes all over the 70 

globe using the General Lake Model (GLM). All of these models are more complex and/or require more extensive input data 

than the one proposed in this study. 

The model proposed here is evaluated using lake-temperature experimental data measured at two lakes of the Plitvice Lakes, 

Croatia. Details about the study area and data collection are presented in Section 2. The model’s governing equations and 

parametrizations used are described in Section 3. Measures of the model performance and evaluation approach are described 75 

in Section 4. The results are presented and discussed in Section 5. Finally, a short summary and conclusions are given in 

Section 6. 

2 Study area and measurements 

2.1. Study area 

Plitvice Lakes is a karstic lake system situated in the mountainous region of Croatia (Fig. 1). The system consists of 16 named 80 

and several smaller unnamed lakes. The lakes are interconnected with cascades and waterfalls, making an approximately 9 km 

long chain extending in roughly a south-north direction. With its unique geomorphology and exceptional biodiversity, the area 

has been a subject of scientific research dating as early as 1850 (NPPL, 2021). An extensive multidisciplinary overview of 

abiotic studies focusing on the Plitvice Lakes area is provided by Klaić et al. (2018). 

The numerical model proposed in this paper was applied to the two largest lakes of the system, Prošće and Kozjak Lakes (Fig. 85 

1c and d). Prošće Lake (hereafter Lake 1) is the southernmost and the first lake in the system. The lake altitude, area, maximum 

and average depth, and volume are 636.6 m above sea level (ASL), 0.68 km2, 37.4 m, 13.2 m, and 0.00767 km3, respectively. 

Kozjak Lake (hereafter Lake 12) is the 12th lake in the chain at an altitude of 535 m ASL. It is the largest and deepest lake in 

the system, with maximum and average depths of 46 and 17.3 m, respectively, a surface area of 0.82 km2, and a volume of 

0.01271 km3. Based on their surface areas, both lakes can be considered small (e.g., Forcat et al., 2011). 90 

2.2. Observational data 

2.2.1.  Lake temperatures 

This study uses lake temperatures measured at two different points (Fig. 1), one in Lake 1 (point P1, φ = 44.8676 °N, 

λ = 15.5981 °E, 636 m ASL) and the other in Lake 12 (point K1, ϕ = 44.8902 °N, λ = 15.6038 °E, 535 m ASL). Each point 

was positioned in the deepest part of the corresponding lake. Lake temperatures were measured and logged with HOBO TidBiT 95 
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MX Temp 400 as previously described for Lake 1 in Klaić et al. (2020b) and Lake 12 in Klaić et al. (2020a). The accuracy of 

the sensors is ±0.20 °C for temperatures between 0 and 70 °C and ±0.25 °C for temperatures between −20 and 0 °C. The initial 

sampling frequency of lake temperatures was 1 Hz, while 2-min means were stored. However, since meteorological data were 

available at a resolution of one hour, we used hourly mean lake temperatures in the present study. 

 100 

Terms of Use). 

Figure 1 Location of Plitvice Lakes (red bubble; source: © Google Maps) (a). Closer look at the entire lake system (b), Lake 1 (c) 

and Lake 12 (d). Locations of the lake temperature measuring points P1 (φ = 44.8676°N, λ = 15.5981°E, height of the lake surface 

636 m ASL) and K1 (φ = 44.8902°N, λ = 15.6038°E, 535 m ASL) and meteorological measuring site M (φ = 44.8811°N, λ = 15.6197°E, 

579 m ASL) are shown with yellow circles. Panels b–d show composite pictures of the lake bathymetries and the digital orthophoto 

105 images (DOF: http://www.bing.com/maps/?v=2&app=60526, Print Rights – Under the © Microsoft® Bing™ Maps Platform APIs’ 
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Figure 2 Measured water temperatures in Lake 1 (a and b) and Lake 12 (c and d) and water temperature in Lake 12 after 

interpolation of the measured data (e and f). 

At site P1 (Lake 1), 15 factory-calibrated sensors were positioned at fixed depths of 0.2, 0.5, 1, 1.5, 3, 5, 7, 9, 11, 13, 15, 17, 110 

20, 23, and 27 m. As Lake 12 is deeper than Lake 1, an additional sensor was placed at a depth of 43 m at site K1 together 

with 15 sensors at the same depths as at site P1. 

The temperature recording started on 7 July 2018 at K1 and 6 July 2019 at P1 (Table 1). Temperatures were recorded 

continuously except during several short periods (≈ 1–2 days, once in approximately four months) when the sensors were 

pulled out of the lakes for the purpose of data acquisition. These periods without measurements are shown as thin vertical 115 

white lines in Fig. 2a, c and e. Due to the malfunction of some sensors during the first year of the measurement campaign, data 

for some observational depths at K1 are missing. Missing data are shown as white areas from July 2018 to July 2019 in Fig. 

2c or as intermitted lines in Fig. 2d. The inoperative sensors were later replaced. Missing data at specific depths were 

subsequently replaced by data calculated by spatial linear interpolation from the two adjacent depths using existing data (Fig. 

2e and f). However, temporal interpolation was not performed since it would fail to reproduce the temporal variability in lake 120 

temperature at particular depths during periods of data acquisition. Interpolated lake temperatures were used solely to illustrate 

the evolution of Lake 12 stratification (Fig. 2e), while they were omitted in the calculations of the model performance measures 

(Section 4). 
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Table 1 Availability of measured data. The positions of the measuring points are shown in Fig. 1. 

Data set Measurement point Availability of data 

Water temperature K1 (Lake 12, maximum depth 46 m) 

φ = 44.8902°N, λ = 15.6038°E, 535 m ASL 

7 July 2018 – 2 November 2020 

Water temperature P1 (Lake 1, maximum depth 37.4 m) 

φ = 44.8676°N, λ = 15.5981°E, 636 m ASL 

6 July 2019 – 2 November 2020 

Meteorological data M 

φ = 44.8811°N, λ = 15.6197°E, 579 m ASL 

7 July 2018 – 4 November 2018 

1 January 2019 – 31 December 2019 

2 July 2020 – 30 September 2020 

 125 

Figure 3 Available meteorological data from the automatic meteorological station Plitvička Jezera (φ = 44.8811°N, λ = 15.6197°E, 

579 m ASL): (a) precipitation amount (P) and relative humidity (RH), (b) air temperature (Ta) and UVB radiation (UVB), and (c) 

wind speed (V) and atmospheric pressure (p). 

2.2.2.  Meteorological data 

Meteorological data were measured at the automatic meteorological station Plitvička Jezera (point M in Fig. 1, φ = 44.8811°N, 130 

λ = 15.6197°E, altitude 579 m ASL). The station belongs to the network of the Croatian Meteorological and Hydrological 

Service (CMHS). The CMHS also provided quality control of these data. In the present study, we used hourly mean values of 

the air temperature, atmospheric pressure, UVB radiation, atmospheric relative humidity, and hourly precipitation amount 

measured at 2 m above ground level and wind speed measured at 10 m above ground level (Fig. 3). Wind direction data were 

also available but were not used in the study. The station is approximately 2 km northeastward of the P1 site and 1.6 km 135 

southeastward of the K1 site. Despite the comparable distance from both the P1 and K1 sites, the meteorological conditions 

observed at point M are expected to be more representative for Lake 12 than for Lake 1 because this point is located at the 

slope adjacent to Lake 12 at approximately 200 m away from its shoreline. In addition, topographic obstacles are found 
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between points P1 and M (Fig. 1b) and the altitude difference between P1 and M is higher than the difference between K1 and 

M (Table 1). 140 

3 Model description and governing equations 

The model is based on the one-dimensional energy balance equation used in similar liquid water models (e.g., Hostetler and 

Bartlein, 1990; Liston and Hall, 1995; Sun et al. 2007). Because ice was not observed on the two lakes during the measurement 

campaign (Fig. 2a and c), ice formation was not addressed in the present study. Thus, a simplified approach using water 

temperature instead of enthalpy is used. Assuming that the water body has a constant horizontal cross-sectional area (which 145 

can be of any shape), we come to the following equation: 

  convtmp M
z

φ

z

T
kk

zt

T
ρc 



























, (1) 

where cp is the water specific heat capacity (J kg-1 K-1), ρ is the water density (kg m-3), T is the water temperature (°C), t is 

time (s), z is depth (m), km and kt are the molecular and turbulent thermal conductivity (W m-1 K-1), ϕ is the heat source term 

(W m-2) and Mconv is the convective mixing term (W m-3). 150 

The water density is calculated from the formula for freshwater (e.g., Sun et al., 2007): 

  368.15
103.85109549.11 


T . (2) 

The molecular thermal conductivity of water is 0.6 W m-1 K-1 (e.g., Sun et al., 2007). The turbulent thermal conductivity is a 

function of time and depth because it depends on meteorological forcing. Here, we also follow the method of Henderson-

Sellers (1985), where the turbulent thermal conductivity is calculated as follows: 155 

       12
371exp


 Rik*zku*/Prρczk 0pt , (3) 

where k = 0.4 is the von Karman constant, u* is the friction velocity at the surface (m s-1), k* is the latitude-dependent parameter 

of the Ekman profile, Pr0 = 1 is the neutral value of the turbulent Prandtl number and Ri is the Richardson number. The Ekman 

profile parameter and the Richardson number are calculated as in Sun et al. (2007): 

  84.1
2

1/2
sin6.6=*


Uk  ,  (4) 160 

where φ is the latitude and U2 is the wind speed at 2 m above the water surface (m s-1), and 

   
20

*2exp*/4011-
=

2/12222
zkuzkN

Ri


,  (5) 

where N is the Brunt-Vaisala frequency (s-1): 

   2/1
z/g/= N . (6) 

The wind speed U2 is determined from the logarithmic formula: 165 
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  kzuU //2log*= 02 ,  (7) 

where z0 is the roughness length (m). The air shear velocity u* and the roughness length z0 are calculated as in Verburg and 

Antenucci (2010). 

Sun et al. (2007) suggest that for shallow lakes (less than 50 m deep), the turbulent thermal conductivity is negligible. Both 

Lake 1 and Lake 12 are less than 50 m deep (Table 1). However, as the depth of Lake 12 (46 m) is rather close to the upper 170 

depth threshold for shallow water bodies as defined by Sun et al. (i.e., the shallow lake is deeper than 10 m and shallower than 

50 m; Sun et al., 2007), in the present study, turbulent thermal diffusion was taken into account using Eq. (3). 

3.1. Energy budget and boundary conditions 

In addition to turbulent thermal diffusion, the only other term in Eq. (1) accounting for meteorological forcing is the heat 

source term. The surface net heat flux consists of the net shortwave radiation (Sn), net longwave radiation (Ln), sensible heat 175 

flux (Hs), latent heat flux (Hl), and heat flux brought by precipitation (Hp). The surface boundary condition can be written as 

follows: 

plsnn HHHLS =(0) . (8) 

At the bottom, it is assumed that there is no heat flux and that the temperature gradient equals zero, meaning there is no heat 

diffusion either. Thus, the bottom boundary conditions can be written as follows: 180 

  0max 



z

z

T
, (9) 

  0max z . (10) 

All heat flux terms in Eq. (8) are defined to be positive when downward. Shortwave and longwave radiation measurements are 

not very common, and sensible and latent heat fluxes cannot be measured directly (Brunel, 1989; Bahr et al., 2012). Thus, 

obtaining the heat flux terms in Eq. (8) is expensive and complicated. Therefore, methods for calculating each term using 185 

commonly available meteorological data only are proposed in sections from 3.1.1. to 3.1.4. 

3.1.1.  Shortwave radiation 

As previously indicated by other authors (e.g., Bell et al., 2006; Martynov et al., 2010; MacKay, 2012), sufficient radiation 

data (both shortwave and longwave) are not generally available from routine meteorological measurements, and this is also 

the case for meteorological station M, where only UVB radiation was measured. A number of studies provide correlations 190 

among UVA, UVB, total UV, or global solar radiation (G) (Kudish and Evseev, 2000; Kudish et al., 2005; Podstawczynska, 

2009; Pokhrel and Bhattarai, 2012; Pashiardis et al., 2017) and show that significant variability occurs in the UV/G ratio 

between sites, which is mainly due to local atmospheric conditions. Podstawczynska (2009) indicated that air turbidity and 

cloudiness are the two main factors that determine the variability of daily solar energy transmission through the atmosphere. 
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Pashiardis et al. (2017) found that the UV/G ratio increases with solar elevation and that the presence of clouds reduces the 195 

UV component less than the global solar radiation due to the strong absorption of water in the near infrared spectrum. 

Winslow et al. (2001) proposed a model for estimating the total daily solar irradiance from daily precipitation and minimum 

and maximum temperatures, along with latitude, elevation, and mean annual temperature. This model showed significant 

improvement over the widely used empirical Bristow and Campbell (1984) model and was applicable for a wide range of 

climates. Therefore, it is also used in this study. 200 

According to Winslow et al. (2001), the daily solar irradiance at the Earth’s surface is equal to 

  topsscfdayn STeTeDS )(/)(1 maxmin_   , (11) 

where Sn_day is the total daily solar irradiance (J m-2 day-1), τcf is the cloud-free atmospheric transmittance, β is an additional 

parameter required to introduce variation between sites, es(Tmin) and es(Tmax) are the saturation vapor pressures (hPa) at the 

daily minimum and maximum air temperatures (Tmin and Tmax), respectively, and Stop is the total daily solar irradiance at the 205 

top of the atmosphere (J m-2 day-1). To calculate the saturation water pressure, we use the formula from Bolton (1980): 

  

,3.265753.210for

,7.237269.170for

/exp611.0)(







nmCT

nmCT

TnmTTe

a

a

aaas




 (12) 

where Ta is the air temperature (°C). The total daily solar irradiance is calculated following Wald (2019): 

    ssecctop SS 


 tancoscos
24*3600

10  , (13) 

where S0 = 1 362 W m-2 is the solar constant, εecc is the eccentricity of Earth’s orbit, δ is the solar declination, φ is the location 210 

latitude, and ωs is the half day length (time between sunrise and noon or noon and sunset) in radians. εecc and ωs are functions 

of the day in the year only, while δ also depends on the location longitude since its noon value is used, which yields more 

precise results. Details on calculating these parameters are included in Wald (2019). 

The cloud-free atmospheric transmittance in Eq. (11) accounts for the transmittance of dry clean air (τ0) and the transmittance 

due to absorption by aerosols (τa) and water vapor (τv), and it also incorporates a correction for elevation (celev): 215 

  elevc

vacf τττ0 . (14) 

To calculate τ0, τa, τv, celev, D, and β, we follow Winslow et al. (2001). The transmittance of dry clean air is dependent only on 

the latitude (φ) and is calculated as follows: 

 

.80for774.0

80for10033.1947.0

0

22.25
0













, (15) 

The absorption by aerosols is extremely variable. Similar to Winslow et al. (2001), we set τa = 1 (i.e., no absorption). 220 

The absorption by water vapor is calculated from the following: 
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  8232.15
3010092.99636.0 


meanv T , (16) 

where Tmean is the mean annual air temperature (°C). On wet days, when the daily precipitation is above 1 mm, τv is reduced 

by 0.13. The site elevation correction factor (celev) is calculated as follows: 

   2553.5

ASL
5

102569.21 zcelev


 , (17) 225 

where zASL is the site elevation (m). 

The factor D takes into account the error due to differences in day length: 

     122
2/4/1



 ssD  . (18) 

The factor β in Eq. (11) is mainly constant, except for regions with very large daily temperature ranges: 

  16273753.23,041.1max .T/ΔT meanm  , (19) 230 

where ΔTm is the mean annual temperature range between the daily air temperature maximum and minimum. 

Hourly shortwave radiation data were generated from the calculated daily solar irradiance by using the measured UVB 

radiation data as a weight function: 





24

1

__

)(3600

)()()(

h

dayn

day

dayn

n

hUVB

S
hUVB

UVB

S
hUVBhS , (20) 

where Sn_day and UVBday are the daily values (J m-2 day-1) and Sn(h) and UVB(h) are the mean values (W m-2) for the hth hour 235 

of the total and UVB solar radiation, respectively. When UVB radiation data are unavailable, the standard daily radiation 

profile can be used. 

Unlike the other terms in Eq. (8), shortwave radiation is not completely absorbed in the lake surface layer but partially passes 

through the water. The shortwave radiation reaching a particular depth is calculated using the light extinction coefficient: 

 zλ)(S(z)S enn  exp0 , (21) 240 

where Sn(z) and Sn(0) are the shortwave radiations at water depth z and at the water surface, respectively, and λe is the light 

extinction coefficient calculated as suggested by Wu et al. (2020): 

424.0
1925.1


 ze . (22) 

3.1.2.  Longwave radiation 

The net longwave radiation is the difference between the incoming downward atmospheric longwave radiation (La
↓) and the 245 

outgoing upwards radiation from the lake surface (Ls
↑). As direct measurement data of longwave radiation by pyrgeometers 

are not routinely available, longwave radiation may be calculated using the following formula: 

    44
1527315273 .Tεσ.TσεεLεLL saasan 


, (23) 
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where ε and εa are the emissivities of the lake surface and the atmosphere, respectively, Ts is the water surface temperature 

(°C), Ta is the air temperature at 2 m height (°C), and σ = 5.67x10-8 W m-2 K-4 is the Stefan-Boltzman constant. The emissivity 250 

of water is assumed to be 0.96 (e.g., Sun et al. 2007). The emissivity of the atmosphere depends on the water vapor and 

atmospheric temperature profile. Assuming a standard atmosphere, Brutsaert (1975) derived a formula for calculating the 

atmospheric emissivity under clear sky conditions: 

   71
15.273241

/

aaac T/e.  , (24) 

where ea is the water vapor pressure (hPa). Although other empirical formulas for calculating atmospheric emissivity are 255 

available, Brutsaert’s (1975) expression (Eq. 24) was reported as the best in many studies of different climates (Wang and 

Dickinson, 2013). Because Eq. (24) refers to clear sky conditions, it is necessary to additionally account for cloud effects. 

Assuming that the emissivity of the water droplets in the clouds is approximately equal to one, Crawford and Duchon (1999) 

calculate the total atmospheric emissivity as follows: 

  ff  aca 1   (25) 260 

where f is the cloud cover, which ranges from 0 (clear sky) to 1 (total cloud coverage). This formula is considered the best 

formula in many studies (Wang and Dickinson, 2013). By substituting Eqs. (24) and (25) in Eq. (23), we obtain the expression 

for calculating the net longwave radiation: 

       44
15.27315.2731  aaacn TεσTσfεfεL . (26) 

As cloud fraction data are not available for the area of our study, climatological monthly values were used. 265 

3.1.3.  Latent and sensible heath flux 

To calculate the latent and sensible heat flux, we use a slightly modified algorithm provided by Verburg and Antenucci (2010). 

Their code, which is publicly available at the National Institute of Water and Atmospheric Research (NIWA) website (NIWA, 

2021), uses the bulk aerodynamic method based on the Monin-Obukhov similarity theory (Monin and Obukhov, 1954). 

According to this method, the sensible and latent heat fluxes can be calculated as follows: 270 

 asZHaas TTUCcH   , (27) 

 asZEval qqUCLH   , (28) 

where CH and CE are the transfer coefficients for sensible and latent heat flux, respectively, ca = 1005 J kg-1 K-1 is the specific 

heat of air, Lv ≈ 2500 kJ kg-1 is the latent heat of evaporation, ρa is the air density (kg m-3), and qs and qa are the specific 

humidities (kg kg-1) at the water surface and measuring levels, respectively. Air density and specific humidity were determined 275 

from the ideal gas law equation and from the observed relative humidity, respectively. 

The transfer coefficients were calculated in an iterative procedure, initially assuming neutral atmospheric conditions: 

  20
2

/ln/ MD zhkC  , (29) 
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         EEDEEME zhkCzhzhkC   /ln//ln/ln/
2/1

0
2 , (30) 

EH CC  , (31) 280 

where CD is the drag coefficient, h is the height above ground (m), z0 and zE are the roughness lengths (m), and ψM and ψE are 

the stability functions for momentum and vapor, respectively. The stability functions are defined through the stability 

parameter ζ = h/L, where L is the Monin-Obukhov length: 

 












 





v

la

a

s

Va

L

HT

c

H
kg

Tu
L

16.273
61.0

3
*

, (32) 

where Tv is the virtual temperature. Obviously, L depends on Hs and Hl while Hs and Hl depend on the stability of the 285 

atmosphere. Therefore, to calculate Hs and Hl, an iterative procedure has to be used. The procedure is initiated by assuming 

neutral conditions (ψM = ψE = 1). Further details on the calculation of roughness lengths, stability functions and the iterative 

process itself can be found in Verburg and Antenucci (2010). 

3.1.4.  Heat brought by precipitation 

Assuming the first lake layer in the numerical model is thick enough so that the precipitation amount is negligible compared 290 

to the surface layer water mass (Δz1 >> PΔt), it is easy to come to the following equation for calculating the heat flux brought 

by precipitation: 

 36001000  /TPcH precpp , (33) 

where P is the hourly precipitation (mm h-1) and Tprec is the precipitation temperature (°C). Since Tprec was not available, the 

air temperature was used instead. 295 

3.2. Convective mixing 

During the night, the net heat flux at a lake surface is generally negative. Consequently, unstable lake stratification is 

established. However, this unstable stratification is short-lived because the higher density water forming on top of the lake 

quickly sinks and mixes with the lower density water below it, thus restoring equilibrium (i.e., minimum potential energy). 

As Sun et al. (2007) pointed to the importance of introducing a convective mixing mechanism in a water temperature model, 300 

we also incorporated this mechanism in the present model. Namely, after each time step of integration, the model algorithm 

checks whether the upper layer in each pair of two adjacent layers has a higher density than the lower layer. If this occurs, then 

the two layers are assumed to mix completely, which results in uniform temperature: 

   111_1_ /   jjjjjjnewjnewj zzzTzTTT , (34) 
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where Δzj and Δzj+1 represent the thickness of the j-th (upper) and (j+1)-th (lower) layers, respectively; Tj and Tj+1 are the water 305 

temperatures in these layers before convective mixing, respectively, and Tj_new and Tj+1_new are the temperatures in these layers 

after convective mixing, respectively. 

3.3. Model setup 

The model code is written in MATLAB programming language. Equation (1) is discretized using the backward Euler scheme: 
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,  (35) 310 

where the subscript denotes the layer or the boundary between two layers, and the superscript denotes the time increment. 

Notice that the convective term from Eq. (1) is omitted in Eq. (35) since the algorithm employs convective mixing in a separate 

procedure after the integration step only if density inversion is detected in the water column, as explained in chapter 3.2. 

Equation (35) can be rearranged as follows: 
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 (36) 315 

Equation (36) can be written in matrix form as follows: 

BTATM
n1n


 . (37) 

Then, the solution for Tn+1 is obtained as follows: 

BMTAMT
1n11n 

 . (38) 

The implicit Euler scheme is unconditionally stable and thus does not have an upper limit for the time increment. Considering 320 

the time resolution of the available input data, the model was run with a time step of one hour. The vertical resolution in the 

model corresponds to the measuring depths and decreases with lake depth. The depths of the integration points were consistent 

with the sensors’ depths, while the boundaries of the layers were set halfway between each pair of consecutive points (Fig. 4b). 

The layer thicknesses ranged from 0.35 m (surface layer) to 16 m (bottom layer). An overview of the model workflow is given 

in Fig. 4a. 325 

A simulation was initiated in each hour of the periods in which both meteorological and water temperature observations were 

available. Each simulation was run for up to 30 days or until the end of the period with available data. Measured water 

temperature profiles were used for simulation initialization. 
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Figure 4 Model configuration. Panel (a) shows a schematic overview of the model workflow. The input consists of the initial time 330 
and date, the initial water temperature profile Tinitial, meteorological data (wind speed, air temperature, UVB radiation, relative 

humidity, precipitation, and atmospheric pressure), climatological data (mean annual air temperature, mean annual temperature 

range between the daily air temperature maximum and minimum, and mean monthly cloud cover), and location data (location 

latitude, longitude, and altitude above sea level). Panel (b) shows the layer setup. Points from 1 to J indicate the integration points 

where water temperatures are calculated, and zj is the depth of the j-th point. The horizontal lines indicate boundaries between 335 
layers, Φj±1/2 are the heat fluxes across the layer boundaries, and Φ0 is the net surface heat flux. 

4 Measures of the model performance 

First, a sensitivity analysis was performed to assess the dependence of the model performance on the simulation length. 

Predicted water temperatures and vertical temperature gradients were compared with the corresponding observed values for 

simulation lengths from 1 to 30 days. The model performance for each simulation length was evaluated by common bivariate 340 

measures. The mean bias error (MBE) is used to assess the tendency of the model to over- or underpredict the temperature. 

The mean absolute error (MAE) and the root mean square error (RMSE) both provide information about the error central 

tendency. However, RMSE also accounts for the distribution of the error and becomes larger as the error variability increases. 

RMSE places more weight on large errors, which makes it more sensitive to outliers. Due to all of the above, it has been argued 

that MAE is a more natural measure of average error than RMSE (Willmott and Matsuura, 2005). The maximum absolute 345 

error (MaxAE) is not a measure of systematic error, but it was calculated as a measure showing the most extreme outlier. The 

above measures are calculated from the following expressions: 
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, (41) 350 

 ii OP  maxMaxAE , (42) 

where O and P correspond to the observed and predicted values, respectively, while n is the number of corresponding pairs of 

these values. 

The index of agreement values were calculated using three different formulas proposed by Willmott et al. (2012), namely, the 

original (IAorig), modified (IAmod) and refined (IAref) index of agreement: 355 
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The IA represents a measure of the relative covariability of the observed and predicted values with respect to the observed 360 

mean. The original IA (Eq. (43)) uses the square of the difference between predicted and observed values, which is why it 

overestimates the influence of large errors, similar to the RMSE, which is why the square is replaced with an absolute value 

in the modified version (Eq. (44)); thus, IAmod is less sensitive to outliers than IAorig. IAmod approaches 1 (perfect agreement) 

more slowly than IAorig, which means that IAmod is more conservative and allows for finer comparisons of different models 

with relatively good performance. In IAref (Eq. (45)), the prediction variability in the denominator is replaced with the 365 
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observation variability. IAorig and IAmod range from 0 to 1, where a value of 0 means that the prediction and observation 

variabilities are totally out of phase, while a value of 1 means perfect fit. IAref ranges from -1 to 1 and has a well-defined lower 

boundary (Eq. (45b)), which allows for a better comparison of models with poor performance. However, it should be stressed 

that IAref approaching the value of -1 does not necessarily indicate poor model performance because it can also be a result of 

low observation variability. 370 

The second goal of this study was to examine the ability of the model to predict the springtime onset of lake stratification 

assuming that there are no measured water temperature data available. For this purpose, a simulation initiated with 

approximately constant water temperature throughout the entire lake column (≈ 4 °C), which is characteristic of the period 

when a lake is mixed, was run for the entire year, starting from 1 January 2019. Although accurate results were not expected 

for the yearlong simulation, the goal of this analysis was to evaluate the extent to which the model can provide relevant 375 

information regarding the stratification/thermocline depth. Such an approach is particularly appealing for lakes that are 

completely mixed during the winter since it does not require measurement of the water temperature profile to initiate the 

simulation. 

5 Results and discussion 

Based on sporadic observations of the vertical temperature profiles in the Plitvice Lakes, previous studies suggest that Lake 1 380 

and Lake 12 are dimictic (Klaić et al., 2018). Dimictic lakes are covered by ice during winter; they mix in spring and fall; and 

they are stratified in summer. The continuous observation data of the vertical temperature profiles in Lake 1 and Lake 12 

shown in Fig. 2a and c, for the first time clearly illustrate that during the field campaign, both lakes behaved as warm 

monomictic lakes. Specifically, they were mixed during winter but stratified at other times. Furthermore, monomictic lakes 

(which are frequently found in temperate and tropical latitudes) typically do not freeze, and the two studied lakes did not freeze 385 

during the entire field campaign since the wintertime temperatures in the top lake layers were above 0 °C (Fig. 2b and d). 

As the main driver of the lake temperature profile is the surface heat flux, it is interesting to first analyze its terms. Figure 5 

shows the modeled mean diurnal variation in the total heat flux and the heat flux terms for a typical winter (a) and summer 

month (b). The solar heat flux is an order of magnitude higher than the other components of the total heat flux, which indicates 

that it is one of the main factors affecting the lake water temperature. Next in magnitude is the net longwave radiation, followed 390 

by the latent heat flux. The last two components are negative and are responsible for the negative heat flux, or cooling, at night. 

The observed and predicted water temperatures for various simulation lengths for 2019 are shown in Fig. 6. (Lake 1, note that 

lake temperature measurements started in July) and Fig. 7 (Lake 12). The model performed reasonably well. Namely, the onset 

of the stratification period (Fig. 7) and both the vertical temperature profile and deepening of the thermocline over time were 

well captured (Figs. 6 and 7). Simulation results for Lake 12 reproduce the observed data more closely, while for Lake 1 higher 395 

discrepancies between simulated and observed data are present, especially for simulation lengths of 5 days and above. 
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Figure 5 Modeled mean diurnal variations in the heat flux at the surface of Lake 12 for January (a) and July 2019 (b). 

Figure 8 shows a closer view of the observed vs. predicted temperatures at depths of 0.2 m, 5 m, 15 m and 27 m for the period 

between 6 July 2019 and 31 December 2019. This period was chosen because it is the longest period in which all necessary 400 

data (both meteorological and water temperatures for both lakes) were available. Additionally, observed vs. predicted 

temperature gradients and the prediction errors for both temperature profiles and temperature gradients for the same sample 

period are presented in Appendix A. As expected, the departure of the predicted from the observed quantities increases with 

the length of the simulation period. However, even the longest simulation runs (30 days) produced qualitatively acceptable 

results. Departures of the predicted hourly mean temperatures were mainly ≤ ±2°C and ≤ ±1°C for Lake 1 and Lake 12, 405 

respectively, except near the surface where they were mainly ≤ ±4C and ≤ ±2.5°C for Lake 1 and Lake 12, respectively. The 

temporal temperature variations at various depths were satisfactorily simulated (Figs. 8, A1 and A2). Furthermore, thermocline 

depths and their deepening in time were well captured by the model (Figs. A3 and A5). However, the results also suggest that 

the lake temperatures in the epilimnion and hypolimnion are somewhat over- and underpredicted, respectively (Figs. 8, A1 

and A2). 410 

Although the model satisfactorily reproduced the temporal variations in the lake temperatures at the hourly scale, it was not 

able to reproduce the internal seiches that were previously documented for both lakes (Klaić et al., 2020a, 2020b). This finding 

is not surprising since the present model is based solely on the energy-budget approach; thus, except for vertical mixing of the 

two adjacent layers under unstable stratification, it does not account for any hydrodynamic behavior. 

Figures 9 and 10 show the calculated model performance measures for both lakes. The model overestimates the water 415 

temperature in the epilimnion, especially near the surface, with an MBE from 1.3 °C and 0.8 °C for 1-day simulations, up to 

4.2 °C and 2.9 °C for 30-day simulations, in Lake 1 and Lake 12, respectively (Figs. 9a and 10a). The MAE near the surface 

in Lake 1 starts from 1.3 °C for 1-day simulations and increases relatively steadily to 4.2 °C for 30-day simulations (Figs. 9b). 

In Lake 12, however, it starts from 0.9 °C for 1-day simulations and reaches a value of approximately 2.5 °C for a simulation 

length of 15 days and slowly increases to 2.9 °C as the simulation length reaches 30 days (Fig. 10b). 420 
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Figure 6 Observed (a) and predicted (b-f) water temperatures of Lake 1 for different simulation lengths in the period between 

06 July 2019 and 04 November 2019. Periods with missing data are seen as white vertical stripes. 

 

Figure 7 Observed (a) and predicted (b-f) water temperatures of Lake 12 for different simulation lengths for 2019. Periods with 425 
missing data are seen as white vertical stripes. 
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Figure 8 Observed and predicted water temperatures at depths of 0.2 m, 5 m, 15 m and 27 m for different simulation lengths in (a) 

Lake 1 and (b) Lake 12 

Couple of factors could lead to overestimated temperatures in the upper lake layers. The first is the underestimation of turbulent 430 

mixing and turbulent heat transfer, especially in periods of high winds. As seen from Figs. A1 and A2, this overestimation of 

the uppermost part of the lake is more pronounced for Lake 1 than for Lake 12. As argued in Section 2.2.2, measuring site M 

(where the data used for the atmospheric forcing of the model are measured) is more representative for Lake 1 than for Lake 

12. Accordingly, due to its higher altitude and less sheltered position, Lake 1 is more likely exposed to winds stronger than 

those measured at site M, and thus, both the turbulent mixing and the consequent heat transfer are likely to be stronger than 435 

modeled. 

The second possible reason is the overestimation of the shortwave radiation extinction coefficient. This coefficient depends 

on the amount of dissolved organics and particulates in the lake water and can thus be calibrated to reproduce the lake physical 

properties more closely. We did not proceed with extinction coefficient calibration because our goal was to investigate the 

model performance and its general applicability without location-specific fitting.  440 

Finally, it is possible that the surface heat flux has been overestimated, as the simplified approach used for its calculation is 

characterized by limited reliability. 
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Figure 9 Model performance parameters for Lake 1. 

 445 

Figure 10 Model performance parameters for Lake 12. 
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In the hypolimnion, the values of the MBE, MAE, RMSE, and MaxAE remain particularly low, especially for the deepest 

layers, for both lakes regardless of the simulation length (Figs. 9 and 10). These low values are a result of the low temperature 

variability in the deep lake layers, which is not taken into account in the formulation of these measures. In Lake 12 the MBE 

in the hypolimnion is slightly negative and reaches a value of -0.8 °C, while in Lake 1 the MBE stays positive throughout the 450 

lake depth and is close to zero in the hypolimnion. On the other hand, regardless of the formulation (original, modified or 

reference), the IA takes the temperature variability into account and therefore decreases with the increase of the simulation 

length even in the deep layers, indicating poorer performance as the simulations get longer.  

Further inspection of the results for temperature and temperature gradients in Lake 12 (Figs. A2 and A6) shows that the 

temperature prediction in the metalimnetic layer (thermocline region) where the temperature gradients were the highest, was 455 

rather challenging. The model performed relatively poorly in this region, which is particularly noticeable for longer simulation 

periods. 

As seen from Figs. 9 and 10, MaxAE did not increase significantly with increasing simulation length for either of the two 

lakes. As expected, MaxAE was highest near the surface and the maximum values for both lakes were relatively high (9.2 °C 

at 1 m depth and 7 °C in the surface layer for Lake 1 and Lake 12, respectively). 460 

Figure 11 shows the monthly means of the observed and modeled vertical temperature profiles for Lake 12. The results for 

Lake 1 are not shown because the necessary observation data were not available throughout any complete year during the 

observational campaign. The model successfully reproduced the annual variation in the temperature profile throughout 2019, 

including the stratification onset and its termination and the thermocline deepening over time. As the heating starts in spring 

and continues through summer, the model tends to overpredict the temperatures in the uppermost part of the lake and 465 

underpredict the temperatures in the thermocline region (Fig. 11c–h). The difference between the predicted and observed 

surface temperature in the summer months reaches approximately 4 °C for the longest simulation period. This finding is 

consistent with the above presented discussion of the model performance measures. In August (Fig. 11h), although the 

stratification was still strong, the effects of convective mixing during the night started to affect the monthly mean. In the 

following months (Fig. 11i–l), the mixing depth grew and reached a maximum depth of approximately 20 m in December (Fig. 470 

11l), while the lake stratification was much weaker than that in previous months. In these months of significant convective 

overturn, the deviation of the predicted from the observed epilimnion temperature is also observed. It becomes more significant 

with simulation length and reaches approximately 2 °C for the longest simulation period.  

The second goal of this study was to examine the ability of the model to predict the onset and termination of stratification and 

the deepening of the thermocline by yearlong simulation. Because all necessary data for the entire year were only available for 475 

2019, the first day of the yearlong simulation was set to 1 January 2019. For Lake 12, the simulation was initiated with a nearly 

constant water temperature profile (≈ 4 °C) that was observed for 1 January because these data were available, although a 

constant temperature of ≈ 4 °C that was generally observed over the entire water column (which is typical for the wintertime 

period when a lake is mixed) can be used instead. 
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 480 

Figure 11 Annual variation in the vertical profile of the water temperature. Panels (a) to (l) show the monthly means of the observed 

and predicted values in Lake 12 for 2019. 

 

Figure 12 Observed (a) and predicted (b) water temperature for Lake 12 in 2019. The predicted temperature is obtained by a single 

yearlong simulation run initiated on 1 January 2019. 485 
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Figure 13 Monthly means of the observed (blue) and predicted (red) water temperature vertical profiles for Lake 12 in 2019. 

Predicted temperatures are obtained by a single yearlong simulation run initiated on 1 January 2019. 

Figure 12 shows the contour diagrams of the observed and predicted water temperatures for Lake 12. Such results for Lake 1 

are not shown because they were almost identical to those obtained for Lake 12. Namely, meteorological forcing drove 490 

temperature changes. If the same forcing was used for both lakes, then the only other factor that can introduce a difference in 

the results was the initial vertical profile, which was very similar for both lakes. As previously pointed out in the discussion of 

model performance, the model generally overpredicted the temperatures of the upper layers and underpredicted them for the 

lower layers. Consequently, the thermocline depth was underpredicted by approximately half and the simulated thermocline 

deepening was weaker than the observed thermocline depth. However, the onset and termination of the stratification period 495 

were well predicted, with the onset being captured somewhat better than the termination. 

The observed and modeled monthly profiles that were obtained by the yearlong simulation are shown in Fig. 13. Here, the 

model generally underpredicted both the monthly mean lake temperatures (except near the surface) and thermocline depth, 

where discrepancies between the modeled and observed profiles were largest in the thermocline region. Nevertheless, the 

modeled results still qualitatively reproduced monthly mean profiles and their annual variation. It is also noted that the 500 

discrepancy between the observed and modeled temperatures in the thermocline region increased as stratification strengthened 

and then decreased as stratification weakened in late fall. 

The comparison of model performance with other models is not strait forward because few studies systematically report 

statistical performance measures, the calculation methods are not always clearly stated, and there is no consensus on which 

measures are to be reported. No performance measure data referring to certain simulation lengths were found; however, few 505 
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studies reported on single longer simulations. These results are summarized in Table 2. For a yearlong simulation of the water 

temperature in a small dimictic lake, Martynov et al. (2010) reported a surface temperature RMSE of 1.8 °C for an eddy 

diffusivity model (Hostetler model) and 3.2 °C for a two-layer model (FLake). Bruce et al. (2018) ran a two-year simulation 

for 32 different lakes using the GLM model, and the calculated RMSEs for the entire vertical profile, epilimnion, and 

hypolimnion were 1.34, 1.62, and 1.31 °C, respectively. MacKay (2012) ran a bulk mixed model simulation for approximately 510 

a month and a half and reported a surface temperature MBE < 1 °C. 

The yearlong simulation in this study resulted in a surface temperature RMSE of 2.3 °C; in the hypolimnion, the RMSE was 

lower in the deepest layer at 0.7 °C, but for the depth of 23 m, it was 1.6 °C. The RMSE was the highest in the thermocline 

region, where it reached a maximum of 5 °C. The RMSE for the entire profile was 3.1 °C. The surface temperature MBE was 

2.4 °C. The maximum MBE was again in the thermocline region and equaled -3.7 °C. This systematic underprediction in the 515 

thermocline region can also be noticed in Fig. 13. Considering the lake surface, entire vertical profile, epilimnion and 

hypolimnion temperature, the model performance for the yearlong simulation was satisfactorily since it was comparable with 

the performances of other models (Table 2), while for the thermocline region, it was poor. 

Table 2 Comparison of the present model performance with other models. 

Reference Model 
Application 

area 

Simulation 

length 
RMSE MBE 

 Present 

model 

small 

monomictic 

lake 

1 year 3.1°C (entire vertical profile) 

2.3 °C (surface temp.) 

0.7-1.6 °C (hypolimnion temp.) 

2.4 °C (surface temp.) 

 Present 

model 

small 

monomictic 

lake 

1.5 months  1.1 °C (surface temp.) 

Martynov 

et al., 2010 

Hostetler 

model 

small 

dimictic lake 

1 year 1.8 °C (surface temp.)  

Martynov 

et al., 2010 

FLake 

model 

small 

dimictic lake 

1 year 3.2 °C (surface temp.)  

Bruce et. 

al, 2018 

GLM 

model 

32 different 

lakes 

 1.34 °C (entire vertical profile) 

1.62 °C (epilimnion temp.) 

1.31 °C (hypolimnion temp.) 

 

MacKay 

(2012) 

Bulk 

mixed 

model 

arctic lake 1.5 months  < 1 °C (surface temp.) 

 520 

Finally, simulation results obtained for the model with and without turbulent thermal diffusion were compared. For both lakes, 

the results showed that the inclusion of this term did not result in noticeable model improvement (not shown here). This is in 

accordance with the suggestion of Sun et al. (2007) for shallow lakes. 
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6 Summary and conclusions 

The aim of this study was to offer a simple 1-D energy-budget model for the prediction of the vertical temperature profile in a 525 

small (less than 50 m deep) warm monomictic lake that is forced by a reduced number of input meteorological variables. 

Specifically, these include meteorological variables that are routinely measured at meteorological stations (i.e., the air 

temperature, relative humidity, atmospheric pressure, wind speed and precipitation) and UVB radiation data and climatological 

monthly means of cloudiness. In addition, an observed vertical profile of the lake temperature was used as an initial condition. 

The main challenge was to calculate the net heat flux on the lake surface and determine its components (i.e., the shortwave 530 

and longwave radiation, sensible and latent heat flux, and precipitation heat flux) from the available data. The model 

performance was evaluated using lake temperatures measured continuously during an observational campaign in two lakes of 

Plitvice Lakes, Croatia: Lake 1 (Prošće Lake) and Lake 12 (Kozjak Lake). The necessary meteorological data were provided 

by a single meteorological station located approximately 2 and 1.6 km from the lake temperature measuring points for Lake 1 

and Lake 12, respectively. Except being further away from the meteorological station, Lake 1 has an approximately 100 m 535 

higher altitude than Lake 12, is surrounded by more complex orography and is very likely exposed to stronger winds and lower 

air temperatures than those used as meteorological input data. Accordingly, the model performance was somewhat poorer for 

Lake 1, which indicates the importance of the microlocation-specific input meteorological data, as the meteorological forcing 

is the main driver of the temperature profile evolution. In addition, the influence of the tributary water that inflows into Lake 

1, which was not taken into account in the present model, could also contribute to higher differences between the modeled and 540 

measured temperatures in comparison to Lake 12. 

Generally, the model overestimated temperatures in the epilimnion and underestimated them in the metalimnion while the 

position of the thermocline and its deepening are well captured. There are several possible causes of departures of modeled 

from measured temperatures. One of them is the underestimation of the turbulent heat transfer in the epilimnion, especially in 

periods of high winds. In addition, the model cannot simulate internal seiches and possible water exchange between the warmer 545 

epilimnion and colder hypolimnion. Other probable causes are the use of an inappropriate light extinction coefficient value 

and the limited reliability of the surface heat flux. Finally, better results are expected if cloud cover data with at least daily 

resolution are used instead of climatological monthly averages. However, considering all model simplifications, we conclude 

that the model performed reasonably well. 

The sensitivity analysis of the model performance to the simulation length showed that when using appropriate meteorological 550 

forcing (as is the case of Lake 12), the model performance, especially in the epilimnion, steadily deteriorated up to a simulation 

length of approximately 15 days; however, a further increase in the simulation length up to 30 days had little effect on the 

model performance parameters. 

Despite the model’s shortcomings, the yearlong simulation showed that the model is able to predict the onset of stratification 

and convective overturn relatively precisely; however, it underestimated the thermocline depth and overestimated the 555 

epilimnion temperatures, which was similar to the results for the shorter interval simulations. Nevertheless, the values of the 
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model performance measures were comparable to those reported for other models. Thus, for a certain lake with no water 

temperature measurement data available, a yearlong simulation such as this would provide an assessment of lake stratification 

establishment, which can be useful for various studies dealing with lake biology, geochemistry, sedimentology, etc. 

Our findings show that the inclusion of a turbulent thermal diffusion term in the lake model did not result in substantially better 560 

results for either lake with a medium depth (i.e., ≈ 37 and 46 m). 

To further corroborate the general applicability of the present model, it should be applied to a larger number of different 

monomictic lakes. Nevertheless, in the present study, no lake-specific parameter tuning was performed. Thus, we expect 

similar model performance for other lakes if adequate meteorological forcing is employed. 

  565 
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Appendix A 

 

Figure A1 Error in the predicted water temperature (Pi-Oi) for Lake 1 for different simulation lengths for the period between 06 July 

2019 and 04 November 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths correspond to those in 

Fig. 6. 570 

 

Figure A2 Error in the predicted water temperature (Pi-Oi) for Lake 12 for different simulation lengths in the period between 06 July 

2019 and 04 November 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths correspond to those in 

Fig. 7. 
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 575 

Figure A3 Observed (a) and predicted (b-f) vertical gradients of water temperature for Lake 12 for different simulation lengths in 

the period between 06 July 2019 and 04 November 2019. 

 

Figure A4 Error in the predicted vertical gradient of water temperature (Pi-Oi) in Lake 12 for different simulation lengths in the 

period between 06 July 2019 and 04 November 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths 580 
correspond to those in Fig. 3. 
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Figure A5 Observed (a) and predicted (b-f) vertical gradients of water temperature in Lake 1 for different simulation lengths in the 

period between 06 July 2019 and 04 November 2019. 

 585 

Figure A6 Error in the predicted vertical gradient of water temperature (Pi-Oi) in Lake 12 for different simulation lengths in the 

period between 06 July 2019 and 04 November 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths 

correspond to those in Fig. 5. 

  

https://doi.org/10.5194/gmd-2021-118
Preprint. Discussion started: 16 June 2021
c© Author(s) 2021. CC BY 4.0 License.



 

30 

 

Code and data availability 590 

The SIMO v1.0 code is published under Creative Commons Attribution 4.0 International license and it is available at 

https://zenodo.org/record/4679796#.YHN41ugzaYE (last access: 11 April 2021), doi: 10.5281/zenodo.4679796. 

Lake water temperature data are available on request for research purposes by contacting Zvjezdana B. Klaić (zklaic@gfz.hr). 

Authors are not authorized to publicly share meteorological data. To access these data, requests should be sent to the Croatian 

Meteorological and Hydrological Service. 595 
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