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Abstract. A simple 1-D energy budget model (SIMO) for the prediction of the vertical temperature profiles in small, 

monomictic lakes forced by a reduced number of input meteorological variables is proposed. The model estimates the net heat 

flux and thermal diffusion using only routinely measured hourly mean meteorological variables (namely, the air temperature, 

relative humidity, atmospheric pressure, wind speed, and precipitation) hourly mean ultraviolet B radiation (UVB), and 10 

climatological yearly mean temperature data. Except for the initial vertical temperature profile, the model does not use any 

lake-specific variables. The model performance was evaluated against lake temperatures measured continuously during an 

observational campaign in two lakes belonging to the Plitvice Lakes, Croatia (Lake 1 and Lake 12). Temperatures were 

measured at 15 and 16 depths ranging from 0.2 to 27 m in Lake 1 (maximum depth of 37.4 m) and 0.2 to 43 m in Lake 12 

(maximum depth of 46 m). The model performance was evaluated for simulation lengths from 1 to 30 days. The model 15 

performed reasonably well and it was able to satisfactorily reproduce the vertical temperature profile at the hourly scale, the 

deepening of the thermocline with time, and the annual variation in the vertical temperature profile, which shows its 

applicability for short term prognostic simulations. A yearlong simulation initiated with an approximately constant vertical 

profile of the lake temperature (≈ 4°C) was able to reproduce the onset of stratification and convective overturn. The epilimnion 

temperature was somewhat overestimated, especially with the onset of the convective overturn. The upper limit of the 20 

metalimnion was well captured while its thickness was overestimated. Nevertheless, the values of the model performance 

measures obtained for a yearlong simulation were comparable with those reported for other more complex models. Thus, the 

presented model can also be used for long term simulations and the assessment of the onset and duration of lake stratification 

periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific 

fields, such as biology, geochemistry, and sedimentology. 25 

1 Introduction 

Water temperature is a critical factor that directly influences a whole range of lake properties. It controls the solubility of gases 

and minerals, the rate of chemical reactions, and biological activity and diversity (e.g., Benson and Krause, 1980; Rasconi et 

al., 2017; Krumgalz, 2018). In addition, the vertical temperature profile in a lake (and consequent lake stratification/water 

column stability) and the length of the stratification period play a vital role in the transport pathways of gases and nutrients 30 
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and, consequently, their distribution within a lake (e.g., Vachon et al., 2019; Ladwig et al., 2021). Furthermore, there is a two-

way interaction between lakes and the atmosphere. While the thermodynamic behavior of lakes is mainly driven by 

meteorological conditions, the distinct physical features of lakes (such as surface roughness, albedo, heat capacity/temperature, 

and evaporation rate) introduce surface heterogeneity in the domain of interest. Thus, their presence modifies surface-

atmosphere fluxes and local and regional weather and climate (e.g., MacKay, 2012; Klaić and Kvakić, 2014; Brian et al., 2015; 35 

Kristovich et al., 2017; Wu et al., 2019). Thus, over the last couple of decades, increasing scientific interest has been focused 

on both modeling the thermal regime of lakes (e.g., Stepanenko et al., 2013, 2016; Thiery et al., 2014; MacKay et al., 2017) 

and its sensitivity to climate change (e.g., Råman Vinnå et al., 2021). 

Due to their relative simplicity and computational efficiency, there is a widespread use of one-dimensional (1-D) water 

temperature prediction models. There are different types of 1-D models of varying complexity, although they can generally be 40 

divided into three groups: (1) mixed layer models based on the energy-budget approach, (2) differential models based on 

solving the 1-D heat transfer equation (thermal diffusivity models), and (3) second-order turbulence closure models. Energy 

budget-based models assume series of well-mixed layers (often just two, namely, the epilimnion and hypolimnion), and they 

use the kinetic energy produced by wind shear on the surface to account for the mixing dynamics within these layers and/or to 

estimate their depths (e.g., Bell et al., 2006; Mironov et al., 2010; Hipsey et al., 2019). Thermal diffusivity-based models 45 

usually consist of many well-mixed layers for which the heat transfer equation is solved (e.g., Hostetler and Bartlein, 1990; 

Liston and Hall, 1995; Stefan et al., 1998; Sun et al., 2007). The second-order turbulence closure models are also known as k-

ε, where k is the turbulent kinetic energy per unit mass and ε is the turbulent kinetic energy dissipation rate (e.g., Goudsmit et 

al., 2002). They solve the turbulent kinetic energy transport equation and are computationally considerably more expensive 

than the previous two types (e.g., Goudsmit et al., 2002; Stepanenko et al., 2011, 2014). 50 

Except in the basic underlying approach, lake models differ in the processes they include, such as wind sheltering, sediment 

heat flux, attenuation of light, phase change, convective mixing and others. Direct implementation of a particular process in a 

model or the simplification or even omission of the process is usually justified by the model purpose. Lake models are 

developed for various purposes, including improvement of numerical weather prediction and climate models (e.g., Mirnov et 

al, 2010; MacKay, 2012), evaluation of the effects of climate change (e.g., Stefan et al., 1998; Wu et al., 2020, Råman Vinnå 55 

et al., 2021), or facilitation of specific limnological studies. Some of these specific studies address gas (e.g., methane and/or 

CO2) emissions (e.g., Stepanenko et al., 2011), oxygen and nutrient levels (e.g., Bell et al., 2006), heat and mass exchange 

between the atmosphere and a water body (Sun et al., 2007), and evaporation and lake level fluctuation (Hostetler and Bartlein, 

1990). 

To run lake models, input data, which are generally not available from routine meteorological measurements, are needed. 60 

Specifically, these data include both shortwave and longwave radiation component data. The goal of this study is to formulate 

a simplified model for predicting the vertical temperature profile in a small warm monomictic lake, which, except for the 

ultraviolet B radiation (UVB), is forced solely by routinely available observed surface meteorological data (namely, the air 

temperature, relative humidity, atmospheric pressure, wind speed and precipitation). Conversely, other lake-temperature 
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models that are forced with observational data (e.g., Bell et al., 2006; Sun et al., 2007; Martynov et al., 2010; MacKay, 2012, 65 

2017) require both shortwave and longwave radiation component data and do not provide further details on determining them. 

The proposed model employs carefully chosen parameterizations of longwave and shortwave radiation. Although these 

parametrizations are well known, in the present study they are for the first time built into a lake temperature model. 

Furthermore, in comparison with the model of Sun et al. (2007), the present model does not neglect the turbulent diffusion for 

small lakes and uses different approach for calculating the light attenuation with depth. In addition, we examined the sensitivity 70 

of the proposed model performance to the length of the simulated time interval. To the best of our knowledge, such a detailed 

evaluation has not been reported in previous lake-temperature modeling studies. Since vertical temperature profiles in lakes 

are not routinely measured, we also addressed the ability of the proposed model to simulate the onset and termination of lake 

stratification by a yearlong simulation initiated with a uniform temperature over a completely mixed water column. A similar 

study was performed by Martynov et al. (2010) for two small dimictic lakes in the USA using an eddy diffusivity model and 75 

a two-layer model, Goudsmit et al. (2002) analyzed the performance of a k-ε model in a two-year length simulation, while 

Bruce et al. (2018) analyzed a set of 32 lakes all over the globe using the General Lake Model (GLM). All of these models are 

more complex and/or require more extensive input data than the one proposed in this study. 

The model proposed here is evaluated using lake-temperature experimental data measured at two lakes of the Plitvice Lakes, 

Croatia. Details about the study area and data collection are presented in Section 2. The model’s governing equations and 80 

parametrizations used are described in Section 3. Measures of the model performance and evaluation approach are described 

in Section 4. The results are presented and discussed in Section 5 and a comparison with other models is presented in Section 

6. Finally, a short summary and conclusions are given in Section 7. 

2 Study area and measurements 

2.1. Study area 85 

Plitvice Lakes is a karstic lake system situated in the mountainous region of Croatia (Fig. 1). The system consists of 16 named 

and several smaller unnamed lakes. The lakes are interconnected with cascades and waterfalls, making an approximately 9 km 

long chain extending in roughly a south-north direction. With its unique geomorphology and exceptional biodiversity, the area 

has been a subject of scientific research dating as early as 1850 (NPPL, 2021). An extensive multidisciplinary overview of 

abiotic studies focusing on the Plitvice Lakes area is provided by Klaić et al. (2018). 90 

The numerical model proposed in this paper was applied to the two largest lakes of the system, Prošće and Kozjak Lakes (Fig. 

1c and d). Prošće Lake (hereafter Lake 1) is the southernmost and the first lake in the system, while Kozjak Lake (hereafter 

Lake 12) is the 12th lake in the chain and it is the largest and deepest lake in the system. The characteristics of each lake are 

given in Table 1. Based on their surface areas, both lakes can be considered small (e.g., Forcat et al., 2011). 
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Figure 1 Location of Plitvice Lakes (red bubble; source: © Google Maps) (a). Closer look at the entire lake system (b), Lake 1 (c) 

and Lake 12 (d). Locations of the lake temperature measuring points P1 (φ = 44.8676°N, λ = 15.5981°E, height of the lake surface 

636 m ASL) and K1 (φ = 44.8902°N, λ = 15.6038°E, 535 m ASL) and meteorological measuring site M (φ = 44.8811°N, λ = 15.6197°E, 

579 m ASL) are shown with yellow circles. Panels b–d show composite pictures of the lake bathymetries and the digital orthophoto 

images (DOF: http://www.bing.com/maps/?v=2&app=60526, Print Rights – Under the Microsoft® Bing™ Maps Platform APIs’ 100 
Terms of Use). 
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Table 1 Characteristics of the studied lakes 

 Lake 1 (Prošće lake) Lake 12 (Kozjak Lake) 

Altitude 636.6 m ASL* 535 m ASL 

Area 0.68 km2 0.82 km2 

Volume 0.00767 km3 0.01271 km3 

Max./Average depth 37.4 / 13.2 m 46 / 17.3 m 

* ASL – above sea level 

 105 

2.2. Observational data 

2.2.1.  Lake temperatures 

This study uses lake temperatures measured at two different points (Fig. 1), one in Lake 1 (point P1, φ = 44.8676 °N, 

λ = 15.5981 °E, 636 m ASL) and the other in Lake 12 (point K1, φ = 44.8902 °N, λ = 15.6038 °E, 535 m ASL). Each point 

was positioned in the deepest part of the corresponding lake. Lake temperatures were measured and logged with HOBO TidBiT 110 

MX Temp 400 as previously described for Lake 1 in Klaić et al. (2020b) and Lake 12 in Klaić et al. (2020a). The accuracy of 

the sensors is ±0.20 °C for temperatures between 0 and 70 °C and ±0.25 °C for temperatures between −20 and 0 °C. The initial 

sampling frequency of lake temperatures was 1 Hz, while 2-min means were stored. However, since meteorological data were 

available at a resolution of one hour, we used hourly mean lake temperatures in the present study. 

At site P1 (Lake 1), 15 factory-calibrated sensors were positioned at fixed depths of 0.2, 0.5, 1, 1.5, 3, 5, 7, 9, 11, 13, 15, 17, 115 

20, 23, and 27 m. As Lake 12 is deeper than Lake 1, an additional sensor was placed at a depth of 43 m at site K1 together 

with 15 sensors at the same depths as at site P1. 

The temperature recording started on 7 July 2018 at K1 and 6 July 2019 at P1 (Table 2). Temperatures were recorded 

continuously except during several short periods (≈ 1–2 days, once in approximately four months) when the sensors were 

pulled out of the lakes for the purpose of data acquisition. These periods without measurements are shown as thin vertical 120 

white lines in Fig. 2a, c and e. Due to the malfunction of some sensors during the first year of the measurement campaign, data 

for some observational depths at K1 are missing.  

Table 2 Availability of measured data. The positions of the measuring points are shown in Fig. 1. 

Data set Measurement point Availability of data 

Water temperature K1 (Lake 12, maximum depth 46 m) 

φ = 44.8902°N, λ = 15.6038°E, 535 m ASL 

7 July 2018 – 2 November 2020 

Water temperature P1 (Lake 1, maximum depth 37.4 m) 

φ = 44.8676°N, λ = 15.5981°E, 636 m ASL 

6 July 2019 – 2 November 2020 

Meteorological data M 

φ = 44.8811°N, λ = 15.6197°E, 579 m ASL 

7 July 2018 – 4 November 2018 

1 January 2019 – 31 December 2019 

2 July 2020 – 30 September 2020 
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Figure 2 Measured water temperatures in Lake 1 (a and b) and Lake 12 (c and d) and water temperature in Lake 12 after 

interpolation of the measured data (e and f). 

Missing data are shown as white areas from July 2018 to July 2019 in Fig. 2c or as intermitted lines in Fig. 2d. The inoperative 

sensors were later replaced. Missing data at specific depths were subsequently replaced by data calculated by spatial linear 

interpolation from the two adjacent depths using existing data (Fig. 2e and f). However, temporal interpolation was not 130 

performed since it would fail to reproduce the temporal variability in lake temperature at particular depths during periods of 

data acquisition. Interpolated lake temperatures were used solely to illustrate the evolution of Lake 12 stratification (Fig. 2e), 

while they were omitted in the calculations of the model performance measures (Section 4). 

2.2.2.  Meteorological data 

Meteorological data were measured at the automatic meteorological station Plitvička Jezera (point M in Fig. 1, φ = 44.8811°N, 135 

λ = 15.6197°E, altitude 579 m ASL). The station belongs to the network of the Croatian Meteorological and Hydrological 

Service (CMHS). The CMHS also provided quality control of these data. In the present study, we used hourly mean values of 

the air temperature, atmospheric pressure, UVB radiation, atmospheric relative humidity, and hourly precipitation amount 

measured at 2 m above ground level and wind speed measured at 10 m above ground level (Fig. 3). Wind direction data were 

also available but were not used in the study.  140 
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Figure 3 Available meteorological data from the automatic meteorological station Plitvička Jezera (φ = 44.8811°N, λ = 15.6197°E, 

579 m ASL): (a) precipitation amount (P) and relative humidity (RH), (b) air temperature (Ta) and UVB radiation (UVB), and (c) 

wind speed (V) and atmospheric pressure (p). 

The station is approximately 2 km northeastward of the P1 site and 1.6 km southeastward of the K1 site. Despite the 145 

comparable distance from both the P1 and K1 sites, the meteorological conditions observed at point M are expected to be more 

representative for Lake 12 than for Lake 1 because this point is located at the slope adjacent to Lake 12 at approximately 200 m 

away from its shoreline. In addition, topographic obstacles are found between points P1 and M (Fig. 1b) and the altitude 

difference between P1 and M is higher than the difference between K1 and M (Table 2). 

3 Model description and governing equations 150 

The model is based on the one-dimensional energy balance equation used in similar liquid water models (e.g., Hostetler and 

Bartlein, 1990; Liston and Hall, 1995; Sun et al. 2007). Because ice was not observed on the two lakes during the measurement 

campaign (Fig. 2a and c), ice formation was not addressed in the present study. Thus, a simplified approach using water 

temperature instead of enthalpy is used. Considering that more often than not, the lake bathymetry is not available, as well as 

our goal to keep the model as simple as possible and limit the input data, it is assumed that the water body has a constant 155 

horizontal cross-sectional area (which can be of any shape). Thus, we come to the following equation: 
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, (1) 

where cp is the water specific heat capacity (J kg-1 K-1), ρ is the water density (kg m-3), T is the water temperature (°C), t is 

time (s), z is depth (m), km and kt are the molecular and turbulent thermal conductivity (W m-1 K-1), Φ is the heat flux (W m-2) 

and Mconv is the convective mixing term (W m-3). 160 

The water density is calculated from the Chen and Millero (1986) formula assuming zero salinity: 



 

8 

 

6-115-84-63-42-3-2
T105.0125-T101.1592T101.2846-T101.0171T109.0894-T106.7914999.8395  . (2) 

The molecular thermal conductivity of water is 0.6 W m-1 K-1 (e.g., Sun et al., 2007). The turbulent thermal conductivity is a 

function of time and depth because it depends on meteorological forcing. Here, we also follow the method of Henderson-

Sellers (1985), where the turbulent thermal conductivity is calculated as follows: 165 

       12
371exp


 Rik*zku*z/Prρczk 0pt , (3) 

where k = 0.4 is the von Karman constant, u* is the friction velocity at the surface (m s-1), k* is the latitude-dependent parameter 

of the Ekman profile, Pr0 = 1 is the neutral value of the turbulent Prandtl number and Ri is the Richardson number. The Ekman 

profile parameter and the Richardson number are calculated as in Sun et al. (2007): 

  84.1
2

1/2
sin6.6=*


Uk  ,  (4) 170 

where φ is the latitude and U2 is the wind speed at 2 m above the water surface (m s-1), and 

   
20

*2exp*/4011-
=

2/12222
zkuzkN

Ri


,  (5) 

where N is the Brunt-Väisälä frequency (s-1): 

   2/1
z/g/-= N . (6) 

The wind speed U2 is determined from the logarithmic formula: 175 

  kzuU //2log*= 02 ,  (7) 

where z0 is the roughness length (m). The air shear velocity u* and the roughness length z0 are calculated as in Verburg and 

Antenucci (2010). 

Although Sun et al. (2007) suggest that for shallow lakes (less than 50 m deep), the turbulent thermal conductivity is negligible, 

this is not in accordance with findings of numerous other studies which suggest that the turbulent thermal conductivity can be 180 

much larger than the molecular thermal conductivity even for shallow lakes (eg. Jassby and Powell, 1975, Quay et al., 1980. 

Vachon et al., 2019). It should be kept in mind that these studies often determine the turbulent diffusion coefficient based on 

measured change rate of lake water temperature vertical distribution. This means that the contribution of all present mixing 

processes is included (i.e. shear-induced turbulence, breaking internal waves, boundary layer turbulence). However, the mixing 

processes and their contribution to turbulent mixing may differ from lake to lake. In the present study, turbulent thermal 185 

diffusion was taken into account using Eq. (3). 
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3.1. Energy budget and boundary conditions 

In addition to turbulent thermal diffusion, the only other term in Eq. (1) accounting for meteorological forcing is the heat 

source term. The surface net heat flux consists of the net shortwave radiation (Sn), net longwave radiation (Ln), sensible heat 

flux (Hs), latent heat flux (Hl), and heat flux brought by precipitation (Hp). The surface boundary condition can be written as 190 

follows: 

plsnn HHHLSΦ =(0) . (8) 

At the bottom, it is assumed that there is no heat flux and that the temperature gradient equals zero, meaning there is no heat 

diffusion either. Thus, the bottom boundary conditions can be written as follows: 

  0max 



z

z

T , (9) 195 

  0max zΦ . (10) 

All heat flux terms in Eq. (8) are defined to be positive when downward. Shortwave and longwave radiation measurements are 

not very common, and sensible and latent heat fluxes cannot be measured directly (Brunel, 1989; Bahr et al., 2012). Thus, 

obtaining the heat flux terms in Eq. (8) is expensive and complicated. Therefore, methods for calculating each term using 

commonly available meteorological data only are proposed in sections from 3.1.1. to 3.1.4. 200 

3.1.1.  Shortwave radiation 

As previously indicated by other authors (e.g., Bell et al., 2006; Martynov et al., 2010; MacKay, 2012), sufficient radiation 

data (both shortwave and longwave) are not generally available from routine meteorological measurements, and this is also 

the case for meteorological station M, where only UVB radiation was measured. A number of studies provide correlations 

among UVA, UVB, total UV, or global solar radiation (G) (Kudish and Evseev, 2000; Kudish et al., 2005; Podstawczynska, 205 

2009; Pokhrel and Bhattarai, 2012; Pashiardis et al., 2017) and show that significant variability occurs in the UV/G ratio 

between sites, which is mainly due to local atmospheric conditions. Podstawczynska (2009) indicated that air turbidity and 

cloudiness are the two main factors that determine the variability of daily solar energy transmission through the atmosphere. 

Pashiardis et al. (2017) found that the UV/G ratio increases with solar elevation and that the presence of clouds reduces the 

UV component less than the global solar radiation due to the strong absorption of water in the near infrared spectrum. 210 

Winslow et al. (2001) proposed a model for estimating the total daily solar irradiance from daily precipitation and minimum 

and maximum temperatures, along with latitude, elevation, and mean annual temperature. This model showed significant 

improvement over the widely used empirical Bristow and Campbell (1984) model and was applicable for a wide range of 

climates. Therefore, it is also used in this study. 

According to Winslow et al. (2001), the daily solar irradiance at the Earth’s surface is equal to 215 

  topscfsurf SrhDS
Tmax

1   , (11) 
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where Ssurf is the total daily solar irradiance at the surface (J m-2 day-1), τcf is the cloud-free atmospheric transmittance, βs is an 

additional parameter required to introduce variation between sites, rhTmax is the relative humidity at the moment when daily 

maximum air temperature (Tmax) is reached, and Stop is the total daily solar irradiance at the top of the atmosphere  

(J m-2 day-1). The total daily solar irradiance is calculated following Wald (2019): 220 

    ssecctop SS 


 tancoscos
24*3600

10  , (12) 

where S0 = 1 362 W m-2 is the solar constant, εecc is the eccentricity of Earth’s orbit, δ is the solar declination, φ is the location 

latitude, and ωs is the half day length (time between sunrise and noon or noon and sunset) in radians. εecc and ωs are functions 

of the day in the year only, while δ also depends on the location longitude since its noon value is used, which yields more 

precise results. Details on calculating these parameters are included in Wald (2019). 225 

The cloud-free atmospheric transmittance in Eq. (11) accounts for the transmittance of dry clean air (τ0) and the transmittance 

due to absorption by aerosols (τa) and water vapor (τv), and it also incorporates a correction for elevation (celev): 

  elevc

vacf τττ0 . (13) 

To calculate τ0, τa, τv, celev, D, and βs, we follow Winslow et al. (2001). The transmittance of dry clean air is dependent only on 

the latitude (φ) and is calculated as follows: 230 

 

.80for774.0

80for10033.1947.0

0

22.25
0













, (14) 

The absorption by aerosols is extremely variable. Similar to Winslow et al. (2001), we set τa = 1 (i.e., no absorption). 

The absorption by water vapor is calculated from the following: 

  8232.15
3010092.99636.0 


meanv T , (15) 

where Tmean is the mean annual air temperature (°C). On wet days, when the daily precipitation is above 1 mm, τv is reduced 235 

by 0.13. The site elevation correction factor (celev) is calculated as follows: 

   2553.5

ASL
5

102569.21 zcelev


 , (16) 

where zASL is the site elevation (m). 

From Eq. (11), τcf Stop is the maximum cloud free value of Ssurf. The effect of cloudiness is indirectly taken into account by 

introducing the factor D(1-βrhTmax). This is based on the finding that the solar irradiation from sunrise, when minimum 240 

humidity is expected (rhTmin≈1), until the maximum daily air temperature (and minimum humidity rhTmax) is reached, is 

proportional to the decline of the relative humidity, Ssurf_Tmax∝(1-βrhTmax). The factor D=Ssurf/Ssurf_Tmax is introduced to account 

for the surface solar irradiation from the moment when the air temperature reaches its daily maximum until sunset. D is 

calculated assuming that the air temperature reaches its maximum around 3pm: 
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2/4/1



 ssD  . (17) 245 

The factor βs in Eq. (11) is mainly constant, except for regions with very large daily temperature ranges: 

  16273753.23,041.1max .T/ΔT meanms  , (18) 

where ΔTm is the mean annual temperature range between the daily air temperature maximum and minimum. 

Hourly shortwave radiation data were generated from the calculated daily solar irradiance by using the measured UVB 

radiation data as a weight function: 250 





24

1

)(3600

)()()(

h

surf

day

surf

hUVB

S
hUVB

UVB

S
hUVBhS , (19) 

where Ssurf and UVBday are the daily values (J m-2 day-1) and S(h) and UVB(h) are the mean values (W m-2) for the hth hour of 

the total and UVB solar radiation, respectively. When UVB radiation data are unavailable, the standard daily radiation profile 

can be used. 

Unlike the other terms in Eq. (8), shortwave radiation is not completely absorbed in the lake surface layer but partially passes 255 

through the water. The net shortwave radiation reaching a particular depth is calculated using the arctangent model, which was 

chosen for its simplicity for implementation as suggested by Henderson-Sellers (1986), but also for its better representation of 

the light attenuation in the shallow layers which are usually a lot thinner than the deeper ones: 

    zKKzKS(z)Sn 3
1

21 tan1exp)1(


  , (20) 

where Sn(z) is the net shortwave radiation at water depth z (W m-2),  = 0.06 is the water surface albedo and K1, K2 and K3 are 260 

empirical constants. K1 corresponds to the light extinction coefficient λe = 0.1 (value of 0.1 is appropriate for clear oligotrophic 

lakes). K2 is calculated as  

      /exp1122 AezK  , (21) 

where β = 0.4 accounts for the absorption in the surface layer and zA = 0.6 m is the depth of the surface absorption layer, where 

the exponential decay starts. The third parameter, K3 = 4, is not a direct function of λe and β, but it is a measure of the rapidity 265 

of falloff with depth in the upper layers. 

3.1.2.  Longwave radiation 

The net longwave radiation is the difference between the incoming downward atmospheric longwave radiation (La
↓) and the 

outgoing upwards radiation from the lake surface (Ls
↑). As direct measurement data of longwave radiation by pyrgeometers 

are not routinely available, longwave radiation may be calculated using the following formula: 270 

    44
1527315273)1()1( .Tεσ.TσεrLLrL saasan 

 , (22) 
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where r is the water reflectivity for longwave radiation, ε and εa are the emissivities of the lake surface and the atmosphere, 

respectively, Ts is the water surface temperature (°C), Ta is the air temperature at 2 m height (°C), and σ = 5.67x10-8 W m-2 K-4 

is the Stefan-Boltzman constant. The reflectivity and emissivity of water are assumed to be 0.04 and 0.96, respectively (e.g., 

Sun et al. 2007). The emissivity of the atmosphere depends on the water vapor and atmospheric temperature profile. Assuming 275 

a standard atmosphere, Brutsaert (1975) derived a formula for calculating the atmospheric emissivity under clear sky 

conditions: 

   71
15.273241

/

aaac T/e.  , (23) 

where ea is the water vapor pressure (hPa) which is related to the relative humidity (rh) and saturation vapor pressure (es): 

rhTee asa )( . (24) 280 

To calculate the saturation water pressure, we use the formula from Bolton (1980): 

  

.3.265753.210for

,7.237269.170for

/exp11.6)(







nmCT

nmCT

TnmTTe

a

a

aaas



  (25) 

Although other empirical formulas for calculating atmospheric emissivity are available, Brutsaert’s (1975) expression (Eq. 23) 

was reported as the best in many studies of different climates (Wang and Dickinson, 2013). Because Eq. (23) refers to clear 

sky conditions, it is necessary to additionally account for cloud effects. Assuming that the emissivity of the water droplets in 285 

the clouds is approximately equal to one, Crawford and Duchon (1999) calculate the total atmospheric emissivity as follows: 

  ff  aca 1   (26) 

where f is the cloud fraction term defined using the ratio of the previously estimated surface shortwave radiation and surface 

clear-sky shortwave radiation: 

 topcfsurf SSf /1 , (27) 290 

For clear sky conditions, the cloud fraction term equals 0. However, since the ratio of the surface solar irradiance to the clear-

sky irradiance never reaches zero, the cloud fraction term never reaches the theoretical maximum of 1 even in total cloud cover 

conditions. Note that even though the model will be run with a time resolution of one hour, the daily mean atmospheric 

emissivity will be used.  

Equation (26) is considered the best formula in many studies (Wang and Dickinson, 2013). By substituting Eqs. (23) and (26) 295 

in Eq. (22), we obtain the expression for calculating the net longwave radiation: 

       44
15.27315.2731  aaacn TεσTσfεfεL . (28) 

3.1.3.  Latent and sensible heat flux 

To calculate the latent and sensible heat flux, we use a slightly modified algorithm provided by Verburg and Antenucci (2010). 

Their code, which is publicly available at the National Institute of Water and Atmospheric Research (NIWA) website (NIWA, 300 
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2021), uses the bulk aerodynamic method based on the Monin-Obukhov similarity theory (Monin and Obukhov, 1954). 

According to this method, the sensible and latent heat fluxes can be calculated as follows: 

 asZHaas TTUCcH   , (29) 

 asZEval qqUCLH   , (30) 

where CH and CE are the transfer coefficients for sensible and latent heat flux, respectively, ca = 1005 J kg-1 K-1 is the specific 305 

heat of air, Lv ≈ 2500 kJ kg-1 is the latent heat of evaporation, ρa is the air density (kg m-3), and qs and qa are the specific 

humidities (kg kg-1) at the water surface and measuring levels, respectively. Air density and specific humidity were determined 

from the ideal gas law equation and from the observed relative humidity, respectively. 

The transfer coefficients were calculated in an iterative procedure, initially assuming neutral atmospheric conditions: 

  20
2

/ln/ MD zhkC  , (31) 310 

         EEDEEME zhkCzhzhkC   /ln//ln/ln/
2/1

0
2 , (32) 

EH CC  , (33) 

where CD is the drag coefficient, h is the height above ground (m), z0 and zE are the roughness lengths (m), and ψM and ψE are 

the stability functions for momentum and vapor, respectively. The stability functions are defined through the stability 

parameter ζ = h/L, where L is the Monin-Obukhov length: 315 
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where Tv is the virtual temperature. Obviously, L depends on Hs and Hl while Hs and Hl depend on the stability of the 

atmosphere. Therefore, to calculate Hs and Hl, an iterative procedure has to be used. The procedure is initiated by assuming 

neutral conditions (ψM = ψE = 1). Further details on the calculation of roughness lengths, stability functions and the iterative 

process itself can be found in Verburg and Antenucci (2010). 320 

3.1.4.  Heat brought by precipitation 

Assuming the first lake layer in the numerical model gets completely mixed with the precipitation that falls during a time 

period Δt (s), then the temperature of that layer would equal:  
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1 , (35) 

where T1 and T1+p represent the water temperature of the first layer before and after the precipitation has been introduced in it 325 

(°C), Tprec is the precipitation temperature (°C), Δz1 is the thickness of the first layer (m) and P is the hourly precipitation 

(mm h-1). The heat flux brought in by precipitation Hp (W m-2) can then be calculated as: 
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   . (36) 

Since Tprec was not available, the air temperature was used instead. 

3.2. Convective mixing 330 

During the night, the net heat flux at a lake surface is generally negative. Consequently, unstable lake stratification is 

established. However, this unstable stratification is short-lived because the higher density water forming on top of the lake 

quickly sinks and mixes with the lower density water below it, thus restoring equilibrium (i.e., minimum potential energy). 

As Sun et al. (2007) pointed to the importance of introducing a convective mixing mechanism in a water temperature model, 

we also incorporated this mechanism in the present model. Namely, after each time step of integration, the model algorithm 335 

checks whether the upper layer in each pair of two adjacent layers has a higher density than the lower layer. If this occurs, then 

the two layers are assumed to mix completely, which results in uniform temperature: 

   111_1_ /   jjjjjjnewjnewj zzzTzTTT , (37) 

where Δzj and Δzj+1 represent the thickness of the j-th (upper) and (j+1)-th (lower) layers, respectively; Tj and Tj+1 are the water 

temperatures in these layers before convective mixing, respectively, and Tj_new and Tj+1_new are the temperatures in these layers 340 

after convective mixing, respectively. 

3.3. Model setup 

The model code is written in MATLAB programming language. Equation (1) is discretized using the backward Euler scheme: 
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,  (38) 

where the subscript denotes the layer or the boundary between two layers, and the superscript denotes the time increment. 345 

Notice that the convective term from Eq. (1) is omitted in Eq. (38) since the algorithm employs convective mixing in a separate 

procedure after the integration step only if density inversion is detected in the water column, as explained in chapter 3.2 and 

shown in Fig. 4. After the stability check, the algorithm performs a step which limits the temperature minimum to 0 °C. 

Namely, as the model does not include ice formation module, this step roughly assures no unreasonably low temperatures 

appear (Fig. 4). Equation (38) can be rearranged as follows: 350 
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Equation (39) can be written in matrix form as follows: 

BTATM
n1n


 . (40) 

Then, the solution for Tn+1 is obtained as follows: 

BMTAMT
1n11n 

 . (41) 355 

The implicit Euler scheme is unconditionally stable and thus does not have an upper limit for the time increment. Considering 

the time resolution of the available input data, the model was run with a time step of one hour (runs with finer time steps were 

attempted, however the performance improvements were not significant). The vertical resolution in the model corresponds to 

the measuring depths and decreases with lake depth. The depths of the integration points were consistent with the sensors’ 

depths, while the boundaries of the layers were set halfway between each pair of consecutive points (Fig. 4b). The layer 360 

thicknesses ranged from 0.35 m (surface layer) to 16 m (bottom layer). An overview of the model workflow is given in Fig. 4a. 

 

Figure 4 Model configuration. Panel (a) shows a schematic overview of the model workflow. The input consists of the initial time 

and date, the initial water temperature profile Tinitial, meteorological data (wind speed, air temperature, UVB radiation, relative 

humidity, precipitation, and atmospheric pressure), climatological data (mean annual air temperature, mean annual temperature 365 
range between the daily air temperature maximum and minimum, and mean monthly cloud cover), and location data (location 

latitude, longitude, and altitude above sea level). Panel (b) shows the layer setup. Points from 1 to J indicate the integration points 

where water temperatures are calculated, and zj is the depth of the j-th point. The horizontal lines indicate boundaries between 

layers, Φj±1/2 are the heat fluxes across the layer boundaries, and Φ0 is the net surface heat flux. 

 370 
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4 Measures of the model performance 

First, a sensitivity analysis was performed to assess the dependence of the model performance on the simulation length. A 

simulation run was initiated in every hour of the periods with available data and each was run for up to 30 days. Measured 

water temperature profiles were used for simulation initialization. Predicted water temperatures and vertical temperature 

gradients obtained in each simulation after certain amount of simulation time (from 1 to 30 days) were compared with the 375 

corresponding observed values. The results of this analysis are to show the model ability to provide quality short term prognosis 

and the rate of the result deterioration with the increase of the simulation length. 

The model performance for each simulation length was evaluated by common bivariate measures. The mean bias error (MBE) 

is used to assess the tendency of the model to over- or underpredict the temperature. The mean absolute error (MAE) and the 

root mean square error (RMSE) both provide information about the error central tendency. However, RMSE also accounts for 380 

the distribution of the error and becomes larger as the error variability increases. RMSE places more weight on large errors, 

which makes it more sensitive to outliers. Due to all of the above, it has been argued that MAE is a more natural measure of 

average error than RMSE (Willmott and Matsuura, 2005). The maximum absolute error (MaxAE) is not a measure of 

systematic error, but it was calculated as a measure showing the most extreme outlier. The above measures are calculated from 

the following expressions: 385 
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where O and P correspond to the observed and predicted values, respectively, while n is the number of corresponding pairs of 390 

these values. 

The index of agreement values were calculated using three different formulas proposed by Willmott et al. (2012), namely, the 

original (IAorig), modified (IAmod) and refined (IAref) index of agreement: 
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The IA represents a measure of the relative covariability of the observed and predicted values with respect to the observed 

mean. The original IA (Eq. (46)) uses the square of the difference between predicted and observed values, which is why it 

overestimates the influence of large errors, similar to the RMSE, which is why the square is replaced with an absolute value 400 

in the modified version (Eq. (47)); thus, IAmod is less sensitive to outliers than IAorig. IAmod approaches 1 (perfect agreement) 

more slowly than IAorig, which means that IAmod is more conservative and allows for finer comparisons of different models 

with relatively good performance. In IAref (Eq. (48)), the prediction variability in the denominator is replaced with the 

observation variability. IAorig and IAmod range from 0 to 1, where a value of 0 means that the prediction and observation 

variabilities are out of phase, while a value of 1 means perfect fit. IAref ranges from -1 to 1 and has a well-defined lower 405 

boundary (Eq. (48b)), which allows for a better comparison of models with poor performance. However, it should be stressed 

that IAref approaching the value of -1 does not necessarily indicate poor model performance because it can also be a result of 

low observation variability. 

The second goal of this study was to examine the ability of the model to predict the springtime onset of lake stratification 

assuming that there are no measured water temperature data available. For this purpose, a simulation initiated with 410 

approximately constant water temperature throughout the entire lake column, which is characteristic of the period when a lake 

is mixed, was run for the entire year, starting from 1 January 2019. Although accurate results were not expected for the yearlong 

simulation, the goal of this analysis was to evaluate the extent to which the model can provide relevant information regarding 

the stratification/thermocline depth. Such an approach is particularly appealing for lakes that are completely mixed during the 

winter since it does not require measurement of the water temperature profile to initiate the simulation. 415 

5 Results and discussion 

Based on sporadic observations of the vertical temperature profiles in the Plitvice Lakes, previous studies suggest that Lake 1 

and Lake 12 are dimictic (Klaić et al., 2018). Dimictic lakes are covered by ice during winter; they mix in spring and fall; and 

they are stratified in summer. The continuous observation data of the vertical temperature profiles in Lake 1 and Lake 12 
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shown in Fig. 2a and c, for the first time clearly illustrate that during the field campaign, both lakes behaved as warm 420 

monomictic lakes. Specifically, they were mixed during winter but stratified at other times. Furthermore, monomictic lakes 

(which are frequently found in temperate and tropical latitudes) typically do not freeze, and the two studied lakes did not freeze 

during the entire field campaign since the wintertime temperatures in the top lake layers were above 0 °C (Fig. 2b and d). 

As the main driver of the lake temperature profile is the surface heat flux, it is interesting to first analyze its terms. Figure 5 

shows the modeled mean diurnal variation in the total heat flux and the heat flux terms for a typical winter (a) and summer 425 

month (b). The solar heat flux is an order of magnitude higher than the other components of the total heat flux, which indicates 

that it is one of the main factors affecting the lake water temperature. Next in magnitude is the net longwave radiation, followed 

by the latent heat flux. The last two components are negative and are responsible for the negative heat flux, or cooling, at night. 

 

Figure 5 Modeled mean diurnal variations in the heat flux at the surface of Lake 12 for January (a) and July 2019 (b). 430 

The observed and predicted water temperatures for various simulation lengths for 2019 are shown in Fig. 6 (Lake 1, note that 

lake temperature measurements started in July) and Fig. 7 (Lake 12). The model performed reasonably well. Namely, the onset 

of the stratification period (Fig. 7) and both the vertical temperature profile and deepening of the thermocline over time were 

well captured (Figs. 6 and 7). Simulation results for Lake 12 reproduce the observed data more closely, while for Lake 1 higher 

discrepancies between simulated and observed data are present, especially for simulation lengths above 10 days. For Lake 1, 435 

the position of the maximum temperature gradient in the metalimnion, between 12 and 16 m depth was captured even in the 

30-day simulations (Fig. A3), but the temperatures in the epilimnion are significantly overestimated in the stratification period 

(August) in the longer runs (Figs. 6 and A1).  

For Lake 12, the difference between the predicted and observed position of the maximum temperature gradient is within 2 m 

even for the 30-day simulations, but generally it is lower. Temperature overprediction is noticed in the epilimnion, especially 440 

towards the end of the year for the simulation lengths above 10 days. The stratification began on 21 March and in the 30-day 

simulations it was predicted on 23 March, while the convective overturn began on 06 September while in the 30-day simulation 

it was predicted on 10 September. 

Figure 8 shows a closer view of the observed vs. predicted temperatures at depths of 0.2 m, 5 m, 15 m and 27 m for the period 

between 6 July 2019 and 31 December 2019. This period was chosen because it is the longest period in which all necessary 445 

data (both meteorological and water temperatures for both lakes) were available. Additionally, observed vs. predicted 

temperature gradients and the prediction errors for both temperature profiles and temperature gradients for the same sample 
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period are presented in Appendix A. As expected, the departure of the predicted from the observed quantities increases with 

the length of the simulation period. However, even the longest simulation runs (30 days) produced qualitatively acceptable 

results. Departures of the predicted hourly mean temperatures were mainly ≤ ±2°C and ≤ ±1°C for Lake 1 and Lake 12, 450 

respectively, except in the thermocline region where they were mainly ≤ ±4°C and ≤ ±2°C for Lake 1 and Lake 12, respectively. 

The temporal temperature variations at various depths were satisfactorily simulated (Figs. 8, A1 and A2). Furthermore, 

thermocline depths and their deepening in time were well captured by the model (Figs. A3 and A4). However, the results also 

suggest that the lake temperatures are somewhat overpredicted in the epilimnion and at times may slightly underpredicted in 

the hypolimnion (Figs. 8, A1 and A2). 455 

Although the model satisfactorily reproduced the temporal variations in the lake temperatures at the hourly scale, it was not 

able to reproduce the internal seiches that were previously documented for both lakes (Klaić et al., 2020a, 2020b). This finding 

is not surprising since the present model is based solely on the energy-budget approach; thus, except for vertical mixing of the 

two adjacent layers under unstable stratification, it does not account for any hydrodynamic behavior. 

Figures 9 and 10 show the calculated model performance measures for both lakes. The model overestimates the water 460 

temperature in the epilimnion, especially near the surface and the thermocline region, with an MBE from 0.3 °C and <0.1 °C 

for 1-day simulations, up to 2.6 °C and 1.2 °C (at 5 m depth) for 30-day simulations, in Lake 1 and Lake 12, respectively (Figs. 

9a and 10a). The MAE in the epilimnion  in Lake 1 starts from <0.4 °C for 1-day simulations and increases relatively steadily 

to 2.6 °C for 30-day simulations (Figs. 9b). In Lake 12,  it also starts from <0.4 °C for 1-day simulations and slowly increases 

to 1.2 °C as the simulation length reaches 30 days (Fig. 10b). 465 

Couple of factors could lead to overestimated temperatures in the upper lake layers. The first is the underestimation of turbulent 

mixing and turbulent heat transfer, especially in periods of high winds. As seen from Figs. A1 and A2, this overestimation of 

the uppermost part of the lake is more pronounced for Lake 1 than for Lake 12. As argued in Section 2.2.2, measuring site M 

(where the data used for the atmospheric forcing of the model are measured) is more representative for Lake 1 than for Lake 

12. Accordingly, due to its higher altitude and less sheltered position, Lake 1 is more likely exposed to winds stronger than 470 

those measured at site M, and thus, both the turbulent mixing and the consequent heat transfer are likely to be stronger than 

modeled. 

The second possible reason is the overestimation of the shortwave radiation extinction coefficient. This coefficient depends 

on the amount of dissolved organics and particulates in the lake water and can thus be calibrated to reproduce the lake physical 

properties more closely. We did not proceed with extinction coefficient calibration because our goal was to investigate the 475 

model performance and its general applicability without location-specific fitting.  
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Figure 6 Observed (a) and predicted (b-f) water temperatures of Lake 1 for different simulation lengths in the period between 

06 July 2019 and 31 December 2019. Periods with missing data are seen as white vertical stripes. 

 480 

Figure 7 Observed (a) and predicted (b-f) water temperatures of Lake 12 for different simulation lengths for 2019. Periods with 

missing data are seen as white vertical stripes. 
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Figure 8 Observed and predicted water temperatures at depths of 0.2 m, 5 m, 15 m and 27 m for different simulation lengths in (a) 

Lake 1 and (b) Lake 12 in the period between 06 July 2019 and 31 December 2019. 485 

Also, it is possible that the surface heat flux has been overestimated, as the simplified approach used for its calculation is 

characterized by limited reliability. Finally, it should be pointed out that the influence of the tributary was not considered and 

in case of Plitvice lakes it may be non-negligible.  

In the hypolimnion, the values of the MBE, MAE, RMSE, and MaxAE remain particularly low, especially for the deepest 

layers, for both lakes regardless of the simulation length (Figs. 9 and 10). These low values are a result of the low temperature 490 

variability in the deep lake layers, which is not taken into account in the formulation of these measures. In Lake 12 the MBE 

in the hypolimnion stays below 0.5 °C and in Lake 1 below 1 °C.  On the other hand, regardless of the formulation (original, 

modified or reference), the IA takes the temperature variability into account and therefore decreases with the increase of the 

simulation length even in the deep layers, indicating poorer performance as the simulations get longer.  

Further inspection of the results for temperature and temperature gradients in Lake 12 (Figs. A2 and A6) shows that the 495 

temperature prediction in the metalimnetic layer (thermocline region) where the temperature gradients were the highest, was 

rather challenging. The model performed relatively poorly in this region, which is particularly noticeable for longer simulation 

periods. 

As seen from Figs. 9 and 10, MaxAE did not increase significantly with increasing simulation length for either of the two 

lakes. As expected, MaxAE was highest near the surface and the maximum values for both lakes were relatively high (6.7 °C 500 

at 3 m depth and 4.9 °C in the surface layer for Lake 1 and Lake 12, respectively). 
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Figure 9 Model performance parameters for Lake 1. (calculated for all the periods with necessary data available: 6.7.-31.12.2019. 

and 2.7.-30.9.2020.) 

 505 

Figure 10 Model performance parameters for Lake 12. (calculated for all the periods with necessary data available: 7.7.-4.11.2018; 

1.1.-31.12.2019. and 2.7.-30.9.2020.) 
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Figure 11 shows the monthly means of the observed and modeled vertical temperature profiles for Lake 12. The results for 

Lake 1 are not shown because the necessary observation data were not available throughout any complete year during the 

observational campaign. The model successfully reproduced the annual variation in the temperature profile throughout 2019, 510 

including the stratification onset and its termination and the thermocline deepening over time. The model underpredicts the 

surface temperature in January and February (Fig. 11a and b). As the heating starts in spring and continues through summer, 

the model tends to slightly overpredict the temperatures (Fig. 11e–h). The difference between the predicted and observed 

surface temperature in the summer months stays below 1 °C for the longest simulation period. This finding is consistent with 

the above presented discussion of the model performance measures. In August (Fig. 11h), although the stratification was still 515 

strong, the effects of convective mixing during the night started to affect the monthly mean. In the following months (Fig. 11i–

l), the mixing depth grew and reached a maximum depth of approximately 20 m in December (Fig. 11l), while the lake 

stratification was much weaker than that in previous months. In these months of significant convective overturn, higher 

deviation of the predicted from the observed epilimnion temperature is observed. It becomes more significant with simulation 

length and reaches approximately 2 °C for the longest simulation period.  520 

The second goal of this study was to examine the ability of the model to predict the onset and termination of stratification and 

the deepening of the thermocline by yearlong simulation. Because all necessary data for the entire year were only available for 

2019, the first day of the yearlong simulation was set to 1 January 2019. For Lake 12, the simulation was initiated with a nearly 

constant water temperature profile (≈ 4 °C) that was observed for 1 January because these data were available, although a 

constant temperature of ≈ 4 °C that was generally observed over the entire water column (which is typical for the wintertime 525 

period when a lake is mixed) can be used instead. 

 

Figure 11 Annual variation in the vertical profile of the water temperature. Panels (a) to (l) show the monthly means of the observed 

and predicted values in Lake 12 for 2019. 
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 530 

Figure 12 Observed (a) and predicted (b) water temperature for Lake 12 in 2019. The predicted temperature is obtained by a single 

yearlong simulation run initiated on 1 January 2019. 

 

Figure 13 Observed (a) and predicted (b) water temperature gradient for Lake 12 in 2019. The predicted temperature gradient is 

obtained by a single yearlong simulation run initiated on 1 January 2019. 535 
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Figure 12 shows the contour diagrams of the observed and predicted water temperatures for Lake 12. Such results for Lake 1 

are not shown because they were almost identical to those obtained for Lake 12. Namely, meteorological forcing drove 

temperature changes. If the same forcing was used for both lakes, then the only other factor that can introduce a difference in 

the results was the initial vertical profile, which was very similar for both lakes. As previously pointed out in the discussion of 

model performance, the model generally overpredicted the temperatures of the upper layers, especially by the end of the year. 540 

However, the onset and termination of the stratification period were well predicted, with the onset being captured somewhat 

better than the termination. First noticeable temperature rise and early beginning of stratification appear on March 21st in the 

observed data and March 18th in the predictions (Fig. 12). Significant temperature gradients exceeding 2 °C m-1 appear on June 

12th, however in the predictions the maximum gradient appears at depth of around 2.5 m, while in the observations at depth of 

5 m (Fig. 13). The thermocline depth increases during the summer and the maximum temperature gradient appears on 545 

September 21st at depth of 12 m and equals 2.5 °C m-1. On the same date the maximum predicted temperature gradient appears 

on the same depth but equals only 1.3 °C m-1. Actually, Fig. 13 shows that while the model accurately predicts the upper limit 

of the metalimnion it consistently overestimates its thickness which consequently leads to underprediction of the temperature 

gradient in it. December 6th may be considered as the point of complete end of stratification, with temperature gradients below 

0.5 °C m-1. Although the predicted mixing depth is in agreement with the measured data, the overestimated epilimnion 550 

temperature consequently leads to temperature gradients of around 0.6 °C m-1 which persist until the end of the simulation.  

 

Figure 14 Monthly means of the observed (blue) and predicted (red) water temperature vertical profiles for Lake 12 in 2019. 

Predicted temperatures are obtained by a single yearlong simulation run initiated on 1 January 2019. 
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This is more clearly presented in Fig. 14 where the observed and modeled monthly profiles are shown. Here, it can also be 555 

seen how the model generally overpredicted the monthly mean lake temperatures. The discrepancies between the modeled and 

observed profiles were largest in the mixed layer during the fall and winter convective overturn. Nevertheless, the mixing 

depth was well captured. It is concluded that the modeled results satisfactorily reproduced the monthly mean profiles and their 

annual variation except after the convective overturn when higher temperature overestimation is observed.  

6 Comparison with other models 560 

To compare the performance of the proposed model with the performance of more complex models, we applied 1-D General 

Ocean Turbulent Model (GOTM; https://gotm.net/about/) version 4.1.0 and Semi-implicit Cross-scale Hydroscience 

Integrated System Model (SCHISM; Zhang et al., 2016) version 5.3, for Lake 12 for a one year period starting from 1 January 

2019. GOTM model is a one-dimensional water column model designed for hydrodynamic, thermodynamic and 

biogeochemical studies of lakes and enclosed or semi-enclosed marine water bodies. It simulates vertical transport of 565 

momentum, heat and salt (Burchard et al., 1999). The model, which can be used as a standalone or coupled with other models, 

has several turbulence closure options. So far, the GOTM model has been applied in number of oceanographic (e.g., 

Bruggeman and Bolding 2014; Burchard et al., 2014; Li et al., 2021) and limnetic studies (e.g., Ciglenečki et al., 2015; 

Andersen et al., 2021; Nielsen et al., 2021). SCHISM is a three-dimensional (3-D) unstructured-grid model. It employs 

hydrostatic approximation and solves the Reynolds-averaged momentum, the continuity and the transport of salt and heat 570 

equations. Due to its unstructured grid, it is suitable for basins with complicated geometry. It has been widely used in 

hydrodynamic studies of rivers, coastal waters, seas and oceans (e.g., Jacob et al., 2016, Bubalo et al., 2018; Zhang et al., 2020; 

Burić et al., 2021) and lakes (e.g., Frishfelds et al., 2021). More details on both models and parameterizations employed in the 

present study are given in Appendix B. 

As previously presented, the meteorological forcing for the SIMO simulation was modeled using solely measured data. Apart 575 

from the measured air temperature and wind data (GOTM simulation) and measured air temperature (SCHISM simulation), 

meteorological forcing was modeled with the atmospheric Weather Research and Forecasting (WRF) model (Skamarock and 

Klemp, 2008). In both GOTM and SCHISM simulations, freshwater was assumed. Also, due to consistency, in both model 

runs the same k-ε turbulence closure scheme of Rodi (1984) was employed. Finally, both models were initialized with the lake 

temperatures observed at 1 January 2019 (same as SIMO). 580 

The comparison of the water temperature at 0.2 m depth predicted by the three models (SIMO, GOTM and SCHISM) and the 

observed values are shown in Fig. 15. SIMO generally outperforms both models until the middle of September when it starts 

to consistently overpredict the temperature while GOTM show quite low error. On the other hand, SCHISM tends to 

underestimate the temperature by approximately 5 °C since the beginning of June and almost until the end of the year. The 

performance measures for the three models are summarized in Table 3 which also shows that SIMO outperforms the other two 585 

models considering all measures except the bias which is 0.5 °C lower for GOTM. 
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Figure 15: Comparison of the near surface water temperature for SIMO, GOTM and SCHISM for the period from 01.01.-

27.12.2019. 

Table 3 Comparison of performance measures for SIMO, GOTM and SCHISM for the period from 01.01.-27.12.2019. 590 

Performance 

measure 
Unit 

Model 

SIMO GOTM SCHISM 

RMSE ° C 1,48 1,85 3,91 

Bias ° C 0,85 0,35 -3,34 

MAE ° C 1,18 1,53 3,37 

MaxAE ° C 3,96 4,41 8,24 

Original IA - 0,99 0,99 0,92 

Modified IA - 0,90 0,88 0,72 

Refined IA - 0,90 0,87 0,72 

 

Numerous lake modeling studies report quantitative performance measures. However, the comparison of model performance 

with other models is not always straightforward as there is no common systematic approach. Namely, different studies report 

different performance measures, sometimes the calculation methods, the observation periods and the measurement frequency 

and depths are not clearly stated or measurements are too rare to represent short term variations. Furthermore, no studies 595 

calculating the performance measures in relation to the simulation period using only the end results, as done here, were found. 
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However, quite a few studies report on single longer simulations. Some of these results are summarized in Table 4. For a 

yearlong simulation of the water temperature in a small dimictic lake, Martynov et al. (2010) reported a surface temperature 

RMSE of 1.8 °C for an eddy diffusivity model (Hostetler model) and 3.2 °C for a two-layer model (FLake). Bruce et al. (2018) 

ran a two-year simulation for 32 different lakes using the GLM model, and the calculated RMSEs for the entire vertical profile, 600 

epilimnion, and hypolimnion were 1.34, 1.62, and 1.31 °C, respectively. MacKay (2012) ran a bulk mixed model simulation 

for approximately a month and a half and reported a surface temperature MBE < 1 °C. Read et al. (2014) run a 30 year 

simulation (restarted annually) for 434 temperate lakes and reported a RMSE of 2.78, 1.74 and 3.33 °C for the entire vertical 

profile, epilimnion and hypolimnion, respectively. Moore et al. (2021) run four different models for a temperate monomictic 

lake and reported RMSE values from 0.8 to 2.96 °C for the runs before the model parameter calibration and 0.61 to 1.17 °C 605 

after it. The reported absolute MBE values range from 0.34 to 1.75 °C for the runs before the model parameter calibration and 

0.1 to 0.55 °C after it. 

Table 4 Comparison of SIMO performance with other models. 

Reference Model 
Application 

area 

Simulation 

length 
RMSE MBE 

 SIMO small 

monomictic 

lake 

1 year 1.91°C (entire vertical profile) 

1.51 °C (surface temp.) 

1.95 °C (epilimnion temp.) 

1.13 °C (hypolimnion temp.) 

0.88 °C (surface temp.) 

1.37 °C (entire vertical profile) 

 SIMO small 

monomictic 

lake 

1.5 months  0.33 °C (surface temp.) 

Martynov 

et al., 2010 

a)Hostetler 

model 

b) FLake 

small 

dimictic lake 

1 year a) 1.8 °C (surface temp.) 

b) 3.2 °C (surface temp.) 

 

Bruce et. 

al, 2018 

GLM  32 different 

lakes 

 1.34 °C (entire vertical profile) 

1.62 °C (epilimnion temp.) 

1.31 °C (hypolimnion temp.) 

 

MacKay, 

2012 

Bulk 

mixed 

model 

arctic lake 1.5 months  < 1 °C (surface temp.) 

Read et al., 

2014 

GLM  434 

temperate 

lakes 

30 years 

(restarted 

annually) 

2.78 °C (entire vertical profile) 

1.74 °C (epilimnion temp.) 

3.33 °C (hypolimnion temp.) 

 

Moore et 

al., 2021 

a) FLake 

b) GLM 

c) GOTM 

d) Simstrat 

temperate 

monomictic 

lake 

1 year a) 2.96 / 0.61  

b) 0.94 / 1.17 

c) 0.80 / 0.85 

d) 1.10 / 0.70 

(not calibrated / calibrated) 

(entire vertical profile) 

a) -1.75 / -0.3 

b) -0.34 / 0.10 

c) -0.49 /-0.55 

d) 0.57 /-0.35 

(not calibrated / calibrated) 

(entire vertical profile) 
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The yearlong simulation in this study resulted in a surface temperature RMSE of 1.51 °C; in the hypolimnion, the RMSE was 

lowest in the deepest layer at 0.33 °C. The RMSE was the highest in the thermocline region, where it reached a maximum of 610 

2.8 °C at 17 m depth. The RMSE for the entire profile was 1.91 °C. The surface temperature MBE was 0.88 °C. The maximum 

MBE was again in the thermocline region and equaled 2.28 °C. This systematic overprediction can also be noticed in Fig. 14. 

Considering the lake surface, entire vertical profile, epilimnion and hypolimnion temperature, the model performance for the 

yearlong simulation was satisfactorily since it was comparable with the performances of other models (Table 4). The 

performance for the thermocline region was somewhat poorer but performance in that region was not specifically reported in 615 

the reviewed literature. 

7 Summary and conclusions 

The aim of this study was to offer a simple 1-D energy-budget model for the prediction of the vertical temperature profile in a 

small warm monomictic lake that is forced by a reduced number of input meteorological variables. Specifically, these include 

meteorological variables that are routinely measured at meteorological stations (i.e., the air temperature, relative humidity, 620 

atmospheric pressure, wind speed and precipitation) and UVB radiation data and climatological yearly mean temperature data. 

In addition, an observed vertical profile of the lake temperature was used as an initial condition. 

The main challenge was to calculate the net heat flux on the lake surface and determine its components (i.e., the shortwave 

and longwave radiation, sensible and latent heat flux, and precipitation heat flux) from the available data. The model 

performance was evaluated using lake temperatures measured continuously during an observational campaign in two lakes of 625 

Plitvice Lakes, Croatia: Lake 1 (Prošće Lake) and Lake 12 (Kozjak Lake). The necessary meteorological data were provided 

by a single meteorological station located approximately 2 and 1.6 km from the lake temperature measuring points for Lake 1 

and Lake 12, respectively. Except being further away from the meteorological station, Lake 1 has an approximately 100 m 

higher altitude than Lake 12, is surrounded by more complex orography and is very likely exposed to stronger winds and lower 

air temperatures than those used as meteorological input data. Accordingly, the model performance was somewhat poorer for 630 

Lake 1, which indicates the importance of the microlocation-specific input meteorological data, as the meteorological forcing 

is the main driver of the temperature profile evolution. In addition, the influence of the tributary water that inflows into Lake 

1, which was not taken into account in the present model, could also contribute to higher differences between the modeled and 

measured temperatures in comparison to Lake 12. 

Generally, epilimnion temperature was somewhat overestimated, especially with the onset of the convective overturn. The 635 

upper limit of the metalimnion was well captured while it’s thickness was overestimated leading to underestimation in the 

maximal temperature gradient. However, the model satisfactorily estimated the stratification and overturn dynamics. There are 

several possible causes of departures of modeled from measured temperatures. One of them is the underestimation of the 

turbulent heat transfer in the epilimnion, especially in periods of high winds. In addition, the model cannot simulate internal 

seiches and possible water exchange between the warmer epilimnion and colder hypolimnion. Other probable causes are the 640 
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use of an inappropriate light extinction coefficient value and the limited reliability of the surface heat flux. However, 

considering all model simplifications, we conclude that the model performed reasonably well. 

The sensitivity analysis of the model performance to the simulation length showed that when using appropriate meteorological 

forcing (as is the case of Lake 12), the model performance, especially in the epilimnion, steadily deteriorated up to a simulation 

length of approximately 15 days; however, a further increase in the simulation length up to 30 days had little effect on the 645 

model performance parameters. This proves the model can be used for obtaining reasonable lake water temperature prognosis 

for at least 30 days long periods.  

Despite the model’s shortcomings, the yearlong simulation showed that the model is able to predict the onset of stratification 

and convective overturn relatively precisely and the values of the model performance measures were comparable to those 

reported for other models. Thus, for a certain lake with no water temperature measurement data available, a yearlong simulation 650 

such as this would provide an assessment of lake stratification establishment, which can be useful for various studies dealing 

with lake biology, geochemistry, sedimentology, etc. 

To further corroborate the general applicability of the present model, it should be applied to a larger number of different 

monomictic lakes. Nevertheless, in the present study, no lake-specific parameter tuning was performed. Thus, we expect 

similar model performance for other lakes if adequate meteorological forcing is employed.  655 
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Appendix A 

 

Figure A1 Error in the predicted water temperature (Pi-Oi) for Lake 1 for different simulation lengths for the period between 06 July 

and 31 December 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths correspond to those in Fig. 

6. 660 

 

Figure A2 Error in the predicted water temperature (Pi-Oi) for Lake 12 for different simulation lengths in the period between 06 July 

and 31 December 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths correspond to those in Fig. 

7. 
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 665 

Figure A3 Observed (a) and predicted (b-f) vertical gradients of water temperature for Lake 1 for different simulation lengths in 

the period between 06 July and 31 December 2019. 

 

Figure A4 Observed (a) and predicted (b-f) vertical gradients of water temperature in Lake 12 for different simulation lengths in 

the period between 06 July and 31 December 2019. 670 
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Figure A5 Error in the predicted vertical gradient of water temperature (Pi-Oi) in Lake 1 for different simulation lengths in the 

period between 06 July and 31 December 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths 

correspond to those in Fig. 3. 

 675 

Figure A6 Error in the predicted vertical gradient of water temperature (Pi-Oi) in Lake 12 for different simulation lengths in the 

period between 06 July and 31 December 2019. Panel (a) is omitted so that the panels’ positions for different simulation lengths 

correspond to those in Fig. 5.  
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Appendix B 

Description of the SCHISM and GOTM model parametrization 680 

The hydrodynamic model system SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model; Zhang et al., 

2016) was designed for simulations of the 3D baroclinic/barotropic circulation at different spatio-temporal scales. The 

calculation is conducted on the points of a horizontal unstructured triangular grid, which is one of the most important features 

of the model, because the use of such a grid ensures a high spatial resolution. In the calculations, the model uses an efficient 

and accurate semi-implicit method on finite elements/volumes with the Euler-Lagrange algorithm to solve the Reynolds-685 

averaged Navier-Stokes equations (in hydrostatic and non-hydrostatic form), in order to more realistically described a wide 

spectrum of physical and biological processes, as well as atmospheric and river forcing. The equations are simplified by 

considering the hydrostatic and Boussinesq approximations. 

The horizontal grid covers the entire area of 16 cascade lakes and it is composed of 17472 elements whose surfaces range from 

1 to 200 m2. In the vertical, a hybrid SZ grid was used, whereby the hybrid Z layers are fixed at a certain depth, located below 690 

the S coordinates that follow the terrain (Song and Haidvogel, 1994) according to the prescribed distance. The Plitvice lakes 

are shallow enough so it is not necessary to define Z layers and 30 sigma levels were used in the vertical discretization. During 

model calibration, i.e. when adjusting various parameters, it turned out that the model gives the best results in simulations with 

a time step of 10 seconds. Bottom friction in the model is approximated by the quadratic law of friction defined by the assigned 

coefficient of friction with the adopted standard value of 0.003. As the Plitvice Lakes are extremely transparent and clean, in 695 

order to simulate a realistic lake character, Jerlov I was taken as the type of water, whose extinction coefficients correspond to 

the clear water. For albedo theoretical values for the ocean of 6 %, was applied. Vertical mixing in the model is imposed 

through the je k-ε scheme with the Kantha & Clayson stability function. TVD (total variation diminishing) scheme was used 

in the advective terms of the transport equation. TVD is slower scheme, but better displays sharp temperature gradients. A 

baroclinic mode was also included, by which the contribution of temperature to the density of the medium is included in the 700 

equations of motion. 

GOTM is a 1D water column model for simulating the most important hydrodynamic and thermodynamic processes related to 

vertical mixing in natural waters. The GOTM model is suitable for simulating and predicting the stratification and vertical 

temperature profile of closed systems, such as the Plitvice Lakes. It is configured in such a way that it can be connected to 3D 

circulation models, such as SCHISM, and used as a module to calculate vertical turbulent mixing. The core of the model 705 

calculates solutions for one-dimensional versions of the momentum, salt and heat transport equations. The strength of GOTM 

is in the large number of tested turbulence models implemented in the code. Calculations are made at only one point along the 

entire vertical where any number of layers can be placed. Its advantage is in faster performance and better formulation of the 

heat flow between the atmosphere and water.  

Model parameters such as water type and turbulence scheme in GOTM are same as in the SCHISM model. Jerlov I (clear 710 

water) was taken as the type of water, and the k-epsilon scheme was used as the turbulent mixing scheme. The number of 
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vertical layers at point K1 (Lake 12) was set to 91 because it is at a greater depth, while 60 layers were taken for point P1 

(Lake 1).  

Apart from the measured air temperature and wind data (GOTM simulation) and measured air temperature (SCHISM 

simulation), both models use time series of atmospheric variables from the WRF model and heat fluxes on the surface of the 715 

lake, which are the main driver of the physical processes that cause thermal stratification and vertical mixing in the lake. The 

models are forced by atmospheric input on an hourly basis, with SCHISM additionally having an hourly loop that simulates 

the exchange of heat, mass and momentum between the lake and the atmosphere and the consequent heating and mixing 

processes that occur in the lake. 

Code and data availability 720 

The SIMO v1.0 code is published under Creative Commons Attribution 4.0 International license and it is available at 

https://zenodo.org/record/4679796#.YHN41ugzaYE (last access: 18 March 2022), doi: 10.5281/zenodo.6367810. 

Lake water temperature data are available on request for research purposes by contacting Zvjezdana B. Klaić (zklaic@gfz.hr). 
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Meteorological and Hydrological Service. 725 
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