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Abstract 

Fire causes abrupt changes in vegetation properties and modifies flux exchanges between 

land and atmosphere at subseasonal to seasonal scales. Yet these short-term fire effects on 

vegetation dynamics and surface energy balance have not been comprehensively investigated in 

the fire-coupled vegetation model. This study applies the SSiB4/TRIFFID-Fire model to study the 15 

short-term fire impact in Southern Africa. Specifically, we aim to quantify how large impacts fire 

exerts on surface energy through disturbances on vegetation dynamics, how fire effects evolve 

during the fire season and the subsequent rainy season, and how surface darkening effects play a 

role besides the vegetation change effects.  

We find fire causes an annual average reduction in grass cover by 4-8 % for widespread 20 

areas between 5-20 °S and a tree cover reduction by 1 % at the southern periphery of tropical 

rainforests. The regional fire effects accumulate during June-October and peak in November, the 

beginning of the rainy season. After the fire season ends, the grass cover quickly returns to 

unburned conditions while the tree fraction hardly recovers in one rainy season. The vegetation 

removal by fire has reduced the leaf area index (LAI) and gross primary productivity (GPP) by 3-25 

5 % and 5-7 % annually. The exposure of bare soil enhances surface albedo and therefore decreases 

the absorption of shortwave radiation. Annual mean sensible heat has dropped by 1.4 W m-2 while 

the latent heat reduction is small (0.1 W m-2) due to the compensating effects between canopy 

transpiration and soil evaporation. Surface temperature is increased by as large as 0.33 K due to 

the decrease of sensible heat fluxes, and the warming would be enhanced when the surface 30 

darkening effect is incorporated. Our results suggest that fire effects in grass-dominant areas 

diminish within one year due to the high resilience of grasses after fire. Yet fire effects in the 
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periphery of tropical forests are irreversible within one growing season and can cause large-scale 

deforestation if accumulated for hundreds of years.  
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1. Introduction 35 

Fire is an integral component of the Earth's ecosystems (Bowman et al., 2009; Bond et al., 

2005). Through prevalent disturbance on surface biophysical properties (i.e., albedo, vegetation 

characteristics, and soil properties), fire alters radiative forcing on Earth's surface and modifies the 

energy flux exchanges between land and atmosphere (Chambers and Chapin, 2002; Bond-

Lamberty et al., 2009). Changes in surface properties influence the development of the planetary 40 

boundary layer and contribute to reduced convective rainfall (Wendt et al., 2007; Saha et al., 2016), 

and may also negatively influence the monsoonal precipitation (De Sales et al., 2018). Meanwhile, 

fires also alter atmospheric biogeochemical processes through the release of greenhouse gases, 

aerosols, and volatile organic compounds (Scholes et al., 1996; Li et al., 2019a), exerting radiative 

forcing in the climate system through greenhouse gases effects, aerosol-radiation interactions, and 45 

aerosol-cloud interactions (Ward et al., 2012; Jiang et al., 2016; Hamilton et al., 2018; Zou et al., 

2020).  

Fire models have been developed within Dynamic Global Vegetation Models (DGVMs) to 

explicitly describe the burned area, carbon emission, and fire disturbance on vegetation (Thonicke 

et al., 2010; Thonicke et al., 2001; Li et al., 2012; Arora and Boer, 2005; Pfeiffer et al., 2013; 50 

Rabin et al., 2018; Burton et al., 2019; Venevsky et al., 2002; Lasslop et al., 2014; Huang et al., 

2020a). The fire-coupled DGVMs have been widely used to study the role of fire on vegetation 

distribution (Bond and Midgley, 2012; Seo and Kim, 2019), terrestrial carbon budget (Li et al., 

2014; Yue et al., 2015; Lasslop et al., 2020), surface energy balance (Li et al., 2017; Huang et al., 

2020a), and water cycle (Li and Lawrence, 2017). Previous modeling studies on fire effects mostly 55 

focus on the long-term fire effects where the simulations with fire are compared with reference 

simulations representing "a world without fire" (Lasslop et al., 2020). While the long-term fire 
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effects are comprehensively assessed in multi-model studies (Lasslop et al., 2020), the 

quantification of short-term fire effects at monthly to annual scales is somewhat lacking. The short-

term fire effects include the fire-caused abrupt changes of vegetation status, surface properties 60 

(albedo and roughness), and the subsequent effects on surface energy and hydrology cycle before 

and after a fire season (Lasslop et al., 2020). These short-term effects are significant at local and 

regional scales, yet to our knowledge, they have not been assessed in any fire-vegetation model 

studies. The simulated fire impacts can be compared with those from satellite observations to 

evaluate the description of fire-vegetation interactions in DGVMs, bridging the gap between 65 

observational and modeling studies. 

The short-term fire effects are highly variable among different ecosystems. Here we focus 

on fire effects in tropical savannas which have the largest stretch of burned area and the most 

representative fire-vegetation-climate feedbacks among all the ecosystems (Staver et al., 2011). 

Satellite observational studies have quantified the short-term fire effects on albedo change and 70 

surface radiation in tropical savanna (Gatebe et al., 2014; Dintwe et al., 2017; Saha et al., 2016; 

Saha et al., 2017; Saha et al., 2019; Beringer et al., 2003; Veraverbeke et al., 2012; Liu et al., 

2019b; Lopez-Saldana et al., 2015; Staal et al., 2018). An immediate reduction in surface albedo 

is reported after fire, associated with ash and charcoal deposition (Myhre et al., 2005; Govaerts et 

al., 2002). Some observations found the surface darkening lasted for 10-60 days, followed by a 75 

gradual brightening when charcoals were removed by wind or runoff and bare soil was exposed 

(Samain et al., 2008; Saha et al., 2019; Saha et al., 2017; Lyons et al., 2008; Gatebe et al., 2014). 

According to recent estimates in Saha et al. (2019), the average albedo anomaly in the year 

following fire is +6.51×10−4 for all of sub-Saharan Africa, representing a negative radiative forcing 

dominated by surface brightening effects. On the other hand, some studies found the darkening 80 
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maintained for more than 4 months, with the brightening effects only in limited areas (Dintwe et 

al., 2017; Jin and Roy, 2005). Dintwe et al. (2017) reported a positive radiative forcing by 0.18 W 

m-2 averaged over sub-Saharan Africa. The variations can be explained from various aspects, 

including the background climate, soil properties of study regions, burning seasons, and criteria 

used to define the "control" pixel (Dintwe et al., 2017; Saha et al., 2019).  85 

Fire effects on savanna vegetation have been widely investigated on site-level studies, 

which show that vegetation can recover to unburned conditions within 8 days to 12 months after 

fire (Araújo et al., 2017; Das Chagas and Pelicice, 2018). However, fire-vegetation interactions on 

the regional scale remain unclear, both in the observational and fire modeling studies. 

Observational data analysis proposed that fire-caused vegetation loss was an important component 90 

in the negative feedback loop between fire and precipitation in Africa, in which fire suppressed 

convective precipitation, thereby reducing fuel load and fire in the subsequent season (Saha et al., 

2016). The proposed feedbacks are also tested in regional modeling studies, which showed that 

post-fire land condition deterioration resulted in a decrease in wet season rainfall, associated with 

atmospheric cooling and subsidence (De Sales et al. 2018), as well as a weakening of West African 95 

monsoon progression (De Sales et al., 2016). 

This study makes the first attempt to simulate the short-term fire effects using a fire-

coupled dynamic vegetation model. Specifically, we focus on quantifying regional fire effects on 

surface radiative forcing and energy balance through disturbances on vegetation dynamics, 

describing the temporal evolution of fire effects during the fire season and the subsequent rainy 100 

season, and investigating the role of surface darkening effects due to ash deposition. The process-

based fire-vegetation model we use, SSiB4/TRIFFID-Fire, has been comprehensively evaluated 

with observed burned area and fire emissions on the global scale and is shown to capture the fire-
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vegetation interactions under the current climate (Huang et al., 2020a). This study further improves 

the SSiB4/TRIFFID-Fire to better describe the temporal variations of fire regimes and vegetation 105 

productivity on monthly scales. The model improvement and experimental design are given in 

Sect. 2. After comprehensive validation of the fire-vegetation model performance, we apply 

SSiB4/TRIFFID-Fire to investigate fire effects on vegetation cover, ecosystem productivity, and 

surface energy on monthly to annual scales in Sect. 3.  Discussions and conclusions are given in 

Sect. 4. 110 

 

2 Method 

2.1 Study region 

We conduct our fire modeling study in Southern Africa (SAF; 0-35 °S, 0-50 °E), where 

most areas have a typical savanna climate and high incidence of fires. SAF has the largest 115 

continuous stretch of savanna, covering an area of 1.4 × 103 Mha of the land surface. SAF savanna 

has an annual burned area of 153.7 Mha yr−1 (Giglio et al., 2018) and carbon emission of 669 Tg 

C yr−1 (Van Der Werf et al., 2017), contributing to about 36 % and 31 % of the global total burned 

area and fire carbon emissions, respectively. Each year in the dry season, fire leaves numerous 

scars on land surface and local ecosystems have evolved with fire as an essential contributor to its 120 

structure and function. Therefore, we select SAF as the study region to quantify the fire effects at 

monthly to annual scales. 

Over SAF, the Equatorial Africa (0-5 °S), East Coast of SAF, and East Coast of 

Madagascar Island are hot and humid throughout the year, with an annual mean temperature of 25 

°C and rainfall exceeding 1200 mm yr-1 (Fig 1a-b). From the equator to Southern Hemisphere (SH) 125 

high latitude, the annual mean precipitation and temperature decrease while the seasonality is 
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enhanced (Fig 1c-d). The SAF savanna has a divergent climate during the wet season (November-

April) and dry season (May-October). During the rainy season, the daily precipitation can reach 

15 mm day-1, resulting in significant floods in Zimbabwe, Zambia, Malawi, and Mozambique 

(https://reliefweb.int/report/malawi/south-east-africa-deadly-storms-and-floods-malawi-zambia-130 

and-mozambique). The dry season is characterized by little precipitation, especially for June-July-

August when monthly rainfall is less than 10 mm (Fig. 1d). SAF has diverse ecosystems influenced 

by climate and fire. From tropical SAF to southern hemisphere high latitude, the climatology land 

cover ranges from the densely forested area, savanna, grassland, shrubland, and desert 

correspondingly (Fig. 1e). Equatorial Africa is dominated by tropical rainforests, known as the 135 

Congolese rainforest. Most areas between 5-20 °S are dominated by C4 grasses with tree fractions 

varying between 10-20 % with moisture conditions, referred to as the savanna biome. C3 grasses 

are primarily distributed in the eastern part of SAF along the Great Rift Valley and the eastern 

portion of the Great Escarpment. Shrubs dominate the Southern African Plateau.  
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 140 

Figure 1 (a)-(d) Climate of SAF from Sheffield et al. (2006) averaged in 2000-2013 (a) annual mean air 

temperature (Tair), (b) annual total precipitation (Pre), (c) monthly Tair (d) Monthly Pre, and (e) dominant 

PFTs for each grid simulated in SSiB4/TRIFFID-Fire (BET: broadleaf evergreen trees; BDT: broadleaf 

deciduous trees; C4: C4 grasses; C3: C3 grasses; SHR: shrub; BARE: Bare land) 
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2.2 The SSiB4/TRIFFID-Fire vegetation-fire model 

SSiB4/TRIFFID-Fire consists of three components: a land surface model (Simplified 

Simple Biosphere Model; SSiB), a dynamic vegetation model (the Top-down Representation of 

Interactive Foliage and Flora Including Dynamics Model; TRIFFID), and a fire model of 
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intermediate complexity (Huang et al., 2020a). SSiB simulates surface radiation components, 150 

momentum fluxes, sensible heat and latent heat fluxes, soil moisture, surface temperature, and 

vegetation gross/net primary productivity (GPP/NPP) based on energy and water balance (SSiB; 

Xue et al., 1991; Zhan et al., 2003). The SSiB was coupled with TRIFFID, which describes the 

vegetation dynamics based on species competition for common resources and provides an 

interactive component in the feedback loop of ecosystems and climate (Cox, 2001; Harper et al., 155 

2016). The vegetation competition in TRIFFID is based on the Lotka-Volterra equation, which has 

been updated in Zhang et al. (2015) to represent the coexistence of grasses and shrubs. Liu et al. 

(2019a) further adjusted the large-scale disturbance parameter, which includes vegetation 

disturbances due to fires and other processes, to allow for the coexistence between trees, C3 grasses, 

and C4 grasses. The modeled plant functional types (PFTs) in SSiB4/TRIFFID include broadleaf 160 

evergreen trees, needleleaf evergreen trees, broadleaf deciduous trees, C3 grasses, C4 grasses, 

shrubs, and tundra shrubs. The simulated vegetation distribution in SSiB4/TRIFFID has been 

evaluated with observations over Northern America (Zhang et al., 2015) and over the globe (Liu 

et al., 2019a).  

The SSiB4/TRIFFID is further improved by incorporating a fire scheme (Li et al., 2012) 165 

to describe fire disturbance on vegetation dynamics and carbon cycle (hereafter SSiB4/TRIFFID-

Fire). SSiB4/TRIFFID-Fire is shown to reproduce the burned area and fire emissions across the 

spatial and temporal scales (Huang et al., 2020a). Specifically, it produces realistic fire peak 

months and fire season length in major fire regions, including Southern Africa (SAF), South 

America, Southeast Asia, and Equatorial Asia. The fractional coverage of each PFT has been 170 

thoroughly validated with observations on the global scale. With an explicit description of the 

burned area, carbon emission, and fire disturbance on vegetation, SSiB4/TRIFFID-Fire captures 
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fire-vegetation interactions under current climate and can be used to study fire effects on ecosystem 

characteristics and surface energy. 

2.3 Model improvement 175 

This study updates the SSiB4/TRIFFID-Fire to improve the simulation of monthly fire 

regimes, vegetation productivity, and surface fluxes in SAF. A constant crop fraction from 

GLC2000 (Bartholome and Belward, 2005) was used to exclude fire in human-managed land use 

during the entire simulation period in Huang et al. (2020a). Studies show that agriculture expansion 

has played a role in the spatial and temporal variations of the burned area in the tropical region 180 

and should be explicitly described (Andela et al., 2017; Lasslop and Kloster, 2017). We introduce 

an annually-updated crop fraction from Land-Use Harmonization 2 (LUH2) datasets (Hurtt et al., 

2006; Hurtt et al., 2011) to investigate the influence of crop fraction interannual changes on fire.  

Since the LUH2 has a smaller crop area than GLC2000, we decrease the fire spread and fuel 

combustibility to keep the burned area in a similar magnitude as in Huang et al. (2020). Besides, 185 

we find that the carbon emission per burned area in SAF is larger than observations from GFED4s 

in the previous model version. We therefore decrease the leaf combustion completeness to reduce 

the carbon emission.  

Wet season accumulated productivity proves to be one of the determinants for the burned 

area and carbon emission in the following fire season (Forkel et al., 2019). The vegetation 190 

productivity, however, is also influenced by phenology and fire. Our previous study found that 

SSiB4/TRIFFID-Fire captured its spatial distribution and interannual variations, but the annual 

mean GPP was overestimated (Huang et al., 2020a). During an annual cycle, the model properly 

simulates the GPP magnitude in the wet season but overestimates it in the dry season, leading to 

an underestimation of the seasonality of ecosystem functioning in savanna and grassland (Fig. S1a). 195 
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A similar conclusion can be drawn in the simulated intra-annual variations of LAI. To reduce GPP 

magnitude in dry seasons, we optimize root-zone soil moisture potential factor 𝑓(𝜃), a parameter 

that determines transpiration in SSiB4/TRIFFID-Fire, to constrain photosynthesis activities. The 

procedure is introduced as follows.  

By compiling 32 years of satellite data, Li et al. (2019b) reported that moisture condition 200 

(precipitation) was the first vital driver positively affecting monthly vegetation productivity in 

non-forest areas. In SSiB4, the vegetation productivity is closely associated with the soil moisture 

through the root-zone soil moisture potential factor 𝑓(𝜃):  

𝑓(𝜃) = 1 − 𝑒!"![""!$%	(!()#∗+$%)],               (1) 

where c1, c2, ph0, and b are PFT-dependent parameters. 𝑓(𝜃) represents the soil moisture (𝜃) 205 

effects on stomatal resistance, which influences CO2 and water exchanges and can also affect leaf 

turnover. 𝑓(𝜃) does not play a role when it is close to 1 and can largely suppress the transpiration 

and vegetation productivity when it is close to 0. For C3 and C4 grasses, the original 𝑓(𝜃) decreases 

sharply when soil moisture (θ) is between 0.3 – 0.4, yet it has a negligible effect when soil moisture 

is higher than 0.4 (Fig. 2). In SSiB4/TRIFFID-Fire, the simulated root-zone soil moisture is 210 

generally higher than 0.4 in SAF dry season. Therefore, we adjusted the coefficients c1 and c2 for 

C4 grasses to reflect the effects of soil water deficit on transpiration in a wider range of soil 

moisture between 0.3 – 0.6 (Fig. 2a). In Eq.1, c1 represents the wilting point at which stomates 

close completely, and c2 is a slope factor controlling how sensitive the vegetation responds to soil 

water deficit. We decrease c2 for C3 and C4 grasses to reduce the slope so that the vegetation 215 

responds to soil water deficit at relatively wetter conditions. The c1 for C3 grasses is set to be 

smaller than for C4 grasses so that the stomates close at a drier condition and C3 grasses have more 

sustainability to drought.  
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 220 
Figure 2 𝑓(𝜃) calibration for (a) C4 grasses and (b) C3 grasses 

 

2.4 Experiment design 

A series of offline experiments have been conducted using SSiB4/TRIFFID-Fire, including 

a spin-up simulation to reach quasi-equilibrium vegetation distribution and a transient run with 225 

varying climate forcings and CO2 from 1948 to 2014 (Fig. 3). The spin-up simulation is conducted 

with 1948-1972 climatology forcing from Sheffield et al. (2006) and 1948 atmospheric CO2 

concentration at 310.325 ppm with fire model turned on. The DGVM reaches a quasi-equilibrium 

status after 200 years of simulation (Fig. 3). Based on the quasi-equilibrium status, a FIREON 

transient run is carried out with 3-hourly meteorological forcings and yearly-updated atmospheric 230 

CO2 from 310.325 ppm to 398.99 ppm with the fire model turned on. The fire model requires 

annual agriculture, population density, and GDP information from 1948 to 2014. The spin-up and 

transient runs are the same as those in Huang et al. (2020a) except for the yearly-updated crop 

fraction. We focus on the period of 2000-2014 when the satellite observations are available for fire 

model validation. 235 
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To assess the fire effects at monthly and annual scales, we conduct FIREOFF simulations 

branching from the FIREON simulations on January 1st of each year between 2000 and 2013 (Fig. 

3). Each FIREOFF simulation is run for two years with the fire model switched off and all 

remaining parameters and input data the same as those in FIREON. In both FIREON and FIREOFF 

simulations, the vegetation distribution is allowed to respond to climate variations while the fire 240 

disturbance is only considered in FIREON. Each 2-year simulation in FIREOFF is regarded as an 

ensemble member, and there are a total of 14 ensemble members. The corresponding periods in 

FIREON form 14 paired ensemble members. The fire impacts on vegetation properties and surface 

energy balance are quantified using the differences between FIREON and FIREOFF ensemble 

means. 245 

 
Figure 3 Experiment Design for fire effects in SAF (0-37 ºS; 0-50 ºE) 

The experimental design introduced above examines the biophysical impacts of fire on 

surface energy balance due to vegetation removal. To assess how surface darkening effects 

influence our previous conclusion, we conduct a sensitivity test (FIREONdark) following the 250 

methodology in De Sales et al. (2018): In FIREONdark, surface albedo is reduced to 0.1 for 60 days, 

after which albedo is returned to the unburned condition to mimic the removal of ash and charcoal 
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by wind and precipitation. The value of the darkening period is taken from Saha et al. (2019) which 

showed that brightening occurs after 60 days on average in SAF.  

 255 

2.5 Model input and validation data 

Table 1 Datasets used to drive SSiB4/TRIFFID-Fire and evaluate simulations 
Variables Sources Resolution 

Surface air temperature 

Sheffield et al. (2006) 1°, 3-hourly 

Surface pressure 
Specific humidity 
Wind speed 
Downward shortwave radiation 
Downward longwave radiation 
Precipitation 
Lightning frequency NASA LIS/OTD v2.2 2.5°, 2-hourly 

Population density 
GPWv3 (CIESIN, 2005); 0.5°, 5 yearly 
HYDE v3.1 (Klein Goldewijk et al., 2010) 5', 10 yearly 

GDP van Vuuren et al. (2006) 0.5°, in 2000 
Agriculture fraction LUH2 (Hurtt et al., 2006; 2011) 0.25°, yearly 

Burned area 
Carbon emission 

GFED4s (Randerson et al., 2012; 
van der Werf et al. 2017) 0.25°, monthly 

GPP FLUXNET-MTE (Jung et al. 2009) 0.5°, monthly 

Latent heat 
Sensible heat FLUXCOM (Jung et al., 2019) 0.0833° and 

0.5°, monthly 

 

Table 1 lists the data used for model input and evaluation. The input datasets for the fire 

model and land surface model are the same as our earlier study (Huang et al., 2020a) except for 260 

the transient crop fraction from Hurtt et al. (2006; 2011). All input datasets are interpolated to 1.0° 

× 1.0° spatial and 3-hourly temporal resolution to be used as model forcing. 

The simulated fire variables, vegetation productivity, and surface fluxes are evaluated 

against observations. The Global Fire Emission Database (GFED) is a fire dataset derived 
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primarily from MODIS satellite (Giglio et al., 2013; Van Der Werf et al., 2010; Van Der Werf et 265 

al., 2006). The latest version, GFED4s, has been updated to include the contribution from small 

fires below the MODIS detection limit (Van Der Werf et al., 2017). The burned area and carbon 

emission obtained from https://www.globalfiredata.org/data.html are used to evaluate fire 

simulation in SAF with a focus on monthly variations. FLUXNET Model Tree Ensemble 

(FLUXNET-MTE) GPP is upscaled from FLUXNET observations to the global scale using the 270 

machine learning technique MTE (Jung et al., 2011). The 1982–2011 FLUXNET-MTE GPP 

downloaded from https://www.bgc-jena.mpg.de/geodb/projects/Data.php has been resampled to 

1.0°´1.0° to be compared with SSiB4/TRIFFID-Fire. 

The FLUXCOM provides monthly gridded LH and SH estimates at 0.5° spatial resolution 

and monthly steps (http://www.fluxcom.org/EF-Products/). The data is derived by merging energy 275 

flux measurements from the FLUXNET eddy covariance tower with remote sensing and 

meteorological data using machine learning techniques (Jung et al., 2019). FLUXCOM database 

comprises of two complementary products for surface fluxes: FLUXCOM-RS integrates the 

FLUXNET measurements and 2001-2015 MODIS data in machine learning techniques, while 

FLUXCOM-METEO estimates surface fluxes from daily meteorological data and mean seasonal 280 

cycles of satellite data. The dataset is specially designed to quantify global land-atmosphere 

interactions and provide a benchmark for land surface model simulations. 

 

3 Modeling fire effects in SAF 

3.1 Model validation 285 

We first evaluate the model simulation of burned area, carbon emission, vegetation 

productivity, and surface fluxes in SAF. According to GFED4s, an average of 175.6 Mha land 
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surface is burned each year (Fig. 4a), emitting 678.9 Tg carbon into the atmosphere during 2000-

2013. SSiB4/TRIFFID-Fire has captured the magnitude of annual burned area (185.8 Mha) and 

carbon emission (723.4 Tg C) with spatial correlation coefficients (SCC) of 0.72 and 0.78, 290 

respectively (Figs. 4b, c). Fires are mostly found in Central Africa (5 °S to 20 °S), extending from 

the Atlantic Coast to Lake Tanganyika. The most extensive burned area is found in savanna with 

intermediate productivity, where the aboveground biomass and dried soil conditions in the dry 

season facilitate fire occurrence and spread. Fires in tropical Congolese rainforest and drylands in 

Namibia and South Africa are constrained by climatic conditions and fuel load, respectively. The 295 

observed burned area fraction shows some "hot spots" in Angola, Zambia, and the southern part 

of Congo; however, the model produces more homogeneously distribution. The heterogeneity in 

GFED4s may come from landscape fragmentation associated with intensive agriculture, which 

limits the burned area by reducing fuel connectivity (Bistinas et al., 2014). Although 

SSiB4/TRIFFID-Fire excludes fire occurrence in agricultural land, it does not consider the effect 300 

of landscape fragmentation on fire spread and tends to underestimate the negative impact of 

cropland on the burned area. Besides, the simulation is conducted at 1.0° × 1.0° spatial resolution. 

The relatively coarse model resolution makes it harder to capture the spatial heterogeneity in fire 

distribution. 

Fire in SAF is concentrated in the dry season (Fig. 4d). Fire season in SAF is defined as 305 

June-October, during which the monthly burned area contributes to more than .
./

 of the annual 

burned area (Venevsky et al., 2019). The aboveground dried fuel can be easily ignited and cause 

extensive fires in the dry season. The monthly burned area drops dramatically at the beginning of 

the rainy season and remains low until May in the next year. SAF savanna fire has a clear 



 18 

distinction between June-October and November-May, reflecting the contrasting climate during 310 

the rainy (non-fire) season and dry (fire) season (Fig. 1d).  

 
Figure 4 (a) Annual burned area fraction (BAF; %) averaged over 2000–2013 in GFED4s, (b) same as (a) 

but in SSiB4/TRIFFID-Fire, (c) Annual fire carbon emission (C emis; g C m-1) averaged over 2000–2013 

in SSiB4/TRIFFID-Fire, and (d) Contribution of the monthly burned fraction to the annual burned fraction 315 

in model and observation (SCC: spatial correlation coefficient; COR: temporal correlation coefficient). 

 

In the following section, we evaluate the model simulation of vegetation productivity and 

surface fluxes and their seasonality. The model simulation of GPP is evaluated against the 

FLUXNET-MTE product. The annual average GPP in 2000-2011 is 1283.4 g C m-2 yr-1, ranging 320 
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from more than 2500 g C m-2 yr-1 in the tropical rainforest to less than 400 g C m-2 yr-1 in the 

shrubland (Fig. 5a). The GPP magnitude and spatial distribution are simulated in SSiB4/TRIFFID-

Fire (1326.3 C m-2 yr-1), with an SCC of 0.89 (Fig. 5b). After optimization of 𝑓(𝜃), the model 

captures the monthly variations of GPP for most grid cells with a correlation higher than 0.7 

(p<0.05; Fig. 5c), showing large improvements compared to the simulation with default parameters 325 

(Fig S2a). The overestimation of GPP, especially from May to October (Fig. S1a), is reduced and 

the monthly correlation between model and observation increases to 0.91 (Fig. 5d). A similar 

conclusion can be drawn from LAI before and after parameter optimization, which shows even 

larger improvements than GPP (Fig. S2c-d). Observational studies have shown that GPP in 3-6 

months preceding the fire season is a vital predictor for savanna fire (Forkel et al., 2019). In return, 330 

fire can influence the vegetation productivity in the following 2-6 months after fire (Dintwe et al., 

2017). SSiB4/TRIFFID-Fire uses aboveground biomass, which is related to vegetation 

productivity accumulation in preceding wet months, to describe the fuel constraint on fire ignition. 

The monthly variation of vegetation productivity in the model is in a good consistency to that in 

observations (Fig. 5d), indicating that SSiB4/TRIFFID-Fire captures some critical processes in 335 

fire–vegetation-climate interactions. 
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Figure 5 Annual GPP (g C m-2 y-1) averaged over 2000–2011 in (a) FLUXNET-MTE, and (b)  

SSiB4/TRIFFID-Fire; (c) Point-by-point climatology monthly correlation between FLUXNET-MTE and 

SSiB4/TRIFFID-Fire (dots indicate the correlation is significant with p-value < 0.05); (d) Monthly GPP (g 340 

C m-2 mon-1)  in model and observation 

 

The simulated energy fluxes are compared with FLUXCOM datasets to evaluate the 

surface fluxes partitioning between latent heat (LH) and sensible heat (SH). The spatial distribution 

of LH shows a predominant latitudinal distribution with a strong N-S gradient in both FLUXCOM-345 

METEO and model, decreasing from 100 W m-2 in tropical Congolese forest to less than 30 W m-

2 in the Kalahari Desert (Figs. 6a,b). Regions east of Lake Tanganyika have a much smaller annual 
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precipitation (600 mm yr-1 in Fig. 1b) and, therefore, have a smaller LH than the west part of SAF. 

In contrast, SH in SAF peaks in the Kalahari Desert and gradually decreases towards the tropical 

forest (Fig. 6c). SSiB4/TRIFFID-Fire captures the latitudinal distribution of SH yet underestimates 350 

its magnitude in the desert (Fig. 6d). 

We further compare the monthly variations of LH and SH in SSiB4/TRIFFID-Fire against 

the observation-derived datasets, FLUXCOM-METEO and FLUXCOM-RS. There is a high 

agreement in the regional average and range of LH/SH between the model and observations (Fig. 

6e-f). The LH peaks in the rainy season (December-January-February; DJF) and gradually declines 355 

and reaches the minimum in June-July-August (JJA). SSiB4/TRIFFID-Fire tends to underestimate 

LH in the wet season but accurately simulates its magnitude in the dry season. It captures the peak 

of SH in September-October while slightly overestimating it in January-February-March. Jung et 

al. (2019) pointed out that FLUXCOM LH estimates in Africa are larger than other observation-

based datasets. As such, the simulated LH may compensate for the wet bias in FLUXCOM datasets. 360 

Overall, the model is shown to reproduce the annual surface fluxes distribution and their 

seasonality in SAF. 

The comparison with observations shows that SSiB4/TRIFFID-Fire is capable of 

reproducing the annual mean and intra-annual variations of fire regimes in SAF. The seasonal 

cycle of vegetation productivity and surface energy fluxes are captured, indicating the fire-coupled 365 

vegetation model can describe some key processes in the feedback between fire, vegetation, and 

surface energy. The fire-coupled DGVM is then used to provide the first model quantification of 

short-term (monthly to annual scales) fire effects by assessing the differences between FIREON 

and FIREOFF from June to May in the next year, including a complete fire season (June-October) 

and post-fire recovery season (November to May in the next year). 370 
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Figure 6 Annual LH (W m-2) averaged over 2000–2013 in (a) FLUXCOM-METEO and (b) 

SSiB4/TRIFFID-Fire; Annual SH (W m-2) averaged over 2000–2013 in (c) FLUXCOM-METEO, and (d) 

SSiB4/TRIFFID-Fire; Monthly (e) LH and (f) SH for grid within SHAF in the model, FLUXCOM-METEO, 

and FLUXCOM-RS. The dots in (e) and (f) denote the regional mean values, while the bars denote the 375 

LH/SH values within one standard deviation of the mean value of all grid points 
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3.2 Fire effects on vegetation 

The reoccurrence of fire changes the fractional coverage of trees and short PFTs (C3 and 

C4 grasses) in SAF. Figure 7a and Figure 7b show the spatial distribution of trees (BET and BDT) 380 

and grasses (C3 and C4 grasses) in FIREOFF. Tree PFTs cover more than 80% in equatorial Africa 

and the east coast of Africa, while C3 and C4 grasses dominate widespread areas between 5 °S and 

20 °S and the eastern portion of the Great Escarpment. The reduction in tree cover ranges from 

0.2 % to 0.6 % per year in Africa savanna and can exceed 1 % in the transition zone between 

savanna and Congolese forest (Fig. 7c; FIREON minus FIREOFF), indicating fire is an important 385 

contributor to tropical deforestation (Hansen et al., 2013). A decrease in C3/C4 grasses fraction by 

4-8 % is found in regions with an annual burned area fraction greater than 10 %, and the magnitude 

of change is generally proportional to the grid burned area fraction (Fig. 7d). Looking further into 

the grass cover change per burned area fraction, we find a larger fire impact in drier regions with 

annual rainfall smaller than 600 mm yr-1 and with GPP generally smaller than 800 g C m-2 yr-1 (not 390 

shown). The larger fire effects could be explained by the slower recovery after fire corresponding 

to the lower vegetation productivity.  
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Figure 7 2000–2013 annual (a) tree fraction (%) and (b) C4/C3 grass fraction (%) in FIREOFF; 2000–2013 

annual fire effects on (c) tree fraction and (d) grass fraction, and (e) monthly fire effects on the fractional 395 

coverage of trees and C4/C3 grasses (% mon-1) with burned area fraction (% mon-1, red curve) overlaid (The 

areal-average fire effect is calculated using grids with an annual burned area fraction > 10%). The y-axis 

of burned area fraction in (e) is reversed. 
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Figure 7e shows the monthly vegetation cover change in the fire season and the following 

rainy season (FIREON minus FIREOFF). The dark green and light green bars denote changes in 400 

tree cover and grass cover between FIREON and FIREOFF, which are linked to the monthly 

burned area fraction denoted by the red line. In the FIREON simulation with a spatial resolution 

of 1.0° × 1.0°, a grid can have fire-induced vegetation decreasing in parts of the grid while 

vegetation growing in other parts. The overall vegetation cover change for a grid is the combined 

result of fire-caused vegetation removal and growth expansion, which depends on meteorological 405 

conditions and species. We find little burned area fraction during the precedent wet season from 

January through May, during which vegetation removal by fire is negligible. While the monthly 

burned area fraction peaks in August and gradually decreases after that, regional fire disturbances 

on C3 and C4 grasses accumulate during the entire fire season until November. The vegetation 

recovery is limited during June-October when the arid conditions produce very small vegetation 410 

productivity. In the dry season, the monthly precipitation is generally smaller than 20 mm and GPP 

is 50 g C m-2 month-1, only .
0
 of that in the wet months (Fig. 5d). Fire effects reach the maximum 

in November when a decrease of 11 % is found in the grass coverage. Vegetation recovery is 

accelerated in the rainy season and grass cover reduction is gradually diminished from December 

to April in the following year. At the end of the rainy season, little difference in the grass cover is 415 

found between FIREON and FIREOFF. Observational studies support our conclusion that the 

vegetation in SAF savanna is highly adaptive to fire and can mostly recover to unburned conditions 

within 8 days to 12 months (Dintwe et al., 2017; Araújo et al., 2017; Das Chagas and Pelicice, 

2018).  

Different from grass PFTs, tree cover change caused by fire barely recovers within one 420 

growing season (Fig. 7e). This low fire adaptivity makes trees highly vulnerable to fire, especially 
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at the periphery of tropical forests. Our finding corroborates results from observational studies that 

fire plays a key role in tropical forest loss (Cochrane et al., 1999; Hansen et al., 2013). Meanwhile, 

fire-induced forest clearance facilitates the growth and spread of grasses, allowing for the 

coexistence between trees and grasses in the savanna ecosystems which would otherwise be 425 

encroached by trees (Higgins et al., 2007; Furley et al., 2008). 

The removal of vegetation canopy has caused a reduction in canopy area and vegetation 

productivity, reflected by the changes of LAI and GPP (Fig. 8a-b). For most parts of SAF savanna, 

fire has caused a relative change of LAI ( ∆234
234&'()*&&

)  by -3 % to -5 %, whose magnitude is 

proportional to the burned area fraction. Over regions with a burned area fraction higher than 10 %, 430 

we find a decrease of LAI by 0.10 m2 m-2 on average, accompanied by a decrease of vegetation 

height by 0.17 m (not shown). The fire impact on LAI accumulates in the dry season, during which 

the LAI reduction by fire outcompetes the recovery (Fig. 8c). The fire impact on LAI peaks in 

November when a relative change by -11% is found. At the end of the recovery season, there is 

still a small difference of 1 % in the grid-average LAI corresponding to the long-lasting tree cover 435 

loss. A greater magnitude of relative change (-5 % to -7 %) is found in vegetation productivity 

(GPP and NPP) caused by fire. Overall, we find fire causes an annual average reduction of GPP 

and NPP by 59 g C yr-1 and 32 g C yr-1 in regions with a burned area fraction higher than 10 %. 

The changes in vegetation cover and properties (GPP, NPP, LAI, and vegetation height) influence 

the radiation absorbed by the surface and the energy partitioning between LH and SH.  440 
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Figure 8 2000–2013 annual fire effects on (a) LAI (%) and (b) GPP (%), and (c) Monthly fire effects on 

the LAI/GPP (% mon-1) with burned area fraction (% mon-1) overlaid (The areal-average fire effect is 

calculated using grids with an annual burned area fraction > 10%). The y-axis of burned fraction in (c) is 

reversed. 445 

 

3.3 Fire effects on surface energy 

Over SAF, a decrease of net shortwave radiation (NSW) on surface is found by an average 

of 0.60 W m-2 (Fig. 9a). The magnitude of change ranges between -2.9 W m-2 and 0.8 W m-2 (Fig. 

9d), generally increasing with the annual burned area fraction. The consumption of vegetation 450 

canopy during the fire season has caused exposure of bare soil, which generally has a higher 

reflectance than vegetation canopy. Therefore, the surface NSW is reduced between June and 
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November (Fig. 10a), especially in October (-1.5 W m-2) when the arid soil has distinct contrast in 

surface albedo compared to the surrounding vegetation area. The bare soil albedo is largely 

decreased when the soil is moist by rain, and the corresponding NSW change quickly diminishes. 455 

The differences in NSW are mostly invisible after December. 

 

Figure 9 2000–2013 annual fire effects on (a) NSW (W m-2), (b) SH (W m-2), (c) LH (W m-2). (d) Box plot 

of annual fire effects on NSW, SH, LH, and TG (K) for grids with an annual burned fraction > 10% within 

SHAF, with medians (middle bars), interquartile ranges (between 25th and 75th percentiles; boxes), 460 

maxima/minima (whiskers) within ±1.5 × interquartile ranges, and outliers ("+").  The blue and red asterisks 

(*) denote the areal-weighted mean fire effects in SHAF 
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Figure 10 2000–2013 monthly fire effects on (a) NSW (W m-2), (b) SH (W m-2), (c) LH (W m-2), (d) TMP 465 

(K), (e) canopy transpiration (W m-2), (f) soil evaporation (W m-2), (g) q1, (h) q2, and (i) q3 with burned area 

fraction (%) overlaid. The y-axis of burned fraction in (a-c), (e), and (g) are reversed. 

 

The vegetation removal after fires has reduced the grid-average vegetation height, 

corresponding to a decrease in surface roughness length and an increase in aerodynamic resistance. 470 

The changes of aerodynamic features influence near-surface drag force, affecting the sensible heat 

flux exchange between land and atmosphere (Liu et al., 2016). In this experiment, we find a 

widespread reduction of SH by 0.3 – 4.0 W m-2 with a regional average of 1.4 W m-2 (Fig. 9b). 

The magnitude of change is generally proportional to the grid's annual burned area fraction (Fig. 

4b). The monthly fire effect on SH peaks in November, producing a decrease by 2.9 W m-2 in 475 

regions with an annual burned area fraction greater than 10 %. There is a small LH change (-0.1 

W m-2) at the annual scale (Fig. 9c) due to the opposite changes in canopy transpiration by -1.9 W 
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m-2 and surface evaporation by 1.8 W m-2 (discussed later). Overall, we find a slight increase in 

surface temperature by 0.14 K (Fig. 9d), which peaks in December (0.33 K; Fig. 10d). Despite 

decreasing NSW after fire, surface fluxes changes, especially SH, seem to dominate the 480 

temperature changes in tropical savanna. Aside from this, SH and LH are important nonradiative 

heating sources to the atmosphere. The decrease of SH and LH is expected to cause an atmospheric 

cooling and subsidence near the surface, negatively influencing convective precipitations (De 

Sales et al., 2018; Saha et al., 2016). Fire effects on precipitation are not simulated as we use fixed 

precipitations from the forcings. Yet it can be anticipated that the reduced atmospheric heating can 485 

largely suppress convective storms at the beginning of the rainy season and even impede monsoon 

progression. 

In the fire season, a maximum LH reduction by 0.7 W m-2 is found in October, while in the 

following rainy season, the simulated LH is enhanced by 0.7 W m-2 in February (Fig. 10c). The 

change of LH is related to the opposing changes of canopy transpiration and soil evaporation. 490 

When fire occurs, the removal of vegetation leaf area (Fig. 8a) has caused a decline in canopy 

transpiration (Fig. 10e), accompanied by increases in root-zone soil moisture (Fig. 10h) and deeper 

layer soil moisture (Fig. 10i) when less soil water is transported to the atmosphere. Previous studies 

showed that the removal of dense plant canopy caused a smaller surface resistance for soil 

evaporation (Schulze et al., 1994), especially when the soil was nearly saturated (Dunin, 1987; 495 

Gholz and Clark, 2002). Indeed, we find an increase in soil evaporation throughout our study 

period. The increase is weak during the dry season as there is not much evaporable water (Fig. 

10f), yet it is greatly enhanced after November when the soil is refilled after rain. The elevated soil 

evaporation has caused a decrease in the surface layer soil moisture (Fig. 10g), which is confined 

in wet months when soil is moist by rains.  500 
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3.4 Darkening effects due to ash deposition 

The inclusion of soil darkening effects does not affect the simulation of the annual burned 

area, carbon emission, and GPP, as we find the relative differences less than 0.002% and SCC 

higher than 0.99 between FIREONdark and FIREON. The fire impacts on LAI and GPP calculated 

using FIREONdark minus FIREOFF are -0.10 m2 m-2 and -61 g C yr-1, respectively, with the largest 505 

effect occurring in November. The annual mean fire effects on vegetation productivity and their 

monthly variations are highly consistent with those we find in FIREON minus FIREOFF. When 

soil darkening is considered, we find an annual increase of NSW by 0.07 W m-2 in SAF, which is 

opposite to our findings in Sect. 3.3 that fire has decreased NSW by 0.60 W m-2. Despite the 

opposite change in NSW associated with the darkened surface, the responses in SH and LH are 510 

consistent with/without darkening effects. We find a decrease in SH and LH by 1.0 W m-2 and 0.1 

W m-2 between FIREONdark and FIREOFF, respectively, and the corresponding change for canopy 

transpiration and soil evaporation is -1.9 W m-2 and 1.8 W m-2. An increase in TMP by 0.17 K is 

simulated when the surface darkening effect is included (the difference between FIREONdark and 

FIREOFF), slightly higher than the difference between FIREON and FIREOFF (0.14 K). Although 515 

NSW changes are opposite with and without soil darkening effects, the similar magnitude of 

change in SH and LH indicates that surface flux changes are dominated by aerodynamic/canopy 

resistance rather than surface radiation in the tropics, in accordance with our previous finding in a 

land degradation experiment (Huang et al., 2020b).  

We acknowledge that uncertainties may be induced as we assign a 60-day recovery period 520 

and an albedo of 0.1 to mimic soil darkening effects for all pixels regardless of the background 

climate, vegetation type, soil properties, and the months when fire occurs. All these factors may 

play a role in the immediate albedo anomalies after ash deposition, the amount of brightening, and 
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the evolution of radiative forcing after fire (Dintwe et al., 2017; Saha et al., 2017). Due to the 

limited number of observations and the variety in post-fire albedo anomalies, we are currently 525 

unable to constrain the uncertainty in the description of the surface darkening effects. Therefore, 

the purpose of sensitivity tests is to investigate how surface darkening effects affect our 

conclusions in Sect. 3.2 and Sect. 3.3, rather than to provide a quantitative estimate on the 

uncertainties range induced by surface darkening. 

 530 

4 Discussion and conclusion 

4.1 Limitation and uncertainty 

This is an offline study without atmospheric feedback. As such the fire effect is not fully 

assessed. Previous studies show that atmospheric feedback may influence the SH and LH changes 

by altering the temperature and moisture gradient between land and atmosphere (Huang et al., 535 

2020b), which cannot be represented in offline simulations as we used fixed atmospheric 

conditions from the forcing. However, we expect our findings to be valid in coupled-model 

simulations as surface fluxes changes by fire are shown to be dominated by resistance changes. 

Besides, De Sales et al. (2018) showed that fire decreased the atmospheric convective instability, 

which subsequently suppressed precipitation in the following rainy season. The precipitation 540 

changes may exert negative feedback on evapotranspiration and vegetation recovery. A full 

description of the feedback between fire, vegetation, and climate needs to be accomplished next 

in atmospheric models coupled with fire-vegetation models to further understand the interactions. 

There are also some uncertainties in this study due to the model-dependent representation 

of fire effects on vegetation. The fire impact in SSiB4/TRIFFID-Fire is represented in a relatively 545 

simple way using the PFT-specific combustion completeness and mortality factors. This study has 
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made extensive validation of fire regimes and vegetation productivity to make sure that the model 

captured key processes in fire-vegetation interactions at monthly to annual scales. We notice, 

however, that some models (for example, MCFIRE and SPITFIRE) have more complex process-

based treatments of post-fire effects in which tree damage is determined by fire intensity, residence 550 

time, and tree canopy height (Lenihan et al., 1998; Thonicke et al., 2010). These models are 

supposed to capture the varying fire effects for trees of different heights, as observational studies 

reported greater damage for younger and smaller trees whose crown could be completely scorched 

by fire (Higgins et al., 2000; Sankaran et al., 2008). However, it is still unclear if these 

sophisticated treatments improve the simulation of fire regimes (Hantson et al., 2020) and 555 

adequately produce vegetation responses to fire at different time scales. To evaluate the robustness 

of model results and address the uncertainties in the simulated fire effects, we argue that more 

simulations should be conducted using different land surface models, DGVM, and fire models to 

quantify the short-term fire effects on vegetation dynamics and surface energy budget. 

4.2 Conclusions 560 

Fire modifies vegetation dynamics and surface properties. These biogeophysical effects 

influence the energy fluxes exchanges, hydrology cycle, and regional and global climate. A 

property quantification of the short-term fire effects is critical to understanding the role of fire in 

Earth's ecosystems and climate and to providing proper information for societal mitigation activity. 

This study applied the SSiB4/TRIFFID-Fire to investigate the monthly to annual scale fire impact 565 

in Southern Africa, where fire acts as an essential determinant to the structure and functioning of 

the local ecosystems. The model is shown to reproduce the fire regimes, vegetation productivity, 

and surface fluxes compared to observation-derived datasets. A sensitivity test is also conducted 

to assess the possible soil darkening effects on the model simulated fire impact. 
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Fire has caused an annual reduction in grass cover by 4-8% for most areas in SAF savanna. 570 

The largest reduction is found at the beginning of the rainy season (November), which quickly 

diminishes before the next fire season. The reduction of tree cover is concentrated at the transition 

zone between tropical forests and savannas and is irreversible within one season. The low fire 

adaptivity of tree PFTs makes it highly vulnerable to fire and can cause large-scale deforestation 

in extreme years. The canopy removal has caused an annual reduction in LAI and GPP by 3-5 % 575 

by 5-7 %, respectively. The largest productivity change is found in November when both LAI and 

GPP are reduced by 11 %.  

The bare soil exposure after fire has caused an increase in albedo and thus a decrease of 

net shortwave radiation absorbed by the surface. Sensible heat is decreased by 1.4 W m-2 due to 

an increase in aerodynamic resistance. Canopy transpiration has dropped as well, which, however, 580 

is compensated by the increase in soil evaporation, producing a small annual effect on latent heat 

(0.1 W m-2). The fire impact on vegetation, surface fluxes, and soil moisture are highly consistent 

in simulations with/without the descriptions of aerosol deposition. Nevertheless, surface darkening 

related with aerosol deposition has enhanced the net shortwave absorption, elevating surface 

warming effects due to fire.  585 

Our results provide quantitative assessments of the regional fire effects over Southern 

Africa and highlight their distinct characteristics on trees and grasses. For grass-dominant areas 

where fires consume more than 10% of vegetation cover each year, fire effects on surface energy 

generally diminish within the rainy season, reflecting the high resilience of grasses to fire 

disturbance. In contrast, while forest fires have a smaller burned area, their effects are irreversible 590 

within one growing season and can cause large-scale deforestation at forests boundaries if 

accumulated for hundreds of years. 
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