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Abstract. The ability of Machine-Learning (ML) based model components to generalize to the previously unseen inputs, and 

its impact on stability of the models that use these components, has been receiving a lot of recent attention, especially in the 

context of ML-based parameterizations. At the same time, ML-based emulators of existing physically based parameterizations 

can be stable, accurate, and fast when used in the model they were specifically designed for. In this work we show that shallow-10 

neural-network-based emulators of radiative transfer parameterizations developed almost a decade ago for a state-of-the-art 

general circulation model (GCM) are robust with respect to the substantial structural and parametric change in the host model: 

when used in two seven month-long experiments with a new GCM, they remain stable and generate realistic output. We 

concentrate on the stability aspect of the emulators’ performance and discuss features of neural network architecture and 

training set design potentially contributing to the robustness of ML-based model components. 15 

1. Introduction 

One of the main difficulties in developing and implementing high-resolution environmental models is complexity of the 

physical processes involved. For example, the calculation of radiative transfer in a GCM often takes a significant part of the 

total model run time. From the standpoint of basic physics, radiative transfer is well understood. Very accurate, but 

computationally complex benchmark models exist (Oreopoulos et al, 2012) that demonstrate excellent agreement with 20 

observations (Turner et al, 2004). Parameterizations of radiative transfer seek a compromise between accuracy and 

computational performance. Arguably, the biggest simplification they make is treatment of radiative transfer as a 1-D as 

opposed to a 3-D process (Independent Column Approximation, ICA): both solar, or short-wave (SW), and terrestrial, or long-

wave (LW), radiation is considered to flow within the local column of the model, up and down the local vertical (two stream 

approximation), but not between columns. This approximation works well at spatial resolutions characteristic of general 25 

circulation models of the atmosphere (Marshak and Davis, 2005). To integrate over the spectrum of radiation, 

parameterizations split it into several broad bands and a number of representative spectral intervals that are treated 

monochromatically (Fu and Liou, 1992). State-of-the-art parameterizations can reproduce benchmark calculations to a high 

degree of accuracy even with these simplifications, but they still require substantial computational expense. 
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Radiative transfer parameterizations supply their host model with broadband fluxes and heating rates, which are obtained by 30 

integration over time, space, and frequency. Therefore, a trade-off between accuracy and computational expense can be found 

in how finely these dimensions are discretized (Hogan et al, 2017). 

§ Discretization in time. All GCMs update their radiative heating/cooling rates less frequently than the rest of the model 

fields. For example, National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) v16 

general circulation model (GCM) in its operational configuration updates its radiative fields once per model hour, 35 

while updates to temperature, moisture, most cloud properties etc. due to unresolved physics processes happen every 

150 model seconds, or 24 times per single radiation call. Updates due to dynamical processes happen even more 

frequently, every 12.5 seconds (Kain et al, 2020). This approximation is good for slowly changing fields of certain 

radiatively active gases but is less justified for small-scale clouds with lifetimes of an hour or less. 

§ Discretization in space. Some GCMs calculate radiative fields on a coarser spatial grid and interpolate them onto a 40 

finer grid used for the rest of the model variables. For example, radiation grid in European Centre for Medium-Range 

Weather Forecasts (ECMWF) Integrated Forecast System (IFS) v43R3 in the ensemble mode is 6.25 times coarser 

than the physics grid (Hogan et al, 2017). This may cause 2m temperature errors in areas of surface heterogeneity, 

e.g. coasts (Hogan and Bozzo, 2015). 

§ Discretization/sampling in frequency space. The Rapid Radiative Transfer Model (RRTMG), a parameterization of 45 

radiative transfer for GCMs used in NCEP GFS and ECMWF IFS, utilizes 14 bands in the short wave (Mlawer et al, 

1997), while the parameterization used at United Kingdom Met Office Unified Model utilizes 6 (Edwards and Slingo, 

1996). Monte Carlo Spectral Integration (Pincus and Stevens, 2009) performs integration over only a part of the 

radiative spectrum, randomly chosen in each point in time and space, allowing to increase temporal/spatial resolution 

of radiation calculations. Monte Carlo Integration of the Independent Column Approximation (McICA) (Pincus et al, 50 

2003), integrates over the entire spectrum, but samples subgrid-scale (SGS) cloud properties in a random, unbiased 

manner, in each grid column in time and space, instead of integrating over them.   

 

All of the methods for improving computational efficiency of radiative transfer parameterizations outlined above are either 

numerical and/or statistical in nature. In recent years there has been a substantial increase in interest in adding machine learning 55 

(ML) techniques to the arsenal of these methods. It has been accomplished in at least two different ways: 1) as an emulation 

technique for accelerating calculations of radiative transfer parametrizations or their components, 2) as a tool for development 

of new parameterizations based on data simulated by more sophisticated models and/or reanalysis.  

 

An ML-based emulator of a model physics parameterization is a functional imitation of this parameterization in a sense that 60 

the results of model calculations with the original parameterization and with its ML emulator are close to each other by a 

metric appropriate for an application at hand as to be identical for the practical purposes. From the mathematical point of view, 

model physics and individual parameterizations are mappings  
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𝑌 = 𝑀(𝑋); 		𝑋 ∈ 	ℜ!, 	𝑎𝑛𝑑	𝑌 ∈ 	ℜ"                             (1) 

where n and m are the dimensionalities of the input and output vector spaces correspondingly. Therefore, emulating existing 65 

parameterizations using ML techniques is a mapping approximation problem. In practice, this mapping can be defined by a 

set of its input and output vectors that is obtained by running the original model with the parameterization that is to be emulated, 

and saving inputs and outputs of this parameterization with a frequency and spatiotemporal coverage sufficient to 

comprehensively cover domain and range of the mapping. This data is then used for the emulator training. This approach 

allows to achieve very high accuracy of approximation because model output, unlike empirical data, is neither noisy nor sparse.   70 

 

The domain and range of the mapping is defined not only by the parameterization that is being emulated, but by the entirety 

of the atmospheric model environment: the dynamical core, the suite of physical parameterizations, and the set of configuration 

parameters for both. Once any of these components and/or parameters are modified, the set of possible model states is altered 

as well, possibly now including states that were absent in the emulator’s training data set.  75 

 

How accurately should the emulator approximate the original mapping? Unbiased, random, uncorrelated errors in radiative 

heating rates with magnitudes as large as the net cooling rate do not statistically affect forecast skill of an atmospheric model 

(Pincus et al, 2003). From the physical standpoint this can be understood in the following way: random small local heating 

rate errors in the bulk of the atmosphere lead to local small-scale instabilities that are mixed away by the flow; however, there 80 

no such mechanism for the surface variables, such as skin temperature, and errors in surface fluxes can be more consequential 

(Pincus and Stevens, 2013). Therefore, it may be useful to think of the above as necessary conditions on approximation error 

of an ML emulator of a radiative transfer parameterization for it to be a successful functional imitation of the original scheme. 

 

Developing a stable and robust NN-based emulator is a multifaceted problem that requires deep understanding of multiple 85 

technical aspects of the training process and details of NN architecture. Many techniques for stabilization of hybrid statistical-

deterministic models have been developed. Compound parameterization has been proposed for climate and weather modeling 

applications where an additional NN is trained to predict errors of the NN emulator, and, if the predicted error is above a 

certain threshold, compound parameterization falls back to calling the original physically-based scheme (Krasnopolsky et al, 

2008). Stability theory was used to identify the causes and conditions for instabilities in ML parameterizations of moist 90 

convection when coupled to idealized linear model of atmospheric dynamics (Brenowitz et al, 2020). An NN optimization via 

random search over hyperparameter space resulted in considerable improvements in stability of subgrid physics emulators in 

the Super-parameterized Community Atmospheric Model version 3.0 (Ott et al, 2020). A coupled online learning approach 

was proposed where a high-resolution simulation is nudged to the output of a parallel lower-resolution hybrid model run, and 

the ML-component of the latter is retrained to emulate tendencies of the former, helping to eliminate biases and unstable 95 

feedback loops (Rasp, 2020). Random forests approach was successfully used to build a stable ML parameterization of 
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convection (Yuval and O’Gorman, 2020). Physical constraints were used to achieve stability of hybrid models (e.g., Yuval et 

al, 2021; Kashinath et al, 2021). 

 

In this work we present robust and stable shallow-NN based emulators of radiative transfer parameterizations. We explore 100 

how much of a change in the model’s phase space (as well as the original parameterization’s domain and range) a statistical 

model like the NN can tolerate. We will approach this question by installing shallow-NN-based emulators of LW and SW 

RRTMG developed in 2011 for NCEP CFS (Krasnopolsky et al, 2010) into the new version 16 of NCEP GFS that became 

operational in March of 2021. Given the scope of changes in the host model (described in Section 3), we do not expect results 

of parallel runs to be identical, therefore, we will mostly concentrate on the stability aspect of the emulators’ performance. 105 

 

In Section 2, we briefly describe design aspects of these and other emulators of radiative transfer parameterizations reported 

in literature so far. In Section 3, we outline major differences between the 2011 version of CFS and the GFS v16, and describe 

numerical experiments with SW and LW emulators developed for the 2011 version of CFS (Krasnopolsky et al, 2010) and 

incorporated into GFS v16.   Results of these experiments are examined in Section 4. Section 5 discusses aspects of neural 110 

network architecture and training set design potentially contributing to stability of ML-based model components. Conclusions 

are formulated in Section 6.   

2. Survey on Technical Aspects of Existing ML Emulators of Radiative Transfer Parameterizations 

 

NeuroFlux, a shallow-neural-network-based LW radiative transfer parameterization, developed at ECWMF, was in part an 115 

emulator and in part a new ML-based parameterization (Chevallier et al, 1998, 2000). It consisted of multiple neural networks 

(NNs), each utilizing a hyperbolic tangent as an activation function (AF), but using a varying number of neurons in the single 

hidden layer: two NNs were used to generate vertical profiles of, respectively, up- and down-welling clear sky LW fluxes per 

each vertical layer; and a battery of NNs, two per each vertical layer of the host model, was used to compute profiles of up- 

and down-welling fluxes due to blackbody cloud on a given layer, with overall fluxes calculated using the multilayer graybody 120 

model. Training set for clear-sky NNs contained 6000 cloudless profiles from global ECMWF short-range forecasts; one day 

worth of three-hourly data per month of a single year was utilized. From this set, multiple training sets for cloudy sky NNs 

were derived, each containing 6000 profiles as well: a cloud with the emissivity of unity was artificially introduced on a given 

vertical layer, and radiative transfer parametrization was used in the offline mode to calculate resulting radiative fields. 

NeuroFlux was accurate and about an order of magnitude as fast as the original parameterization in a model with 31 vertical 125 

layers. It had been used operationally within the ECMWF four-dimensional variational data assimilation system (Janiskova et 

al, 2002). However, in model configurations with 60 vertical layers and above, NeuroFlux could not maintain the balance 

between speed up and accuracy (Morcrette et al, 2008).  
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The approach based on pure emulation of existing LW- and SW-radiative transfer parametrizations using NNs has been 130 

pursued at NCEP Environmental Modeling Center (Krasnopolsky et al, 2008,2010, 2012; Belochitski et al, 2011). In this 

approach, two shallow NNs with hyperbolic tangent activation functions, one for LW and the other for SW radiative transfer, 

generate heating rate profiles as well as surface and top-of-the-atmosphere radiative fluxes, replacing the entirety of respective 

RRTMG LW and SW parameterizations. Not only radiative transfer solvers were emulated, but also the calculations of gas 

and cloud optical properties (aerosol optical properties were prescribed from climatology). Two different pairs of emulators 135 

were designed for two different applications: climate simulation and medium-range weather forecast, each differing in the 

training set design. The data base for the former application was generated by running NCEP Climate Forecast System (CFS), 

a state-of-the-art fully coupled climate model, for 17 years (1990-2006) and saving instantaneous inputs and outputs of 

RTTMG every three hours for one day on the 1st and the 15th of each month, to sample diurnal and annual cycles, as well as 

decadal variability and states introduced by time-varying greenhouse gases and aerosols. 300 global snapshots were randomly 140 

chosen from this database, and consequently split into three independent sets for training, testing, and validation, each 

containing about 200,000 input/output records (Krasnopolsky et al, 2010). The data set for the medium range forecast 

application was obtained from 24 10-day NCEP GFS forecasts initialized on the 1st and the 15th of each month of 2010, with 

each forecast saving instantaneous three-hourly data. Independent data sets were obtained following the same procedure as for 

the climate application (Krasnopolsky et al, 2012).  145 

 

Dimensionality of data sets and NN input vectors for both applications was reduced in the following manner: some input 

profiles (e.g. pressure) that are highly correlated in the vertical were sampled on every other level without decrease in 

approximation accuracy; some inputs that are uniformly constant above certain level (water vapor) or below a certain level 

(ozone) were excluded from the training set on these levels; inputs that are given by prescribed monthly climatological look 150 

up tables (e.g. trace gases, tropospheric aerosols) were replaced by latitude and periodic functions of longitude and month 

number; inputs given by prescribed monthly time series (e.g. carbon dioxide, stratospheric aerosols) were replaced by the year 

number and periodic function of month number. No reduction of dimensionality was applied to outputs.   

 

A very high accuracy and up to two orders of magnitude increase in speed as compared to the original parameterization for 155 

both NCEP CFS and GFS full radiation has been achieved for model configurations with 64 vertical levels. The systematic 

errors introduced by NN emulations of full model radiation were negligible and did not accumulate during the decadal model 

simulation. The random errors of NN emulations were also small. Almost identical results have been obtained for the parallel 

multi-decadal climate runs of the models using the NN and the original parameterization, and in the limited testing in the 

medium-range forecasting mode. Regression trees were explored as an alternative to NNs and were found to be nearly as 160 

accurate in a 10-years long climate run while requiring much more computer memory due to the fact that the entire training 

data set has to be stored in memory during model integration (Belochitski et al, 2011).  
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Using the approach developed at NCEP, an emulator of RRTMG consisting of a single shallow NN that replaces both LW and 

SW parameterizations at once was developed at Korean Meteorological Agency for the short-range weather forecast model 165 

Korea Local Analysis and Prediction System in an idealized configuration with 39 vertical layers (Roh and Song, 2020). Inputs 

and outputs to RRTMG were saved on each 3 second time step of a 6 hour-long simulation of a squall line, and about 270,000 

input/output pairs were randomly chosen from this data set to create training, validation, and testing sets. Dimensionality 

reduction was performed by removing constant inputs. Several activation functions were tested (tanh, sigmoid, softsign, arctan, 

linear) with hyperbolic tangent providing best overall accuracy of approximation. The emulator was two orders of magnitude 170 

as fast as the original parameterization, and was stable in a 6 hour-long simulation. 

 

Two dense, fully-connected, feed-forward deep-NN-based emulators with three hidden layers, one emulator per 

parametrization, were developed for LW and SW components of RRTMG-P for the Department of Energy’s Super-

Parametrized Energy Exascale Earth System Model (SP-E3SM) (Pal et al, 2019). In SP-E3SM, radiative transfer 175 

parameterizations act in individual columns of a 2-D cloud resolving model with 31 vertical levels embedded into columns of 

the host GCM. Calculation of cloud and aerosol optical properties were not emulated, instead, original RRTMG-P subroutines 

were used. Inputs and outputs of radiative parameterizations were saved on every time step of a year-long model run, with 9% 

of this data randomly chosen to form a data set of 12,000,000 input/output records for LW, and of 6,000,000 input/output 

records for SW emulator training and validation. 90% of the data in these sets was used for training, and 10% for validation 180 

and testing. No additional dimensionality reduction was performed. Sigmoid AF was chosen as it was found to provide slightly 

better training convergence than the hyperbolic tangent. The emulator was an order of magnitude faster than the original 

parametrization and was stable in a year-long run.  

 

A number of ML-based radiative transfer parameterizations or their components have been developed, but, to our knowledge, 185 

have not yet been tested in an online setting, or in interactive coupling to an atmospheric model. Among them are deep-NN-

based parameterizations of gas optical properties for RTTMG-P (Ukkonen et al, 2020; Veerman et al, 2021), and a SW 

radiative transfer parameterization based on convolutional deep neural networks (Lagerquist et al, 2021). 

 

3. Design of Numerical Experiments with GFS v16  190 

GFS v16 differs from the 2011 version of the atmospheric component of NCEP CFS in a number of ways, most relevant of 

which are summarized in Table 1. 
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 CFS 2011 GFS 2021 

Dynamical core Spectral Eulerian Finite Volume Cubed Sphere 

Horizontal resolution T126 (∼100 km) C768 (∼13 km) 

Vertical res. and coordinate 64 levels, hybrid sigma-p 127 levels, hybrid sigma-p 

Physics Grid Gaussian Cubed Sphere 

Radiation RRTMG v2.3 RRTMG LW v4.82, SW v3.8 

Microphysics 
Zhao-Carr, single moment, two 

species, one prognostic variable 

GFDL, single moment, five 

species, five prognostic variables 

Planetary Boundary Layer K-profile Hybrid TKE-EDMF 

Middle atm. H20 photochemistry None Climatological 

03 photochemistry None Climatological 

Stratospheric aerosols Time-dependent, prescribed 

Tropospheric aerosols Climatological 

CO2 Time-dependent, prescribed 

Trace gases Climatological 

 195 
Table 1. Differences between the atmospheric component of 2011 NCEP CFS and 2021 version of NCEP GFS 

 

From the standpoint of implementation of radiative transfer emulators developed in 2011 into the modern generation of GFS, 

the most consequential change in the model is the near doubling of the number of vertical layers because it has a direct impact 

on the size of the input layer of the NN-based emulator. Therefore, we reconfigure GFS v16 to run with 64 layers in the vertical. 200 

 

Another consequential change in the model appears to be replacement of the Zhao-Carr microphysics (Zhao and Carr, 1993) 

with the GFDL scheme (Lin et al, 1983; Chen and Lin, 2011; Zhou et al. 2019). Using the latter in combination with 2011 

RTTMG emulators resulted in unphysical values of outgoing LW radiation at the top of the atmosphere (TOA) (not shown). 

Potential explanation is that the change in microphysical parameterization leads to an increase in the number of the model’s 205 

prognostic variables. Both the spectral and the finite volume dynamical cores include zonal and meridional wind components, 

pressure, temperature, water vapor and ozone mixing ratios as prognostic variables. Zhao-Carr microphysics adds only one 

more prognostic to this list: mixing ratio of total cloud condensate (defined as the sum of cloud water and cloud ice mixing 

ratios). GFDL microphysics adds 6 prognostic variables: cloud water, cloud ice, rain, snow, and graupel mixing ratios, as well 

as cloud fraction. The near doubling of the number of prognostic variables from 7 to 12 leads to the proportional increase in 210 

dimensionality of the physical phase space of the model. As a result, the set of possible model states in GFS v16 is very 
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different, from a mathematical standpoint, than in the 2011 CFS. Even though the vector of inputs to the LW parameterization 

remains the same in the new model, it is obtained by mapping from a very different mathematical object, potentially increasing 

the probability that a given input vector lies outside of the NN’s original training data set domain. For our experiments, we 

replaced the GFDL microphysical parametrization with the Zhao-Carr scheme.   215 

 

The new hybrid TKE-EDMF planetary boundary layer (PBL) parameterization (Han and Bretherton, 2019) also introduces a 

new prognostic variable, sub-grid scale turbulent kinetic energy, that was absent in the 2011 version of CFS. Even though w 

did not see adverse effects stemming from the use of the new PBL scheme in preliminary testing, we replaced it with the 

original K-profile/EDMF scheme (Han and Pan, 2011) out of abundance of caution.  220 

 

Concentrations of radiatively active gases are important inputs to radiative transfer schemes, and, more generally, are important 

parameters of the Earth system. From the standpoint of emulator training, change in these parameters leads to a change in 

phase space of the host model, potentially necessitating retraining of the emulator to ensure its accuracy and stability. CO2 

concentration values used during training of 2011 emulators ranged from 350 to 380 ppmv between the years 1990 and 2006, 225 

respectively. In our current experiments spanning 2018, CO2 concentration was about 409 ppmv, or about 10% higher on 

average than in the training set. 

 

There were incremental updates and parametric changes to all other components of the suite of physical parameterizations, too 

numerous to be listed here; in addition, model’s software infrastructure was completely overhauled, including new ESMF-230 

based modeling framework, coupler of the dynamical core to the physics package, input/output system, and workflow scripts 

(For more detail, see the document GFS/GDAS Changes Since 1991, 

https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html) 

 

For experiments presented in this paper, we configure GFS v16 to run at C96 horizontal resolution (~100 km) to reduce 235 

computational expense of the model. This configuration will be referred to GFS in the following discussion and was used in 

control runs. We then replaced both modern versions of LW and SW RTTMG parametrizations in GFS with radiative transfer 

emulators developed in in Krasnopolsky et al (2010). This version of the model will be referred to as hybrid deterministic-

statistical GFS, or HGFS. Two 7-month long runs were performed with each model configuration: one initialized on 1/1/2018 

and the other one on 7/1/2018, both using 2018 values of radiative forcings, with the instantaneous output saved 3-hourly. Sea 240 

surface temperatures (SSTs) in GFS forecasts are initialized from analysis and exponentially relax to climatology on a 90-day 

time scale as forecast progresses. First 30 days of each of the two 7 month-long runs were discarded, and remaining 6 months 

of data in each experiment were combined into a single data set mimicking a 12 month-long run forced by climatological SSTs.  
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4. Results  

 245 

 
(a) 

 
(b) 

Figure 1. Zonal and time mean over 12-month worth of model output covering 2/1/2018-2/1/2019 for: (a) Long-wave heating rate, 
K/day; (b) Short-wave heating rate, K/day. Upper row – results produced by HGFS, medium – by GFS, and the lower row the 
difference (HGFS – GFS). Vertical coordinate shows model level number. 

 

Figure 1 shows zonal and time mean over 12 months worth of model output, covering the period of 2/1/2018-2/1/2019 for LW 250 

(left panel) and SW (right panel) heating rates. Global biases are small for both heating rates and constitute about 2-3% of the 

global mean value. Decrease in LW radiative cooling at the top of tropical and subtropical boundary layer is compensated by 

the corresponding decrease in SW radiative heating, and consistent with decrease in low cloud cover in these areas (not shown). 

Biases in the stratopause may be related to the new parameterizations of O3 and H2O photochemistry that were not present in 

the 2011 version of the model. 255 
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(a) 

 
(b) (c) 

Figure 2. Time mean over 12-month worth of model output covering 2/1/2018-2/1/2019 for: (a) Outgoing LW radiation at the TOA; 
(b) Outgoing SW radiation at the TOA; (c) Downwelling SW radiation at the surface. Upper row – results produced by HGFS, 
medium – by GFS, and the lower row the difference (HGFS – GFS).  

Figure 2 panel (a) shows outgoing long wave radiation (OLR) at TOA, and panel (b) shows outgoing SW radiation (OSR) at 260 

TOA. Global biases are below %1 of the global time mean; however, local biases are more pronounced. Decrease in OLR and 

increase in OSR over the Maritime continent is consistent with increase in high cloud cover in the region (not shown). Increase 

in OLR and decrease in OSR in the subtropical areas off western coasts of continents is consistent with decrease in 

stratocumulus cloud cover (not shown). These changes in cloud cover are also consistent with increase in downwelling SW at 

the surface in the stratocumulus regions and decrease over the Maritime continent, shown on the panel (c) of Figure 2, with 265 

global time mean biases being about 0.2% of the global average. 
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(a) 

 
(b) 

 
(c) 

Figure 3. Time means over 12-month worth of model output covering 2/1/2018-2/1/2019 for: (a) Upwelling SW radiation at the 
surface; (b) Upwelling LW radiation at the surface; (c) Downwelling LW radiation at the surface. Upper row – results produced by 
HGFS, medium – by GFS, and the lower row the difference (HGFS – GFS).  270 

Figure 3(a) shows upwelling SW radiation flux at the surface. Global mean negative bias is almost 5% of the global average 

value, with negative biases prevalent over continents and extratropical oceans and positive biases over tropical oceans. 

Upwelling LW at the surface (Figure 3(b)) is biased high by about 0.5% of the global mean value, with positive biases over 

most of the continents, polar areas and most of tropical oceans, and negative biases in the midlatitude oceans, northern Canada 

and Alaska, as well as Barents and Norwegian Seas. Downwelling LW at the surface (Figure 3(b)) is biased low globally by 275 

approximately 0.5%. Table 2 summarizes time and global mean biases for the heating rates and radiative fluxes predicted by 

the emulators.  

 

Figure 4 shows time series of a 10-day running mean of globally averaged LW and SW fluxes at the surface and the TOA 

generated by HGFS (black curves) and GFS (green curves) for the last 6 months (2/1/18-8/1/18) of a 7-month long run 280 

initialized on 1/1/2018. Time series of the same quantities for the run initialized on 7/1/18 exhibit similar properties and 
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therefore are not shown. Magnitudes and signs of biases of each emulator predicted variable are consistent with their time and 

globally averaged values shown in Table 2.  HGFS run captures seasonal cycle and the amplitude of seasonal and sub-seasonal 

variability reasonably well.  As to be expected from long term free running experiments with a GCM, details of individual 

weather systems differ between the two runs even when considered through the lens of a 10-day running mean. This is 285 

manifested most starkly in short-wave fluxes leaving the atmosphere, outgoing SW at TOA (Figure 4b) and downwelling SW 

at the surface (Figure 4d), which are very sensitive to the instantaneous cloud distributions.   

 

Figure 4. Time series of a running 10-day mean covering 2/1/2018-8/1/2018 for: (a) Outgoing LW at TOA; (b) Outgoing SW at TOA; 
(c) Downwelling LW radiation at the surface ; (d)  Downwelling SW radiation at the surface; (e) Upwelling LW radiation at the 290 
surface; (f) Upwelling SW radiation at the surface. Black curves – results produced by HGFS, green – by GFS.  
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Variable LWHR SWHR OLR OSR  LW Up Sfc LW Dn Sfc SW Up Sfc SW Dn Sfc 

Bias 5.56e-2 

K/day 

-3.62e-2 

K/day 

1.36 

W/m**2 

0.49 

W/m**2 

-0.59 

W/m**2 

-1.55 

W/m**2 

1.86 

W/m**2 

-0.59 

W/m**2 

Table 2. Time means and global mean biases in radiative heating rates and fluxes over 12-month worth of model output covering 
2/1/2018-2/1/2019.  295 

5. Discussion 

What could be the factors contributing to stability of the emulators presented in this paper? In the following, we highlight and 

discuss aspects of the machine learning technique choice (shallow vs deep neural network, activation function selection) and 

training set design that distinguish the emulators developed in Krasnopolsky et al (2010). 

5.1 Shallow vs. deep neural networks: complexity and nonlinearity 300 

Application of shallow NNs (SNNs) to the problem of mapping approximation has thorough theoretical support. The universal 

approximation theorem proves that an SNN is a generic and universal tool for approximating any continuous and almost 

continuous mappings under very broad assumptions and for a wide class of activation functions (e.g., Hornik et al, 1990; 

Hornik, 1991).  Similarly broad results for deep NNs (DNNs) do not exist as of yet (Vapnik, 2019), however specific 

combinations of DNN architectures and activation functions have theoretical support (e.g., Leshno et al, 1993; Lu et al, 2017; 305 

Elbrachter et al 2020). Until there is a universal theory, it has been suggested to consider DNN a heuristic approach since, in 

general, “from the theoretical point of view, deep network cannot guarantee a solution of any selection problem that constitute 

complete learning problem” (Vapnik, 2019). These considerations are important to keep in mind when selecting NN 

architecture for the emulation of model physics or its components 

 310 

Next, we compare some properties of DNNs and SNNs to further emphasize their differences and to point out some properties 

of DNNs that may lead to instabilities in deterministic models coupled to DNN-based model components. 

 

To avoid overfitting and instability, complexity, and nonlinearity of approximating/emulating NN should not exceed 

complexity and nonlinearity of the mapping to be approximated.  A measure of the SNN complexity can be written as (see 315 

below for explanation), 

ℂ#$$ = 𝑘 ⋅ (𝑛 +𝑚 + 1) +𝑚                                  (2) 

where n and m are the numbers of the SNN inputs and outputs, and k is the number of neurons in a single hidden layer.  The 

complexity of the SNN (Equation 2) increases linearly with the number of neurons in the hidden layer, k. For given numbers 

of inputs and outputs there is only one SNN architecture/configuration with a specified complexity ℂ#$$. 320 

 

For the DNN complexity, a similar measure of complexity can be written as (again, see below for explanation), 
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ℂ%$$ = ∑ 𝑘&'((𝑘& + 1))
&	+	,                                      (3) 

where ki  is the number of neurons in the layer i (i = 0 and i = K correspond to the input and output layers, respectively).  The 

complexity of the DNN (Equation 3) increases geometrically with the increasing number of layers, K.   325 

 

Both ℂ#$$ and ℂ%$$ are simply the number of parameters of the NN that are trained or fit during SNN/DNN training.  While 

there exists a one to one correspondence between the SNN complexity, ℂ#$$, and the SNN architecture, given the fixed number 

of neurons in the input and output layers, correspondence between the DNN complexity, ℂ%$$, and the DNN architecture is 

multivalued: many different DNN architectures/configurations have the same complexity ℂ%$$ given the same size of input 330 

and output layers. Overall, controlling complexity of DNNs is more difficult than controlling complexity of SNN. 

 

For an SNN given by the expression 

𝑦. = 𝑏.( +9𝑎.&( ∙ 𝑡& 	
/

&+(

,			𝑗 = 1,⋯ ,𝑚	, 

where n, m, and k are the same as in Equation (2), nonlinearity increases arithmetically or linearly with addition of each new 335 

hidden neuron, 𝑡& = 𝜙(𝑏&, +∑ 𝑎&0, ∙ 	𝑥0!
0+( ), to the single hidden layer of the NN.   

 

For a DNN, symbolically written as 

𝑌 =	𝑋!'( = 𝐵! + 𝐴! ∙ 𝜙 B𝐵!1( +	𝐴!1( ∙ 𝜙 C𝐵!12 +	𝐴!12 ∙ 𝜙D𝐵!13 +	⋯𝜙(𝐵, +	𝐴, ∙ 𝑋)EFG, 

each new hidden layer/neuron introduces additional nonlinearity on top of nonlinearities of the previous hidden layers; thus, 340 

the nonlinearity of the DNN increases geometrically with addition of new hidden layers, much quicker than the nonlinearity 

of the SNN.  Thus, controlling nonlinearity of DNNs is more difficult than controlling nonlinearity of SNNs.  The higher the 

nonlinearity of the model the more unstable and unpredictable generalization is (especially nonlinear extrapolation that is an 

ill-posed problem).  

 345 

DNNs are a very powerful and flexible technique that is extensively used for emulation of model physics and its components 

(Kasim et al, 2020). Discussion of its limitations can be found in Thompson et al (2020). The arguments listed here are intended 

to point out possible sources of instability of DNNs in the models and the need for careful handling this very sensitive tool. 

5.2 Preparation of training sets 

Specifics of training set design may impact stability of the NN as well. We would like to point out a few aspects of training 350 

set preparation that, in our experience, are of relevance to development of robust ML-based components of geophysical models.   
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A general rule of thumb when it comes to fitting statistical models to data is that the number of records in the training set 

should be at least as large as the number of the model parameters, or, in the context of current discussion, as the NN complexity 

introduced in Section 5.1. As a consequence, NNs of larger complexity require larger training sets to approximate a given 355 

mapping. To use DNN as an example, as the complexity of DNN, ℂ%$$ (Equation 3), increases geometrically with the number 

of DNN layers, so does the amount of data required for the DNN training (Thompson et al, 2020) 

 

We also find that comprehensiveness of the training set is an important contributing factor to the generalization capability of 

the NN. In the context of application at hand, comprehensiveness of the training set means that it should encompass as much 360 

of complexity of the underlying physical system as permitted by the numerical model that hosts the NN. In practice, it translates 

into sampling diurnal, seasonal, and annual variability, as well as states introduced by boundary conditions, e.g greenhouse 

gas and aerosol concentrations, realistic orography, and surface state.  Inclusion of events of special interest, e.g hurricanes, 

snow storms, droughts, extreme precipitation events etc., is beneficial as well. 

 365 

Care should be taken of proper sampling of the training data. For example, saving the training data set on a Gaussian longitude-

latitude grid will result in overrepresentation of polar areas, and data must be resampled to get more uniform representation 

over the globe.   

 

Purging and normalization of inputs and outputs are important.  Constant inputs and outputs must be removed: from the 370 

standpoint of mapping emulation, constants carry no information about the input-to-output relation; however, with incorrect 

normalization, they may become a source of noise during training. Normalization of inputs and outputs strongly affects NN 

training. More specifically to the present application, if some inputs or outputs of an NN are vertical profiles of a physical 

variable, as is common in geophysical models, the profiles should be normalized as a whole, as opposed to as a collection of 

independent variables, for the NN to better capture correlations and dependencies between the levels of the profile 375 

(Krasnopolsky, 2013). 

 

5.3 Continuously vs. not continuously differentiable activation functions 

Universal approximation theorem for SNNs is satisfied for a wide class of bounded, non-linear AFs. Note, that many popular 

AFs used in DNN applications, e.g. variants of ReLU, do not belong to this class. However, for a specific problem of mapping 380 

approximation, it may be useful to consider additional restrictions on AFs.  

 

If the AF is almost continuous, or, in other words, has only finite discontinuities (e.g, step function), the first derivative 

(Jacobian) of the NN using this AF will be singular.  If the AF is not continuously differentiable (e.g, ReLU), its first derivative 

will not be continuous (will have finite discontinuities), and so will be the NN Jacobian.  Using a non-continuously 385 
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differentiable NN as a model component may lead to instability, especially if the Jacobian of this component is calculated in 

the model.  Using gradient-based optimization algorithms for training such NNs may be challenging due to discontinuities in 

gradients.  

 

If the AF is monotonic, the error surface associated with a single-layer model is guaranteed to be convex, simplifying the 390 

training process (Wu, 2009).  When AF approximates identity function near the origin (i.e. 𝜙(0) = 0. , 𝜙4(0) = 1, and 𝜙4 is 

continuous at 0), the neural network will learn efficiently when its weights are initialized with small random values. When the 

activation function does not approximate identity near the origin, special care must be used when initializing the weights 

(Susillo and Abbott, 2014).  

 395 

It is noteworthy that the sigmoid and hyperbolic tangent AFs, popular in SNN applications, meet all aforementioned criteria. 

Additionally, in the context of emulation of model physics parameterizations, these AFs provide one of the lowest training 

losses, as compared to other AFs (Chantry et al, 2020). 

6. Conclusions 

One of the major challenges in development of ML/AI-based parameterizations for multi-dimensional non-linear forward 400 

environmental models is ensuring stability of the coupling between deterministic and statistical components. This problem is 

particularly acute for neural network-based parameterizations since, in theory, generalization to out-of-sample data is not 

guaranteed, and, in practice, previously unseen inputs may lead to unphysical outputs of the NN-based parameterization, often 

destabilizing the hybrid model even in idealized simulations. 

 405 

Shallow NN-based emulators of radiative transfer parameterizations developed almost a decade ago for a state-of-the-art GCM 

are stable with respect to substantial structural and parametric change in the host model: when used in two seven months long 

experiments with the new model, they not only remain stable, but generate realistic output. Two types of modifications of the 

host model that NN emulators cannot tolerate are the change of the model vertical resolution, and the change in number of 

model prognostic variables due to, in both cases, alteration of dimensionality of phase space of the mapping (parameterization) 410 

and of the emulating NN. After the changes of this nature are introduced into the host model NN emulators must be retrained.   

 

We conjecture that careful control of complexity and nonlinearity of an AI/ML model component, along with 

comprehensiveness and realism of its training data set, are important factors contributing both to the component’s 

generalization capability and to stability of the model hosting it.  415 
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