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Abstract. Without properly accounting for both fault kinematics and faulted surface observations, it is challenging to cre-

ate 3D geological models of faulted geological units that are seen in all tectonic settings. Geometries where multiple faults

interact, where the faulted surface geometry significantly deviate from a flat plane and where the geological interfaces are

poorly characterised by sparse data sets are particular challenges. There are two existing approaches for incorporating faults

into geological surface modelling: one approach incorporates the fault displacement into the surface description but does not5

incorporate fault kinematics and in most cases will produce geologically unexpected results such as shrinking intrusions, fold

hinges without offset and layer thickness growth in flat oblique faults. Another approach builds a continuous surface without

faulting and then applies a kinematic fault operator to the continuous surface to create the displacement. Both approaches have

their strengths, however neither approach can capture the interaction of faults within complicated fault networks e.g fault du-

plexes, flower structures and listric faults because they either (1) impose an incorrect (not defined by data) fault slip direction;10

or (2) require an over sampled data set that describes the faulted surface location. In this study we integrate the fault kinematics

into the implicit surface by using the fault kinematic model to restore observations and the model domain prior to interpolat-

ing the faulted surface. This approach can build models that are consistent with observations of the faulted surface and fault

kinematics. Integrating fault kinematics directly into the implicit surface description allows for complex fault stratigraphy and

fault-fault interactions to be modelled. Our approaches show significant improvement in capturing faulted surface geometries15

especially where the intersection angle between the faulted surface geometry and the fault surface varies (e.g. intrusions, fold

series) and when modelling interacting faults (fault duplex).

1 Introduction

Building 3D geological models of complex geometries (e.g. fault duplexes, flower structures, folds, fold interference patterns)20

from only field observations is still a challenge for most 3D modelling approaches. This challenge exists because many of the
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observations and structural geology rules are not directly integrated into the mathematical description of the geological models.

Structural geologists typically use their knowledge, expertise and bias to digitally reproduce a working hypothesis which often

derives from an internally visualised model (Jessell et al., 2014). The modelled geometries will always converge towards the

geologists bias and conceptual model, meaning that model building cannot be used to test different geological hypotheses.25

An alternative would be to have structural geology concepts encoded in the modelling process. This would enable testing of

different geological settings and the geologists’ expertise would be used to assess the viability of these different geometries.

This strategy has been developed for modelling folded geometries, based on the structural observations and concepts (Laurent

et al., 2016; Grose et al., 2017, 2018, 2019), a mathematical description of the fold geometry that combines a fold structural

frame and fold shape profiles. The fold modelling framework has been applied to complex synthetic examples (Laurent et al.,30

2016; Grose et al., 2017, 2018) and to natural fold examples (Grose et al., 2017, 2019). In this contribution we adapt the fault

frame and a kinematic parameterisation of fault geometries (Jessell and Valenta, 1996; Godefroy et al., 2018; Laurent et al.,

2013) and apply it directly to the implicit description of the faulted surfaces. Rather than applying the fault kinematics to the

modelled surfaces we restore the observations and model domain and interpolate the surfaces without the faults.

Defining the geometry of faults and fault networks is a significant component of understanding and characterising the35

structural architecture of geological terranes. Geometrical descriptions of fault networks and stratigraphic interfaces are used

to refine and improve resource characterisation (Cox et al., 1991; Mueller et al., 1988; Vollgger et al., 2015), geophysical

inversions (Blaikie et al., 2014) and for understanding complex geological structures (Putz et al., 2006). Implicit 3D geological

modelling methods do not directly incorporate fault kinematics into the surface description and as a result cannot reliably model

the interaction between faults in fault networks, e.g. duplex faults, flower structures, relay ramps and listric faults (Cherpeau40

and Caumon, 2015; Calcagno et al., 2008; de la Varga and Wellmann, 2016). It is challenging to build models that are consistent

with both geological observations and fault kinematics because the existing methods require the user to choose whether to use

observations of the faulted surface or honour fault kinematic observations/knowledge (Laurent et al., 2013; Godefroy et al.,

2018)

Modelling the location of the fault surface is generally approached in a manner analogous to modelling bedding or any other45

structural feature (Calcagno et al., 2008). The challenge for modelling faults is in characterising how the fault interacts with

other structural features, e.g. how stratigraphy or other geological features are offset and deformed by the fault. Conceptually

there are two approaches for modelling faults: (1) incorporating the fault displacement geometries into the description of the

geological surfaces; or (2) apply fault displacements after interpolating a continuous surface.

To incorporate faults into the description of the geological surface a step function can be added to the implicit function50

(Calcagno et al., 2008; de la Varga and Wellmann, 2016; Marechal, 1984). The step function applies a jump in the scalar field

value across the fault discontinuity, however unless (1) the angle between the fault surface and the faulted surface is constant

and; (2) the angle between the faulted surface and the fault slip direction is constant the modelled fault is not representative of

the true fault movement. There is no direct method of incorporating fault kinematics (movement direction and displacement

magnitude) into the description of the geological surface using step functions. One approach that has been used for incorpo-55

rating fault displacements is to generate multiple model realisations framing the geological modelling problem as a Bayesian
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inverse problem. In this probabilistic framework model data points become parameters for the forward model and fault dis-

placement can be incorporated by including a likelihood function where the fault displacement is expected to come from a

prior probability distribution, that may be guided by observations of the fault displacement (de la Varga and Wellmann, 2016;

Wellmann et al., 2017; Godefroy et al., 2018). However, this approach is still limited by the inability for fault kinematics to be60

incorporated into the step function.

The alternative approach is to apply the fault displacement to an already interpolated surface. A first possibility is to ap-

ply restoration of the geometric structures surrounding the faults and find the displacement field based on some mechanical

likelihood criterion (Thibaut et al., 1996; Maerten and Maerten, 2015). However, finding an objective mechanical criterion is

difficult and computationally challenging, an alternative is to construct the geometry of the continuous surface prior to faulting65

and then to apply the fault operator to the faulted surface (Godefroy et al., 2018; Laurent et al., 2013; Georgsen et al., 2012).

In this approach, both the slip direction and the magnitude are used to constrain the fault displacement. Since a continuous sur-

face needs to be interpolated prior to applying the fault, the surface observations within the fault ellipsoid are discarded when

interpolating the initial surface. The observations within the fault ellipsoid can then be used to determine the fault displacement

magnitude by minimising the misfit between the surface and observations.70

Using step functions in the implicit surface description and adding faults to existing surfaces are both useful in basin settings

where the pre-fault geometry is reasonably simple and most geometrical complexities are associated with the fault geometry.

However, it is unclear how these approaches can be applied to fault networks with a large number of interconnected discrete

faults or when modelling complex poly-deformed geometries. When modelling multiple interconnected faults (e.g. splay faults,

crosscutting faults and abutting faults), it can be challenging to properly account for the relative kinematics between faults,75

especially where the observations of the faulted surfaces are limited to a map view.

In this contribution, we adapt the approach presented by Laurent et al. (2013) and Godefroy et al. (2018), by incorporating

the fault operator directly into the implicit function. This uses the fault kinematics to restore the model domain and data points

to a pre-fault geometry. The restoration function is defined within a structural frame (Grose et al., 2020) where the coordinates

define fault surface, fault slip direction and the fault extent. This restoration function allows for the kinematics of the fault to80

be directly incorporated into the modelling work flow. Faults are modelled starting with the most recent and the kinematics are

added to every consecutive geological feature added to the model. This application of time aware geological modelling follows

on from previous work for modelling folds by (Grose et al., 2017; Laurent et al., 2016). In this paper we outline the framework

for integrating faults used in LoopStructural (Grose et al., 2020). We show case studies ranging in complexity from a simple

faulted intrusion where we demonstrate the limitation of step functions, a thrust duplex system, and a faulted fold series using85

the fold modelling framework from Laurent et al. (2016) and Grose et al. (2017).
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2 Background 3D modelling methods

2.1 Surface representation

Three dimensional structural geological models are a representation of subsurface geology where the geological units are

either represented using boundary surfaces (upper and lower contacts) (Wellmann and Caumon, 2018) or a discretisation on a90

predefined support. There are two approaches that are commonly used for representing surfaces in 3D geological models. The

first approach uses explicit surface representation: the geometry of surfaces are contained using a support that is collocated with

the surface geometry. The surfaces are represented using discrete objects such as triangulated surfaces, two-dimensional grids

or parametric surfaces. The surface geometry is usually built by either directly triangulating data points or using interpolation

algorithms to create a smooth surface fitting the data (Chilès and Delfiner, 1999; de Kemp, 1999; Mallet, 1992). The explicit95

surface representation means that the geometry of the surface is only represented where the surface is located.

The second approach, implicit surface representation, uses isovalues of one or several scalar fields in 3D space to represent

the geometry of geological surfaces (e.g. stratigraphic horizons and fault surfaces) (Jessell, 1981; Calcagno et al., 2008; Cau-

mon et al., 2013; Cowan et al., 2003; Frank et al., 2007; Hillier et al., 2014; Lajaunie et al., 1997; Mallet, 2002, 2014; Maxelon

et al., 2009; Moyen et al., 2004; Yang et al., 2019; Renaudeau et al., 2019; Manchuk and Deutsch, 2019; Gonçalves et al., 2017;100

De La Varga et al., 2019). The value of the scalar field represents the distance away from a reference horizon. Alternatively, if

the geological interfaces are conformable, the surfaces can be represented by isovalues of the scalar field representing the rela-

tive thicknesses between the interfaces. The gradient of the scalar field is a representation of the orientation of the surface being

modelled. These scalar fields can be constructed using a variety of different interpolation methods: e.g. co-kriging (Calcagno

et al., 2008; De La Varga et al., 2019; Gonçalves et al., 2017; Lajaunie et al., 1997), radial basis functions (Cowan et al., 2003;105

Hillier et al., 2014) or using discrete interpolation on a predefined support (Irakarama et al., 2020; Caumon et al., 2013; Frank

et al., 2007; Moyen et al., 2004; Mallet, 1992). Most modelling approaches use the same interpolation algorithms for all types

of geological surfaces even though the physical properties and expected geometries can vary.

These interpolation methods mean models can be created with less bias and are more reproducible. Implicit methods

also make it possible to generate a set of model realisations reflecting geological uncertainty (Manchuk and Deutsch, 2019;110

Cherpeau et al., 2010; Henrion et al., 2010; Wellmann et al., 2010; Lindsay et al., 2012; Yang et al., 2019).

2.2 Faults in implicit modelling

There are a number of existing techniques available for incorporating faults into the implicit approach with methods allowing

for topology (Calcagno et al., 2008; Moyen et al., 2004), kinematics (Laurent et al., 2013; Godefroy et al., 2018) and uncertainty

(Cherpeau and Caumon, 2015; Cherpeau et al., 2012) to be incorporated into the modelling workflow. Incorporating faults into115

implicit surface representation is difficult because faults represent a discontinuity in geological feature being modelled and

require a discontinuity in the implicit function. The geometry of the faulted geological feature (stratigraphic interfaces, faults

or foliations) should be consistent with the kinematics of the fault.
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There are three possible approaches that can be used to incorporate faults into implicit surface description: (1) interpolate

fault domains using independent implicit functions; (2) incorporate the fault into the domain discretization or; (3) apply a fault120

operator to an already interpolated surface.

The first approach separates the faulted feature using two implicit functions, one on the hanging wall and another on the

foot wall. A boolean operation using the fault surface geometry is used to define which implicit function is used to represent

the faulted feature (Caumon et al., 2013; Cowan et al., 2003; Frank et al., 2007). When the hanging wall and foot wall are

represented using separate implicit functions, the displacement of the fault is not explicitly defined and will be a result of125

the observations of the faulted feature. There is no incorporation of the fault kinematics unless these are captured by the

location/geometry of observations of the faulted surface. Using different implicit functions for the hanging wall and foot wall

is suitable for areas where the faults cut across the whole model and there is significant displacement and no continuity expected

across the model. For these approaches to work there needs to be a significant amount of data near the fault damage zone to

correctly characterise the fault related deformation, otherwise the kinematic indicators of the layers may not fit the geologists130

knowledge about the fault.

The second approach directly incorporates the location of the fault into the polynomial trend of the implicit function using

a discontinuous step function (Calcagno et al., 2008; De La Varga et al., 2019; Marechal, 1984). The fault displacement

magnitude is not used as an observation for building the model but is found by solving the interpolation system for the co-

kriging matrix. de la Varga and Wellmann (2016) applied Bayesian inference to incorporate the fault displacement into the135

implicit modelling work flow by using the observations as parameters for the inverse problem. In their approach models with

different displacements are generated by perturbing the observations of the faulted surface. The objective function that is

incorporated into their Bayesian model as a likelihood, only considers the magnitude of the displacement and not the direction

of displacement. This approach provides an interesting idea of using Bayesian inference as a method for optimising the model

parameters in order to try and generate models which fit both geological knowledge and geological observations. An alternative140

to this approach for discrete implicit methods is to introduce a discontinuity in the regularisation term, by either cutting the

interpolation support by the fault geometry (Caumon et al., 2013; Frank et al., 2007) or introducing ghost nodes into the discrete

elements (Irakarama et al., 2020).

The third approach integrates the fault kinematics into implicit 3D modelling work flows by using a numerical operator that

defines the distribution of fault slip on and close to the fault surface (Godefroy et al., 2017, 2018; Laurent et al., 2013). In these145

approaches a fault operator models fault displacement within an ellipsoidal fault volume. The displacement is discontinuous

across the fault surface and decreases smoothly away from the fault. In this approach, a fault volume is defined where the

fault displacement is non-zero. The geological interfaces are defined by first interpolating a continuous surface across the

fault. Displacement profiles can be identified, either manually defined or using numerical optimisation techniques (Godefroy

et al., 2018). This approach applies the fault to a surface and is not integrated with the implicit function meaning it would not150

directly integrate with approaches where the implicit function represents a continuous features such as foliations, conformable

stratigraphy or grade shells.
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Alternative kinematic models for describing fault displacements exist such as the trishear model (Erslev, 1991; All-

mendinger, 1998). Trishear is a kinematic model describing the geometry of fault propagation folds and has been presented

in pseudo 3D (Cristallini and Allmendinger, 2001) and in true 3D (Cardozo, 2008). Trishear has been used to understand155

the structural evolution that has resulting in the geometries observed in the field and as part of seismic interpretations. In the

interpretation of reflection seismic data, kinematic fault restoration approaches based on vector fields have been proposed

(Hale, 2013; Wu et al., 2015). For example, Wu et al. (2015) determine the fault tip by seismic image processing, then

interpolate fault shifts in the volume by least-squares smoothing. However, this model is most directly applicable in contexts

where observations are sparse, and the smoothing assumes that fault shifts depend on the stratigraphic orientation. It also160

restores all faults at once whereas sequential restorations allow for the fault topology to be includes.

2.3 Limitations of the presented approaches

None of the presented approaches are capable of incorporating both fault kinematics and geological observations into the

the geological surface description. The step function approach is appealing because the fault is incorporated into the model

description, however it cannot capture the kinematics of the fault where the angle of intersection between the fault and faulted165

surface is variable (e.g. fold series, or intrusions). For example, in Fig. 1A and Fig. 1C a fold series and intrusion are faulted by a

reverse fault. In both of these examples the intersection angle between the fault surface and the geometry of the faulted surfaces

varies significantly within the model. In Fig. 1B and Fig. 1D the same structures are shown where the fault is incorporated using

step functions. Both examples show an increase in the value of the scalar field across the fault geometry, however the gradient

of the implicit function is continuous across the fault. This results in faulted surfaces that do not show the expected kinematics,170

for example the fold axial traces are not displaced by the fault and the volume of the intrusion shrinks across the fault.

3 A kinematic framework for modelling faults

Faults are described by geologists by the movement of rock packages and not only by the location of the discontinuity. Struc-

tural geologists describe faults with the fault slip and the displacement magnitude. In a lot of cases measuring the fault slip

direction is impossible, the geologist will have a conceptual model to describe the fault displacement direction, for example175

using their conceptual model based on geological knowledge. This means that to properly capture the displacement kinematics

in structural models the additional kinematic constraints need to be encoded into the modelling algorithms.

In this contribution, the work flows presented by Laurent et al. (2013) and Godefroy et al. (2018) are modified by incorpo-

rating the fault operator into the implicit representation of the geological feature in the model (Fig. 2). The faulted stratigraphy

can then be interpolated as a continuous layer where the data points are restored using the fault kinematics. The fault kinematics180

are integrated into the implicit surface description, meaning that the scalar field when evaluated in the model domain captures

the fault kinematics. Integrating the fault kinematics into the implicit modelling system is achieved by:

1. Building the fault frame, a curvilinear coordinate system representing the fault geometry

2. Defining the fault displacement within the model domain
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Figure 1. Comparison of true fault kinematics and step function results: A) a fold series that has been faulted by a reverse fault, where the

fold hinges are offset. B) shows the same fold series as A) when modelled using a step function where the scalar field on the hanging wall

is increased resulting in no displacement of the fold hinges. C) is a faulted intrusion where the volume is not affected by the fault. D) shows

the same intrusion modelled with a step function where the intrusion shrinks on the hanging wall resulting in a lower volume intrusion.
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Figure 2. Schematic diagram showing application of fault kinematics to implicit modelling. A. observations of reverse fault. B. Fault frame

with restoration vectors showing. C. Observations and model domain are restored for interpolation, the mesh is where interpolation occurs

is not deformed and is built in the restored space. D. Final model is evaluated by applying fault restoration kinematics and evaluating scalar

field from mesh in C.

3. Adding the fault kinematics to the implicit surface description185

3.1 Fault frame

A curvilinear coordinate system (the fault frame, described empirically for natural faults by Walsh and Watterson (1987))

represent different geometrical elements of the fault geometry and is built by interpolating structural observations. The first

coordinate ( f0) represents the distance to the fault surface and the isovalue of 0 will represent the fault surface and can be

interpolated from any structural observations of the fault surface e.g. strike and dip controls and observations of the fault190

surface location. The second coordinate ( f1) measures the displacement direction of the fault and the normal to the gradient of

this field will be parallel to any kinematic indicators for the fault (e.g. slickenslides, stretching lineations) and parallel to the

fault surface. The third coordinate ( f2) measures the distance in the direction of the fault extent and the gradient of this field

will be orthogonal to the gradient norm of the fault surface ( f0) and also orthogonal to the fault displacement field ( f1).

Three local direction vectors are implicitly defined by the normalised gradient of the fault frame for any location:195

f0 = ∇ f0/|| f0||
f1 = ∇ f1/|| f1||
f2 = ∇ f2/|| f2||200

(1)

The fault frame can then be queried for any location within the model returning the distance to the fault centre and the fault

frame vectors.
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3.2 Fault displacement

The displacement direction of the fault is represented by f1. The fault displacement magnitude can be either defined by a205

constant displacement on the hanging wall or by a function of the fault frame coordinates allowing for the fault displacement

to be represented relative to a fault origin using a combination of attenuation profiles as described by Laurent et al. (2013) and

Godefroy et al. (2018). We define the local fault displacement vector for any location as

fdisp = d · f1 (2)

where d is the scalar value of the fault displacement magnitude at that location.210

3.3 Time aware geological modelling

The aim of implicit 3D geological modelling is to define a function or series of functions that can be evaluated for any location in

the model and return some information about the geological feature of interest (either the distance to a feature e.g. lithological

contact or fault surface or the orientation of the feature). This means that the resulting geological model can effectively be

represented by an ordered list of mathematical functions. The topological relationship between these mathematical functions215

should be related back to the geological topology, e.g. the overprinting relationships between geological events.

To represent a faulted geological feature we first define the geological feature in the model using the associated structural

data. A fault can then be applied to this geological feature which produces a faulted geological feature. The fault restores

the observations attached to the faulted geological feature to their location using the fault kinematics from the fault operator.

The faulted geological feature can then be interpolated using the restored locations. To evaluate the scalar field of the faulted220

geological feature the fault transformation must be added to the implicit surface representation. This is done by applying the

fault restoration kinematics to the data points prior to evaluating the scalar field values.

φ f aulted(x,y,z) = φbase

(
fdisp (x,y,z)

)
(3)

Using this work flow it is possible to stack multiple fault operators and apply, backwards in time, the appropriate displacements

to restore the location to its position prior to faulting. This approach can be applied to any structural elements in the model,225

including lineations, fold vergence, tectonic foliations and fold frames (Grose et al., 2017).

4 Implementation

The generalised work flow presented above does not depend on the specifics of the interpolation scheme. We present an

overview of how to build the fault frame using discrete interpolation algorithms using LoopStructural (Grose et al., 2020),

a open source 3D modelling library1. Using discrete interpolation algorithms, the complexity of the interpolation problem is230

defined by the resolution of the support and not by the number of constraints.

1https://github.com/Loop3D/LoopStructural
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4.1 Building fault frame

The fault frame is built by interpolating the scalar fields using the following procedure:

1. Interpolate coordinate 0 to represent the geometry of the fault surface so that the isosurface of 0 contains the fault trace

and the field is parallel to the orientation of the fault surface.235

2. Interpolate coordinate 1 so that the direction of it’s gradient norm is orthogonal to direction of the gradient norm of fault

surface and parallel to any kinematic indicators for the fault.

3. Interpolate coordinate 2 so that the direction of its gradient norm is orthogonal to the direction of the gradient norm of

the fault surface field and to the fault slip direction field.

In this study we use a discrete implicit modelling technique where the implicit function is represented on a discrete support240

by either a piece-wise linear function on a tetrahedral mesh (Mallet, 2002; Frank et al., 2007; Caumon et al., 2013; Grose et al.,

2020) or by using finite differences on a Cartesian grid where an objective function such as the bending energy (Renaudeau

et al., 2019) or the second derivative is minimised (Irakarama et al., 2020). To build the fault frame, an additional constraint

needs to be applied to the interpolation to ensure that the fault slip direction and fault extent fields are orthogonal. To add

this additional constraint the gradient of an existing component of the fault frame (∇ fi) (for example the gradient of the fault245

surface) is obtained for every element in the mesh and this gradient norm is then used to constrain the interpolation of a new

field (∇ f j) so that the gradient norm of the new field is orthogonal to the gradient norm of the existing field.

∇ fi · ∇ f j = 0 (4)

The scalar field can then be interpolated by minimising the misfit between the orthogonality constraint and any observations of

the fault slip direction.250

The element orthogonality constraint can be applied to two fields and the resulting scalar field will be close to orthogonal

to both. Frequently it is difficult to measure or observe the fault slip direction. In these cases the geologists would need to use

qualitative geological knowledge to define the fault slip direction using their knowledge about the geology of the area. It is

also possible to build the model with different fault slip directions (and magnitudes) in order to explore the range in possible

geometries and compare these with observations.255

4.2 Volumetric fault displacement

Fault slip is defined by three functions applied to the normalised fault frame coordinates. Where the fault is active the fault

frame is coordinates will be between -1 and 1 and be equal to -1 or 1 where the fault is inactive. The same approach for

combining the fault profiles within the fault frame is used to define a volumetric fault displacement field as Godefroy et al.

(2018), which was adapted from Laurent et al. (2013):260

δ(X) = D0( f0(X)) ·D1( f1(X)) ·D2( f2(X)) (5)
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Figure 3. Schematic diagram showing interpolation of splay faults. a) fault diagram showing the geometry of the main fault, splay fault and

point of intersection. b) Interpolation support for main fault showing fault geometry and all interpolation nodes being active. c) interpolation

of splay fault showing fixed, active and inactive interpolation nodes where the fault geometry is shared.

Where D0,1,2 are 1-D curves describing the displacement of the fault within the fault frame.

A unit vector representing the displacement direction (ed) can be locally obtained using the fault frame coordinates. We use

the local direction vector ed(X) ·δ(X) to define the local slip vector for the fault. This scaled displacement field is calculated for

the entire model support and can then be queried for the local model of interest.265

4.3 Splay faults

Faults are rarely single surfaces and are often defined as fault zones with complex linkage between individual fault segments.

During the development of a fault zone, an individual surface can splay meaning that the displacement of the fault is separated

onto multiple slip surfaces (Huggins et al., 1995; Marchal et al., 2003). The resulting geometries can be increasingly complex

and includes duplexes and flower structures.270

An advantage of our approach, is that multiple faults can be applied sequentially where the total displacement is defined

by the accumulation of the local displacement fields. Modelling faults in a time aware approach is similar to how folds are

modelled (Laurent et al., 2016; Grose et al., 2017, 2018) where the most recent fold is modelled first and this defines the

geometry of the folded foliations.

A fault zone can be represented by a piece-wise combination of fault segments. To model multiple connected faults the fault275

frames need to equal along the branch line. In the following section, hard constraints are incorporated into the interpolation

system using using Lagrange multipliers.
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Discrete interpolation approaches define the interpolation within a volume of interest by a linear system where the unknowns

are the property values on the mesh nodes (Frank et al., 2007; Caumon et al., 2013). The unknowns are found by solving the

linear system:280

A · x = b (6)

Where A is an interpolation matrix that contains the different geological constraints (contact observations, orientation con-

straints, orthogonality constraints) and a regularisation term that controls the smoothness of the resulting scalar field and x are

the values of the scalar field at the interpolation nodes. The linear system defined in equation 6 is over determined and can be

solved in a least squares sense by minimising the L-2 norm ||Ax− b||22.285

Splay faults (Fig. 3a) share the same geometry as the parent fault at the point of intersection. To ensure the faults share the

same geometry an additional constraint needs to be added to the linear system so that the scalar field value of the shared nodes

of the fault are equal. In Fig. 3b the main fault is interpolated using all interpolation nodes. To interpolate the splay faults

the hard constraints need to be identified by finding the values of the fault extent field ( f2) where the fault is active. Equality

constraints are identified by finding the elements that contain the isosurface of the fault extent field containing the intersection,290

point e.g., black nodes in Fig. 3c. The hard constraints form an an additional linear system,

C · x = d (7)

where C is the interpolation matrix for the equality constraints.

To solve this system ensuring that the hard constraints are strictly honoured and the other interpolation constraints are

satisfied in a least squares sense we define the Lagrangian for the least squares problem,295

L(x,λ) :=
1
2
||Ax− b||22 + λT (Cx− d), (8)

where λ are the Lagrange multipliers. To apply this constraint we need to know where the two faults share geometries so that

the values of the main fault can be used as equality constraints to interpolate the splay fault. Where the geometry of the two

surfaces is shared, the property value of the nodes inside the shared region are fixed so that both surfaces have the same value

(Fig. 3c). This can be implemented where Ci, j = 1 where i is index of hard constraint and j is the node global index. d j is equal300

to the shared node value between the two scalar fields. Alternatively, the hard constraints could be defined using the discrete

support shape functions (e.g. linear tetrahedron or trilinear interpolation), however in this case the line of intersection would

need to be known, which may be complicated or impossible to quantify.

In Fig. 4B and C, two splay faults are interpolated, in B) the same constraints are used to solve both surfaces and the resulting

faults overlap but do not share the same geometry in the region where they are expected to splay. In B) equality constraints305

are used to constrain the surface geometry to be the same before the fault splay. When modelling complex fault networks for

example splay faults or other faults with shared geometries the hard constraints ensures that the faults have the same geometry

at intersection lines. For splay faults this will also ensure that the interpolation of the splay fault also includes the parent fault

geometry.
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Figure 4. Comparison of fault surfaces modelled using equality constraints and without equality constraints. A) input datasets showing

observations for both faults. B) Fault surfaces modelled without equality constraints. C) fault surfaces modelled with equality constraints.

5 Case studies310

In the following sections we will present three synthetic case studies that demonstrate the application of our approach to both

extensional and contractional systems. All of the case studies have been implemented in the open source 3D structual modelling

library, LoopStructural (Grose et al., 2020). The case studies are provided as interactive Jupyter notebooks in Appendix A.

5.1 Faulted intrusion

The first case study is a synthetic intrusive body that has been faulted by a planar normal fault. The intrusion has been randomly315

sampled with one set of data points describing the distance to the intrusion surface, where the value is 0 and another set of

data points where the value is 1 which describes the distance to the intrusion surface. In Fig. 5A the observations of the faulted

surface are shown along with the interpolated fault surface. The fault displacement is pure dip slip with a normal sense, meaning

the points on the hanging wall (left side) have been displaced down. A vector field representing the fault restoration is defined

by multiplying the fault slip direction field (orthogonal to the fault surface and parallel to observations of the fault slip) by320

the fault displacement magnitude. In this example a fault displacement of 500m is used. Fig. 5B shows the fault displacement

vector field applied to the data points on the hanging wall of the fault indicating the direction of movement to restore the data

points to their location prior to faulting. The data points that are identified as being on the footwall of the fault are not affected

by the fault restoration and are grey coloured without a vector field. Fig. 5C shows the data points from Fig. 5A in the restored

locations after applying the fault operator. The intrusion shape is interpolated within the restored space Fig. 5C,D using a325

discrete interpolation approach with a weak regularisation constraint to allow for the propagation of a high curvature geometry.

A weak regularisation constraint is applied because modelling intrusions with implicit interpolation approaches has similar
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Figure 5. Case study showing faulted 3D intrusion: A) observations of the intrusion surface (black points) and modelled fault surface (red

surface). B) fault restoration vector evaluated on data point locations showing the restoration direction. C) restored data points from A. D)

intrusion surface interpolated in restored domain showing data points and fault surface. E) regular grid highlighting restoration function on

model domain, where the hanging wall points have been restored. F) fault and faulted intrusion surfaces

challenges to modelling folds (Laurent et al., 2016), where high curvature is expected but the interpolation actually minimises

the curvature. A kinematic operator is added to the interpolated scalar field so that when evaluating the scalar field at a location,

the location is restored using the fault displacement field. Fig. 5E shows the model support for a regular grid where the points in330

the hanging wall are restored using the restoration vector field. In practice, the points are not actually moved and the restoration

vector field is actually added to the implicit surface description resulting in a faulted intrusion Fig. 5F.

In this example the intrusion volume is maintained when the fault is applied. The volume of an intrusion when modelled

using step functions is likely to change as shown in Fig. 1.

5.2 Finite fault335

In the previous examples we have shown a constant displacement on the hanging wall of the faults. Applying a constant

displacement makes the assumption that the fault displacement is uniform across the fault and that the faults are infinite

throughout the model area. This assumption of uniformity, is useful where the faults extend across the model domain. In
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Figure 6. Finite fault applied to flat lying stratigraphy. A) Fault displacement vectors and isosurface of fault surface scalar field, B) Scalar

field of fault displacement, C) scalar field of stratigraphy and C) surfaces of stratigraphy

contrast many faults end within the model region of interest, and these should be represented as finite features. The fault

displacement can be described using an ellipsoidal fault volume is an ellipsoid fitting the tips of the fault.340

Representing faults using a fault volume means that the displacement of the fault needs to vary within the model area. The

volumetric displacement can be defined by combining three 1-D displacement functions that describe the fault displacement

as a function of the fault frame coordinates. The fault frame coordinates need to be normalised so that they range from -1 to 1

within the fault ellipsoid. The profile of the fault displacement in f0 defines the geometry of the fault throw. The profile of the

fault displacement in f1 defines the magnitude of the displacement along the fault slip direction (e.g. how deep does the fault345

extend for a dip-slip fault) and the fault displacement profile in f2 describes the magnitude of the displacement along the major

axis of the fault surface.

In Fig. 6A the fault surface is shown with the slip vectors and the fault extent field value colouring the fault surface. The

corresponding fault displacement field are shown in Fig. 6B. In this example the fault has maximal displacement in the centre

of the fault decreasing to the extents of the fault ellipsoid defined by 1-D functions in each of the fault frame coordinates.350

Different profiles can be chosen either to fit observations or to enforce a particular conceptual model.

The resulting 3D displacement scalar field is shown in Fig. 6A, where displacement scales from 0 to ±1 close to the fault.

This displacement field and the fault slip direction vector field can be added to the implicit surface scalar field (shown in

Fig. 6C). Fig. 6D shows the faulted stratigraphic surfaces where the implicit function is evaluated using the fault restoration

function. In Fig. 6B and D the displacement of the fault decreases away from the fault and at depth with the displacement not355

affecting the lowest contact. In Fig. 6C displacement of the fault decreases along the fault with no displacement occurring on

the tip of the fault.
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Figure 7. Fault duplex applied to flat lying stratigraphy. A) observations of the fault surfaces, red dots showing the location of both surfaces

and the blue dot shows the location of the older fault. B) Younger fault surface interpolated with model domain showing hanging wall (black)

and footwall (opaque) points. C) hanging wall points restored by younger fault restoration function. D) surfaces for older fault and younger

fault. E) model restored by both faults with hanging wall of older fault highlighted by black points. F) duplex fault network added to scalar

field of bedding.

5.3 Thrust duplex

Fig. 7 is a synthetic case study of a thrust duplex. The observations of the fault surfaces are shown in Fig. 7A, where the red

dots represent the observations of the younger fault location and both blue dot and red dots represent the observations of the360

older fault location. The fault network shows ramp and flat geometry that is commonly found in compressional settings.

The younger fault is modelled first by interpolating the observations associated with this fault, the resulting surface is

shown in Fig. 7B. In Fig. 7B the model domain is highlighted by the black (hanging wall) and opaque points (footwall). The

kinematics of the younger fault are applied to the model nodes shown in Fig. 7C where the kinematics are applied in the reverse

and hanging wall nodes have been restored. The younger fault splays from the older fault where the ramp occurs, and both365

faults share the same geometry at the flat (defined by the red data points). To ensure that the geometry of the interpolated

surfaces is the same at the flats the overlapping interpolation nodes from the younger fault are used as equality constraints for

the older fault interpolation. The older fault surface observation (blue dot) is restored to its original location and the surface

is interpolated combining this observation and the equality constraints from shared geometry of the flats. The younger fault is

added to the implicit function of the older fault and both faults are shown in Fig. 7D. The older fault shows a fault bend fold370

that is the result of the movement of the younger fault.
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Figure 8. Geological map showing: A) structural observations for bedding, B) Interpolated Fault restoration vectors and C) Restored map

To demonstrate the combined kinematics of this fault network the faults are added to the implicit function representing flat

lying stratigraphy Fig. 7F. On the footwall of the younger fault the layers are flat lying and there is no deformation. Between the

younger and older fault there is a horse where there is minor rotation of stratigraphy. Above the older fault there is a fault bend

fold that can be seen in the stratigraphic layers. These geometrical features are all resulting from the modelled fault kinematics375

and not mechanics.

5.4 Faulted fold series

In the following example we model a faulted doubly plunging fold. The reference model was generated using Noddy (Jessell

and Valenta, 1996) and the orientation of the fault surface, fold axial surfaces and folded surface were sampled at irregular

locations shown in the geological map (Fig. 8).380

To model a folded and refolded structures we use the framework introduced by Laurent et al. (2016) and Grose et al. (2018).

To model the faulted fold series the most recent structure needs to be modelled first. In this case this is the fault as it overprints

the fold series. We model the fault frame by first interpolating the fault surface using observations of the fault surface (fault

trace and fault dip). The fault slip direction is then interpolated so that the gradient of the fault slip field is parallel to the fault

slip observations and orthogonal to the gradient of the fault surface. The fault extent can then be interpolated so that its gradient385

is orthogonal to both the fault slip and the fault surface gradients. The fault surface (red) and fault slip vectors (black arrows)

are shown in Fig. 8B. In this example the reference model fault displacement of 1000m is used to define the fault displacement.

The fold frame for F1 is interpolated in a similar way to the fault frame, by first interpolating the axial foliation and then

interpolating the fold axis direction field (Laurent et al., 2016). The fault is added to the fold frame meaning that the interpo-

lation of the fold frame occurs after the observations have been restored. The scalar fields for the fold frame can be seen in390

Fig. 10A and B.

Within the fold frame, the intersection lineation is calculated by finding the cross product between the normal to observations

of bedding and the gradient of the interpolated axial foliation. The fold axis rotation angle is calculated by finding the angle

between the intersection lineation and the fold axis direction field. The fold axis rotation angle is interpolated throughout the

model by fitting a Fourier series to the calculated fold rotation angles. We use the Levenberg-Marquardt algorithm for fitting395
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Figure 9. Fold geometry plots for the fold axis geometry and fold limb geometry: A. S-Plot showing the variation in fold axis rotation angle

with respect to the fold axis direction field showing the fold axis with and without the fault. B. S-Variogram of the fold axis rotation angle.

C. S-Plot of the fold limb rotation angle with and without the fault. D. S-Variogram of the fold limb rotation angle

the non-linear least squares problem implemented in the curvefit function found in scipy optimise module. The fold axis can

be locally defined by rotating the gradient of the fold axis direction field by the fold axis rotation angle around the gradient of

the fold axial foliation. The fold limb rotation angle is calculated by finding the complementary angle to vergence using the

interpolated fold axis. Similar to fitting the fold axis rotation angle the fold limb rotation angle is fitted using a Fourier series

function and the Levenberg-Maequardt algorithm to find optimal coefficient and wavelength values.400

In Fig. 9A. the fold axis rotation angles are plotted against the fold axis direction field coordinate. The fold axis rotation

angle is shown (1) where the fault has been added to the interpolator (as blue dots) and; (2) where the fault has not been

included (as red dots). This stronger impact can be explained by the fact that the wavelength of the fold limb rotation angle is

smaller than that of the fold axis rotation angle. The wavelength of the fold limb rotation angle decreases when removing the

effect of the fault, whereas the wavelength of the fold axis rotaton angle increases. This highlights that ignoring the fault could405

lead to biases when characterising the frequency of the folds. The fold axis rotation angle is marginally affected by the fault,

because fold axis variations are relatively small and low-frequency as compared to the fault displacement. This low frequency

is highlighted by the absense of a no hole effect in the S-variogram (Fig. 9B. suggesting that there is not a full wavelength of

the fold observed in the fold axis. When the fault displacement is applied to the points before fitting the fold axis rotation angle
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Figure 10. Example integrating fault kinematics and fold modelling from Laurent et al. (2016) and Grose et al. (2017). A. Fold frame axial

foliation scalar field. B. Fold frame fold axis direction scalar field. Corresponding fold S-Plots are shown in Fig. 9. C. Scalar field showing

bedding interpolated using fold constraints with the fault added to the interpolator. D. Surfaces extracted from the geological model in C.

including the fault surface.

the wavelength is slightly larger (blue curve in Fig. 9), corresponding to a more consistent alignment of the fold hinges across410

the fault. The blue curve shows the fold axis rotation angle profile fitted to the blue points.

The fold limb rotation angle is shown in Fig. 9C. In the S-Plot the limbs of the fold are represented by positive and negative

clusters and the locations where the rotation angle crosses 0 are the hinge (Grose et al., 2017). There are three limbs observed

in the data points, one around an axial foliation value of −2, another around an axial foliation value of 0 and a final one around

an axial foliation value of 2. Where the fault is added to the interpolator, the limbs at 0 and 2 are shifted towards the limb at415

−2. In this case, the variation in orientation shown in the S-Plot could either be explained by adding a fault (as done here) or

varying the fold wavelength between fold limbs.
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6 Discussion

A single fault is challenging to incorporate into 3D geological modelling because it defines a discontinuity in the older geo-

logical surfaces. This challenge is further complicated because the fault is not only defined by the location of the discontinuity420

but by the kinematics associated with the displacement of the faulted objects. This means that to properly model faults, the

kinematics need to be directly incorporated into the modelling process. These complications are further exaggerated when

modelling a fault network where there are multiple overprinting and interacting faults.

In this contribution faults are modelled using a curvilinear coordinate system and fault operator adapted from Laurent

et al. (2013) and Godefroy et al. (2018) to directly incorporate fault kinematics into the surface description. Our approach425

applies the fault operator in reverse prior to interpolating the surface, meaning that the fault description is incorporated into

the implicit surface representation rather than applied to an already discretised surface. Both approaches require building a

reference coordinate system for the fault that defines the fault surface, fault slip direction and the fault extent. The coordinate

system can be easily constrained from observations where the fault slip direction must always be orthogonal to the fault surface

and the fault extent is always orthogonal to the fault slip direction and the fault surface. We show that this coordinate system430

can be built allowing for multiple overprinting and interacting faults to be modelled using a serial approach where the scalar

fields representing the coordinates are modelled sequentially. While this approach produces an acceptable coordinate system

for the faulting, it can be costly to evaluate especially on high resolution models. The following strategies could be applied for

modelling large fault networks: (1) Lower the resolution of the interpolation support for the fault network, as the geometry of

the fault should be less complicated than stratigraphy. (2) Only model the fault geometry within the fault volume.435

One of the key advantages of our approach is the ability to make use of kinematic observations for constraining the geometry

of faulted geological surfaces. However, in a lot of cases (e.g. geological survey maps, potential field geophysical interpreta-

tions), the required kinematic indicators are unknown. One approach for solving this problem would be to build the fault frame

by aligning the fault surface with observations of the fault surface (this step is no different to any other implicit modelling

approach) and second to align the fault extent direction with the map extent of the fault. This defines the fault volume as an440

ellipsoid where the major axis is aligned with the map pattern of the fault. The fault slip direction is then orthogonal to both

of these interpolated fields. This approach would provide a good first pass approach for modelling the fault displacement and

is a similar outcome to the inferred slip direction used by step functions, albeit using our approach the fault kinematics are

modelled appropriate to the dip of the fault.

One of the challenges for the presented approach is determining the correct displacement magnitude and profile. Although445

in some cases these parameters are observations recorded on a geological map they are not always present. Godefroy et al.

(2018) applies particle swarm optimisation for these parameters by optimising the displacement to the data points within the

fault volume. In a similar approach, an objective function could be applied to the restored continuous surface minimising some

metric, for example for folding this could be incorporated into the probabilistic geological inversion presented by Grose et al.

(2018, 2019). In this framework, fitting a fold model to the S-Plot could be used to determine whether a displacement parameter450

and fault profile are acceptable. Fig. 9C shows the fold limb rotation angle for the faulted fold series where the fault has been
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added (blue dots) and where the fault hasn’t been added (red dots). Adding the fault changes the shape of the S-Plot, and could

be added as a likelihood function in an inversion framework. As with all geological problems this would be highly uncertain

and require additional domain knowledge to result at a solution.

7 Conclusion455

The geometry of fault networks and the displacement of faults on other geological surfaces is challenging to integrate into

implicit 3D modelling algorithms. Directly integrating faults into the implicit description of surfaces using step functions does

not allow for kinematic observations to be incorporated and will result in fault geometries with inconsistent kinematics. In order

to mask these flaws, it is possible to constraint fault geometries using interpretive constraints. In this contribution the kinematics

are applied in reverse to restore the observation into a pre-fault location. Within the restored model space a continuous surface460

can be evaluated. The interpolation occurs within the restored model space meaning that no discontinuities or re-meshing

are required to generate the models. The restoration kinematics are then added to the implicit description of the model surface

allowing for the surface to be evaluated capturing the fault location and the kinematics of the fault. Our approach can be applied

to parametric modelling of folds where the fault restoration is applied to the fold geometry characterisation. We demonstrate

applications to multiple synthetic examples including a faulted doubly plunging fold series. The flexible description of our465

model geometries allows more sophisticated kinematic models to be integrated into the work flow.

Code and data availability. All of the 3D modelling examples presented in this paper have been generated using the open source 3D mod-

elling package LoopStructural. LoopStructural can be downloaded from github https://www.github.com/Loop3d/LoopStructural or installed

using pip install LoopStructural. The examples presented in this paper are included on an Jupyter notebooks including datasets are provided

at 10.5281/zenodo.4698304 and can be run using the provided docker file or google colab.470
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