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Abstract. 1 

The global Flow-following finite-volume Icosahedral Model (FIM), which was developed in the Global 2 
Systems Laboratory (GSL) of NOAA, has been coupled inline with aerosol and gas-phase chemistry schemes 3 
of different complexity using the chemistry and aerosol packages from WRF-Chem v3.7, named as FIM-4 
Chem v1. The three chemistry schemes include 1) the simple aerosol modules from the Goddard Chemistry 5 
Aerosol Radiation and Transport model that includes only simplified sulfur chemistry, black carbon (BC), 6 
organic carbon (OC), and sectional dust and sea salt modules (GOCART); 2) the photochemical gas-phase 7 
mechanism RACM coupled to GOCART to determine the impact of more realistic gas-phase chemistry on 8 
the GOCART aerosols simulations (RACM_ GOCART); and 3) a further sophistication within the aerosol 9 
modules by replacing GOCART with a modal aerosol scheme that includes secondary organic aerosols (SOA) 10 
based on the VBS approach (RACM_SOA_VBS). FIM-Chem is able to simulate aerosol, gas-phase chemical 11 
species and SOA at various spatial resolutions with different levels of complexity and quantify the impact of 12 
aerosol on numerical weather predictions (NWP). We compare the results of RACM_ GOCART and 13 
GOCART schemes which uses the default climatological model fields for OH, H2O2, and NO3. We find 14 
significant reductions of sulfate that are on the order of 40% to 80% over the eastern US and are up to 40% 15 
near the Beijing region over China when using the RACM_GOCART scheme. We also evaluate the model 16 
performance by comparing with the Atmospheric Tomography Mission (ATom-1) aircraft measurements in 17 
2016 summer. FIM-Chem shows good performance in capturing the aerosol and gas-phase tracers. The model 18 
predicted vertical profiles of biomass burning plumes and dust plumes off the western Africa are also 19 
reproduced reasonably well.  20 

21 
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1 Introduction 1 

The impacts of aerosol on weather and climate are generally attributed to the direct, semidirect, indirect, and 2 
surface albedo effects, with the direct effect predominating radiative forcing over a global scale [e.g. Bauer 3 
and Menon, 2012]. However, there are significant differences in estimates of direct aerosol radiative forcing 4 
between various global aerosol models, particularly with respect to the attribution of forcing to specific 5 
aerosol species and sources [Myhre et al., 2013]. Discrepancies in direct radiative forcing are also found 6 
between global aerosol model results and determinations based on satellite retrievals, with assumptions 7 
related to aerosol composition and optical properties as the primary source of difference [e.g. Su et al., 2013]. 8 
Several processes and steps are necessary to accurately include aerosol effects within a meteorological 9 
forecast. Aerosol abundance, composition, and size distribution are the basic quantities needed within 10 
calculations of the optical properties, which in turn are used within radiative transfer calculations to calculate 11 
heating or cooling rates and are incorporated within the thermodynamic calculations of the numerical forecast.  12 
The importance of aerosol impacts on the meteorological fields for climate modeling have been widely 13 
recognized by many studies [e.g. Xie et al., 2013; Yang et al., 2014; Wang et al., 2014a, 2014b; Colarco et 14 
al., 2014]. Since it is increasingly common for modeling systems to start using prognostic online aerosol 15 
schemes and more accurate emissions, many studies exist that show the importance of including aerosols at 16 
least for case studies or over limited time periods. On NWP timescales (5–10 days), Rodwell and Jung [2008] 17 
showed an improvement in forecast skill and general circulation patterns in the tropics and extra-tropics by 18 
using a monthly varying aerosol climatology rather than a fixed climatology in the European Centre for 19 
Medium-Range Weather Forecasting (ECMWF) global forecasting system. The inclusion of the direct and 20 
indirect effects of aerosol complexity into a version of the global NWP configuration of the Met Office 21 
Unified Model (Met UM) shows that the prognostic aerosol schemes are better able to predict the temporal 22 
and spatial variations of atmospheric aerosol optical depth, which is particularly important in cases of large 23 
sporadic aerosol events such as large dust storms or forest fires [Mulcahy et al., 2014]. The aerosols from 24 
biomass burning sources have been shown to have an effect on large-scale weather patterns within global 25 
scale models [e.g. Sakaeda, 2011] and synoptic scale meteorology within the WRF-Chem regional model 26 
[Grell et al., 2011]. Toll et al. [2015] showed considerable improvement in forecasts of near-surface 27 
conditions during Russian wildfires in summer 2010 by including the direct radiative effect of realistic 28 
aerosol distributions. Likewise, many global models [e.g. Haustein et al., 2012] and regional models [e.g. 29 
WRF-Chem, Zhao et al., 2010] have established a clear connection between dust emissions and weather 30 
patterns over synoptic to seasonal time scales. While positive impacts of predicted aerosols on weather 31 
forecasts have been shown on an episodic basis, a systematic verification of current state-of-the-art 32 
operational modeling systems does not yet demonstrate that the impact is statistically significant over longer 33 
periods of time to warrant the required additional computational resources [Peuch et al., 2014]. Operational 34 
forecast systems are usually highly tuned and still use aerosol climatologies.  The inclusion of aerosols in the 35 
presence of strong sources or sinks should lead to an improvement of predictive skills. A successful example 36 
of a short-range weather forecasting coupled with the smoke tracer is the High-Resolution Rapid Refresh 37 
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coupled with Smoke (HRRR-Smoke) model [Ahmadov et al, 2017]. The model forecasts 3D smoke 1 
concentrations and its radiative impacts over the CONUS domain at 3km spatial gridding 2 
[https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke/]. 3 
By applying the chemistry package from WRF-Chem v3.7 into the Flow-following finite-volume Icosahedra 4 
Model (FIM, Bleck et al. 2015), named as FIM-Chem v1, we essentially make it possible to explore the 5 
importance of different levels of complexity in gas and aerosol chemistry, as well as in physics 6 
parameterizations on the interaction processes in global modeling systems.  FIM is used in the sub-seasonal 7 
experiment (SUBx) for sub-seasonal to seasonal (S2S) forecasting and is now considered a steppingstone 8 
towards NOAA’s Next Generation Global Prediction System, which will be based on the third generation 9 
non-hydrostatic Finite Volume Cubed Sphere (FV3) dynamic core [Sun et al., 2018a, b]. The chemistry 10 
component created here is designed to be moved flawlessly into FV3. WRF-Chem currently has 63 different 11 
gas and aerosol chemistry options, as well as several microphysics and radiation parameterizations, which 12 
are coupled to chemistry to simulate direct and indirect aerosol feedback processes. In this study we 13 
demonstrate three examples of different complexities on the aerosol forecasts by FIM-Chem. The current 14 
real-time forecast uses simple bulk aerosol modules from the GOCART model, with a simplified chemistry 15 
for sulfate production. This chemistry scheme does not include NOx/Volatile Organic Compounds (VOC) 16 
gas chemistry or SOA formation. Currently the real-time GOCART application uses climatological fields of 17 
OH, H2O2 and NO3 to drive the oxidation of SO2 and oceanic dimethyl sulfide to sulfate. 18 
Here we also investigate the sensitivity to the addition of complex gas-phase chemistry and a more reasonable 19 
inclusion of Secondary Organic Aerosol formation. Organic matter makes up the significant fraction of the 20 
sub-micron aerosol composition [Zhang et al., 2007], and organic aerosol (OA) along with sulfate and black 21 
carbon are believed to be the main anthropogenic contributors to direct radiative forcing on a global scale 22 
[Myhre et al., 2013]. A computationally efficient SOA parameterization based on the Volatility Basis Set 23 
approach [Donahue, 2011] was implemented in WRF-Chem by Ahmadov et al. (2012). 24 
To evaluate the model performance, the observation data from the NASA Atmospheric Tomography aircraft 25 
mission (ATom-1, 2016) is used, in which the DC-8 is instrumented to make high-frequency in situ 26 
measurements of the most the chemical species over the Pacific and Atlantic Oceans, and across the Arctic 27 
and US, to evaluate the model performance. Section 2 describes some aspects of the FIM and FIM-Chem 28 
model, the coupling of aerosol configurations, gas-phase chemical schemes and an overview of the 29 
observation data used to evaluate the model results. The chemical weather forecasts by using three different 30 
gas and aerosol chemistry schemes with different level of complexities are shown in Section 3. Section 4 31 
presents the evaluations of the chemical weather forecasts, and the model evaluations are investigated in 32 
Section 5. We end with discussion and conclusions in Section 6. 33 

2 Models and Observation 34 

2.1 FIM 35 



 

 5 

FIM is a hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid 1 
terrain following/isentropic vertical coordinate [Bleck et al., 2015]. Icosahedral grids are generated by 2 
projecting an icosahedron onto its enclosing sphere and iteratively subdividing the 20 resulting spherical 3 
triangles until a desired spatial resolution is reached. The main attraction of geodesic grids lies in their fairly 4 
uniform spatial resolution and in the absence of the two pole singularities found in spherical coordinates. The 5 
primary purpose of using a near-isentropic vertical coordinate in a circulation model is to assure that 6 
momentum and mass field constituents (potential temperature, moisture, chemical compounds, etc.) are 7 
dispersed in the model in a manner emulating reality, namely, along neutrally buoyant surfaces. The FIM 8 
model has been tested extensively on real-time medium-range forecasts to ready it for possible inclusion in 9 
operational multi-model ensembles for medium-range to seasonal prediction, and the following simulations 10 
are performed at G6 (~128 km) horizontal resolution.  11 
In FIM-Chem, the column physics parameterizations have been taken directly from the 2011 version of the 12 
GFS [Bleck et al., 2015]. The physical parameterizations include the Grell-Freitas convection 13 
parameterization [Grell and Freitas, 2014], the Lin et al. [1983] cloud microphysics scheme, coupled to the 14 
model aerosol parameterization and modified to include second moment effects, and the land surface 15 
processes simulated by the NCEP’s Noah land surface model [Koren et al. 1999 and Ek et al. 2003].  16 

2.2 FIM-Chem 17 

FIM-Chem, is a version of the FIM model coupled inline with chemical transport model including three 18 
aerosol and gas-phase chemistry schemes of different complexities, where physics and chemistry components 19 
of the model are simulated simultaneously. The chemical modules and coupling schemes are adopted from 20 
the WRF-Chem model v3.6.1 [Grell et al. 2005; Fast et al. 2006; Powers et al., 2017]. The different three 21 
chemical schemes have been listed in Table 1 for comparisons.  22 

2.2.1 GOCART scheme 23 

The first chemical option is the simplest aerosol modules that from the GOCART model, which includes 24 
simplified sulfur chemistry for sulfate simulation from chemical reactions of SO2, H2O2, OH, NO3 and DMS, 25 
bulk aerosols of black carbon (BC), organic carbon (OC), and sectional dust and sea salt. For OC and BC, 26 
hydrophobic and hydrophilic components are considered and the chemical reactions using prescribed OH, 27 
H2O2, and NO3 fields for gaseous sulfur oxidations [Chin et al., 2000].  The dust scheme is using the Air 28 
Force Weather Agency (AFWA) scheme with five dust size bins [LeGrand et al., 2019]. The bulk vertical 29 
dust flux is based on the Marticorena and Bergametti scheme [Marticorena et al., 1995], whereas the particle 30 
size distribution is built according to Kok, 2011, which is based on the brittle material fragmentation theory. 31 
Four size bins are considered for the sea salt simulation. The sea salt emissions from the ocean are highly 32 
dependent on the surface wind speed [Chin et al., 2000]. There are totally 19 chemical tracers for transport 33 
and 4 chemical reactions in the GOCART schemes. For 24 hours forecast, it takes about 4 minutes.  34 
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2.2.2 RACM_ GOCART scheme  1 

The simple GOCART aerosol scheme does not include photolysis, full gas chemistry and secondary organic 2 
aerosol production, and it normally uses climatological fields of OH, H2O2 and NO3 to drive the oxidation of 3 
SO2 and oceanic dimethyl sulfide (DMS) to produce sulfate.  Based on the GOCART aerosol module, the 4 
second chemical option includes the photochemical gas-phase mechanism of Regional Atmospheric 5 
Chemistry Mechanism (RACM), which is able to determine the impact of the additional gas-phase 6 
complexity on the aerosol simulations (RACM_GOCART). The RACM chemistry mechanism is based upon 7 
the earlier Regional Acid Deposition Model, version 2 (RADM2) mechanism [Stockwell t al., 1990] and the 8 
more detailed Euro-RADM mechanism [Stockwell and Kley, 1994]. It includes a full range of photolysis, 9 
biogenic VOCs, full NOx/VOC chemistry, inorganic and organic gaseous species to perform air pollution 10 
studies that includes rate constants and product yields from the laboratory measurements [Stockwell et al., 11 
1997]. The simplified sulfur chemistry for sulfate formation does not use climatological fields of OH, H2O2 12 
and NO3 from GOCART model to drive the oxidation of SO2 as that in GOCART, and it is replaced by 13 
explicitly simulating the gas-phase RACM chemistry. Meanwhile, the SO2 is also impacted by the RACM 14 
gas-phase chemistry, leading to differences with the GOCART simulations.  There are 214 chemical reactions 15 
and 68 chemical tracers for transport in the RACM_GOCART scheme. It takes about 19 minutes for a 24 16 
hours forecast. 17 

2.2.3 RACM_SOA_VBS scheme 18 

Other than the simple GOCART aerosol scheme in both GOCART and RACM_GOCART,  we implemented 19 
a more complex gas-aerosol chemistry scheme of RACM_SOA_VBS in FIM-Chem. This scheme includes 20 
the RACM based gas chemistry and the modal aerosol scheme MADE (Modal Aerosol Dynamics Model 21 
for Europe) with SOA based on the VBS (Volatility Basis Set) approach [Ahmadov et al., 2012]. The 22 
RACM_SOA_VBS scheme includes photolysis reactions for multiple species, full nitrogen and VOC 23 
(anthropogenic and biogenic) chemistry, inorganic and organic aerosols. All the secondary gas species 24 
required for the SO2 oxidation are simulated explicitly by the gas chemistry scheme here.  There are 233 25 
chemical reactions and 103 transported chemical tracers in the RACM_SOA_VBS scheme. It takes about 22 26 
minuets for 24 hours forecast. The new SOA mechanism contains four volatility bins for each SOA class, 27 
and their organic vapors that condense onto aerosol. Equilibrium between gas and particle phase matter for 28 
each bin is assumed in the model. The SOA species are added within the MADE aerosol module, which 29 
considers composition within the Aitken and the accumulation modes separately. The VBS approach was 30 
included for SOA production, updated SOA yields, and multigenerational VOC oxidation. The VOCs 31 
forming SOA are divided into two groups, anthropogenic and biogenic. Isoprene, monoterpenes and 32 
sesquiterpenes are emitted by biogenic sources, while other VOCs by anthropogenic sources. More detailed 33 
descriptions about the VBS approach based on SOA scheme can be found in Ahmadov et al., 2012. 34 

2.2.4 Emission, deposition, and aerosol optical properties  35 
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The preprocessor PREP-CHEM-SRC v1.5 [Freitas et al., 2011], a comprehensive tool aiming at preparing 1 
emission fields of the chemical species for use in atmospheric-chemistry transport models, is used 2 

to generate the emissions for FIM-Chem. It includes the Hemispheric Transport of Air Pollution 3 
(HTAP) v2 global anthropogenic emission inventory [Janssens-Maenhout et al., 2015] and biogenic VOC 4 
emissions simulated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.0 5 
parameterization [Guenther et al., 2006]. The diurnal variability based on a function of anthropogenic 6 
activities is applied to the HTAP emissions and the diurnal cycle of solar radiation and air temperature is 7 
applied to the biogenic emissions. The biomass burning emission estimated by the Brazilian Biomass Burning 8 
Emissions Model [3BEM, Longo et al. 2010; Grell et al., 2011) is also included in the PREP-CHEM-SRC. 9 
The 3BEM is based on near real-time remote sensing fire products to determine fire emissions and plume 10 
rise characteristics [Freitas et al., 2007; Longo et al., 2010]. Although the same settings are used for these 3 11 
schemes in PREP-Chem-SRC, the speciation profiles are modified for each specific mechanism. The fire 12 
emissions are updated as they become available and are spatially and temporally distributed according to the 13 
fire count locations obtained by remote sensing of Moderate Resolution Imaging Spectroradiometer 14 
(MODIS) onboard Terra and Aqua satellites [Giglio et al., 2003]. The biomass burning emission factors are 15 
from Andreae and Merlet [2001]. Over the CONUS domain the MODIS data are replaced by the Wildfire 16 
Automated Biomass Algorithm (WF_ABBA) processing system. The WF_ABBA is able to detect and 17 
characterize fires in near real-time, providing users with high temporal and spatial resolution fire detection 18 
data (http://www.ssd.noaa.gov/PS/FIRE/Layers/ABBA/abba.html). In the current retrospective forecast of 19 
2016, there is no day lag input for emission in the model. A one-dimension (1-D) time-dependent cloud 20 
model implemented to calculate injection heights and emission rates online in all of the three chemical 21 
schemes [Freitas et al., 2007].  22 
Similar to WRF-Chem model, the flux of gases and aerosols from the atmosphere to the surface is calculated 23 
by multiplying concentrations of the chemical species in the lowest model layer by the spatially and 24 
temporally varying deposition velocities, the inverse of which is proportional to the sum of three 25 
characteristic resistances (aerodynamic resistance, sublayer resistance, surface resistance [Grell et al. 2005]. 26 
The GOCART aerosol dry deposition includes sedimentation (gravitational settling) as a function of particle 27 
size and air viscosity and surface deposition as a function of surface type and meteorological conditions 28 
[Wesely, 1989]. The dry deposition of sulfate is described differently. In the case of simulations without 29 
calculating aerosols explicitly, sulfate is assumed to be presented in the form of aerosol particles, and the dry 30 
deposition of aerosol and gas phase species is parameterized as described in Erisman et al. [1994]. For 31 
RACM_SOA_VBS chemical option, the dry deposition velocity of the organic condensable vapors (OCVs) 32 
is parameterized as proportional to the model calculated deposition velocity of a very soluble gas, nitric acid 33 
(HNO3). The parameter which determines the fraction (denoted as “depo_fact”) of HNO3 is assumed in the 34 
model since no observation constraints are available. The dry deposition velocity of HNO3 is calculated by 35 
the model during runtime [Ahmadov et al., 2012]. Wet deposition accounts for the scavenging of aerosols in 36 
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convective updrafts and rainout/washout in large-scale precipitation [Giorgi and Chameides, 1986; Balkanski 1 
et al., 1993].  2 
The aerosol optical properties such as extinction, single-scattering albedo, and the asymmetry factor for 3 
scattering are computed as a function of wavelength. Each chemical constituent of the aerosol is associated 4 
with a complex index of refraction. A detailed description of the computation of aerosol optical properties 5 
can be found in Fast et al. [2006] and Barnard et al. [2010]. 6 

 2.3 Observations 7 

The Atmospheric Tomography Mission (ATom) studies the impact of human-produced air pollution on 8 
greenhouse gases and on chemically reactive gases in the atmosphere [Wofsy et al., 2018]. ATom deploys 9 
instrumentation to sample the atmospheric composition, profiling the atmosphere in 0.2 to 12 km altitude 10 
range. Flights took place in each of 4 seasons over a 22-month period. They originated from the Armstrong 11 
Flight Research Center in Palmdale, California, flew north to the western Arctic, south to the South Pacific, 12 
east to the Atlantic, north to Greenland, and returned to California across central North America over the 13 
Pacific and Atlantic oceans from ∼ 80°N to ∼ 65°S. ATom establishes a single, contiguous global-scale data 14 
set. This comprehensive data set is used to improve the representation of chemically reactive gases and short-15 
lived climate forcers in global models of atmospheric chemistry and climate. Comparisons of model forecasts 16 
with 5 flights from the first ATom mission (August 15–23, 2016) are shown here as examples of model 17 
performance for specific events, such as wildfires and dust-storms, or specific conditions such as oceanic 18 
versus continental. 19 
The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument samples the composition of single 20 
particles in the atmosphere with diameters within ~150 nm - 5 μm range. It measures nearly all components 21 
of aerosols from volatiles to refractory elements, including sulfates, nitrates, carbonaceous material, sea salt, 22 
and mineral dust [Murphy et al., 2006]. The PALMS instrument was originally constructed for high-altitude 23 
sampling [Thomson et al., 2000; Murphy et al., 2014] and has since been improved and converted for other 24 
research aircraft. Uncertainty in mass concentration products is driven mainly by particle sampling statistics. 25 
Relative 1-sigma statistical errors of 10-40% are typical for each 3-min sample at a mass loading of 0.1 ug/m3 26 
[Froyd et al., 2019]. In August 2016, PALMS was sampling on the NASA DC-8 aircraft as part of the ATom 27 
program (https://espo.nasa.gov/missions/atom/content/ATom). Aerosol composition determinations using 28 
the PALMS instrument during ATom have been described and interpreted previously [Murphy et al., 2018, 29 
2019; Schill et al., 2020; Bourgeois et al., 2020]. The PALMS mass concentrations for various species are 30 
derived by normalizing the fractions of particles of each size and type to size distributions measured by 31 
optical particle counters [Froyd et al., 2019]. 32 
Figure 1 shows the vertical profiles and transect time series of the ATom-1 flight tracks on August 15th and 33 
17th, 2016 over Atlantic Ocean on August 23rd, 2006 over US. The August 15th flight originates from the 34 
southwestern Atlantic and ends near the southern equatorial Atlantic; the August 17th flight is from the 35 
southern equatorial Atlantic to the northern Atlantic; and the August 23rd flight is from Minnesota to Southern 36 



 

 9 

California. For analysis and model validations, here we mark 16 vertical tracks and 3 horizontal tracks for 1 
August 15th, 16 vertical tracks and 2 horizontal tracks for August 17th, and 8 vertical tracks and 4 horizontal 2 
tracks for August 23rd. 3 

3 Chemical Composition Forecast  4 

We perform a 5-days forecast started from 00:00 UTC July 29th 2016, and get the predicted results at 00:00 5 
UTC August 3rd 2016 in Fig.2 and Fig.3. For the aerosol forecast, the GOCART and RACM_GOCART 6 
scheme are quite similar since they are using the same GOCART aerosol module. However, the major 7 
difference is the impact of including gas-phase chemistry on aerosol. The simpler GOCART package uses 8 
climatological fields for OH, H2O2, and NO3 from previous GEOS model simulations, while these species 9 
are explicitly simulated in the RACM_GOCART chemistry mechanism. The PM2.5 concentrations are the 10 
sum of BC, OC, sulfate, the fine bins (diameter < 2.5 micrometers) of dust and sea salt. The forecast aerosol 11 
results of surface PM2.5 and sulfate using GOGART and RACM_GOCART and their differences 12 
(RACM_GOCART minus GOCART) are showed at Fig. 2. The general patterns of surface PM2.5 are quite 13 
similar in these two schemes, with the maximum surface concentrations of more than 100 µg/m3 over the 14 
dust source region of western Africa, part of the southern African fire regions and part of the polluted areas 15 
of south Asia and eastern China. However, the surface concentrations of PM2.5 in GOCART and 16 
RACM_GOCART (the latter minus former) show substantial differences, decreasing more than 15 µg/m3 17 
over eastern US and 20 µg/m3 over eastern China, when using the RACM_GOCART scheme. The main 18 
factor that contributes to the significant differences of surface PM2.5 concentration is sulfate (see Fig.2 right 19 
column). The maximum surface sulfate concentrations are over the eastern US, India and eastern China. We 20 
find the reductions of sulfate are about 10 µg/m3 on the order of 40-80% over the eastern US and are up to 21 
40% over eastern China in RACM_GOCART (Fig. 2b). The major differences for sulfate production between 22 
GOCART and GOCART-RACM are the background fields of H2O2, OH and NO3. GOCART uses the model 23 
climatological backgrounds fields of H2O2, OH and NO3 while GOCART-RACM uses the online calculated 24 
fields of H2O2, OH and NO3 from the RACM mechanism. 25 
Fig. 3 shows the comparisons of surface H2O2, OH, and NO3 between GOCART and RACM_GOCART 26 
schemes. Globally the prescribed surface H2O2 in GOCART is generally larger than that explicitly simulated 27 
by RACM_GOCART.  The maximum of surface H2O2 regions over Africa, India and eastern Asia show 28 
significant diversity. The explicitly real-simulated instantaneous surface H2O2 in RACM_ GOCART is much 29 
lower, by 40-60% over India and eastern Asia and 20% over eastern US, while much higher (> 80%) over 30 
middle Africa, northeastern regions of Canada, and northwestern areas of South America. Even though the 31 
patterns of surface OH are quite comparable in the GOCART and RACM_GOCART schemes at 00 UTC, 32 
the real-simulated instantaneous surface OH is 80% lower over eastern China when using the 33 
RACM_GOCART scheme. The other big difference is over the western US with the simulated surface OH 34 
in RACM_GOCART being much higher over northwestern US and lower over the southwestern US at 00 35 
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UCT. The surface NO3 differences are mainly over the Africa and north Indian Ocean, that the real-simulated 1 
instantaneous surface NO3 is much larger using the RACM_GOCART scheme at 00 UCT. Since surface 2 
H2O2 and OH are the major species converting SO2 to sulfate, their decreases cause sulfate reductions over 3 
broad areas. The OH differences of GOCART and RACM_GOCART schemes at 12 UTC shows reduction 4 
over Africa, India and Asia, corresponding to the decreasing sulfate over those aeras, accounting for the 5 
major differences in sulfate production between the two mechanisms. 6 
The RACM_GOCART model is able to predict gas phase species by using the RACM gas-phase mechanism. 7 
Ozone (O3) and other gas pollutants are determined by the emissions of nitrogen oxides and reactive organic 8 
species, gas- and aqueous-phase chemical reaction rates, depositions, and meteorological conditions. Fig. 4 9 
represents the 5-days surface O3 forecast globally at 12:00 UTC August 2nd and 00:00 UTC August 3rd, 2016, 10 
which started from 00:00 UTC July 29th, 2016. Similar to other studies, a lot of chemical transport models 11 
(CTMs) tend to significantly overestimate surface O3 in the southeast US [Lin et al., 2008; Fiore et al., 2009; 12 
Reidmiller et al., 2009; Brown-Steiner et al., 2015; Canty et al., 2015; Travis et al., 2016], which is an 13 
important issue for the design of pollution control strategies [McDonald-Buller et al., 2011]. We see similar 14 
problem in FIM-Chem that the predicted surface O3 concentration on 00:00 UTC August 3rd, 2016 is also 15 
overestimated (see Fig. 4b). The relative low surface O3 is likely due to the O3 titration during the early 16 
morning and nighttime periods. It well known that the O3 production involves complex chemistry driven by 17 
emissions of anthropogenic nitrogen oxide radicals (NOx=NO+NO2) and isoprene from biogenic emissions. 18 
The primary basis of O3 may be due to the inventory of HTAP v2 anthropogenic emission over North America, 19 
which is from U.S. EPA’s 2005 National Emission Inventory (NEI2005). A few studies have pointed out that 20 
the NOx emissions in the NEI-2005 and NEI-2011 from the EPA is too high [Brioude, 2011; Travis et al., 21 
2016] over the US. It must be reduced by 30-60% from mobile and industrial sources in the NEI 2011 22 
inventory [Katherine et al., 2016], while the NOx emissions over United States should be reduced more for 23 
2016 simulation since the NEI2005 NOx emission is much larger than that of NEI2011 24 
(https://cfpub.epa.gov/roe/). Also, the dry depositions of ozone, isoprene emissions and in the loss of NOx 25 
from formation of isoprene nitrates could also result into these overestimations [Lin et al., 2008; Fiore et al., 26 
2005]. 27 
The SOA parameterization based on the volatility basis and VBS approach applied within FIM-Chem has 28 
the ability to simulate and predict SOA using the RACM_SOA_VBS scheme [Ahmadov et al., 2012], which 29 
include the anthropogenic secondary organic aerosols (ASOA) and biogenic secondary organic aerosols 30 
(BSAO) for both the nucleation and accumulation modes. Fig. 5 shows the predicted SOA at 12:00 UTC 31 
August 2nd and 00:00 UTC August 3rd, 2016. The maximum surface SOA concentrations are over southern 32 
Africa, which may be caused by the wildfire emissions. The Eastern US, western Europe and eastern Asia 33 
are the other high SOA concentrations areas. There is not significant diurnal variability for the SOA spatial 34 
distributions, and the diurnal cycle of fire emission has not been included.  35 

4 Using ATom-1 observations to evaluate the FIM-Chem Model  36 
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The retrospective daily forecast uses cycling for the chemical fields since no data assimilation is included in 1 
the chemical model. Meteorological fields are initialized by the GFS meteorological fields every 24 hours, 2 
while the chemical fields from the last output (forecast at 24:00 UTC) are used as the initial conditions of the 3 
current forecast (00:00 UTC). Stratospheric O3 above tropopause is taken from satellite derived fields 4 
available within GFS. For the ATom-1 forecast periods, considering there is no chemical initial conditions, 5 
we performed a two-week spin-up period (from July 15th to July 28th) before the first observational 6 
comparison day (July 29th, 2016) to help get a realistic chemical initial conditions for the ATom-1 forecast 7 
period. It should be noted that stratospheric chemistry is incomplete (no halogen chemistry) in the model.  8 
In this section, we compare 24 hours forecasts of FIM-Chem for the major aerosols and gas tracers for the 9 
three different chemical schemes listed above. The FIM-Chem model results are sampled at the grid with 10 
nearest latitude and longitude, and interpolated logarithmically in altitude according to the ATom-1 11 
measurements. Temporally, 1-second measurements are matched to the nearest hour of the FIM-Chem hourly 12 
model output, which translates into a spatial uncertainty of ~ 128 km, or ~1 model grid cell, for typical DC-13 
8 airspeeds.  14 

4.1 Comparisons of the gas and aerosols species between FIM-Chem and the ATom-1 measurements 15 
over Atlantic 16 

The comparison between RACM_GOCART and RACM_SOA_VBS schemes for the chemical species, e.g., 17 
EC (elemental carbon, which is the same as BC), CO and O3, that are mainly affected by the biomass burning 18 
emissions from wildfires during August 15th and August 17th, are shown in Fig. 6. The model shows very 19 
good performance in reproducing the profiles of EC and CO, especially capturing the biomass burning 20 
plumes near the tropics. But it also shows some differences for EC in the results of GOCART (figures not 21 
shown here since it is almost the same as that of RACM_GOCART) and RACM_GOCART schemes above 22 
4~5 km, where model results are overestimated. Generally, the EC performance of RACM_GOCART is 23 
much better at low altitudes but has a high biased at high altitudes where the RACM_SOA_VBS 24 
performs well. After investigating, we noticed that the GOCART and RACM_GOCART aerosol modules 25 
both assume there is no wet deposition for externally-mixed, hydrophobic BC, only for hydrophilic BC. This 26 
assumption would result into the overestimation of EC at higher levels due to less wash out of hydrophobic 27 
BC. Other models with simple wet removal schemes have shown similar overestimation of EC in the upper 28 
troposphere (Schwarz et al., 2013; Yu et al., 2019). However, aerosols in the RACM_SOA_VBS scheme are 29 
internally mixed, so there is a much larger wet deposition, and less EC in the upper levels. This an important 30 
difference about the carbonaceous aerosol for both hydrophobic BC and OC in the wet removal. The 31 
comparison with the observations provides a good resource for further improvements within the wet removal 32 
parameterization. The second column in Fig. 6 compares CO for the observations, RACM_GOCART and 33 
RACM_SOA_VBS schemes. Overall, the forecast is able to capture the observed latitude-height profiles of 34 
CO mixing ratio. However, they both show high biases at low altitude (about ~2km) in the tropics. Other 35 
than that, there are still some differences such as the underestimated CO mixing ratio above 6 km over the 36 
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tropics and overestimate near the surface. Also, the model does not reproduce the fire plume height correctly 1 
for the biomass burning emissions over this area, which may be due to vertical transport or lower injection 2 
heights near the  fire  source region. For O3, the model is able to consistently capture O3 mixing ratios with 3 
both RACM_GOCART and RACM_SOA_VBS schemes, including the stratospheric intrusion near 40°S at 4 
about 9 km height, though it is slightly higher near 40°N at about 12 km height. We find that over equatorial 5 
areas at about 2-4 km height, the modeled O3 mixing ratio is underestimated by about 30%. This may also 6 
relate to the injection height of biomass burning that resulted in much lower CO at this altitude, since CO is 7 
an important precursor for O3 production. Near the surface the overpredicted CO in the RACM_GOCART 8 
and RACM_SOA_VBS schemes does not result in high O3. It may be related to other O3 precursors other 9 
than CO, such as missing VOC and NOx sources. Large uncertainties in both the biogenic and anthropogenic 10 
emission inventories are expected over Western Africa.  Besides the aerosol and gas tracers associated with 11 
the biomass burning emissions, we also compare the HCHO, OH and H2O2, which are the important 12 
precursors or oxidants to many other species within the RACM_GOCART and RACM_SOA_VBS schemes 13 
(see Fig. 7).  Generally, the pattern of the modeled HCHO mixing ratio is almost the same as that of the 14 
ATom-1 measurements. The variations from south to north are captured by these two schemes except a little 15 
underestimation near about 10 km height. For OH, the model reproduces the vertical and temporal variations, 16 
including the large mixing ratios over the northern hemisphere. Some slight differences are apparent, e.g., 17 
the overestimates over 44°S at 3-9 km height and the underestimates over 40°N above 10 km height. Similarly, 18 
there is more spatial variability in the ATom-1 measurement of H2O2. Above 6km the model overestimates 19 
H2O2 south of 40°S and overestimates from 20°S to the northern hemisphere above 6 km. Overall, the model 20 
and ATom-1 measurement are more consistent at lower altitudes for H2O2. 21 
Figures 8 and 9 show more detailed comparisons for vertical tracks of meteorological fields and chemical 22 
species in the biomass burning (Fig. 9a) and dust events (Fig. 9b). For the biomass burning plume the 16th 23 
vertical profile on August 15th, 2016 near 20°S is shown while the 10th profile on August 17th, 2016 near 24 
25°N for the Saharan dust plume is shown. The comparison of the meteorological fields of temperature, 25 
virtual potential temperature, water vapor, relative humidity, wind speed and wind direction are shown in 26 
Fig. 8 and do not change between the different chemical options. The model forecasted temperature and 27 
virtual potential temperature almost overlap the ATom-1 measurements for both the August 15th and 17th 28 
vertical tracks. For water vapor and relative humidity, the variations of the vertical profiles are also 29 
reproduced by the model, except there are some smaller peaks in the observed profiles. There are still some 30 
differences between model and ATom-1 observations for wind speed and wind direction, which may be due 31 
to model vertical resolution. Overall, the model is able to capture the general vertical variations.  For the 32 
chemical species (see Fig. 9), the modeled EC using GOCART scheme is almost identical to that by the 33 
RACM_GOCART scheme (the green line is overlapped by the blue line). Both EC concentration plots show 34 
a vertical variation of decreasing with altitude and the concentrations are overestimated above 2 km in 35 
biomass burning plume (see Fig. 9a) and above 4 km in dust storm (see Fig. 9b). The results using the 36 
RACM_SOA_VBS scheme shows much better performance to capture the vertical variations of EC. Other 37 
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than a slight overestimation at 2-4 km biomass plume (see Fig. 9a first column), the EC vertical profile is 1 
very consistent to that of the observation when using RACM_SOA_VBS scheme. In the biomass burning 2 
event (see Fig. 9b first column), the modeled vertical profile with the RACM_SOA_VBS scheme captures 3 
the general changes of the vertical variations much better than those of the GOCART and RACM_GOCART 4 
schemes. As mentioned, previously, the assumption of no wet deposition for hydrophobic BC is the main 5 
reason resulting in less EC at high altitude in the RACM_SOA_VBS scheme compared to the GOCART and 6 
RACM_GOCART schemes. Due to less available observed data for sea salt, it is difficult to perform specific 7 
comparisons, but both the observation and model show strong decreases with altitude. During the dust event 8 
(see Fig. 9b third column), even though the modeled dust concentrations are lower at about 2-6 km than the 9 
observed concentrations, they are close to the observation at the surface and upper levels. For the gas-phase 10 
species, the model results are from GOCART_RACM (blue line) and RACM_SOA_VBS (red line) schemes. 11 
The observed O3 in the biomass burning event (see Fig. 9a fourth column) shows a peak at about 2 km height, 12 
then it decreases with altitude, but increases again at about 5-9 km height. The model results from these two 13 
schemes are quite consistent. They both indicate a slight enhancement at 1.5 km height, though it is not able 14 
to capture the magnitude of the observed peak, which is underestimated by ~50%. For CO, the model can 15 
reproduce the peak at about 2 km height very well, though it overestimates the mixing ratio by 25% below 1 16 
km in the biomass burning event (see Fig. 9a 5th column). The detailed variations of the O3 and CO vertical 17 
profiles still show some slight differences between the model and observation, but the model generally 18 
forecasts the vertical changes with altitude, and the CO using RACM_GOCART is slightly lower than that 19 
of the RACM_SOA_VBS scheme above 5 km height. 20 

4.2 Comparisons of aerosols and gas tracers between FIM-Chem and ATom-1 over the United States 21 

Figure 10 shows the comparisons of EC and sulfate between ATOM-1 measurements and FIM-Chem model 22 
with three different chemical schemes over the United States. Other than the underestimates of wet removal 23 
for EC in GOCART and RACM_GOCART schemes that result in the overpredicted EC concentrations above 24 
4 km height, the near surface (below 4 km) EC concentrations over southern California are also higher than 25 
the observation. The overestimate over southern California is also shown in the RACM_SOA_VBS scheme. 26 
Similarly, the predicted sulfate concentrations over southern California are much higher than the observation 27 
too. Also, the surface sulfate concentrations throughout the U.S. are much higher than those of observations. 28 
In the FIM-Chem model, the anthropogenic emissions are from the HTAP v2.1 inventory, which based on 29 
the NEI2005 over United States. However, the BC emissions have declined by 50% in California from 1980 30 
to 2008 following a parallel trend the reduction of fossil fuel BC emissions [Bahadur et al., 2011]. The older 31 
emission inventory with relatively higher anthropogenic emissions of BC and SO2 may possibly induce the 32 
overestimates of near- surface BC and sulfate concentrations for the 2016 simulation in the model results 33 
over southern California and other areas. To test this hypothesis we performed the same GOCART 34 
retrospective experiment using the Community Emissions Data System (CEDS) anthropogenic emission 35 
[Hoesly et al., 2018] instead of the HTAP v2.1 inventory. The CEDS anthropogenic emission is much 36 
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stronger than HTAP over California for SO2 (see Fig.11). Thus, a significant enhancement in sulfate 1 
concentration near the surface of California is seen when using CEDS emissions, as shown in Figure 12. For 2 
the sulfate concentrations at upper levels, the GOCART scheme (see Fig. 10b the second column) using the 3 
background fields of H2O2, OH and NO3 shows much better performance in capturing the relatively lower 4 
sulfate at upper levels compared to the other two schemes. 5 
Figure 13 shows the comparisons of OH and H2O2 in GOCART, RACM_GOCART and RACM_SOA_VBS 6 
with ATom-1 observations. It can be seen that the prescribed OH is close to the ATom-1 observation, which 7 
may be the major factor contributing to better sulfate agreement in GOCART. Considering the sulfur 8 
chemical reaction mechanism and the aerosol scheme in RACM_SOA_VBS is completely different to that 9 
in GOCART and RACM_GOCART, the comparison of oxidants may not be the only reason causing the 10 
differences, which needs further analysis. For the gas species we compare CO, HCHO and O3 (see Fig. 14) 11 
using the RACM_GOCART and RACM_SOA_VBS schemes with the observation. Generally, the model 12 
cases using either RACM_GOCART or RACM_SOA_VBS scheme show good performance in capturing 13 
the CO and HCHO mixing ratios both at the surface and in the free troposphere. But they are both higher 14 
than the observations near the surface over southern California, similar to EC and sulfate concentrations. This 15 
may be also associated with the overestimation of anthropogenic emissions in the NEI-2005 over United 16 
States for the year of 2016. Since CO and HCHO are precursors for O3 production, the simulated O3 also 17 
shows slight enhancements compared to the observations that may be due to the higher CO and HCHO. Other 18 
than that, the model is able to reproduce the O3 profile over the US reasonably well, including the O3 19 
stratospheric intrusions at the upper levels. The simulated H2O2 in both RACM_GOCART or 20 
RACM_SOA_VBS schemes show better agreement with the observations at the upper levels than the 21 
prescribed H2O2 fields in GOCART (Fig. 13).  While the much lower H2O2 near the surface in the 22 
RACM_SOA_VBS may be associated with better O3 performance near the surface (Fig. 13).  23 
Figure 15 focuses on the 4th vertical profile over Kansas on August 23rd, 2016. The model results with 24 
different chemical schemes are very consistent in simulating the meteorological fields. The modeled 25 
temperature and virtual potential temperature show nearly exact agreement with the observations. But there 26 
are still some shortcomings in forecast water vapor and relative humidity, especially above 6 km, where the 27 
model results are overpredicted by nearly a factor of 2 and with less vertical variability. The vertical trend of 28 
modeled wind speed and wind direction are close to the observed changes that increase with altitude. Similar 29 
to Figure 9, the EC vertical profile using the RACM_SOA_VBS scheme, without the hydrophobic 30 
assumption in wet removal, is similar to that of the observations while the other 2 schemes significantly 31 
overpredict. Both the observations and models show decreasing vertical trend for sea salt and dust. The 32 
GOCART scheme is able to reproduce the sulfate, except for the underestimate at 1.5-3 km. Otherwise, it 33 
almost overlaps the observed profile at the upper levels. The O3 vertical profile is reproduced by the model 34 
using both RACM_GOCART and RACM_SOA_VBS schemes except a slight peak near 9 km where the 35 
model is not able to capture the enhanced variability. The CO measurements have more fluctuations, but the 36 
model roughly shows the major features of the vertical changes with altitude. 37 
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5 Correlations between FIM-Chem model and ATom-1 observations  1 

For the aerosol size range of the GOCART scheme, the PALMS dataset allows for model evaluation of the 2 
default sea salt emission algorithms by summing those bins less than 3 µm in the model results. The 3 
comparison between the GOCART forecasts and ATom-1 data for all sea salt observations below 6 km are 4 
shown in Figure 16.  Different colors show different flight dates from August 15th (blue dots), 17th (green 5 
dots), 20th (orange), 22nd (red) and 23rd (purple). Generally, modeled sea salt appears too high, especially on 6 
flights of August 15th (blue dots), 20th (orange dots) and 23rd (purple dots) above ~4km. Some high values 7 
below ~4km are reproduced by the models on the flight of August 17th (green dots). Some of the disagreement 8 
may be due to uncertainties in the size range of sea salt observations, particularly the upper cutoff of 3 um 9 
that is approximate (Murphy et al., 2019). 10 
We also investigate the relationships of some key species for the biomass burning plumes observed on 11 
8/15/17 and 8/17/17 between 22°S to 22°N below 6km (Fig. 17) for the RACM_SOA_VBS scheme. The 12 
color bar indicates the latitude from south to north. Relative to CO, the model biomass burning emission 13 
ratios are reasonable for EC with the modeled ratio (black color dots) somewhat lower than the observations 14 
(color dots). We note that in Fig.6, O3 in the biomass burning region for the RACM_SOA_VBS scheme is 15 
underpredicted. To analyze this O3 bias in more detail, scatter plots of modeled and observed NOy versus CO 16 
and O3 versus NOy between 22°S and 12° N below 6km altitude are shown in Fig.17b and Fig. 17d, 17 
respectively. The observations in Fig. 17d show a much different, and better defined slope of O3 versus NOy 18 
compared to the model using RACM_SOA_VBS scheme. NOy, which is emitted entirely as NOx in fresh 19 
plumes, is much higher in the model, suppressing OH (e.g., Fig. 7), HO2, and subsequent ozone formation. 20 
The NOy to CO ratios in Fig. 17b show evidence in the model of NOy removal through HNO3 scavenging, 21 
but it's clear the NOy (or NOx) to CO emission ratio is too high in the fire emissions. The CO emissions 22 
themselves appear too high (as also shown in Fig. 6). Other factors, such as VOC emission ratios or photolysis 23 
effects from convective clouds may come into play, but these emission overestimates appear to put the 24 
biomass burning region in a different photochemical regime than shown in the ATom-1 observations. 25 

6 Conclusions  26 

A two way fully inline coupled global weather -chemistry prediction model FIM-Chem has been developed 27 
at NOAA Global Systems Laboratory (GSL) to forecast the chemical composition and quantify the impacts 28 
on NWP. Three different gas/aerosol chemistry schemes - GOCART, RACM_GOCART and 29 
RACM_SOA_VBS from WRF-Chem have been implemented into FIM-Chem with some modifications as 30 
different options of chemical schemes. The major conclusions are summarized as follows: 31 
First, the RACM_GOCART mechanism with explicitly simulated H2O2, OH and NO3 is compared to the 32 
base GOCART mechanism having a simple parameterization of sulfur/sulfate chemistry using prescribed 33 
background fields of OH, H2O2 and NO3. The explicit treatment results in about 10 µg/m3 reductions of 34 
sulfate and 15 µg/m3 of PM2.5 over the eastern US, as well as more than 20 µg reductions of PM2.5 over eastern 35 
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China. Meanwhile, the simulated instantaneous H2O2 is lower by 20% over eastern US and 40-60% over 1 
India and eastern Asia, while the OH is 80% lower over eastern China in the RACM_GOCART scheme. 2 
In this study, the evaluation and analysis of model performance are focused on the fire events over the Eastern 3 
Atlantic from south to north on August 15th and 17th 2016, and the flight over the United States from 4 
Minnesota to southern California using the NASA ATom-1 observations.  5 
For the evaluation over Atlantic, the GOCART and RACM_GOCART results are very consistent in 6 
forecasting sulfate, sea salt and EC due to the same aerosol mechanism. For the fire events sampled near the 7 
equatorial Atlantic (e.g. Fig. 6), the GOCART and RACM_GOCART schemes show good performance in 8 
reproducing the profiles of EC, and CO is captured reasonably well with the RACM_GOCART and 9 
RACM_SOA_VBS schemes. Generally, EC is simulated well by GOCART and RACM_GOCART 10 
mechanisms up to 4 km but above this the mechanisms are biased high, while EC in the 11 
RACM_SOA_VBS scheme shows much better performance than that of the GOCART and 12 
RACM_GOCART schemes at the upper levels. This is because it’s assumed there is no wet deposition for 13 
hydrophobic BC in the GOCART and RACM_GOCART schemes, which results into an underestimate of 14 
EC wet removal and overestimate of EC concentrations at higher levels. The CO mixing ratio above ~2 km 15 
is underestimated over the tropics and overestimated at altitudes below ~2km, which may be related to lower 16 
simulated fire injection heights in the model. Otherwise, the general CO profiles are well reproduced. Both 17 
RACM_GOCART and RACM_SOA_VBS schemes are able to consistently reproduce O3 mixing ratios, 18 
including the stratospheric intrusion above ~9 km at 40°S. There is some slight underestimation of O3 near 19 
the tropics, which might be associated with the underprediction of CO outside the biomass burning signature 20 
region. We also evaluated other gas-phase species: HCHO, OH and H2O2, which are important precursors to 21 
many other chemical species within the RACM_GOCART and RACM_SOA_VBS schemes (see Fig. 7).  22 
Generally, the pattern of the modeled HCHO, OH and H2O2 mixing ratio are almost the same as that of the 23 
ATom-1 observations except for some underestimates above 9 km for HCHO and OH at some latitudes, and 24 
some overestimates of H2O2 above 6 km in the southern hemisphere.  25 
For the evaluation from Minnesota to southern California, all of the chemical schemes are able to reproduce 26 
the general vertical gradients seen in the observations. The RACM_SOA_VBS scheme is able to reproduce 27 
the vertical profile of EC much better than that of the GOCART and RACM_GOCART schemes, which 28 
overestimate the EC concentrations above 2-4 km due to the assumption of no wet deposition for hydrophobic 29 
BC. This comparison highlights the value of the ATom-1 data in examining basic assumptions within the 30 
wet removal parametrization of carbonaceous aerosol in the GOCART mechanism. The high SO2 emissions 31 
from either anthropogenic or fire sources play important role in enhancing the sulfate production. There are 32 
high biases above ~ 3km for sulfate in the RACM_GOCART and RACM_SOA_VBS schemes. Results from 33 
the RACM_GOCART and RACM_SOA_VBS schemes show consistency with observed O3 and CO vertical 34 
profiles during the fire events. Both schemes show a slight enhancement of O3 at 1.5 km even though it 35 
underestimates the magnitude of the observed peak. For CO, the model results capture the peak at about 2 36 
km very well but overestimates the mixing ratio by about 30% near the surface. For the gas-phase species, 37 
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the model either using the RACM_GOCART or RACM_SOA_VBS scheme shows very good ability in 1 
forecasting the CO, O3 and HCHO mixing ratio both at the surface and free troposphere, including the O3 2 
stratospheric intrusions at the upper levels (Fig. 14). For CO, a precursor for O3 production, there appears to 3 
be overestimated emissions over California causing much higher surface mixing ratios in the forecasts than 4 
observed. For the comparisons of vertical profiles over California on August 23rd 2016, the modeled 5 
meteorological fields of temperature and potential temperature show agreement with the observations. The 6 
modeled water vapor and relative humidity are consistent with observations below 6 km though they are 7 
overestimated above 6km. The RACM_SOA_VBS scheme shows the best agreement with EC. For sulfate, 8 
the GOCART scheme is almost the same as the observation above 3km while it overestimates near the surface 9 
due to the high anthropogenic emissions used within the inventory. The simulated O3 and CO vertical profiles 10 
almost overlap the ATom-1 measurements but with less vertical variability. Though data is somewhat sparse 11 
in our analysis, the sea salt emission algorithm appears to be a model component that could be improved due 12 
to apparent consistent overestimation. 13 
The scatter plots of sea salt and gas tracers from biomass burning plumes shows that modeled sea salt appears 14 
too high and some of the disagreement may be due to uncertainties in the size range of sea salt observations 15 
(Fig. 16), and the NOy (or NOx) to CO emission ratio is too high in the fire emissions (Fig. 17). These emission 16 
overestimates may put the biomass burning region in a different photochemical regime than shown in the 17 
ATom-1 observations. 18 
The comparison in this study successfully demonstrates that the FIM-Chem model with three difference 19 
chemical schemes show good performance in forecasting the chemical composition for both aerosol and gas-20 
phase tracers when compared with the high temporal resolution (1-second) observations of ATom-1. The wet 21 
removal assumption for hydrophobic BC is not reasonable, which needs to be improved in the GOCART and 22 
RACM_GOCART schemes. It is not necessary to use the complexity of a gas-phase scheme if the focus is 23 
only on aerosol forecasts, in order to save time and computer resources. Using anthropogenic emissions for 24 
the specific year of the simulation may help to improve the forecasts. Also, a new dynamic core of Finite-25 
volume cubed-sphere dynamical core (FV3) developed by GFDL will be used to replace of FIM and coupled 26 
with the chemical schemes in the next generation global prediction system (NGGPS), as FV3GFS-Chem, by 27 
using that to demonstrates the chemical impacts on NWP. 28 
 29 

Code and data availability 30 

Basically, the chemical modules of GOCART, RACM_GOCART and RACM_SOA_VBS are based on the 31 
WRF-Chem 3.7, which can be obtained from 32 
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The FIM-Chem v1 code and model 33 
configuration for chemical composition forecast here are available at http://doi.org/10.5281/zenodo.5044392.  34 
ATom-1 data is publicly available at the Oak Ridge National Laboratory Distributed Active Archive Center: 35 
https://daac.ornl.gov/ATOM/guides/ATom_merge.html  (Wofsy et al., 2018). 36 
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Table 1. Chemical Scheme comparison. 1 

 GOCART RACM_GOCART RACM_SOA_VBS 
Number of transport Tracers 19 68 103 

Number of Chemical Reactions 4 214 233 
Aerosol scheme GOCART GOCART SOA_VBS 

GAS-phase chemistry scheme / RACM RACM 
Computational expense of 24 hours 

forecast ~4 minuets ~19 minuets ~22 minuets 

 2 

 3 

 4 

 5 

 6 
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 10 
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Figure captions. 1 

Figure 1. Vertical profiles and transect time series of the ATom-1 flight tracks on August 15th and 17th, 2016 2 
over Atlantic Ocean and August 23rd 2006 over US. 3 
Figure 2. 5-days forecast started from 00:00 UTC July 29th 2016 of surface PM2.5 and sulfate using (a) 4 
GOCART and (b) RACM_GOCART schemes, and their (c) differences (RACM_GOCART minus 5 
GOCART) at 00:00 UTC August 3rd 2016. Unit: µg /m3. 6 
Figure 3. Comparisons of 5-days forecast started from 00:00 UTC July 29th 2016 of surface H2O2, OH, and 7 
NO3 between (a) GOCART and (b) RACM_GOCART schemes, and their differences (RACM_GOCART 8 
minus GOCART) at (c) 00:00 UTC and (d) August 3rd 2016. Unit: ppb. 9 
Figure 4. 5-days forecast started from 00:00 UTC July 29th 2016 of surface O3 using RACM_GOCART 10 
scheme at 12:00 UTC August 2nd and 00:00 UTC August 3rd 2016. Unit: ppb. 11 
Figure 5. 5-days forecast started from 00:00 UTC July 29th 2016 of surface SOA using RACM_SOA_VBS 12 
scheme at 12:00 UTC August 2nd and 00:00 UTC August 3rd 2016. Unit: µg/m3. 13 
Figure 6. Height-latitude profiles of EC, CO and O3 over Atlantic on August 15th and August 17th, 2016 for 14 
(a) ATom-1; (b) RACM_GOCART; and (c) RACM_SOA_VBS. 15 
Figure 7. Height-latitude profiles of HCHO, OH and H2O2 over Atlantic on August 15th and August 17th, 16 
2016 for (a) ATom-1 observations; (b) RACM_GOCART; and (c) RACM_SOA_VBS. 17 
Figure 8. ATom-1 observations and model results for temperature, virtual potential temperature, water vapor, 18 
relative humidity, wind speed and wind direction in the (a) biomass burning and (b) dust events. The biomass 19 
burning plume is from August 15, 2016, profile #16 near 20°S while the Saharan dust plume is from August 20 
17, 2016, profile #10 near 25°N. 21 
Figure 9. Comparisons between ATom-1 observations and model vertical profiles of EC, sea salt, dust, O3 22 
and CO in (a) biomass burning event and (b) dust storm event. The biomass burning plume is from August 23 
15, 2016, profile #16 near 20°S while the Saharan dust plume is from August 17, 2016, profile #10 near 25°N. 24 
Green and blue lines are nearly identical for aerosol. 25 
Figure 10. Height-latitude profiles of EC and sulfate over United States on August 23rd, 2016 for (a) ATom-26 
1; (b) GOCART; (c) RACM_GOCART; and (d) RACM_SOA_VBS. 27 
Figure 11. Anthropogenic emissions of SO2 of (a)HTAP and (b) CEDS inventories on August. Unit: 28 
mol/km2/hour. 29 
Figure 12. Height-latitude profiles of sulfate over United States on August 23rd, 2016 for (a) ATom-1, (b) 30 
GOCART with HTAP, (c) GOCART with CEDS anthropogenic emission. 31 
Figure 13. Height-latitude profiles of OH and H2O2 over United States on August 23rd, 2016 for (a) ATom-32 
1; (b) GOCART; (c) RACM_GOCART; and (d) RACM_SOA_VBS. 33 
Figure 14. Height-latitude profiles of CO, O3 and HCHO over United States on August 23rd, 2016 for (a) 34 
ATom-1; (b) RACM_GOCART; and (c) RACM_SOA_VBS. 35 
Figure 15. Observations and model results for profile #4, 8/23/16 over southeastern Kansas. 36 
Figure 16. GOCART model forecast versus ATom-1 observed sea salt below 6 km. 37 
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Figure 17. Model (black color dot) and observation (color dot) ratios of (a) EC relative to CO; (b) NOy 1 
relative to CO; (c) O3 relative to CO and (d) O3 relative to NOy. Color scale is degree latitude. 2 
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(a) 8/15/16 South Atlantic, Punta Arenas to Ascension Is.

(b) 8/17/16 Equatorial towards North Atlantic, Ascension Is. to Azores

(c) 8/23/16 United States, Minnesota to Southern California

Figure 1: Vertical profiles and transect time series of the ATom-1 flight tracks on August 15th and 17th, 
2016 over Atlantic Ocean and August 23rd 2006 over US. 



PM2.5 Sulfate

(a)
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Figure 2: 5-days forecast started from 00:00 UTC July 29th 2016 of surface PM2.5 and sulfate using 
(a) GOCART and (b) RACM_GOCART schemes, and (c) their differences (RACM_GOCART minus 
GOCART) at 00:00 UTC August 3rd 2016. Unit: μg /m3.
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Figure 3: Comparisons of 5-days forecast started from 00:00 UTC July 29th 2016 of surface H2O2, OH, and 
NO3 between (a) GOCART and (b) RACM_GOCART schemes, and their differences (RACM_GOCART 
minus GOCART) at (c) 00:00 UTC and (d) 12:00 UTC August 3rd 2016. Unit: ppb.

(d)



(b) 00z August 3rd 

(a) 12z, August 2nd 

Figure 4: 5-days forecast started from 00:00 UTC July 29th 2016 of surface O3 using RACM_GOCART 
scheme at 12:00 UTC August 2nd and 00:00 UTC August 3rd 2016. Unit: ppb.



00z, August 3rd 

12z, August 2nd

Figure 5: 5-days forecast started from 00:00 UTC July 29th 2016 of surface SOA using RACM_SOA_VBS 
scheme at 12:00 UTC August 2nd and 00:00 UTC August 3rd 2016. Unit: μg/m3.
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Figure 6: Height-latitude profiles of EC, CO and O3 over Atlantic on August 15th and August 17th, 2016 for 
(a) ATom-1; (b) RACM_GOCART; and (c) RACM_SOA_VBS.



HCHO H2O2OH
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Figure 7: Height-latitude profiles of HCHO, OH and H2O2 over Atlantic on August 15th and 
August 17th, 2016 for (a) ATom-1 observations; (b) RACM_GOCART; and (c) RACM_SOA_VBS.
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Figure 8: ATom-1 observations and model results for temperature, virtual potential temperature, water 
vapor, relative humidity, wind speed and wind direction in the (a) biomass burning and (b) dust events. 
The biomass burning plume is from August 15, 2016, profile #16 near 20°S while the Saharan dust 
plume is from August 17, 2016, profile #10 near 25°N. 



EC O3 CODustSea salt

(a)
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Figure 9: Comparisons between ATom-1 observations and model vertical profiles of EC, sea salt, dust, 
O3 and CO in (a) biomass burning event and (b) dust storm event. The biomass burning plume is from 
August 15, 2016, profile #16 near 20°S while the Saharan dust plume is from August 17, 2016, profile 
#10 near 25°N. Green and blue lines are nearly identical for aerosol.
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Figure 10: Height-latitude profiles of EC and sulfate over United States on August 23rd, 2016 for 
(a) ATom-1; (b) GOCART; (c) RACM_GOCART; and (d) RACM_SOA_VBS.



(a) HTAP (b) CEDS

Figure 11: Anthropogenic emissions of SO2 of (a) HTAP and (b) CEDS inventories on August. 
Unit: mol/km2/hour.
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(b)

Figure 12: Anthropogenic emissions of SO2 of (a) HTAP and (b) CEDS inventories on August. 
Unit: mol/km2/hour.
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Figure 13: Height-latitude profiles of OH and H2O2 over United States on August 23rd, 2016 for 
(a) ATom-1; (b) GOCART; (c) RACM_GOCART; and (d) RACM_SOA_VBS.
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Figure 14: Height-latitude profiles of CO, O3 and HCHO over United States on August 23rd, 2016 for 
(a) ATom-1; (b) RACM_GOCART; and (c) RACM_SOA_VBS. 
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Figure 15: Observations and model results for profile #4, 8/23/16 over southeastern Kansas.
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Sea salt

Figure 16: GOCART model forecast versus ATom-1 observed sea salt below 6 km.



(b) NOy vs. CO(a) EC vs. CO

(d) O3 vs. NOy(c) O3 vs. CO

Figure 17: Model (black color dot) and observation (color dot) ratios of (a) EC relative to CO; 
(b) NOy relative to CO; (c) O3 relative to CO and (d) O3 relative to NOy. Color scale is 
degree latitude.




