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Abstract.

The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an Effective Climate Sensitivity (ECS) of

5.65 kelvin, which is a 54% increase relative to the model’s previous version (CanESM2 - 3.67 K), and the highest sensitivity

of all current models participating in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we explore

the underlying causes behind CanESM5’s increased ECS via comparison of forcing and feedbacks between CanESM2 and5

CanESM5. We find only modest differences in radiative forcing as a response to CO2 between model versions. Through the

use of cloud area fraction output and radiative kernels, we find that more positive shortwave cloud feedbacks— particularly

with regards to low clouds across the equatorial pacific, as well as sub/extratropical free troposphere cloud optical depth—

are the dominant contributors to CanESM5’s increased climate sensitivity. Additional simulations with prescribed sea surface

temperatures reveal that the spatial pattern of surface temperature change explains the pattern of change in low cloud fraction,10

but does not fully explain the increased ECS in CanESM5. The results from CanESM5 are consistent with increased ECS in

several other CMIP6 models, which has been primarily attributed to changes in shortwave cloud feedbacks.

1 Introduction

Equilibrium Climate Sensitivity (ECS), defined as the global, annual mean surface warming the Earth would exhibit as a15

response to a doubling of CO2, is a frequently cited emergent property for Earth system models (Andrews et al., 2012; Vial

et al., 2013; Charney et al., 1979). The first estimates of ECS from Earth system models ranged from 1.5 - 4.5 K (Charney

et al., 1979). In the latest phase of the Coupled Model Inter-comparison Project (CMIP6), the range of ECS from participating

models has widened (1.8 - 5.5 K), with the mean shifting towards higher values than the previous phase of CMIP (3.2 to 3.7 K

from CMIP5 to CMIP6) (Flynn and Mauritsen, 2020; Zelinka et al., 2020). Inter-model spread of ECS is primarily attributed20
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to radiative feedbacks on the climate system- specifically with regards to cloud feedbacks, which are the primary source of

spread across models (Caldwell et al., 2016; Vial et al., 2013; Dufresne and Bony, 2008).

Understanding cloud feedback uncertainty and its influence on the ECS of Earth system models (ESMs) has been an im-

perative of researchers in recent decades- particularly with regards to properties such as cloud optical depth, which reflect

shortwave (SW) radiation and cool the planet (Vial et al., 2013; Tan et al., 2016; Zelinka et al., 2020; Bjordal et al., 2020). SW25

cloud feedbacks can be separated based on latitude; middle latitude SW cloud feedbacks are mostly negative from the optical

thickening of clouds due to phase transition towards liquid in ice/mixed phase clouds (Goosse et al., 2018; Senior and Ingram,

1989). In high latitudes, sea ice loss exposes the ocean surface and increases surface turbulent fluxes, and therefore humidity,

which increases low level cloudiness (Goosse et al., 2018). In low latitudes, the SW cloud feedback is robustly positive in both

ESMs and Large Eddy Simulations (LES), owing to a reduction in the fraction and thickness of marine shallow cumulus and30

stratocumulus clouds near the planetary boundary layer (PBL) (Bretherton and Blossey, 2014; Bretherton et al., 2013; Ceppi

et al., 2017). The physical mechanisms behind SW low cloud feedbacks are tied to multiple thermodynamic, radiative, and dy-

namical processes- termed cloud controlling factors (CCFs) (Klein et al., 2017). Specifically, mechanisms favoring an increase

in low cloud fraction in baseline climatology regimes include stronger PBL temperature inversions (Wood and Bretherton,

2006; Klein and Hartmann, 1993; Bretherton et al., 2013), colder sea surface temperatures (SST) (Bretherton and Blossey,35

2014), less subsidence (Blossey et al., 2013), and increased free troposphere humidity (Van der Dussen et al., 2015).

While the sensitivity of marine low cloud cover (LCC) to specific factors varies significantly from model to model, differing

sensitivities to SSTs have been identified as a explanatory factor for spread across ESMs (Qu et al., 2014). This link suggests

the spatial pattern of surface warming has important implications for low cloud responses (Rose et al., 2014; Zhou et al., 2015),

and therefore the SW cloud feedback and climate sensitivity (Andrews and Webb, 2018).40

Here, we investigate the causes of increased climate sensitivity in the newest version of the Canadian Earth System Model,

which is the highest of all models currently participating in CMIP6, relative to the previous model version that was contributed

to CMIP5 (CanESM2). (Flynn and Mauritsen, 2020). With a particular focus on decomposed cloud feedbacks, we quantify the

differences in both forcing and feedback between CanESM2 and CanESM5 in order to establish a physical link for the shift

in ECS. Lastly, we examine the spatial pattern of warming in CanESM5 and its influence of both global mean and local cloud45

feedbacks as a potential explanatory variable for CanESM5’s high ECS.

2 Methods

2.1 Models

We compare two versions of CanESM in this study. CanESM2, the second generation earth system model from the Canadian

Centre for Climate Modelling and Analysis (CCCma), consists of their fourth generation atmosphere model (CanAM4), ter-50

restrial carbon model (CTEM), CSM ocean model from the National Centre for Atmosphere Research (NCAR), and ocean

carbon model (CMOC) (von Salzen et al., 2013; Arora et al., 2009; Zahariev et al., 2008; Arora et al., 2011; Gent et al., 1998).

CanESM5, the newest generation of the Canadian Earth System Model, includes an updated version of the Canadian atmo-
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sphere model (CanAM5) and the land surface scheme, as well as brand new ocean and sea ice models. For a full review of the

components in CanESM5, see Swart et al. (2019).55

2.2 Forcing-Feedback Analysis

We consider energy balance at Earth’s top of atmosphere (TOA) using the following equation:

N = F −λ∆Ts (1)

Where N is net radiation imbalance (in Wm-2), F is the Effective Radiative Forcing (ERF) due to that of an external agent

(e.g. CO2, in Wm-2), ∆Ts is the global, annual mean surface temperature response (in Kelvin), and λ is the net Climate60

Feedback Parameter (CFP, in Wm-2K-1). Equation 1 assumes a linear relationship between radiation imbalance and surface

temperature response (i.e. a constant λ). Under this assumption, an earth system model with a stronger (more negative) λ term

will reestablish energy balance faster- and with a weaker surface temperature response- than a weak λ term. We calculate the

CFP using pre-industrial control and abrupt-4xCO2 experiments for each version of CanESM. For CanESM2, we use 150 years

of pre-industrial control and abrupt 4xCO2 coupled model output submitted to to the Earth System Grid Federation under run65

1, initialization 1, and physics 1 (r1i1p1) (Taylor et al., 2012). For CanESM5, we use the same experiments submitted for the

core CMIP6 experiment deck (Eyring et al., 2016).

The surface temperature response after the system has reached equilibrium (N = 0 Wm-2) is defined as the Equilibrium

Climate Sensitivity, which is typically measured under a 2xCO2 ERF (ECS =−F/λ). We use the term "Effective", as opposed

to "Equilibrium" Climate Sensitivity given the linear assumptions in Equation 1, where Equilibrium Climate Sensitivity takes70

into account a time varying CFP and is representative of warming once the system as reached true equilibrium (Knutti et al.,

2017). The extent that the linear approximation accurately represents both forcing and feedback varies from model to model,

where some models exhibit a more linear response to CO2 than others (Andrews et al., 2012). The time varying CFP has been-

at least in part- attributable to differences in model timescale and magnitude of "rapid adjustments" in the climate system,

where quick tropospheric climate response to CO2 modifies TOA energy balance (Smith et al., 2018; Forster et al., 2013;75

Sherwood et al., 2015).

We consider the influence of rapid adjustments by diagnosing the ERF using two distinct methods. First, we use an ordinary

least squares linear regression between TOA radiation imbalance (N ) and surface temperature response (∆Ts) in abrupt 4xCO2

experiments, where the extrapolated y-intercept of the regression line equals 2x the ERF (ERFg, Gregory et al. (2004)). Second,

we use 30 year fixed sea surface temperature (sstClim) experiments (piControl and abrupt 4xCO2) submitted to the Radiative80

Forcing Model Inter-comparison Project (RFMIP) (Pincus et al., 2016). The ERF is calculated by differencing net TOA ra-

diation in 30 year annual mean fixed sea surface temperature experiments (ERFh), where one experiment uses pre-industrial

control CO2 and the other uses abrupt 4xCO2 (Hansen et al., 2005; Pincus et al., 2016). Under the ERFh definition, both tropo-

spheric and stratospheric rapid adjustments from clouds, air temperature, water vapour, and surface albedo are included along

with CO2.85
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Using the Gregory regression method, we obtain the CFP as the slope of the regression line. Furthermore, we quantify the

ECS for an abrupt 2xCO2 forcing as the extrapolated x-intercept of the regression line divided by two. We consider the CFP as

the linear sum of individual radiative feedbacks within the climate system:

λ= λp +λlr +λwv +λa +λc +Re (2)

Where the CFP is made up of contributions from the Planck (λp), lapse rate (λlr), water vapour (λwv), surface albedo (λa), and90

cloud (λc) feedbacks. A residual term is also included (Re) in order to account for nonlinearities. We use a combination of the

radiative kernel and Gregory regression methods to diagnose individual radiative feedbacks (Block and Mauritsen, 2013; Soden

and Held, 2006). Specifically, we use six sets of radiative kernels to calculate TOA fluxes for temperature, water vapour, and

surface albedo responses (Soden et al., 2008; Block and Mauritsen, 2013; Shell et al., 2008; Pendergrass et al., 2018; Huang

et al., 2017; Smith, 2018). Then, each flux is linearly regressed against global, annual mean surface temperature response for95

150 years, where the slope of the regression line is considered the feedback value (in Wm-2K-1). We use the clear sky linearity

test to validate the accuracy of each radiative kernel (Shell et al., 2008), where the sum of all clear sky feedbacks is compared

against the net clear sky climate feedback parameter as estimated using the Gregory regression technique with clear sky TOA

flux. Three radiative kernels passed the clear sky linearity test (relative errors of less than 10%) (Figure A1), which are used to

calculate an ensemble kernel mean for all feedbacks.100

2.3 Cloud Feedbacks

Cloud feedbacks cannot be calculated via the standard radiative kernel method due to nonlinearities associated with cloud

vertical overlap (Soden et al., 2008). We estimate cloud feedbacks using two methods- the adjusted Cloud Radiative Effect

(CRE) and cloud radiative kernel method. The CRE response is defined as the difference between clear and total sky radiative

fluxes. We adjust the CRE for the effects of environmental masking from other feedbacks using clear sky radiative kernels105

(Soden et al., 2004). The CRE ’adjustment’ using clear sky radiative kernels takes into account differences in temperature

and water vapour between a clear and cloudy atmosphere to isolate the radiative perturbation from clouds. We also account

for the masking effect of CO2 forcing by using a globally uniform proportionality constant between clear and total sky CO2

forcing (Soden et al., 2008; Chung and Soden, 2015). After adjusting the CRE, the cloud flux response is regressed similarly

to noncloud feedbacks, where the slope of the regression line equals the cloud feedback. This method is performed twice to110

yield a value for both the shortwave (SW) and longwave (LW) cloud feedbacks.

We use cloud radiative kernels and cloud area fraction output from the International Satellite Cloud Climatology Project

(ISCCP), produced from the CFMIP Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011) in CanESM2 and

CanESM5, to diagnose cloud feedbacks for different cloud top pressures and optical depths (Zelinka et al., 2012a). Specifically,

we calculate a cloud area fraction response, relative to a pre-industrial control climatology, for every year, grid point, optical115

depth, and cloud top pressure bin for each year in the abrupt 4xCO2 simulation. Then, cloud radiative kernels are applied to

the cloud area fraction response to derive TOA flux perturbations. Similar to noncloud feedbacks, each point is then linearly
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regressed against global, annual mean surface temperature response over 150 years, where the slope of the regression line is

equal to the feedback value.

In this study, we consider low clouds as having their tops ≥ 680 hPa and non-low clouds with tops ≤ 680 hPa. A key120

limitation of COSP output is the potential obscuring of low clouds via shift in the distribution of high cloud fraction (Zelinka

et al., 2018). We account for the obscuring of low clouds via normalizing low cloud fraction by upper level clear-sky fraction

as in Scott et al. (2020). Using this method, non-obscured low cloud responses are weighted by the area fraction not covered

by high clouds.

To further separate cloud feedbacks into contributions from cloud altitude, optical depth, and amount components, we125

utilize the refined decomposition technique as in Zelinka et al. (2016). Using this method, cloud kernels are decomposed

into individual components for cloud amount, optical depth, altitude, and residuals, while cloud area fraction anomalies are

resolved into contributions from altitude/optical depth shifts and total amount separately. For a full mathematical breakdown

of this decomposition, see Appendix B in Zelinka et al. (2013) and the supplemental information document from Zelinka et al.

(2016).130

For CanESM2, only 40 years of cloud area fraction data (years 1-20 & 120-140) were available in the abrupt-4xCO2 simula-

tion. To test the impact of sample size on our results, we subsample the output from the CanESM5 abrupt-4xCO2 simulation for

the same time periods as are available from CanESM2 (years 1-20 & 120-140) and find highly similar results to those obtained

from the full 150 years (Figure A3). Furthermore, we find very similar results for LW and SW cloud feedback components

from CanESM2 and CanESM5 computed using the radiative kernel method and the adjusted-CRE method (Figure A2). This135

provides confidence that both methods are accurately capturing the pattern and magnitude of cloud feedbacks in these models.

3 Results

3.1 Effective Climate Sensitivity & Radiative Forcing

We begin by quantifying net feedback, forcing, and ECS for CanESM2 and CanESM5 (Figure 1a). CanESM2 exhibits a total

climate feedback parameter of -1.03 Wm-2K-1, with an ECS of 3.67 K (Figure 1a). Relative to CanESM2, CanESM5 has a140

weaker CFP (-0.64 Wm-2K-1) and higher ECS (5.65 K). From version 2 to 5, ECS has increased by 54%. For comparison,

we also show the model range of ECS for both CMIP5 and 6 using horizontal lines below the x-axis in Figure 1a, illustrating

the high ECS in CanESM5 relative to all other CMIP6 models (Flynn and Mauritsen, 2020). Despite the increased ECS in

CanESM5, both versions of CanESM exhibit a strong linear relationship between surface temperature and net TOA flux.

Correlation coefficients are 0.92 and 0.95 for CanESM2 and CanESM5, respectively. We now turn to the different components145

of the forcing-feedback framework to elucidate any changes in either forcing, or feedback, and their influence on ECS.

We compare the ERF for CanESM2 and CanESM5 via two methods. The ERFg is determined by the y-intercept of the

Gregory regression plots (filled in circles on the y-axis in Figure 1a). The ERFg is 7.21 and 7.54 Wm-2 for CanESM2 and 5,

respectively. For comparison, we also show the ERFh as estimated using fixed-SST simulations submitted to RFMIP (open

squares). Both versions of CanESM have comparable differences between ERFh and ERFg, ranging 3-5%. Given the ERF150
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differences between both versions of CanESM cannot account for the ECS increase in CanESM5, the conclusion is that the

change in ECS is related to feedbacks, rather than forcing. We next decompose the CFP for both models to elucidate the any

potential differences in the strength of radiative feedbacks.

3.2 Radiative Feedbacks

Planck, lapse rate, water vapour, surface albedo, and cloud TOA feedbacks are shown in Figure 1b. Planck and lapse rate plus155

water vapour feedbacks are roughly equal between CanESM2 and CanESM5. The surface albedo feedback is more positive in

CanESM5, showing an increase of 0.05 Wm-2K-1 over CanESM2, which is primarily due to increases over the Arctic from sea

ice loss (Swart et al., 2019). Lastly, the cloud feedback is significantly stronger in CanESM5, with an increase over CanESM2

of 65%. The net feedback (sum of all individual feedbacks) is also shown in Figure 1b to demonstrate the strong agreement the

sum of kernel derived CFP (filled circles) and the net CFP obtained from the Gregory regression technique (filled triangles).160

Strong agreement between both methods indicate that kernel ensemble mean is accurately capturing the extent of net TOA flux

perturbation as outputted directly from the models.

Figure 1. a) Net top-of-atmosphere (TOA) radiation plotted against global, annual mean surface air temperature change in abrupt-4xCO2

simulations for CanESM2 (blue) and CanESM5 (red). Standard 150 year Gregory regressions using net top-of-atmosphere radiative flux

(adjusted by a preindustrial 150 year annual mean control climate) are conducted, where the x-axis intercept of the regression line divided

by two is defined as the ECS, and the y-axis intercept is defined as the ERF. For comparison, the ERF, as calculated using fixed SST AMIP

style runs, is shown for both versions of CanESM via the open squares along the y-axis. Bars below the x-axis denote the model range for

ECS for both CMIP5 & CMIP6 (Flynn and Mauritsen, 2020). b) Global, annual mean top of atmosphere radiative feedbacks calculated using

radiative kernels (in Wm-2K-1). From left to right, feedbacks are listed as Planck+2 (a value of 2 was added for display purposes to better

illustrate differences in the other feedbacks), lapse rate plus water vapour, surface albedo, cloud, and net feedback. For comparison, we also

show the net climate feedback value obtained using the standard Gregory regression approach (filled triangles), as well as the CMIP6 model

range (Zelinka et al., 2020).
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The primary contribution to CanESM5’s high ECS is a stronger cloud feedback (Figure 1b), in line with literature assessing

causes behind the widespread increase in ECS from CMIP5 to CMIP6 (Flynn and Mauritsen, 2020; Zelinka et al., 2020;

Gettelman et al., 2019; Andrews et al., 2019; Golaz et al., 2019). Given cloud feedbacks operate in both the shortwave (through165

their optical thickness and resultant albedo) and longwave (through their emissivity), we now decompose and examine its

longwave and shortwave components separately below.

3.2.1 Cloud Feedbacks

The LW cloud feedback is positive for both versions of CanESM— increasing by 0.06 Wm-2K-1 from CanESM2 to 5 (Figure

3a). CanESM2 exhibits a negative SW cloud feedback (-0.21 Wm-2K-1), while in CanESM5 the SW cloud feedback has become170

weakly positive (0.06 Wm-2K-1), indicating an absolute difference of 0.27 Wm-2K-1 (Figure 3b). These results are insensitive

to the selected kernel ensemble used with the adjusted-CRE method in our analysis, as the standard deviation across radiative

kernels (as denoted by the error bars in Figure 3) is comparable for both versions of CanESM. Given that we have shown only

modest differences in all other components of the forcing-feedback framework, cloud feedbacks, predominantly in the SW,

emerge as the most likely source of increased ECS in CanESM5. Therefore, we devote the rest of this article to investigating175

the causes of this change by further decomposing both the SW and LW cloud feedbacks into their altitude, optical depth, and

amount components. Although the change in net LW cloud feedback is small, we will demonstrate in the following section

that, in fact, this is due to a subtle but important compensation between its individual components.

Figure 2. Cloud long- and shortwave flux plotted against global, annual mean surface temperature change in abrupt-4xCO2 simulations for

CanESM2 (blue) and CanESM5 (red), calculated using the adjusted CRE method. Standard 150 year Gregory regressions are conducted,

where the slope of the regression line equals the cloud feedback (in Wm-2K-1). Error bars denote± one standard deviation across the selected

radiative kernel ensemble.
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3.2.2 Decomposition

The SW cloud feedback arises due to changes in cloud amount and/or optical properties. Cloud optical thickness is dependent180

on water path and cloud droplet size distribution (Slingo, 1989). The phase composition of clouds (liquid, ice, or mixed) is

linked strongly to their optical thickness due to liquid droplets and ice crystals having different characteristic size distributions,

where clouds composed of predominantly smaller liquid droplets tend to be more reflective (Pruppacher and Klett, 1980).

As a result, regions where cloud composition consists entirely of liquid droplets, or are mixed phase, tend to exhibit higher

albedo. In terms of feedbacks, cloud phase and amount changes have been identified as an explanatory factor to ECS spread in185

ESMs (Tan et al., 2016; Zelinka et al., 2016). Thus, we now decompose the cloud feedbacks using cloud radiative kernels and

ISCCP simulator output for each version of CanESM following the methods described in Zelinka et al. (2012a, b) to investigate

individual cloud feedback processes. We apply the decomposition separately to low and non-low clouds.

In Figure 3, we decompose LW and SW cloud feedbacks into contributions from changes in cloud optical depth, cloud

altitude, and cloud amount. The LW total cloud feedback is dominated by contributions from non-low clouds (Figure 3a),190

with small negative contributions from low clouds (Figure 3b). Changes in cloud optical depth or amount have little radiative

influence for low clouds given low cloud top temperatures are close to that of the surface, resulting in similar outgoing longwave

radiation (i.e. little greenhouse effect). Notably, the LW feedback for both CanESM2 and CanESM5 is anomalously high

relative to the CFMIP2 ensemble (Zelinka et al., 2016) (Figure 3a). For CanESM2, contributions to the LW feedback are

comparable for optical depth and amount feedbacks— with largest contribution coming from altitude. The altitude feedback195

arises from cloud emissivity properties, and therefore operates predominantly in the longwave for non-low clouds. Tropical

free troposphere clouds rise and maintain cooler cloud top temperatures relative to the surface, thereby becoming more efficient

at trapping outgoing longwave radiation (Zelinka and Hartmann, 2010; Gettelman and Sherwood, 2016). For CanESM5, the

LW feedback is approximately equal to CanESM2, albeit with larger contributions from optical depth and altitude feedbacks,

and a smaller contribution from amount feedback. For low clouds, the LW feedbacks are all small in magnitude. The residuals200

(yellow) are small in both models (Figure 3), indicating that nonlinear processes are less important for understanding the

changes between models.

In the SW, both models exhibit strong negative feedbacks for non-low clouds and strong positive feedbacks for low clouds

(Figure 3). The negative non-low cloud shortwave feedback is driven by an increase in cloud amount and optical depth with

warming. This result is consistent with both modelling and theoretical understanding of non-low cloud responses to warming.205

Specifically, an increasing number of liquid droplets relative to ice crystals gives rise to more mixed phase clouds, as well

as increases the proportion of liquid to ice in existing mixed phase clouds, resulting in an higher optical depth (Senior and

Ingram, 1989), and a positive relationship between mid latitude cloud liquid water content and the slope of the moist adiabat

as the troposphere warms (i.e. a function of temperature) (Betts, 1987). The situation for the non-low cloud SW feedback is

similar to that of the LW feedback, in that it is anomalously strong for CanESM2 relative to the CFMIP2 ensemble (Zelinka210

et al., 2016) (Figure 3a). For low clouds, the SW is dominated by a strong positive amount feedback (decrease in cloudiness),

with a small negative contribution from optical depth feedback (increase in cloud optical depth) (Figure 3b). For CanESM5,
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Figure 3. Global, annual mean decomposed cloud feedbacks for CanESM2 & CanESM5. Feedbacks are partitioned into both LW and SW

contributions from cloud amount (blue), cloud altitude (red), optical depth (green), and residual (orange) terms, for non-low (panel a) and low

clouds (panel b). Low cloud feedbacks are also separated via non-obscured and obscuration terms in black bars in panel b. For contributions

smaller than 0.01 Wm-2K-1, text values were omitted for the sake of clarity. Black values in parentheses indicate multi-model mean values

from the CFMIP1/CFMIP2 ensemble (Zelinka et al., 2016).

SW feedbacks differ from CanESM2 considerably for both non-low and low clouds. For non-low clouds, CanESM5’s optical

depth feedback is weaker (less negative) than CanESM2 (+0.06 Wm-2K-1) (Figure 3a). While the SW non-low cloud amount

feedback is also weaker in CanESM5, the difference is offset in the LW. For low clouds, the SW amount feedback exhibits215

the largest difference between the two model versions (+0.14 Wm-2K-1). The change in SW cloud feedback strength and sign

between CanESM2 and CanESM5 is related to multiple feedback mechanisms operating at different cloud heights. The largest

contributor is the SW low cloud amount feedback, which is more positive in CanESM5. Changes in optical depth feedbacks

are mainly important for non-low clouds, and are less negative in CanESM5.

The large difference in SW low cloud feedback strength between CanESM2 and CanESM5 raises the possibility that a220

portion of what the COSP interprets as a low cloud response is actually the result of changes in the spatial distribution of

non-low cloud fraction under climate change; a phenomenon known as ’obscuration’ (Zelinka et al., 2018). The black bars in

Figure 3b indicate the both CanESM2 and CanESM5 have a non-negligible obscuration term. However, given that the extent

of obscuration is similar between both versions of CanESM (see hatched bars in Figure 3b), it does not appear to be a major

contributor to increased feedback strength in CanESM5 relative to CanESM2.225
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3.2.3 Spatial Distribution

Low cloud amount feedbacks are considered a robust positive feedback mechanism diagnosed from both observational and

modelling studies, albeit with substantial inter-model spread in terms of strength (Eitzen et al., 2011; Clement et al., 2009;

Zelinka et al., 2016). The low cloud amount feedback is closely tied to the distribution of marine stratiform cloud regimes

persisting in the sub/tropics over ocean eastern boundary current regions (Klein et al., 2017). The non-low cloud optical230

depth feedback has been shown to have rich- and sometimes offsetting- spatial structure, owing to mostly negative feedback

mid/high latitudes and a rich zonal structure at low latitudes (Zelinka et al., 2012b, 2016). As such, we now examine the spatial

distribution of both the SW low cloud amount and non-low cloud optical depth feedbacks (Figure 4).

Figure 4 shows annual mean SW non-low cloud optical depth and low cloud amount feedbacks for CanESM2 and CanESM5.

The SW non-low cloud optical depth feedback is negative in CanESM2 & 5 (Figure 4a and c), with minima over the western235

tropical Pacific Ocean. For the SW low cloud amount feedback, both models are strongest over subtropical/tropical Eastern

Ocean basins and across the equatorial Pacific (Figure 4b and d). Notably, these regions have persistent low, stratiform cloud

regimes, which are closely tied to strong temperature inversions that cap the PBL (Klein and Hartmann, 1993).

For CanESM5, increases in SW non-low cloud optical depth feedback are exhibited throughout the subtropical Pacific and

tropical Eastern Pacific Ocean (Figure 4e). While there is strong positive (negative) feedback over the Eastern Indian (Western240

Pacific) Ocean, it is offset by a similar strength and opposing sign in the LW (not shown), and so it does not influence the global

mean net (LW+SW). For SW low cloud amount feedback, CanESM5 exhibits an increase over CanESM2 in every region of

persistent low cloud cover regimes, as well as across the eastern equatorial pacific and the western ocean basin off the Brazilian

coast, relating to the simulation of substantially reduced LCC under a warming climate (Figure 4f).

Multiple lines of evidence from modelling studies have linked the sensitivity of LCC over the oceans to local changes in SST245

(Zhou et al., 2017; Andrews and Webb, 2018). Furthermore, the evolving spatial pattern of surface warming from interannual

to centennial time scales is associated with differences between interannual and long term cloud feedback strength (Zhou et al.,

2015). The underlying physical mechanisms linking local surface warming to reduced LCC are: 1) increased surface latent

heat flux dries and deepens the boundary layer via increased buoyancy-driven turbulence and resultant downward mixing from

free troposphere air (Qu et al., 2015; Rieck et al., 2012), and 2) increased surface specific humidity promotes further moisture250

contrast between the boundary layer and the free troposphere such that when air is mixed downward it is relatively drier

(Van der Dussen et al., 2015; Qu et al., 2015). As such, we now turn to an analysis of the cloud feedbacks in both CanESM2

and CanESM5 under prescribed sea surface boundary conditions in order to investigate the influence local SST changes to

CanESM5’s SW cloud feedbacks and how they differ from CanESM2.

3.3 Influence of the Spatial Pattern of SST Changes255

To investigate the spatial pattern of warming and its influence on SW cloud feedbacks, we use two additional experiments from

the CFMIP Tier 1 experiment deck— amip-p4K and amip-future4K (Webb et al., 2017). In amip-p4K, a globally uniform SST

perturbation of +4 K is applied relative to the standard amip DECK experiment from CMIP6. In amip-future4K, a patterned
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Figure 4. Annual mean SW non-low cloud optical depth (left) and SW low cloud amount (right) feedbacks for CanESM2 (panels a & b) and

CanESM5 (panels c & d). Panels e & f show the difference between CanESM5 & CanESM2 for each respective feedback. Values in square

brackets next to each subplot title denote the global mean value for each respective map. Note the difference in colour bar scales for top and

bottom/middle panels.

warming perturbation, derived from multi-model mean coupled ESM warming patterns, is applied to the standard amip DECK

experiment and then scaled such that the global mean SST perturbation is +4 K. Sea ice concentration is held fixed to the control260

amip deck experiment. Analysis of cloud feedbacks in these two experiments allows for comparison between CanESM2 and 5

under identical SST forcing (Figure A4), which helps to isolate the contribution to change in cloud feedbacks that arises due

to changes in the atmosphere model (CanAM4 to CanESM5) independent of the ocean model replacement (NCAR CSM to

CanNEMO).
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In both amip experiments, CanESM2 exhibits strong non-low cloud feedbacks in both the SW and LW (Figure 5). The result265

is a near cancellation and slightly positive non-low cloud feedback for both amip-p4K (0.11 Wm-2K-1) and amip-future4k

(0.14 Wm-2K-1). Similarly, while individual LW and SW feedbacks differ, the net non-low cloud feedback in CanESM5 is

comparable across both amip experiments (0.26 and 0.25 Wm-2K-1 for amip-p4K and amip-future4K, respectively) (Figure 5a

and c). Relative to CanESM2, CanESM5 exhibits an overall less negative non-low cloud feedback of comparable magnitude to

feedbacks derived from abrupt-4xCO2 runs, mostly due to changes in SW amount and optical depth.270

For low clouds, both versions of CanESM have a more positive SW feedback in amip-future4K experiment relative to

amip-p4K (Figure 5b & d); this result is consistent with theoretical understanding relating warmer local SSTs to reduced

boundary layer marine cloud cover as outlined in the previous section. Of cloud feedbacks partitioned into LW/SW and non-

low/ unobscured low, the SW low cloud feedback is well correlated with tropical SST pattern anomalies in the amip-future4K

experiment (Figure 6). However, amip-p4K’s spatially uniform surface warming, its strong low cloud feedback suggests it275

can be primarily explained by underlying SST climatology, which has a direct influence on the extent of lower tropospheric

convective mixing, and therefore LCC (Sherwood et al., 2014). Prior to accounting for the obscuring effects of overlying

free troposphere clouds, the SW low cloud feedback is similar for both CanESM2 and CanESM5 (Figure 5). However, once

obscuring effects are separated, CanESM5 exhibits a more positive SW low cloud feedback— similar to feedbacks from

simulations with interactive ocean models (Figure 5b & d).280

In contrast to feedbacks from abrupt-4xCO2 runs, the extent of obscuration from free troposphere clouds differs between

CanESM2 and 5 (Figure 5b & d). Under the assumption that the obscuration term can be considered a part of the non-low cloud

feedback, feedbacks derived from the amip experiments exhibit some differences those with interactive SSTs (abrupt-4xCO2)

in both versions of CanESM for non-low and low clouds. However, for all experiments, the net cloud feedback remains more

positive in CanESM5, ranging from +0.17 Wm-2K-1 (amip-future4k) to +0.29 Wm-2K-1 (abrupt-4xCO2) (Table 1).285

4 Discussion & Conclusions

Table 1. Summary of cloud feedback results, calculated using cloud radiative kernels, from abrupt-4xCO2, amip-p4K, and amip-future-4K

experiments for both CanESM2 and CanESM5 in this study. For this summary table, obscuring effects on low clouds have been counted as

a non-low cloud feedback. Individual cell format: non-low / unobscured low / net (in Wm-2K-1)

.

Experiment

Model abrupt-4xCO2 amip-future4K amip-p4K

CanESM2 0.28 / 0.22 / 0.50 0.29 / 0.33 / 0.62 0.23 / 0.27 / 0.50

CanESM5 0.40 / 0.39 / 0.79 0.36 / 0.43 / 0.79 0.32 / 0.39 / 0.71

In this study, we have analyzed both forcing and feedback in idealized experiments with instantaneous quadrupling of atmo-

spheric CO2 (abrupt-4xCO2) using two versions of CanESM to elucidate the underlying cause behind CanESM5’s increased
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Figure 5. As in Figure 3, but for amip-p4K and amip-future4K experiments.

ECS (5.65 K). Using radiative kernels and output from RFMIP, we find only modest differences in both forcing and non-cloud
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Figure 6. Relationship between tropical SW low non obscured cloud feedback and TS pattern anomalies. Pattern anomalies are measured as

the difference between amip-future4K and amip-p4K SST perturbation experiments, where local TS responses are normalized by the global

mean SST change (4 K). Here, data points are taken from 30N to 30S over the ocean.

feedbacks. The largest difference in feedback strength between CanESM2 to CanESM5 is from the cloud feedback, particularly290

in the SW. Further breakdown of the cloud feedback into its individual components (optical depth, altitude, and amount) at dis-

tinct cloud top heights (<680 hPa for non-low, ≥680 hPa for low) revealed that the SW low cloud amount and non-low cloud

optical depth feedbacks are the dominant contributor to CanESM5’s increased ECS (+0.14 and 0.06 Wm-2K-1, respectively)

in abrupt 4x-CO2 simulations. Analysis of the spatial pattern for each feedback showed the largest model differences in SW

low cloud amount feedback over subtropical eastern ocean basins and across the equatorial pacific ocean, and in SW non-low295

optical depth feedback over the subtropical and extratropical pacific ocean.

We analyzed the spatial pattern of surface warming in CanESM5 and its influence on the SW low cloud feedback using two

amip experiments with prescribed SSTs and sea ice (amip-p4K and amip-future4K). The tropical pattern anomaly of warming
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from the coupled model (relative to spatially uniform warming) is well correlated with the SW low cloud feedback— in agree-

ment with studies linking warmer (colder) SSTs to decreased (increased) LCC (Qu et al., 2014; Bretherton and Blossey, 2014;300

Brient and Schneider, 2016), as well as the more positive feedback in patterned surface warming experiments. Furthermore, we

found non negligible differences in the magnitude of amip derived cloud feedbacks from those in abrupt-4xCO2 simulations,

particularly for non-low clouds. However, when summed to yield a net cloud feedback, CanESM5 exhibits a more positive

cloud feedback regardless of the experiment design analyzed in this study (Table 1); this result is noteworthy from a model

development perspective given that CanESM2 and CanESM5 have distinct ocean models (CanNEMO for CanESM5 (Swart305

et al., 2019) and the National Centre for Atmospheric Research CSM ocean model for CanESM2 (Gent et al., 1998)).

Our results add further evidence the recent trend of several ESMs participating in CMIP6 exhibiting higher ECS than

their CMIP5 counterpart— predominantly due to changes in SW cloud feedback strength and/or aerosol-cloud interactions

(Gettelman et al., 2019; Andrews et al., 2019; Bodas-Salcedo et al., 2019). However, it is worth noting that several modelling

centres report increased ECS sourced from distinct developments in newer versions of their respective model (e.g. addition310

of a mixed-phase cloud scheme and improved aerosol-cloud interactions in HadGEM3-GC2.0 (Bodas-Salcedo et al., 2019;

Mulcahy et al., 2018). Attribution of CanESM5’s increase in ECS to specific model developments is a subject for future work,

including cloud microphysics, aerosols, and their interactions. However, our analysis using simulations with prescribed SSTs

still showed a stronger cloud feedback, suggesting that the ocean model is not the primary factor explaining this increase.

Finally, we emphasize that the results presented in this study do not seek to comment on the plausibility of climate sensitiv-315

ity from either version of CanESM. Recently, there has been an expansion of work relating constraints on climate sensitivity

through the use of the satellite and paleoclimate observational records (Sherwood et al., 2020). Furthermore, there are limita-

tions of interpreting the validity of climate sensitivity results (as calculated here) due to uncertainties associated with statistical

methods (e.g. assuming a time-invariant climate sensitivity parameter via the regression approach) (Gregory et al., 2004).

However, we reiterate the scope of this study: establishing a causal link for the increased climate sensitivity from CanESM2 to320

CanESM5 under long term, idealized climate change.

Code and data availability. All model output from both versions of the Canadian Earth System Model analyzed in this study are publicly

available for download via the Earth System Grid Federation (https://esgf-node.llnl.gov/projects/esgf-llnl/). Source code for the Canadian

Earth System model can be found at https://gitlab.com/cccma/canesm. The particular model version (5.0.3) that contributed output to CMIP6

is available from https://doi.org/10.5281/zenodo.3251113. Code used for analysis of model output and production of figures is located at325

https://github.com/JohnVirgin/GMD_CanESM_Clouds.
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Figure A1. Clear sky linearity test for 6 sets of radiative kernels considered in this study (CAM3, CAM5, ECHAM6, HadGEM2, and ERA

kernels) tested using each version of CanESM. Y-axis error is defined as the absolute difference between the Gregory regression derived net

clear sky climate feedback parameter, and radiative kernel derived net clear sky climate feedback parameter.
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Adjusted-CRE

CanESM2

a) 0.52

CanESM5

b) 0.86
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Figure A2. Comparison of annual mean net cloud feedbacks for CanESM2 (panels a & c) and CanESM5 (panels b &d), calculated using the

adjusted-CRE method and the cloud kernel method. Global mean values are shown in square brackets next to each subplot title. CanESM2

Pearson’s r = 0.72 (p < 0.01); CanESM5 Pearson’s r = 0.86 (p < 0.01).
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Figure A3. As in Figure 2, but feedbacks are calculated using the standard cloud kernel method as opposed to the adjusted-CRE method.

Panels a & b show regressions using all available years of data for each model version, whereas panels c & d show subsampled data for

CanESM5 (years 1-20 & 120-140).
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Figure A4. Global, annual mean amip-p4K and amip-future4K surface temperature response for both CanESM2 and CanESM5. Global

mean values are shown in square brackets next to each subplot title, where values over land surfaces were excluded in cosine area weighted

averaging. For both experiments, differences were calculated using a temporal mean spanning the simulation’s entire length (36 years) and

then divided by the corresponding global mean value.
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