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Abstract.

Atmospheric CH4 mixing ratios resumed their increase in 2007 after a plateau during the period 1999-2006, suggesting vary-

ing sources and sinks as main drivers. Estimating sources by exploiting observations within an inverse modeling framework

(top-down approaches) is a powerful approach. It is nevertheless challenging to efficiently differentiate co-located emission

categories and sinks by using CH4 observations alone. As a result, top-down approaches are limited when it comes to fully un-5

derstanding CH4 burden changes and attribute these changes to specific source variations. CH4 source isotopic signatures differ

between emission categories (biogenic, thermogenic and pyrogenic), and can therefore be used to address this limitation. Here,

a new 3-D variational inverse modeling framework designed to assimilate δ13C(CH4) observations together with CH4 observa-

tions is presented. This system is capable of optimizing both emissions and associated source signatures of multiple emission

categories at the pixel scale. We present the technical implementation of joint CH4 and δ13C(CH4) constraints in a variational10

system, and analyze how sensitive the system is to the setup controlling the optimization using the 3-D Chemistry-Transport

Model LMDz-SACS. We find that assimilating δ13C(CH4) observations and allowing the system to adjust source isotopic

signatures provide relatively large differences in global flux estimates for wetlands (5 Tg yr−1), microbial (6 Tg yr−1), fossil

fuels (8 Tg yr−1) and biofuels-biomass burning (4 Tg yr−1) categories compared to the results inferred without assimilating

δ13C(CH4) observations. More importantly, when assimilating both CH4 and δ13C(CH4) observations, but assuming source15

signatures are perfectly known, increase these differences between the system with CH4 and the enhanced one with δ13C(CH4)

by a factor 3 or 4, strengthening the importance of having as accurate as possible signatures. Initial conditions, uncertainties

on δ13C(CH4) observations or the number of optimized categories have a much smaller impact (less than 2 Tg yr−1).

1 Introduction

Methane (CH4) is a powerful greenhouse gas and is responsible for 23 % (Etminan et al., 2016) of the radiative forcing induced20

by the well-mixed greenhouse gases (CO2, CH4, N2O). Atmospheric CH4 mixing ratios have increased quasi-continuously

since the pre-industrial era and by about 9 ppb/yr from 1984 to 1998 (www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). After a
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plateau between 1999 and 2006 that still generates attention and controversy (e.g., Fujita et al., 2020; Thompson et al., 2018;

McNorton et al., 2018; Turner et al., 2017; Schaefer et al., 2016; Schwietzke et al., 2016; Rice et al., 2016), the mixing ratios

resumed their increase at a large rate, exceeding 10 ppb/yr in 2014 and 2015. Trends in atmospheric CH4 are caused by a

small imbalance between large sources and sinks. Assessing their spatio-temporal characteristics is particularly challenging

considering the variety of methane emissions. Yet, identifying and quantifying the processes contributing to these changes5

is mandatory to formulate relevant CH4 mitigation policies that would contribute to meet the target of the 2015 UN Paris

Agreement on Climate Change and to limit climate warming to 2 °C.

Thanks to continuous efforts of surface monitoring networks, the spatial coverage and the accuracy of the atmospheric

methane measurements provided to the scientific community increased over the last decades. Consequently, top-down esti-

mates using inversion methods emerged and became relevant, along with bottom-up estimates, to explain and quantify the10

recent sources and sinks variations. The first inverse modeling techniques were designed in the late 1980s and early 1990s

for inferring greenhouse gas sources and sinks from atmospheric CO2 measurements (Enting and Newsam, 1990; Newsam

and Enting, 1988). The inverse problem is considered as “ill-posed” (non-uniqueness of the solution, no continuity with the

data) and therefore necessitates as many constraints as possible to be regularized. Several methods have been designed over the

years, among which analytical (e.g., Bousquet et al., 2006; Gurney et al., 2002), ensemble (e.g., Zupanski et al., 2007; Peters15

et al., 2005) and variational methods (e.g., Chevallier et al., 2005). The variational formulation uses the adjoint equations of a

specific model to compute the gradient of a cost function and then minimize it, for example using a gradient descent method.

Computational times and memory costs do not scale with the number of measurements and the number of variables to control,

contrary to the analytical and ensemble methods, which can hardly accommodate very large observational datasets and control

vectors at the same time. Thus, the variational formulation is preferred to the others when optimizing emissions and sinks at20

the pixel scale using large volumes of observational data, although its main limitation is the numerical cost to access posterior

uncertainties.

Inversion systems generally assimilate measurements from ground-based stations and/or satellites to constrain the global

sources and sinks of CH4, starting from a prior knowledge of these. These systems are very effective to provide total emission

estimates (e.g., Saunois et al., 2020; Bergamaschi et al., 2018, 2013; Saunois et al., 2017; Houweling et al., 2017, and references25

therein). However, differentiating the contributions of multiple co-located CH4 source categories is challenging as it only relies

on different seasonality cycles and on applied spatial distributions and error correlations (e.g., Bergamaschi et al., 2013, 2010).

The atmospheric isotopic signal contains additional information on methane emissions that can help to separate emission

categories based on their source origin. The atmospheric isotopic signal δ13C(CH4) is defined as:

δ13C(CH4) =
R

Rstd
− 1 (1)30

where R and Rstd denote the sample and standard 13CH4:12CH4 ratios. We use the VPDB scale with Rstd = 0.00112372

(Craig, 1957) throughout this paper. CH4 source isotopic signatures δ13C(CH4)source notably differ between emission cate-

gories ranging from 13C-depleted biogenic sources (approx. -62 ‰) and thermogenic sources (approx. -44 ‰) to 13C-enriched

thermogenic sources (approx. -22 ‰) (Sherwood et al., 2017; Schwietzke et al., 2016). Consequently, δ13C(CH4) depends on

2
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both the CH4 emissions and their isotopic signatures. Saunois et al. (2017) pointed out that many emission scenarios inferred

from atmospheric inversions are not consistent with δ13C(CH4) observations and that this constrain must be integrated into the

inversion systems to avoid such inconsistencies. Since the 1990s, δ13C(CH4) have been monitored at multiple sites, although

less than for total CH4, providing opportunities to use this constraint within an inversion framework. In addition, these values

have been shifting towards smaller values since 2006 (Nisbet et al., 2019) when CH4 trends resumed their increase, suggest-5

ing that this isotopic data can help to understand the processes that contributed to the regrowth. However, implementing the

assimilation of such measurements into an inversion system is not straightforward and introduces additional complexity.

Hereinfafter, the assimilation of δ13C(CH4) observations to constrain the estimates of an inversion is referred to as the

"isotopic constraint". The implementation of such a constraint in an inversion system have already been attempted in previous

studies focusing on CH4 (e.g., Thompson et al., 2018; McNorton et al., 2018; Rigby et al., 2017; Rice et al., 2016; Schaefer10

et al., 2016; Schwietzke et al., 2016; Rigby et al., 2012; Neef et al., 2010; Bousquet et al., 2006; Fletcher et al., 2004) but, to

our knowledge, never in a variational system. Adding this isotopic constraint to a variational inversion system is challenging

as, in contrast to an analytic inversion in which the response functions of the model are precomputed, the isotopic constraints

have to be considered both in the forward (simulated isotopic values) and the adjoint (sensitivity of isotopic observations to

optimized variables) versions of the model.15

The purpose of this study is to present the technical implementation of the isotopic constraint in a variational inversion

system and to investigate the sensitivity of this new configuration to different parameters. Our aim is not to estimate trends in

sectoral emissions over the last two decades : future studies will address the estimation of CH4 sources over longer periods of

time using this new system. The technical implementation and the various tested configurations are presented in Sect. 2. We

analyze the results in Sect.3. Sect. 4 presents our conclusions and recommendations on using such a multi-constraint variational20

system.

2 Methods

2.1 Theory of variational inversion

The notations introduced here follow the convention defined by Ide et al. (1997). The observation vector is called yo. It includes

here all available observations, namely CH4 and δ13C(CH4) measurements retrieved by surface stations, over the full simulation25

time-window (see Sect. 2.4.2). The associated errors are assumed to be unbiased and Gaussian and are described within the error

covariance matrix R. This matrix accounts for all errors contributing to mismatches between simulated and observed values.

x is the control vector and includes all the variables (here CH4 surface fluxes, initial CH4 mixing ratios, source signatures

δ13C(CH4)source and initial δ13C(CH4) values) optimized by the inversion system. Hereinafter, these variables will be referred

to as the "control variables". Prior information about the control variables are provided by the vector xb. Its associated errors are30

also assumed to be unbiased and Gaussian and are described within the error covariance matrix B.H is the observation operator

that projects the control vector x into the observation space. This operator mainly consists of the 3-D Chemistry-Transport

Model (CTM) (here LMDz-SACS introduced in Sect 2.2). Nevertheless, the CTM is followed by spatial and time operators,
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which interpolate the simulated fields to produce simulated equivalents of the assimilated observations at specific locations and

times, making the simulations and observations comparable. An additional ’transformation’ operator, implemented in the new

system, enables comparison between distinct simulated tracers, e.g. 12CH4 and 13CH4, and observations, e.g. δ13C(CH4) (see

Sect 2.3).

In a variational formulation of the inference problem that allows forH non-linearity, the cost function J is defined as :5

J(x) =
1
2
(x−xb)TB−1(x−xb) +

1
2
(H(x)−yo)TR−1(H(x)−yo) (2)

= Jb(x) +Jo(x) (3)

The cost function is therefore a sum of two parts :

– The first part is induced by the differences between the posterior and prior variables (Jb).

– The second is induced by the differences between simulations and observations (Jo)10

The minimum of J can be reached iteratively with a descent algorithm that requires several computations of the gradient of

J with respect to the control vector x:

∇Jx = B−1(x−xb) +H∗(R−1(H(x)−yo)) (4)

H∗ denotes the adjoint operator ofH. Although the variational method is a powerful approach for dealing with large numbers

of observations and control variables (several hundred thousands), it implies the inversion of both error matrices R and B. In15

most applications, R is considered diagonal as point observations are distant in time and space, allowing inversing it easily,

although that assumption may change with the increasing availability of satellite sources (Liu et al., 2020). B is rarely diagonal

due to spatial and temporal correlations of errors in the fluxes. However, B is often decomposed as combinations of smaller

matrices, e.g., using Kronecker products of sub-correlation matrices, which allows to compute its inverse by blocks.

2.2 The Chemistry-Transport Model20

The LMDz General Circulation Model (GCM) is the atmospheric component of the Institut Pierre-Simon Laplace Coupled

Model (IPSL-CM) developed at the Laboratoire de Météorologie Dynamique (LMD) (Hourdin et al., 2006). The version of

LMDz we use is an ‘offline’ version dedicated to the inversion framework created by Chevallier et al. (2005): precomputed

air mass fluxes provided by the online version of LMDz are given as inputs to the transport model, reducing significantly

the computational time. The model is set up at a horizontal resolution of 3.8° x 1.9° (96 grid cells in longitude and latitude)25

with 39 hybrid sigma-pressure levels reaching an altitude up to about 75 km. About 20 levels are dedicated to the stratosphere

and the mesosphere. The model time-step is 30 min and the output mixing ratios are 3-hourly snapshots. The horizontal

winds are nudged towards ECMWF meteorological analyses (ERA-Interim) in the online version of the model then fed to the

offline version. Vertical diffusion is parameterized by a local approach from Louis (1979), and deep convection processes are

parameterized by the Tiedtke (1989) scheme.30
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The offline model LMDz is coupled with the Simplified Atmospheric Chemistry System (SACS) (Pison et al., 2009). This

chemistry system was previously used to simulate the oxidation chain of hydrocarbons, including CH4, formaldehyde (CH2O),

carbon monoxide (CO) and molecular hydrogen (H2) together with methyl chloroform (MCF). For the purpose of this study,

this system has been converted into a chemistry parsing system. It follows the same principle as the one used by the regional

model CHIMERE (Menut et al., 2013) and therefore allows for user-specific chemistry reactions. As a result, it generalizes the5

previous SACS module to any possible set of reactions. The adjoint code has also been implemented to allow variational inverse

modelling. The different species are either prescribed (here OH, O(1D) and Cl) or simulated (here 12CH4 and 13CH4). The

prescribed species are not transported in LMDz, nor are their mixing ratios updated through chemical production or destruction.

Such species are only used to calculate reaction rates to update simulated species at each model time step. In this study, the

isotopologues 12CH4 and 13CH4 are simulated as separate tracers and CH4 is defined as the sum of both isotopologues. Cl10

+ CH4 oxidation has been implemented to complete the chemical removal of CH4, which previously only accounted for OH

+ CH4 and O(1D) + CH4 in the SACS scheme. Fractionation values (KIE for Kinetic Isotope Effect) are prescribed to the

different sinks. Here, KIE is defined by KIE = k12/k13 where k12 is the constant rate of the reaction involving 12CH4 and

k13 is the constant rate of the same reaction involving 13CH4. Additional information is provided in the supplement (Text S2).

The chemistry-transport LMDz-SACS is used to test the new variational inverse modelling system that is described in the next15

section.

2.3 Technical implementation of the isotopic constraint

The isotopic multi-constrain system was implemented in the Community Inversion Framework (CIF), supported by the Euro-

pean Union H2020 project VERIFY (http://www.community-inversion.eu). The CIF has been designed to allow comparison

of different approaches, models and inversion systems used in the inversion community (Berchet et al., 2020). Different atmo-20

spheric transport models, regional and global, Eulerian and Lagrangian are implemented within the CIF. The system presented

in this paper has been originally designed to run and be tested with LMDz-SACS but can theoretically be coupled with all

models implemented in the CIF framework. The system is able to :

– Assimilate δ13C(CH4) and CH4 observations together.

– Independently optimize fluxes and isotopic signatures for multiple emission categories.25

– Optimize δ13C(CH4) and CH4 initial conditions.

Figure 1 shows the different steps of a minimization iteration of the cost function. Each iteration performed with the descent

algorithm can be decomposed into four main steps presented below. For clarity, we only present here the optimization of

CH4 fluxes and associated source signatures but CH4 and δ13C(CH4) initial conditions can also be optimized by the system

following the same process.30
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1. The process starts with a forward run. The different flux variables are extracted and converted into 12CH4 and 13CH4

mass fluxes for each category following the Eq. (5)-(7) below.

Ai = (1 + δ13C(CH4)isource) ·Rstd (5)

F i12 =
M12

MTOT
· 1
1 +Ai

·F iTOT (6)

F i13 =
M13

MTOT
· Ai

1 +Ai
·F iTOT (7)5

F iTOT , F i12 and F i13 are the CH4, 12CH4 and 13CH4 fluxes in kg m−2 s−1 of a specific category i, respectively. MTOT ,

M12 and M13 are the CH4, 12CH4 and 13CH4 molar masses, respectively. δ13C(CH4)isource is the source isotopic signa-

ture of the category i.

The 12CH4 and 13CH4 fluxes are then provided by summing all categories and used by the model LMDz-SACS to

simulate the 12CH4 and 13CH4 atmospheric mixing ratios over the time-window considered. Finally, the simulated10

values are converted back to CH4 and δ13C(CH4) simulated equivalent of the assimilated observations using Eq. (8) and

(9) below :

[CH4] = [12CH4] + [13CH4] (8)

δ13C(CH4) =
[13CH4]
[12CH4]

· 1
Rstd

− 1 (9)

[CH4], [12CH4] and [13CH4] are CH4, 12CH4 and 13CH4 atmospheric mixing ratios simulated by the model in mol mol−1,15

respectively.

2. These simulated values are then compared to the available observations in order to computeH(x)−yo which is further

used to infer the cost function and generate CH4 and δ13C(CH4) adjoint forcings (indicated by the "*" star superscript

symbol) that compose the vector δy∗:

δy∗ = R−1(H(x)−yo) (10)20

This vector is normally used directly as input to the adjoint model (see Eq. 4) but in the new system, the adjoint forcings

CH4 and 13C(CH4) must first be converted into the adjoint forcings 12CH4 and 13CH4.

3. The newly designed adjoint code that converts CH4 and δ13C(CH4) adjoint forcings into 12CH4 and 13CH4 adjoint

forcings is based on the Eq. (11)-(13) depending on the type of the initial observation.

[12CH4]∗CH4
= [13CH4]∗CH4

= [CH4]∗ (11)25

[12CH4]∗δ13C =− [13CH4]
[12CH4]2

· 1
Rstd

· δ13C(CH4)∗ (12)

[13CH4]∗δ13C =
1

[12CH4]
· 1
Rstd

· δ13C(CH4)∗ (13)

6
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[12CH4]∗CH4
and [13CH4]∗CH4

are adjoint forcings associated with CH4 observations. [12CH4]∗δ13C and [13CH4]∗δ13C
are adjoint forcings associated with δ13C(CH4) observations. The adjoint code of the CTM is then run with these adjoint

forcings as inputs.

Outputs of the adjoint run provide the sensitivities of the adjoint forcings to the 12CH4 and 13CH4 fluxes of a specific

category i denoted F ∗,i
12 and F ∗,i

13 . Equations (14) and (15) convert them back to sensitivities to the initial control5

variables, denoted F ∗,i
TOT and δ13C(CH4)∗,isource.

F ∗,i
TOT =

1
1 +A

· [ M12

MTOT
·F ∗,i

12 +
M13

MTOT
·A ·F ∗,i

13 ] (14)

δ13C(CH4)∗,isource =Rstd ·
FTOT

(1 +A)2
· [ M13

MTOT
·F ∗,i

13 −
M12

MTOT
·F ∗,i

12 ] (15)

4. The minimization algorithm uses these sensitivities to compute the gradient of the cost function. It then finds an opti-

mized control vector that reduces the cost function and that is used for the next iteration.10

2.4 Setup of the reference simulation

The reference configuration (REF) is a variational inversion that optimizes the CH4 emission fluxes and δ13C(CH4) source

isotopic signatures of five different categories (biofuels-biomass burning, microbial, fossil fuels, natural and wetlands) and the

CH4/δ13C(CH4) initial conditions. The assimilation time-window is the period 2012-2017. The five categories originate from

an aggregation of ten sub-categories (Table 1) and chosen to be as isotopically consistent as possible. Sinks are not optimized15

here.

2.4.1 Control vector x and B matrix

We adopt the CH4 emissions compiled for inversions performed as part of the Global Methane Budget (Saunois et al., 2020).

Anthropogenic (including biofuels) and fire emissions are based on the EDGARv432 database (http://edgar.jrc.ec.europa.eu/

overview.php?v=432&SECURE=123) (Janssens-Maenhout et al., 2017) and the GFED4s databases (van der Werf et al., 2017),20

respectively. Statistics from British Petroleum (BP) and the Food and Agriculture Organization of the United Nations (FAO)

have been used to extend the EDGARv432 database, ending 2012, until 2017. The natural sources emissions are based on

averaged literature values : Poulter et al. (2017) for wetlands, Kirschke et al. (2013) for termites, Lambert and Schmidt (1993)

for ocean and Etiope (2015) for geological sources. Globally averaged emissions over the period 2012-2017 are listed in Table

1.25

Source isotopic signatures are provided either at the pixel scale (for wetlands), at the regional scale based on TransCom

regions (Patra et al., 2011) or at the global scale. The wetlands signature map is taken from Ganesan et al. (2018). Livestock

source isotopic signatures are taken from Chang et al. (2019) and aggregated into the 11-regions map by selecting region-

specific values. These estimates end in 2013, therefore the years 2014 to 2017 are set equal to the year 2013. Coal and Oil, Gas,

Industry (OGI) isotopic signature values are inferred from Sherwood et al. (2017) and Zazzeri et al. (2016) and aggregated into30
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Table 1. Emissions and flux-weighted isotopic signatures of the CH4 sources averaged over 2012-2017 for different categories and their

sub-categories. * Unc. : Prior uncertainty in the isotopic signature prescribed to the category or the sub-category. Prior uncertainty in fluxes

are set to 100 % for all categories and sub-categories.

Categories
Emissions Signature Unc.*

Sub-categories
Emissions Signature Unc.*

(Tg yr−1) (‰) (%) (Tg yr−1) (‰) (%)

Wetlands (WT) 180.3 -60.8 20 Wetlands 180.3 -60.8 20

Microbial (MC) 226.4 -59.1 20

Rice cultivation 38.0 -63 20

Livestock 117.8 -63.6 20

Waste 70.6 -49.5 20

Fossil Fuels (FF) 116.3 -43.4 25
Coal 38.4 -40.4 25

Oil, Gas, Industry 77.9 -44.9 25

Biofuels-biomass
28.4 -22.5 40

Biofuels-biomass
28.4 -22.5 40

burning (BB) burning

Natural (NAT) 38.1 -49.9 15

Oceans 14.4 -42.0 20

Termites 8.7 -63.0 20

Geological (onshore) 15.0 -50.0 20

Total 589.5 -54.1 Total 589.5 -54.1

the same 11-regions map. As for the biofuels-biomass burning category, we use region-specific signatures over 11 regions. A

global signature value is prescribed for each of the other categories. Except for the livestock category, all prior signatures are

set constant over time. Additional information regarding the chosen isotopic signatures and their references is provided in the

supplement (Text S1).

Three values per month (10 days, 10 days and the rest) for the fluxes and their associated isotopic signatures are included in5

the control variables. Although the time variations of isotopic signatures are poorly constrained in the literature, we choose to

include the same number of variables for fluxes and isotopic signatures in order to illustrate the full capabilities of the system

and have it ready when more isotopic constraints will appear.

The portion of the diagonal of B associated to prior CH4 emission fluxes is filled in with the variances set to 100 % of

the square of the maximum of emissions over the cell and its eight neighbours during each month. Off diagonal terms of B10

(covariances) are based on correlation e-folding lengths (500 km over land and 1000 km over sea). The same method is applied

for source isotopic signatures, although a specific percentage of uncertainties deduced from Sherwood et al. (2017) is used to

infer each category diagonal term (see Table 1). No temporal correlations are considered here. Finally, prior uncertainties on

initial conditions are set to 10 % for CH4 (∼ 180 ppb) and 3 % for δ13C(CH4) (∼ 1.4 ‰).

2.4.2 Observation vector y and R matrix15

CH4 observations are taken from the data archived at the World Data Centre for Greenhouse Gases (WDCGG) of the WMO

Global Atmospheric Watch (WMO-GAW) program. We selected 66 stations from 13 surface monitoring networks providing
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Figure 2. Locations of CH4 and δ13C(CH4) surface stations. Affiliated networks are not displayed. More information can be found in the

supplement (Table S3 and S4).

in-situ measurements of CH4 mixing ratios. The stations are displayed in Fig. 2. Table S3 in the supplement provides a list of

these 66 stations and specific information.

δ13C(CH4) observations are taken from 18 surface stations from the Global Greenhouse Gas Reference Network (GGGRN),

part of NOAA-ESRL Global Monitoring Division (NOAA-ESRL GMD). Air samples have been collected on an approximately

weekly basis during the 2012-2017 period and analyzed by the Institute of Arctic and Alpine Research (INSTAAR) to provide5

δ13C(CH4) isotope ratio measurements. The analytical uncertainty of the isotopic measurements is 0.06 ‰. Table S4 in the

supplement provides a list of these 18 stations and specific information. The observed high-frequency temporal variability

cannot be adequately reproduced by the LMDz-SACS model. Therefore, instead of assimilating the real observations, we used

a smooth curve fitting the real observations. The fitting curve is a function including 3 polynomial parameters (quadratic) and

8 harmonic parameters. One sensitivity inversion aims at estimating the error introduced by this simplification (simulation S210

in Table 2).

The R matrix introduced in Sect. 2.1 is defined as diagonal, assuming that observation errors are not correlated, neither in

space nor in time. This diagonal matrix can be decomposed into two parts : measurement and model error variance. Measure-

ment errors account for instrumental errors while model errors encompass transport and representativity errors induced by the

10
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model :

R = Rmeasurement +Rmodel (16)

Here, we use the provided observation errors to fill the Rmeasurement diagonal matrix. Globalview-CH4 (Globalview-CH4,

2009) values are used to represent model errors and prescribe variances at each station for CH4 mixing ratio measurements in

order to fill the Rmodel diagonal matrix. This simple approach has been used previously in atmospheric inversions (Locatelli5

et al., 2015, 2013; Yver et al., 2011; Bousquet et al., 2006; Rodenbeck et al., 2003). Errors in Globalview-CH4 are computed

at each site as the Root-Mean-Square-Error (RMSE) of the measurements on a smooth curve fitting them. As Globalview-CH4

does not provide errors for δ13C(CH4) measurements, the same method has been applied here. RMSE of the measurements on a

smooth curve fitting them over the period 2012-2017 is prescribed as the standard deviation for each site providing δ13C(CH4)

measurements.10

2.4.3 Spin-up

The model has been spun-up during 30 years using constant emissions and recycling meteorology from the year 2012 in order

to consider the long timescales for isotopic changes (Tans, 1997). At the end of the spin-up, δ13C(CH4) values have been offset

to fit the δ13C(CH4) global-mean in January 2012 and CH4 mixing ratios have been scaled to fit the CH4 global-mean mixing

ratios in January 2012. Due to the non-linearity of transport and mixing, offsetting δ13C(CH4) initial values in a forward run15

can generate errors. This impact is discussed later using a configuration where δ13C(CH4) initial conditions have not been

offset (S1).

2.5 Sensitivity tests

Table 2. Nomenclature and characteristics of the configurations. Details are provided in Sect. 2.5. ** Prior uncertainties on initial δ13C(CH4)

conditions have been set to 10 %.

Configuration δ13C(CH4) δ13C(CH4) δ13C(CH4) δ13C(CH4)source δ13C(CH4)source Number of

name initial cond. observations model uncertainties regional variability uncertainties categories

NOISO Without isotopic constraint 5

REF Offset Curve fitting RMSE obs-fit Regional variability REF uncertainties 5

S1 No offset** Curve fitting RMSE obs-fit Regional variability REF uncertainties 5

S2 Offset Real observations RMSE obs-fit Regional variability REF uncertainties 5

S3 Offset Curve fitting RMSE obs-fit / 2 Regional variability REF uncertainties 5

T1 Offset Curve fitting RMSE obs-fit Regional variability REF uncertainties 10

T2 Offset Curve fitting RMSE obs-fit Global mean REF uncertainties 5

T3 Offset Curve fitting RMSE obs-fit Regional variability 1 % for each category 5

T4 Offset Curve fitting RMSE obs-fit Global mean 1 % for each category 5
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Including REF, a set of 9 different configurations has been designed to assess the impact of assimilating δ13C(CH4) obser-

vations in addition to CH4 observations and also to evaluate the sensitivity of the inversion results to the system’s setup.

Multiple parameters have been tested throughout the various configurations : NOISO has no isotopic constraint. Therefore,

this configuration only simulates CH4 and assimilates CH4 observations. δ13C(CH4) initial conditions in S1 are not offset and

are directly taken from the spin-up. S2 assimilates the real δ13C(CH4) observations instead of the fitting curve data. In S3,5

the δ13C(CH4) model uncertainties are divided by a factor 2. T1 uses 10 sub-categories instead of 5 aggregated categories, in-

creasing the degrees of freedom. In theory, the system is capable of optimally adjusting two source signatures if the assimilated

information is sufficient. For instance, the system can choose to shift one signature downward and another upward in a given

pixel, in order to improve the fitting in this specific pixel. The configuration T2 has been specifically designed to investigate

whether the system would be able to retrieve a realistic distribution (similar to REF) starting from globally averaged signatures10

for each category. In T3, the δ13C(CH4) source signatures uncertainties are set to a very low value (1 %) in order to prevent the

system from optimizing them. In other words, all changes are put on CH4 emissions. Finally, T4 applies both changes from T2

and T3. Table 2 summarizes the different configurations and the associated changes. The configurations have been grouped into

two sets to facilitate the analysis of the results : on the one hand, S-group configurations (REF + S1-S4) have setup variations

that are not expected to largely influence the results. On the other hand, T-group configurations (T1-T4) alter parameters that15

are very likely to impact the results.

3 Results

3.1 Minimization of the cost function

The minimization process is performed using the M1QN3 algorithm (Gilbert and Lemaréchal, 1989). One full simulation (for-

ward + adjoint) necessitates about 170 CPU hours to run 6 years, i.e. 2.4 CPU hours per month simulated. The computational20

burden is increased by a factor 2 in comparison to an inversion without the isotopic constraint due to the doubling of simulated

tracers (12CH4 and 13CH4). One full simulation is generally enough to complete one iteration of the minimization process but

two or three simulations are sometimes required by M1QN3. Therefore, the number of simulations is slightly larger than the

number of iterations. Figure 3 displays the minimization process of the cost function for all configurations.

Except for S1 and T1, the inversions were stopped when the gradient norm reduction exceeded 96% for the third consecutive25

iteration. Number of iterations are compared to investigate the sensibility of the computational cost to the setup. 32 iterations

(37 simulations) for NOISO, 43 iterations (47 simulations) for REF and about 50 iterations for the others were necessary.

Consequently, although assimilating δ13C(CH4) observations requires at least 11 additional iterations, the setup has little

influence on the number of iterations if the same convergence criteria is used.

S1 and T1 inversions were extended until their cost function reached the same reduction as REF in order to estimate the30

additional computational burden required to reach similar results when initial conditions are not offset (S1) and the number

of categories is increased (T1). 10 and 21 additional iterations were necessary for T1 and S1, respectively. For T1, it shows
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Figure 3. Minimization of the cost function for all configurations. a) Cost function with respect to the number of iterations. b) CH4 contri-

bution to Jo. c) δ13C(CH4) contribution to Jo. d) RMSE associated to observed-simulated CH4. e) RMSE associated to observed-simulated

δ13C(CH4). For clarity reasons, S1 and S3 initial values are not displayed because they are too large compared to REF.

that increasing the degrees of freedom also increases the computational burden. For S1, it highlights the benefits of offsetting

δ13C(CH4) initial conditions.

As we assume no correlation of errors in R, Jo (see Eq. 3) can be divided into CH4 and δ13C(CH4) contributions. Figure 3

shows that all configurations lead to a fast reduction of the δ13C(CH4) contribution. During the first ten iterations, it decreased

from 50-90% (depending on the configuration) to 10-20 %. Conversely, the CH4 contribution increased from 10-50 % to 80-5

90%. By adjusting the source isotopic signatures (all configurations besides T3-T4), the system was able to efficiently and

rapidly reduce the discrepancies between simulated and observed δ13C(CH4). As a result, the δ13C(CH4) RMSE decreased

very rapidly during the first ten iterations while the CH4 RMSE due to CH4 discrepancies decreased at a roughly constant rate.

Consequently, the system is preferentially adjusting δ13C(CH4) over CH4 values to reduce the cost function.
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The decrease rate associated with δ13C(CH4) RMSE can be increased by reducing the model uncertainties prescribed to

the δ13C(CH4) observations. S3 is an example of such an adjustment, as the model uncertainties have been divided by two.

With this configuration, the system requires five less iterations than REF to reach similar δ13C(CH4) RMSE reduction but

7 additional iterations to reach similar CH4 RMSE reduction. T3 and T4 configurations constrains the isotopic signatures,

thus the reduction of the δ13C(CH4) contribution necessitates 25 more iterations than REF to reach similar RMSE reduction.5

To summarize, the decrease rate associated with δ13C(CH4) RMSE is highly dependent on the prescribed uncertainties in

δ13C(CH4) observations and the ability of the system to adjust source signatures.

3.2 CH4 and δ13C(CH4) fitting

As expected, the assimilation process greatly improves the agreement between simulated and observed values for both CH4

and δ13C(CH4). Figure 4 shows the globally-averaged time-series of CH4 and δ13C(CH4).10

CH4 RMSE using prior estimates is 19.4 ppb and drops to 14.3 ± 0.2 ppb (1σ) on average over all the configurations

using posterior estimates. Prior estimates lead to simulated CH4 mixing ratios in good agreement with observations and the

improvement is therefore relatively small. In addition, all configuration results regarding CH4 are very similar. In particular,

NOISO is not performing much differently than the other configurations, indicating that the additional isotopic constraint does

not affect the fitting to CH4 observations.15

Prior δ13C(CH4) prescribed in REF are continuously decreasing from -47.2 to -48.2 ‰ and thus agrees very poorly (RMSE is

0.47 ‰) with observed values. This is likely due to an underestimation (too negative values) of some source isotopic signatures

or a poor prior estimation of the source partitioning, i.e. an underestimation of 13C-enriched sources (fossil fuels or biomass

burning) or an overestimation of 13C-depleted sources (biogenic). The data assimilation process reconciles simulated and

observed δ13C(CH4) (RMSE is 0.086 ± 0.008 ‰) for all configurations, albeit small differences depending on the setup20

emerge.

The S-group provides a better match than the T-group (0.081 ± 0.003 ‰ versus 0.091 ± 0.007 ‰). Furthermore, the fit is

very similar within the S-group. In contrast, the spread in the T-group is larger with δ13C(CH4) RMSE being equal to 0.093

‰, 0.091 ‰ and 0.099 ‰ respectively for T2, T3 and T4. These results suggest that giving more freedom to the system to

adjust the isotopic signatures and providing regional-specific estimates of prior source signatures instead of global values may25

be key elements for reaching better agreement. Best results (i.e. smallest RMSE) are obtained with T1 (0.079 ‰). However,

this configuration necessitates 10 additional iterations to reach better results than REF. Without these additional iterations, REF

would be the best configuration (0.081 ‰).

Figure 5 shows the RMSE distribution at all measurement sites for each configuration. All sites exhibit a RMSE reduction

(from prior to posterior) for both CH4 and δ13C(CH4), except for BKT with T3 and T4 configurations. Furthermore, BKT,30

WKT, UUM, AMY and PON exhibit a posterior CH4 RMSE above 25 ppb, showing that CH4 measurements retrieved at these

stations are not properly reproduced by the model, despite the optimization. It can be due to transport error or misrepresentation

of sources close to the sites. Addressing this misfit is beyond the scope of this study, although the configuration influences the

results : BKT and UUM fitting are notably deteriorated with T3 and T4 configurations. For example, BKT appears to be

14
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Figure 4. Global-mean CH4 mixing ratios and δ13C(CH4) values between 2012 and 2017. The dashed black and solid blue lines in each

panel denote the observed and REF prior estimates, respectively. The red and green ranges show the maximum and minimum values of the

T-group and S-group, respectively. The thick and dashed green line denotes the REF configuration. Globally-averaged values are computed

using a method similar to Masarie and Tans (1995): a function including 3 polynomial parameters (quadratic) and 8 harmonic parameters

is fitted to each time-series at available sites; the final value is obtained by performing a latitude-band weighted average over the Marine

Boundary Layer (MBL) sites. The latitude band width was set at 30°.

influenced by biomass burning sources in South-East Asia, which are strongly dependent on the configuration (see Sect. 3.3).

Moreover, T3 provides the poorest δ13C(CH4) fitting at AMY (0.24 ‰). Therefore, setting global values for source signatures

and preventing the system from optimizing them lead to poorer fitting. On the contrary, T1 improves the results, indicating that

additional degrees of freedom can help to reconcile simulations with observations, especially in South-East Asia where these

stations are located.5

3.3 Global and regional emission increments

We are primarily interested in the additional information provided by the assimilation of δ13C(CH4) data. Rather than dis-

cussing the regional and global CH4 emissions and comparing these results to previous estimates, we investigate the differences

15
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between emissions inferred from configurations with and without the additional isotopic constraint. Long-term inversions will

be run in the future with this system to provide more robust estimates of CH4 emissions and compare them to the existing

literature.

The inversion time-window is the period 2012-2017. However, flux and source signature estimations of the 2012-2013 and

2016-2017 periods are not interpreted as the system appears to require a 2-year spin-up (2012-2013) and a 2-year spin-down5

(2016-2017), over which the inversion problem is not sufficiently constrained and isotopic signatures vary widely over time.

Therefore, only the 2014-2015 estimates are analyzed in Sect. 3.3 and 3.4. Figure S2 in the supplement shows the time-series

of isotopic signatures and illustrates this choice.

Figure 6 shows global and regional increments from the NOISO and REF inversions relative to prior estimates. Hereinafter,

these differences will be referred to as "REF increment" (REF - PRIOR) and "NOISO increment" (NOISO - PRIOR). The10

difference between both increments will be called an "increment difference". Note that prior emissions are identical for all

configurations. At the global scale, the posterior total emission inferred with REF is 595.0 ± 1 Tg yr−1 and the difference

between REF and NOISO is only 0.3 Tg yr−1, indicating that the isotopic constraint does not affect the total global emissions.

A higher discrepancy between these two budgets would have indicated a malfunction in the system as the sinks are the same

but this small value is likely caused by a slight difference in the fitting to the observations and/or by the spatial variability of15

the prescribed sink coupled with the relocation of emissions when the isotopic constraint is implemented. Thus, the additional

isotopic constraint only relocates the emissions and also reallocates them between categories, as intended. All but one of the

emission categories exhibit large changes between NOISO and REF : wetlands (WT), fossil fuels (FF), microbial (MC) and

biofuels-biomass burning (BB) categories.

Global increment differences in MC (-6.4 Tg yr−1) and FF emissions (8.6 Tg yr−1) are mainly due to regional increment20

difference in China and Temperate Asia. MC regional increment difference is equal to -2.1 Tg yr−1 in Temperate Asia and -2.4

Tg yr−1 in China. Similarly, FF increment difference is equal to 1.5 Tg yr−1 in Temperate Asia and 5.0 Tg yr−1 in China.

WT global increment difference (-5.7 Tg yr−1) is mainly due to differences in Canada (-2.0 Tg yr−1) and South America (-2.3

Tg yr−1) but other regions such as Russia, Temperate Asia and South-East Asia are involved. BB emissions are also modified

when implementing the isotopic constraint. Their global increment difference is equal to 3.2 Tg yr−1 principally owing to25

increment differences in South-East Asia (1.7 Tg yr−1), Canada (0.4 Tg yr−1) and Africa (0.4 Tg yr−1). The Natural (NAT)

category exhibit very little changes (less than 1 Tg yr−1), even in relative values (see Fig. S3 in the supplement).

S-group configurations infer results remaining consistent with REF, with only small variations depending on the category and

the region (see Table S5 in the supplement). In particular, S1 provides roughly the same results as REF but with more iterations,

highlighting again that offsetting the initial conditions can help to reduce the computational burden without affecting the results.30

On the contrary, T-group configurations are affecting the increments, although T1 and T2 configurations are generally much

closer to REF than T3 and T4. T1 (yellow dot) and T2 (blue dot) exhibits differences with the S-group essentially in China

where WT and FF increments are modified (∼ -3 Tg yr−1). More importantly, almost freezing the isotopic signatures to their

prior values in this system (T3 and T4) results in increment differences 3 to 4 times larger than with REF, i.e. more than

10 Tg yr−1 at the global scale. It highlights the dependence of the inferred CH4 emissions to the prior source signatures35
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Table 3. Global methane emissions by source category and region (TgCH4 yr−1) for the REF configuration. Uncertainties are reported as

the [min–max] range of all configurations.

Biofuels-Biomass burning Microbial Fossil Fuels Natural Wetlands Total

U.S 1 [1 - 1] 22 [21 - 22] 14 [13 - 15] 2 [2 - 2] 17 [16 - 17] 56 [55 - 56]

Canada 2 [1 - 3] 2 [2 - 2] 2 [2 - 2] 1 [1 - 1] 21 [16 - 23] 29 [24 - 30]

South America 2 [2 - 3] 30 [29 - 31] 6 [6 - 6] 5 [5 - 5] 53 [50 - 55] 96 [93 - 99]

Africa 9 [8 - 10] 25 [25 - 26] 14 [13 - 15] 4 [4 - 4] 28 [26 - 28] 80 [80 - 80]

Europe 1 [1 - 1] 20 [19 - 20] 6 [6 - 7] 2 [2 - 2] 4 [4 - 4] 34 [33 - 34]

Russia 2 [2 - 2] 5 [5 - 5] 12 [12 - 13] 3 [3 - 3] 12 [11 - 13] 35 [34 - 36]

Temperate Asia 3 [3 - 3] 54 [51 - 56] 28 [27 - 31] 7 [7 - 7] 13 [11 - 13] 105 [104 - 106]

China 5 [5 - 5] 29 [26 - 32] 24 [19 - 33] 1 [1 - 1] 5 [5 - 5] 64 [61 - 70]

South East Asia 11 [9 - 18] 23 [22 - 23] 8 [7 - 8] 4 [3 - 4] 22 [21 - 23] 66 [66 - 72]

Oceania 1 [0 - 1] 4 [4 - 5] 2 [2 - 2] 1 [1 - 1] 3 [3 - 3] 11 [11 - 11]

Others 1 [1 - 1] 4 [4 - 4] 5 [5 - 5] 8 [8 - 8] 2 [2 - 2] 19 [19 - 19]

Global 37 [33 - 47] 220 [210 - 226] 119 [111 - 134] 38 [38 - 39] 180 [167 - 185] 594 [594 - 597]

estimates. In other words, the quality of isotopic signature (values and distributions) appears to be critical for the robustness of

the system’s source estimates.

3.4 Global and regional source signature increments

Source isotopic signatures are also optimized by the system. Figure 7 provides the flux-weighted source isotopic signatures for

different regions. It shows the difference between REF posterior and prior estimates.5

All source signature are shifted upwards by the inversions, in order to correct the too strong negative trend in δ13C(CH4). At

the global scale, flux-weighted source signatures of WT, FF, MC and BB are increased by 1.7, 0.5, 0.9 and 0.5 ‰, respectively.

The global source signature is increased from -53.9 ‰ (prior) to -52.6± 0.2 ‰ (posterior) depending on the configuration (see

Table S6). The posterior global signature is strongly dependent on the total fractionation effect. This effect tends to deplete air

in 13CH4, shifting the δ13C(CH4) to more positive values as the CH4 molecules emitted by the sources are removed from the10

atmosphere. The total fractionation effect depends on 1) the prescribed OH, O(1D) and Cl concentrations and 2) the prescribed

KIE values associated to the sinks (see Text S2 in the supplement). As the fractionation effect is the same for all configurations,

the posterior global source signatures are very close.

The WT source signature exhibits the larger upward shift, from a global value of -60.8 ‰ to -59.1 ‰. This large difference

for an average signature is due to upward shifts in Boreal regions (North America, Russia) but also in South America and15

Temperate Asia. The MC source signature is increased by 0.9 ‰ mainly due to changes in Asia. The FF source signature is

increased by 0.5 ‰ globally due to a large increment in China (+ 1.2 ‰). Finally, the BB source signature is reevaluated in

South-East Asia (+ 1.4 ‰) and Canada (+ 0.8 ‰).

These changes are consistent within the S-group (see blue errorbars in Fig. 7), although small variations are visible (e.g. ±
0.3 ‰ for WT in Canada). The source signature is therefore modified nearly to the same extent in all regions, no matter which20
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configuration in the S-group is analyzed. More details on prior and posterior values are given in the supplement (Table S6). T1

(yellow dot in Fig. 7), with more optimized categories than the others, shows small differences at global scale (less than 0.3 ‰

for all categories), although differences of more than 1 ‰ are visible in China. Therefore, increasing the number of degrees of

freedom lead to similar flux estimates but can affect the signatures at regional scale.

T2 estimates are shifted upward to reach a less negative global source isotopic signature without getting closer to the regional5

distribution of the S-group. This is likely caused by the scarcity of δ13C(CH4) stations and correcting this behavior seems

challenging without additional observations. The problem might be circumvented by using the region scale rather than the

pixel scale to optimize isotopic signature values. Future inversions will test this assumption.

3.5 Posterior uncertainties

Formally, posterior uncertainties are given by the Hessian of the cost function. This matrix can hardly be computed at an10

achievable cost considering the size of the inverse problem. Other means must be implemented to get posterior uncertainties

such as estimating lower-rank approximation of the Hessian, using Monte-Carlo ensembles of variational inversion to repre-

sent the prior uncertainties or computing multiple configurations covering a given range of possibilities. Here, using multiple

configurations provide insight into the posterior uncertainty (min-max range) associated with the posterior fluxes. WT, MC, FF

and BB flux estimates (Table 3) exhibit an uncertainty of 10 %, 7 %, 19 % and 38 %, respectively. BB is the most uncertain15

estimate relatively to its intensity, although FF show the largest absolute uncertainty (23 Tg yr−1).

4 Conclusions

We present here a new variational inversion system designed to assimilate observations of both a specific trace gas and its

isotopic data. This system allows to optimize both the tracer emissions and the associated isotopic signatures for multiple

source categories. To test this system we have assimilated CH4 and δ13C(CH4) data retrieved at different measurement sites20

over the globe.

Different configurations have been tested in order to assess the sensibility of the system to the setup. We have shown that

offsetting the δ13C(CH4) initial conditions before the inversion (S1), using δ13C(CH4) curve fitting data instead of the original

observations (S2) and reducing the prescribed uncertainties in the δ13C(CH4) observations (S3) have very little effect on the

inferred fluxes (less than 2 Tg yr−1 for each category at global scale). However, offsetting the δ13C(CH4) initial conditions25

before the inversion results in a reduced computational time (21 less iterations).

Other setup choices have more influence on the results. Increasing the number of source categories (T1) requires more

computational time (10 more iterations) to reach a cost function (and RMSE) reduction similar to REF. Moreover, although

the global posterior emissions with an increased number of categories are very close to those inferred with REF (less than 1

Tg yr−1), the posterior isotopic signatures can be modified in some regions (more than 1 ‰ in China). Also, starting from30

mean global values for the source signatures (T2) makes the system unable to retrieve the regional-specific isotopic signatures

from REF. Increasing the number of δ13C(CH4) observations could help to cope with this issue. Finally, configurations which
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constrain the source signatures (T3-T4) show differences in global flux estimates of more than 10 Tg yr−1, compared to REF.

This emphasizes the need for good prior source signature estimates.

The major caveat of this inversion system is undoubtedly the large computational burden of a full minimization process. At

least 40 iterations appear to be necessary to reach a satisfying convergence state at the regional scale. For the LMDz-SACS

model, a maximum of 8 CPUs can be run in parallel, resulting in an elapsed time of 5-6 weeks to run one of the inversions of5

this study. A new generation of transport models such as DYNAMICO (Dubos et al., 2015) could help to address this problem

in the future by allowing more processors to run in parallel. In addition, variational inversions as implemented in the CIF are

not enabled to provide a quantification (even approximated) of the posterior uncertainties. Dedicated efforts need to be done to

address this issue in the future, at an achievable numerical cost.

This system is implemented within the CIF framework and can therefore be used for inversions with the various CTMs10

embedded in the CIF, provided the adjoint codes of the models exist. Due to the variational method benefits, the efforts

dedicated to the preparation of inputs do not scale with either the size of the observational datasets or the length of the

simulation time-window. Therefore, this system is very powerful and is particularly relevant to study in a consistent way the

influence of multiple physical parameters on atmospheric isotopic ratios, such as the transport, the isotopic signatures, the

emission scenarios, the KIE values, etc. We did not try to assess here the sensitivity of the system to these parameters as only15

technical aspects of the system were tested. This will be part of a future analysis.

δ13C(CH4) is not the only isotopic data that can be assimilated in such a system. Many δD(CH4) observations have also been

retrieved during the period 2004-2010 at many different locations. These isotopic values can provide additional information

that can further help to discriminate the co-emitted CH4 fluxes (Rigby et al., 2012). Moreover, ethane (C2H6) is co-emitted

with CH4 by fossil fuel extraction and distribution (Kort et al., 2016; Smith et al., 2015) and observations are available at a20

multitude of sites since the early 1980s. Therefore, assimilating this data can provide additional constraint. The system will

therefore be improved in the future in order to assimilate δ13C(CH4), δD(CH4) and C2H6 observations together.

Data availability. The CIF codes and documentation pages are available here: community-inversion.eu.
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