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Abstract. Distributed environmental models such as land surface models (LSM) require model parameters in each spatial

modelling unit (e.g. grid cell), thereby leading to a high-dimensional parameter space. One approach to decrease the dimen-

sionality of parameter space in these models is to use regularization techniques. One such highly efficient technique is the

Multiscale Parameter Regionalization (MPR) framework translates high-resolution predictor variables (e.g., soil textural prop-

erties) into model parameters (e.g., porosity) via transfer functions (TFs) and upscaling operators that are suitable for every5

modeled process. This framework yields seamless model parameters at multiple scales and locations in an effective manner.

However, integration of MPR into existing modeling workflows has been hindered thus far by hard-coded configurations and

non-modular software designs. For these reasons, we redesigned MPR as a model-agnostic, stand-alone tool. It is a useful

software for creating graphs of netCDF variables, wherein each node is a variable and the links consist of TFs and/or upscaling

operators. In this study, we present and verify our tool against a previous version, which was implemented in the mesoscale10

hydrologic model mHM (www.ufz.de/mhm). By using this tool for the generation of continental-scale soil hydraulic param-

eters applicable to different models (Noah-MP and HTESSEL), we showcase its general functionality and flexibility. Further,

using model parameters estimated by the MPR tool leads to significant changes in long-term estimates of evapotranspiration,

as compared to their default parameterizations. For example, a change of up to 25% in long-term evapotranspiration flux is

observed in Noah-MP and HTESSEL in the Mississippi River basin. We postulate that use of the stand-alone MPR tool will15

considerably increase the transparency and reproducibility of the parameter estimation process in distributed (environmental)

models. It will also allow a rigorous uncertainty estimation related to the errors of the predictors (e.g., soil texture fields),

transfer function and its parameters, and remapping (or upscaling) algorithms.
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1 Introduction20

Distributed environmental models simulate key fluxes and states of the atmosphere, land surface, and subsurface for a given

spatial domain and time period (e.g., CLM (Andre et al., 2020), JULES (Best et al., 2011), or ORCIDEE (Krinner et al.,

2005)). The underlying physical processes are simplified with parameterizations that are manifested as computer algorithms.

Parameterizations are idealized representations of reality and as such there is inherent uncertainty in their formulation. They

require additional variables and model parameters in order to perform simulations. The latter could be constant, or it could be25

spatially and temporally variable over the simulation domain (i.e., the so-called distributed model parameters). Constant model

parameters do not allow accurate characterization of environmental processes over a range of climatic regimes and geo-physical

properties (Samaniego et al., 2010; Beck et al., 2016). The number of distributed model parameters tend to scale linearly with

the number of spatio-temporal units, which is defined by the coordinates along each dimension of the parameterized process.

Model parameters are often fine-tuned to match observed fluxes and states of physical processes in various fields, such as30

hydrology (Zink et al., 2017; Pagliero et al., 2019), Earth System Sciences (Troy et al., 2008), and hydraulics (Shoarinezhad

et al., 2020)). Currently, there exists a plethora of methods for parameter estimation (Samaniego et al., 2017), which is the

process of estimating a set of model parameters over the whole domain and their respective distribution functions. Such methods

include classification linked through lookup tables (for example, ECMWF, 2019; Andre et al., 2020), direct calibration (for

example, Li et al., 2018; Arheimer et al., 2020), calibration and regionalization (for example, Carrera et al., 2005; Oudin35

et al., 2008; Samaniego et al., 2010; Rojas-Serna et al., 2016; Hundecha et al., 2016), and probabilistic methods (for example,

González-García et al., 1998; Thiemann et al., 2001). Optimization issues related to parameter estimation through calibration

tasks are often solved by the application of optimization algorithms (for example, Duan et al., 1993; Tolson and Shoemaker,

2007).

Distributed models have a parameter space with a very large dimensionality (Schaake, 2003). Even if high-performance40

computing (HPC) is available, it is not only numerically infeasible to estimate parameters for every individual grid cell, but also

an ill-posed problem in lieu of limited availability of reference datasets (Kirchner, 2006). Samaniego et al. (2017), for example,

indicated the presence of large differences in parameter estimation methods and the derived distributed parameter fields for

many state-of-the-art global hydrological models (GHMs) and land surface models (LSMs). Regionalization techniques, such

as multiscale parameter regionalization (MPR) (Samaniego et al., 2010), provide an approach for reduction of dimensionality45

of parameter space through efficient use of regularization functions to estimate spatially explicit model parameters (Pokhrel

and Gupta, 2010; Gupta et al., 2014).

The MPR framework operates on a two-step procedure. In a first step, it employs transfer functions (TFs) to translate

high-resolution geo-physical properties into high-resolution model parameters. It can easily meet the requirements posed by

Van Looy et al. (2017) to couple information from different datasets (e.g., soil, vegetation, and topography) or establish time-50

varying parameters depending on changes in land use or climate (Vereecken et al., 2019). In the second step, high-resolution

parameters are upscaled using upscaling operators to the spatial resolution and topology of the selected spatial units at which

the model is to be applied. The resulting parameters are quasi-scale-independent and explicitly consider sub-grid variability
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and predictor uncertainty if multiple sources are used (Samaniego et al., 2010; Kumar et al., 2013b; Rakovec et al., 2016;

Dembélé et al., 2020). Optimization approaches therefore should adjust the (globally applied) parameters of the TFs and the55

parameters of the upscaling operator.

Currently, MPR is implemented as part of the source code of the mesoscale hydrologic model (mHM) (Samaniego et al.,

2010; Kumar et al., 2013b) and cannot be easily adapted for other models. Furthermore, this mHM-bound version is restricted

to rectangular grids and uses a hard-coded set of TFs for model parameters required by the mHM specifically. Mizukami et al.

(2017) proposed a flexible version of MPR (MPR-flex) to estimate parameters for the hydrological models VIC (Liang et al.,60

1994; Hamman et al., 2018) and SAC (Burnash, 1995). This tool is also limited to a set of model-specific parameters, namely:

TFs and its two targeted models. In recent years, there have been numerous applications of MPR as a parameter estimation

technique for other models (for example, Samaniego et al., 2017; Mizukami et al., 2017; Imhoff et al., 2020); however, no

generic software currently exists. In addition, existing applications are more targeted toward hydrologic applications; never-

theless, challenges persist with regards to accurate estimation of the seamless fields of model parameters across a variety of65

spatial resolutions in different compartments of Earth System Science models.

Therefore, a new MPR tool that provides a tailored framework for distributed parameter estimation is urgently needed (Van Looy

et al., 2017; Vereecken et al., 2019). With this aim in mind, we propose an MPR framework that can be used as a preprocessor

for both large-scale applications of land-surface models and global or regional hydrologic models. It needs to be a flexi-

ble, model-agnostic, light-weight, and high-performance tool with few external dependencies. Another key goal is to allow the70

MPR tool to be embedded in optimization workflows such that TFs and remapping techniques can be easily modified (Van Looy

et al., 2017). Thus, the configuration overhead should be kept minimal. Although targeted towards and originating from the

LSM community, the development of MPR is aimed at supporting parameter estimation for distributed models in any scientific

field.

One key challenge is establishing a proper linkage between model parameters and suitable predictor variables (Clark et al.,75

2016; Blöschl et al., 2019). Most currently-used TFs are derived from commonly observed or measured predictors and param-

eters (Van Looy et al., 2017). Mathematical frameworks (e.g., linear regression models, artificial neural networks, and random

forests) are applied to training datasets in order to develop functional relationships. However, TFs can also be inferred through

inverse methods. Emerging methods for the development of TFs do exist (Klotz et al., 2017; Feigl et al., 2020; Merz et al.,

2020). MPR provides the interface to link these tools to distributed environmental models.80

Providing a library of remapping schemes is crucial, as the parameterizations in environmental models are not applied

on the scales at which they were derived. For example, the Richardson & Richards’ equation (Richardson, 1922; Richards,

1931) describing unsaturated water flow through porous media at the representative elemental volume scale is often used at

the landscape scale (say 102 km). The inherent uncertainty of the physical parameters describing this phenomenon needs to

be adequately considered by the choice of transfer functions and upscaling operators (Montzka et al., 2017; Vereecken et al.,85

2019). More generally, flow rates such as saturated hydraulic conductivity are common parameters in environmental models,

and their scaling behavior should be considered (Zhu and Mohanty, 2002; Kumar et al., 2013b). Additionally, their anisotropic

properties necessitate a dimension-dependent selection of upscaling operators (e.g., harmonic and arithmetic mean).
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In this paper, we first present a working example to illustrate current challenges in the estimation of distributed parameter

fields in environmental models. We would like to provide hands-on information to environmental modellers from the Earth90

System Science communities in sections 2, 3.5, 4 and 5.

Section 2 outlines different ways to estimate distributed parameters and deducts feature requirements for the MPR tool.

Sections 3.5 highlights those features and the resulting applicability. In section 4, we demonstrate the versatility of the MPR tool

by reproducing an open source dataset (EU-SoilHydroGrids (Tóth et al., 2017)) containing soil hydraulic properties derived

from a set of TFs. We demonstrate its tight coupling to the hydrologic model mHM and its capabilities with regard to the95

reproduction of the original mHM model behavior. The effects on long-term evapotranspiration from the coupling of MPR to

state-of-the-art land surface models (Noah-MP and HTESSEL) are also shown. This is achieved by an effective TF application

and parameter regridding that is applicable to any model that requires distributed parameters (e.g., LSM or environmental

models). The last section 5 concludes our work on the parameter estimation tool MPR.

Sections 3.1 to 3.4 contain details of the technical implementation of MPR that are interesting for software engineers and100

model developers that would like to integrate MPR in their software. We show how the new generic and agnostic MPR tool is

designed and configured to meet the required features. The section 3.2 is elucidating the configuration of MPR and is followed

by a detailed description of how to interface MPR through a stand-alone executable, as well as through its API (application

programming interface) in section 3.4.

2 A minimal working example in environmental modelling105

2.1 Objective

For demonstration purposes we define an objective that is commonly encountered in environmental modeling. For a hypothet-

ical inter-comparison project, the influence of different parameter estimation schemes for soil parameters is investigated for a

given domain along with two different resolutions and three different model-specific grid types.

A common parameter present in many environmental models is soil porosity (θs), which denotes the pore volume fraction110

of the total soil volume in the vadose zone. The SoilGrids (SG) dataset (Hengl et al., 2017) provides soil physical properties

at a high resolution ( 1
480

◦). From the extensive literature on pedotransfer functions (TFs for soil parameters) (Patil and Singh,

2016), we selected a TF for estimating θs based on bulk density, organic matter, clay, and sand content (Weynants et al.,

2009). The southeastern United States, which includes the state of Florida, was chosen as the domain of interest due to high

heterogeneity in the physical properties of the soil in this region. We selected different grid layouts that are often used in115

different modeling disciplines. These are regular rectangular grids generally used in distributed environmental modeling (Ma

et al., 2017; Zink et al., 2017), icosahedral grids representing the group of geodesic grids increasingly used in the Earth System

Science community (Zängl et al., 2015; Skamarock et al., 2012), and polygons or hydrologic response units (HRUs) often used

in hydrology or the soil sciences (Wellen et al., 2015).

The exemplary workflow depicted in Fig. 1 shows the high-resolution predictor variables (shown in the lower left corner)120

that are passed to the transfer function (TF) to derive the resulting field porosity (lower right corner) at the predictor resolution.
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Figure 1. Example application of MPR deriving porosity based on SoilGrids250m (Hengl et al., 2017) variables (bulk density, organic matter,

clay and sand content) in Florida, USA

It exhibits considerable heterogeneity in various gradients between the southeast and northwest regions of the domain, coastal

and inland areas, riverbeds, and mountainous areas. The target variable is then upscaled to six different spatial grids at different

resolutions. Regular rectangular grids with resolutions of 1/8 and 1◦ are shown in the left column of the top panel of Fig. 1.

The lower grid is the same as the one used for the North American Land Data Assimilation System 2 forcing dataset (Mitchell125
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et al., 2004). The latter dataset covers the domain of the conterminous United States (CONUS) and has been used for different

LSMs (Xia et al., 2012). The two icosahedral grids specified by identifier R02B04 and R02B05 (Fig. 1 the center column

in the top panel (Zängl et al., 2015)) can be used for the configuration of LSM JSBACH (Mauritsen et al., 2019). Finally,

polygons denoting the WBDHU4 and WBDHU6 domains (Fig. 1 right column in the top panel) and the realizations of the

National Watershed Boundaries Dataset (of Agriculture-Natural Resources Conservation Service , USDA-NRCS) can be used130

for HRU-based (Flügel, 1995) models such as SWAT (P. W. Gassman et al., 2007) or PRMS (Leavesley et al., 1983). The

figure demonstrates how different grids represent compromises between conservation of subgrid heterogeneity and reduction

of spatial complexity. Although the parameter gradients in the valleys in South Carolina in the parameter fields of the 1/8◦

rectangular grid are still visible, they are not visible in the other grids. The reduced number of grid cells allows for a lower

computational load during model run times (simulations).135

This parameter estimation routine, which is followed by simulations of the distributed model, might then be used iteratively

by a calibration routine in order to optimize TF parameters. These are global parameters of the TF whose application to the

predictors is used to derive the effective distributed model parameters. Next, a workflow to derive these parameters in an

efficient and consistent manner is presented.

2.2 Options for parameter estimation workflow140

There exists a range of different options for the workflow described in the previous section, which we briefly describe here.

A few existing software tools and GCM couplers can be used to perform the two key steps of applying a TF and remapping a

multi-dimensional grid onto an another:

1. In climate sciences, the command line data processing tools cdo (Schulzweida, 2019), nco (Zender, 2008) or TempestRemap

(Ullrich and Taylor, 2015) are commonly used. cdo and nco can perform both application of TFs (ncap2 operator)145

and remapping (ncremap operator). TempestRemap, however, serves solely as a regridding library.

To perform parameter estimations using one of these tools, we need to establish a stack of calls to the expr operator and

remap. This can be achieved either directly or from a scripting language, for which wrapper libraries are provided. To

improve the usability of the approach, the setup would need a wrapper library on its own to manage file-I/O, parameters,

coordinates, transfer functions, and upscale operations. One advantage of the developed MPR tool is that the entire150

workflow is described in a single configuration file.

2. Numerous couplers of Earth system models (ESMs) contain routines for the remapping of variables (e.g., ESMF (Collins

et al., 2005) with RegridWeightGen, Atlas (Deconinck et al., 2017) or OASIS (Craig et al., 2017) among others). For

example, parts of the ESMF library can be compiled to the ESMF RegridWeightGen application, which readily in-

terfaces with multiple netCDF-based grid formats and performs a number of different remapping algorithms. In addition,155

LFRic (Adams et al., 2019) and Atlas also provide a data model explicitly designed to support HPC applications. All of

the aforementioned software tools and couplers expose their API and are publicly available and actively maintained by

their respective communities.
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Coupling libraries perform a multitude of tasks and thus have a codebase of considerable size. The installation procedure

requires multiple dependencies on third-party software and is extremely demanding. Apart from RegridWeightGen,160

access to the correct sections of the API for remapping and function evaluation is not easily attainable. Accurate imitation

of MPR functionality would require a setup similar to that of cdo, as well as establishment of a wrapper that effectively

executes a set of commands or directly accesses the backend routines.

3. The processing of polygon-based data from shapefiles or geodatabases is often conducted using Geographic Information

Systems (GIS) such as QGIS (team, 2020) or ArcGIS (ESRI, 2020). The support of netCDF-based data has been165

introduced in recent versions of QGIS by the MDAL library (Ltd., 2020). GIS possesses a large inventory for handling

spatial data and associated visualizations.

After launching the target program, for example, QGIS, the predictor dataset needs to be loaded and the TF must be

applied on the variable through the field calculator. A new layer is created through application of the appropriate spatial

interpolation plugin. The exporting of workflow steps to Python is available for automatization.170

2.3 Motivation for a new software tool

To the best of our knowledge, none of the aforementioned GCM couplers and GIS support out-of-the-box TF and upscaling ap-

plications. Although cdo and nco support dynamic evaluation of algebraic expressions, their implementation is cumbersome,

bound to heavy disk I/O, and has a long runtime because of the dynamic evaluation of the transfer function. Additionally, not

every tool supports remapping between polygons (e.g., basin boundaries or hydrological response units). cdo poses further175

restrictions on variable dimensions (conventionally, it supports only specific X, Y, Z and T axes). The support of dimension-

dependent upscaling operators is not available for remapping tools (e.g., vertical dimensions must be handled differently than

horizontal dimensions in aggregation of soil horizon specific parameters).

Previous software implementations of the MPR framework (Samaniego et al., 2010; Mizukami et al., 2017) have limited

applicability as a result of hard-coded parameters, TFs, and upscaling operators.180

The aforementioned restrictions inspired the motivation to rewrite MPR from scratch. The new tool has some key advantages:

– It can use multiple, high-resolution data sets on different grids for parameter estimation.

– It allows for applying the MPR technique for any distributed model, namely calculating model parameters at the highest

resolution possible before aggregating to a model resolution.

– It can incorporate an arbitrary number of predictor variables, TFs and Upscaling Operators185

– It has a low run time because of it is implemented in Fortran.

– The reproducibility of the parameter estimation work flow is increased.

The example runs of MPR producing the parameter fields for the regular 1/8◦ and WBDHU6 polygons in Fig. 1 from

predictor variables at 1/480◦ resolution consumed a maximum of 29 and 24 GB memory with a total runtime of 5 minutes and
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1 second and 16 minutes and 33 seconds, respectively. Those values were estimated by the Valgrind tool and for an executable190

compiled by the gFortran compiler on a computing cluster.

Some of its advantages also have a respective trade-off. As such, the tool depends on Fortran compilers and the netcdf library,

that can be cumbersome to install. Also, the MPR technique poses a high memory requirement. In its current development state,

MPR was designed to be coupled with specific LSMs that require the NetCDF input format for its distributed parameters. Usage

of MPR therefore is only possible for models that support the setting of (distributed) parameters in the NetCDF format.195

3 Salient configurations of the developed MPR tool

3.1 Nomenclature, conventions and general design

The API is closely built around the netCDF file format (version > 4.4.1) (Unidata UCAR, 2020). The resemblance of the

netCDF format is motivated by its widespread use in environmental modeling and its paradigm of being scalable, portable, and

self-describing. A file typically contains numerous multidimensional variables. Each dimension of each variable is an array of200

monotonically ordered integers and can be shared among multiple variables. Each variable and dimension has a name, and the

referencing of dimensions is done using these names. The CF (Climate and Forecast) convention (Eaton et al., 2017) further

defines a coordinate variable as a one-dimensional variable sharing the same name as its associated dimension. Its values are

ordered monotonically and missing values are prohibited. Auxiliary coordinate variables also contain coordinate information,

but their names differ from their dimensions. Attributes containing meta information can be added to various objects such as205

variables, dimensions, and the file itself.

MPR adopted this concept and nomenclature for its data structures while imposing a number of additional restrictions.

MPR variables are called Data_Arrays, as variables is a very generic term. We drop the concept of dimensions in favor

of coordinate variables. This is necessitated by the fact that each cell needs to be explicitly bounded along its dimensions to

avoid ambiguities during upscaling. Coordinate variables are referred to as Coordinates. Data_Arrays need to point to210

instances of Coordinates defining their extent. We also assume that each one-dimensional coordinate variable, in principle,

represents not a point but an interval (or cell) and that adjacent intervals are contiguous for 1-dimensional coordinates. MPR

supports the boundary variables as defined by Eaton et al. (2017), and is generally able to handle two-dimensional auxiliary

coordinate variables as well. Thus, MPR accepts either one-dimensional or two-dimensional auxiliary coordinate variables.

Users can set custom string attributes to coordinate variables for creating a self-describing output file.215

3.2 Interfacing a standalone executable MPR

We show an example configuration in Fig. 2 to derive a target variable that is similar to what is shown in Fig. 1 (lower center

map in top panel).

The configuration is performed in a Fortran-native, hierarchically organized namelist format (comparable to .json, .yaml, .ini,

etc.). MPR has three required sections and two optional sections. Users can enter the minimal required information in a flexible220
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1 &Data_Arrays

! predictor variables

name (1) = ’sand’

from_file (1) = ’./input/sand_content.nc’,

name (2) = ’om’

6 from_file (2) = ’./input/organic_matter.nc’,

name (3) = ’bd’

from_file (3) = ’./input/bulk_density.nc’

! target variable

name (4) = ’k_zero ’

11 from_data_arrays (1:3 ,4) = ’sand’, ’bd’, ’om’

transfer_func (4) = ’exp(a5 + c5 * sand + d5 * bd + e5 * om) /

unit_conversion ’

target_coord_names (1:2 ,4) = ’soil_layers ’, ’target_grid ’

upscale_ops (1:2 ,4) = ’ -1.0’, ’1.0’

to_file (4) = .true.

16 /

&Parameters

! global parameters

parameter_names (1:4) = ’a5’, ’c5’, ’d5’,’e5’, ’unit_conversion ’

parameter_values (1:4) = 1.9582 , 0.0308 , -0.6142, -0.1566,

8640000.0

21 /

&Coordinates

! specifications for the vertical target coordinate

coord_name (1) = ’soil_layers ’

coord_from_values (1:4 ,1) = 0.1, 0.4, 1.0, 2.0

26 coord_cell_reference (1) = ’end’

coord_from_values_bound (1) = 0.0

! specifications for the horizontal target coordinate

coord_name (2) = ’target_grid ’

coord_from_file (2) = ’./ input/target_grid.nc’

31 coord_sub_dims (1:2 ,2) = ’x’, ’y’

/

&Main

coordinate_group (1:3 ,1) = ’x’, ’lon’, ’target_grid ’

coordinate_group (1:3 ,2) = ’y’, ’lat’, ’target_grid ’

36 coordinate_group (1:3 ,3) = ’z’, ’depth ’, ’soil_layers ’

out_filename = ’/output/OutputFile.nc’

/

Figure 2. Example mpr.nml file for calculating k0 for the R02B05 ICON grid following Weynants et al. (2009) using the SoilGrids (Hengl

et al., 2017) dataset.

and intuitive manner. The required sections Main, Data_Arrays, Coordinates, and the optional sections Parameters

and Upscalers are designed as arrays of respective objects whose specific properties are set using the correct list index.

The term Data_Arrays refers to any n-dimensional variable and serves as a generic term for predictors and target vari-

ables. In lines 1ff. in Fig. 2, there are four Data_Arrays specified: the first three are read directly from the file, while the

fourth is calculated from the former. The property from_data_arrays specifies the array of predictors to be used. They225

also appear in the TF equation that is supplied as a string in transfer_func. It follows the Fortran syntax for operators,

brackets, and some elemental mathematical functions (see Appendix Table E1 for a list of possible operators). Users can use

any parameter defined in Parameters in a TF. The TF string is not dynamically evaluated during execution because it leads

to unnecessarily high computational run times. Additionally, the effort required to modify the Fortran source code each time a

new function is used would substantially diminish the user-friendliness of the MPR tool. Instead, a Python preprocessor script230

is implemented that interprets and adds the transfer function from the namelist and modifies the source code accordingly. At
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runtime, simple search and replacement routines translate the string into a unique function ID that is checked against all unique

function IDs in the source code.

The target coordinates and associated upscaling operators are set with target_coord_names and upscale_ops.

Upscaling operators are real numbers provided as strings. They specify the p parameter of the Hölder Mean/Geometric235

Mean (Sykora, 2009) (when entered as a real number). Alternatively, the subgrid minimum, maximum, sum, variance, or

the value with the largest area fraction can be used when entered as a string. A full list of all possible operators is provided in

Appendix Table E2. A flag to_file can be set to signal the Data_Array to be stored on the disk.

All parameters referred to from any TF can be specified by name and value in the Parameters section (l. 18ff. in Fig. 2).

The TF for the fourth Data_Array requires multiple parameters (e.g. a5). Accordingly, more parameters can be set and reused in240

multiple TFs, while users should avoid naming duplications with TF operators or Data_Arrays. Parameters usually encompass

constants and variable parameters subject to optimization, and as such, the Parameters section can also be read from a

seperate file containing only the parameters subject to optimization. This file is optional and its parameters replace previously

read parameters in the case of duplicates.

The target coordinates are specified in the Coordinates section (l. 26ff. in Fig. 2). The user explicitly specifies the bound-245

aries of the soil layers by values in this example (coord_from_values). These refer to the stagger of each cell or horizon

(coord_stagger). In this case, the first cell does not have a neighboring cell boundary, and as such the user must specify the

coordinate boundary to provide a start value (coord_from_values_bound). A two-dimensional coordinate serving as the

target grid is read from the file (coord_from_file). Its associated dimensions are specified through coord_sub_dims.

Alternatively, coordinate values can be specified from a range if the user provides values for start, step, and count.250

The Main section (l. 37 ff. in Fig. 2) configures general information. The link from the target coordinates to the respective

source coordinates during upscaling is constructed through the coordinate_groups entries. During upscaling, each source

coordinate needs to receive a target coordinate. If the source coordinate shares the same coordinate_group as one of the

target coordinates, upscaling is performed for that coordinate pair. Users can enter an arbitrary number of groups, although a

dimension system with X, Y, Z, and T is most commonly defined. Finally, the path to the output file is set.255

A more exhaustive description of the aforementioned configuration can be found in online documentation.

3.3 Interdependence of parameters

MPR allows for constructing arbitrarily complex interdependency graphs between predictors, temporary and final (output)

Data_Arrays. As such, it is for example possible to link soil related parameters not only to soil properties but also to land use or

geological predictors or any of its derivative properties. A basic requirement is however, that the required dimensions for each260

Data_Array need to be present in the predictor Data_Arrays referenced by the Data_Array’s TF. Such an example configuration

is shown in Fig. 3. for creation of netCDF variable graphs, where each node is a Data_Array and the links consisting of

TFs and/or upscaling operations. It visualizes the dependency graph for two of the parameters required for the mHM in its

standard configuration. The blue ellipses denote the predictor variables used. While land_cover is a 3-dimensional array

with coordinates, year, latitude, longitude (t1, y, x), lai_class is a 3-dimensional array with coordinates, month of year,265

10

https://chs.pages.ufz.de/MPR/index.html


land cover

3D

land cover 4D

4D

LAI

3D

LAI 4D

4D

LAI max t2

4D

TF: lookup table based
on land cover

TF: PET correction by LAI

LAI max t2 4D

4D

canopy height

4D

TF: comparison measurement &
canopy height

TF: Aerodyn. resistance

wind measurement height

4D

Aerodyn resist

4D

PET LAI corr factor

4D

DataArrays
name

Coordinates
(only shown when

scaled or initialized) 4D

Coordinate types
high res. low res. one cell

scaling only

broadcasting
2D 3D

transfer only TF

scaling & transfer TF

from file to file

t1t1

yy

xx

t2t2

t2t2 yy

xx

t1t1

t1t1

t2t2

t2t2

t1t1

yy

xx

t1t1

yy

xx

t1t1

t2t2 yy

xx

Figure 3. Dependency graph of two of the mHM parameters in their standard configuration.

latitude, and longitude (t2, y, x). The TF for the model parameter PET_LAI_corr_factor requires both LAI and land cover

information. Both predictors need to be broadcast to a 4-dimensional array (t1, t2, y, x), and so temporary arrays are created.

The TF for the model parameter Aerodyn_resist requires information on canopy and wind measurement height, while

the wind measurement height is derived from the former alone. For the calculation of canopy_height, a max-normalized

LAI is needed for each cell. The Data_Array contains this information, and then its broadcast variant LAI_max_t2_4D will270

be the same shape as the other predictors of the TF responsible for producing canopy_height. The two model parameters

highlighted by the red ellipsis are finally upscaled to the target model resolution with coordinates modeling year, month of

year, low resolution latitude, and low resolution longitude.
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3.4 Interfacing MPR library

While the previous section introduced the use of MPR as a standalone wrapper, we anticipate a tight coupling of the MPR code275

to the main modeling code. We intend to impose maximum reusability of the MPR API and ease its implementation into other

libraries. Top-level objects such as Data_Arrays or Coordinates can be reused multiple times and can also be written to and read

from the disk as requested. The Fortran API is used here for this purpose, which is based on the object-oriented programming

paradigm and exposes four main objects (derived type in Fortran), which are also present in the namelist configuration (see

previous section): Coordinate, Parameter, Data_Array and CoordUpscaler. After initialization, these types are280

stored in global arrays which allow for cross-referencing with other types. They are briefly described in this section and

additional detail can be found in the online documentation.

3.4.1 Coordinate type

One central derived type in MPR is the Coordinate. First and foremost, it stores the boundaries of its n cells. In the case of

a (one-dimensional) coordinate variable, each cell has two boundaries (v = 2) and as cells are contiguous, the boundaries do285

not need to be stored in a (v,n)-shaped array but in an (n+1) array. This property is termed as boundaries1d. In the case

of a two-dimensional auxiliary coordinate variable, the number of boundaries/edges can vary. To obtain a general formulation,

we stored the boundaries of both dimensions in an (v,n)-shaped array. These properties are termed boundaries2dDim1

and boundaries2dDim2. Additionally, the cell centers are stored in centers2dDim1 and centers2dDim2.

3.4.2 Parameter type290

Parameters are objects with names and numerical values assigned to them.

3.4.3 Data_Array type

The main derived type is the Data_Array, which can be read directly from an existing netCDF file (blue circle in Fig. 3)or

computed from other Data_Arrays and/or Parameters using TF and upscaling operators (red and black circle in Fig. 3).

It stores multidimensional data which must be passed to multiple other routines. In order to have a common sparse data con-295

tainer, non-masked cells are stored in a one-dimensional array data with type real, regardless of the number of underlying

dimensions. A Boolean mask of the data is stored in a flattened, one-dimensional array, reshapedMask. A one-dimensional

array pointing to its associated Coordinates is set as coords. This holds the shape information of the original uncom-

pressed data. These core properties, reshapedMask, data, and coords, are pointed at from within the wrapper type

InputFieldContainer. It is used for referencing the core properties of the Data_Array and are usually passed as an300

argument for the TransferHelper type, which is described in the next section.
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3.4.4 Application of Transfer Functions

The type TransferHelper is intended to be used for the initialization of Data_Array, which originates from either a file

or from other Data_Arrays via TFs (e.g. see canopy_height in Fig. 3). During its initialization, it performs checks on

the passed InputFieldContainer, checks their Coordinates, optionally concatenates Data_Arrays, and optionally305

adapts their masks. After these checks, the TF is applied. TFs are designed as a subroutine accepting an arbitrarily-sized list of

InputFieldContainer (its data property is accessed only) and Parameters, respectively. An abstract interface for

TFs thus allows for a variable number of predictor arrays and parameters. A one-dimensional array is returned. We provide

a template for a subroutine containing a TF so that users can modify the source code and implement their own TFs (see

Appendix Fig. D1). This enables the integration of more complex mathematical formulations such as artificial neural networks310

or support vector machines. Based on the majority of TFs used in existing LSMs (Van Looy et al., 2017), we anticipate users

primarily using TFs that employ common mathematical operators such as multiplication and division. Such equations can be

automatically parsed from configuration files and inserted into the Fortran source code using a Python preprocessor, which is

described next.

Each TF string occurring in a namelist is translated into a unique identifier. For example, string exp(a5 + c5 * sand315

+ d5 * bd + e5 * om) / unit_conversion (Fig. 2) can be set in the configuration file and will then be analyzed

and processed by a parser routine. MPR replaces all parameters (a5, c5, d5, e5, unit_conversion), and variable names

(sand, bd, om) by identifiers, translating the resulting string (exp (p1 + p2 * x1 + p3 * x2 + p4 * x3) /

p5) into a unique function identifier (exp_bs_p1_pl_p2_ti_x1_pl_p3_ti_x2_pl_p4_ti_x3_be_di_p5). This

identifier represents the exact mathematical function that can be used for multiple applications with different Data_Arrays320

and Parameters. The number of TFs contained in the source code is thereby reduced, and duplications of TFs are avoided.

TFs support multiple operators such as scalar numeric expressions (e.g., ∗, /, +, log,. . . ), trigonometric functions, relational

operators (>=, ==, . . . ), logical expressions, and constructs using if and where expressions (see Appendix Table E1). The

resulting identifier is checked against existing identifiers in the source code.

3.4.5 API for Upscaling325

For the upscaling step, two Coordinates sharing the same dimensions are compared. In Fig. 3, this step is for example

performed when comparing each coordinate of PET_LAI_corr_factor with its predictors. There, dimensions x, y and t1

all need to be scaled from a high to a low resolution. For each cell of the target grid, the underlying n source cells (subcells)

are stored in an ids array and their relative contributing area is stored in a weights array. These properties are contained

in the type CoordUpscaler. They can be initialized from existing remapping weights stored in the netCDF file format330

following the SCRIP convention (Jones, 2010). By default, first-order conservative remapping is used for weight calculation,

so that the integral of the values is preserved in the presence of missing values. Two-dimensional auxiliary coordinate variables

are mapped using a simple algorithm that only checks that the cell center of the source cell is within the target cell boundaries
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and assigns equal weights to each source cell. In the future, more sophisticated remapping schemes for two-dimensional

variables will be implemented.335

The upscaling of a Data_Array is conducted through the wrapper type UpscaleHelper, which is also a property of the

Data_Array type. It consists of a one-dimensional array pointing to the source coordinates sourceCoords and target coor-

dinates targetCoords, as well as the upscale operator names for each target coordinate upscaleOperatorNames. The

Upscaler type performs multiple checks on the source and target coordinates of Data_Array. If applicable, it transposes

or broadcasts the Data_Array if the order of source and target coordinates does not match. Multiple CoordUpscaler340

instances can be combined with an aggregated CoordUpscaler object, effectively combining the weights and subcell IDs

when the user specifies the same upscaling operator for multiple coordinates of the target grid. The upscaling operation is then

executed separately for each group of target dimensions using the same upscaling operator. Again, the upscaling for the exam-

ple Data_Array PET_LAI_corr_factor in Fig. 3 is conducted for dimensions x, y and t1 consecutively and governed by

the wrapper type UpscaleHelper. There are a number of standard upscaling operators, such as the minimum, maximum,345

or weighted generalized mean function, which employ the power parameter (see Appendix Table E2). Users can easily add

another upscaling function to the source code as long as it effectively aggregates the variability of the subcells into one value

(see Appendix Fig. D2).

3.5 New features of current MPR release

The current set of features encompasses the functionality of the previous version of MPR as used in the mHM source350

code (Samaniego et al., 2019). This implementation lacks some key features that are highlighted by a comparison of Fig. 1

with Fig. 1 in Kumar et al. (2013a). First, the new MPR library is modularized and refactored, so it does not depend on mHM

and its integrated optimization algorithms. Second, the original mHM implementation required grids to be rectangular, and the

target resolution was a multiple of the source resolution. Finally, predictors, TFs, upscaling operators, and target grids can now

be freely chosen and recombined in an MPR configuration file. This allows users to generate a set of parameter fields without355

any restrictions. Previously, parameter fields were bound to mHM requirements, their properties could only be altered through

changing the source code and were accessible only after a model run through its restart files.

Furthermore, it allows for a modular and flexible configuration of parameter estimation without common preprocessing steps

of the input files (resorting coordinates, renaming variables, adding missing meta information, applying unit conversion, etc.).

Use of MPR is easy and intuitive, especially in the formulation of TFs, defining new coordinate variables, and assigning them to360

variables. The initialization of coordinate variables can be performed dynamically depending on existing coordinate variables

(e.g., by using its bounds). The user can freely and flexibly enter simple regression-based TFs in a semi-automatic manner.

More sophisticated functions, such as artificial neural networks or support vector machines, can be easily coupled to the code.

The same holds true for upscaling operators. We allowed MPR to be easily integrated in workflows (e.g., auto-calibration) or

have an API called from an external code.365

Coordinate variables can be split and combined, which enables users to set coordinate-dependent parameter values (e.g.,

for certain horizons along a soil profile). The order of coordinate variables for individual variables can be changed. MPR

14



supports up to 5-dimensional variables without restrictions on their kind. Different upscaling operators can be chosen for each

coordinate to be upscaled. Intermediate variables can be reused for the creation of other variables, allowing the creation of

complex graphs of parameter interdependencies. Parameters can also be reused for multiple TFs.370

4 Applications of MPR

4.1 Verification of MPR against previous version in mHM

The core objective of the new MPR tool was to reproduce the same model behavior as the original implementation of MPR

in the mesoscale hydrological model (mHM) (Samaniego et al., 2019), which we refer to as mHM-MPR here. The model

description, its code modifications, and the MPR configuration can be found in the Appendices B1 and C1.375

The comparison of the new MPR tool coupled to mHM with mHM-MPR shows that they yield the same simulation results

within a tolerance of 0.1%, which can be attributed to floating point precision deviations after the conversion of the input file

format from text files to netCDF. In a default model configuration of the Moselle river basin in Central Europe, the coupled

version reproduced the same model parameter arrays. Consequently, this leads to differences in the hydrograph of the basin

outlet within 10−5m3 s−1, as compared to the previous implementation.380

4.2 Reproducing EU-SoilHydroGrids dataset with MPR

We selected the EU-SoilHydroGrids (SHG) dataset (Tóth et al., 2017) as it is relevant to the Earth System Modeling community

and is publicly available. The same holds true for its predictors and the TFs used. We reproduced the aforementioned dataset

and showed the salient seamless spatial scaling feature of the MPR tool. The dataset description and its configuration can be

found in the Appendices B2, C2 and the MPR configuration in the Supplements.385

Fig. 4 shows the spatial distribution of Ks (soil saturated hydraulic conductivity) on a logarithmic scale for different resolu-

tions and data sources at a depth of 15cm with values ranging across three orders of magnitude from 10−6 to 10−3 m s−1. Each

row of the plot shows grids with the same spatial resolution, and each column shows the data sources and processing schemes.

The values were estimated using a decision tree with 21 leaves (Tóth et al., 2015, Table S1, model 16). When we attempted

to reproduce the SHG values (Fig. 4a) with the recommended procedure in Tóth et al. (2015) using an R-library (Fig. 4b), we390

obtained a bias of up to 10% in comparison to a). An investigation of the project webpage revealed that the SoilGrids (SG)

dataset is subject to frequent updates depending on the arrival of new source soil profiles. We could not verify the exact version

of SG used to create the SHG, but we assume that it was different than the one we used. The high bias observed is a result of

the decision tree, as small deviations in predictor values might result in use of a different branch. An additional source for the

observed bias could be the projected coordinate system used for the SHG, in contrast to SG being available in the geographical395

WGS84 coordinate system.

When using MPR to apply the TFs to the SG dataset (Fig. 4c), we obtained a mean relative bias below 0.06 % compared to

b), which was only due to rounding errors of the global parameters. SHG and SG are also available at a 1 km resolution, where
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Figure 4. Saturated hydraulic conductivity values for the Netherlands generated for different scales and different tools: a) EU-

SoilHydroGrids (Tóth et al., 2017) at 250m b) TF16 (Tóth et al., 2015) applied on SoilGrids (Hengl et al., 2017) using R package eu-TF

at 250m c) TF16 (Tóth et al., 2015) applied on SoilGrids using MPR (Hengl et al., 2017) (Weynants and Tóth, 2014) at 250m d) EU-

SoilHydroGrids (Tóth et al., 2017) at a 1km e) like b) at 1km f) TF16 (Tóth et al., 2015) applied on SoilGrids250m and scaled to 1km using

MPR g) TF16 (Tóth et al., 2015) applied on SoilGrids250m and scaled to 25km using MPR.

variables are aggregated using the Geospatial Data Abstraction Library (contributors, 2019) average method (Fig. 4 d) and

e)).400
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In accordance with the MPR framework, we derived the 1 km Ks field by averaging the high-resolution SG data at 250 m

(Fig. 4c). Because the selected TF is based on a decision tree algorithm, there exist only some discrete values in Fig. 4d) and e),

whereas spatial averaging increases the variability of the derived parameter field. The capability of MPR in flexible aggregation

of the data is shown in Fig. 4 (g)). A resolution of 25 km was arbitrarily selected as the target resolution, as specific resolutions

(e.g., 1 km) are typically not needed by users. By a mere change of one number in the configuration file, it is possible to405

scale the variable at interest to every user-defined resolution. This analysis highlights the capability of MPR in reproduction of

environmental parameters and generation of outputs that meet specific user requirements.

4.3 Application with land surface model Noah-MP

We used the land surface model (LSM) Noah-MP (Niu et al., 2011) as an example to showcase the capability of MPR in

coupling with state-of-the-art distributed environmental models. The model description and configuration can be found in the410

Appendices B3, C3, the MPR configuration in the Supplement. We found that the inherent parameter uncertainty that occurs

when choosing a TF and an upscaling operator for the soil parameters of the model eventually leads to differences in long-term

mean annual evapotranspiration (ET) flux, up to 20% (Fig. 5) in relation to its default setup.

Fig. 5 shows the absolute values of the default model parameters Ks[m ∗ s−1] (log10-transformed) and θs[−] and the re-

sulting long-term annual ET flux ET [mmyear−1] in the first row (maps 1a-1c). The following rows (2-4) show the relative415

differences (in %) of the field with respect to the default simulation in row 1. The relative differences observed when using the

MPR approach with the same soil dataset, same TF, and subsequent spatial upscaling are shown in the second row (subplots

2a-c). Larger differences occur in regions with considerable subgrid heterogeneity in soil texture, where the hydraulic param-

eters associated with the mean textural information of the dominant class do not represent underlying variability. Absolute

differences of more than 5% for both parameters occur in Florida, parts of Nebraska, and parts of the Southwest. The average420

difference is -1.6 and -1.3 % for both parameter fields, and a greater variability can be found for θs. The difference for the

long-term ET flux is -3 % on average, with pronounced low values of less than -10 % in the aforementioned regions. The lower

ET fluxes are due to the accumulated effects of lower porosity and lower hydraulic conductivity, which leads to decreased stor-

age capacity and capability to meet evaporation water demands. It is important to keep in mind that these changes stem solely

from using non-classified continuous soil textural information and aggregation of subgrid parameters, in contrast to using the425

dominant soil type. In other words, variation originates from different methods of handling sub-grid variability.

In the next step, we replaced the TF in MPR with another continuous TF based on the linear regression of the predictors

of sand content, clay content, and organic matter (Saxton and Rawls, 2006) (maps 3a–3c). This TF is also available within

Noah-MP version 4.0. This leads to Ks values that are on average 4.7 % higher than in the default setup. Application of the TF

results in a decreased θs over the majority of the domain, with average values around -8.6 %. The ET fluxes exhibit a decrease430

for most of the CONUS in comparison to the default setup (on average -4.0 % with maxima in the Appalachians of 18.4 % and

minima in Florida of -27.3%) .

Yet another spatial pattern of parameter values is produced by application of the TF of Vereecken et al. (1989) for θs

and Vereecken et al. (1990) for Ks. TFs use the predictors of sand content, clay content, bulk density and organic matter.
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Figure 5. Grid plot showing maps of parameters and simulation results for Noah-MP. Columns denote: a) Soil parameter Ks (saturated

hydraulic conductivity) at the soil horizon between 0.1 and 0.3 m b) Soil parameter θs (maximum soil moisture content) at the soil horizon

between 0.1 and 0.3 m c) Mean annual evapotranspiration values of Noah-MP. Rows denote: 1) Standard Noah-MP setup using the dominant

USDA soil class based on SoilGrids (Hengl et al., 2017) and lookup table based on the TF from (Cosby et al., 1984) 2–4) relative differences

((MPR− default)/default) in % of parameters and simulation results using an MPR setup with a TF from Cosby et al. (1984), Saxton

and Rawls (2006), and Vereecken et al. (1989, 1990), respectively.

While the overall relative differences in comparison to the default parameter distribution of Ks are positive, there are negative435

differences of approximately -25 % in the northwest areas of the CONUS domain, in Florida, and along the east coast between

Louisiana and Virginia. An inverse signal can be observed for the parameter θs. The overall decrease in ET that predominates in

Texas, Florida, and the northern Rocky Mountains highlights the non-linear dependence of ET on the modified soil parameters

as a new spatial pattern occurs. However, the results obtained must be assessed critically. Significant differences in parameter

values in some areas indicate the limited applicability of the chosen TF. Indeed, high values of bulk density exist in parts of440

southern CONUS, and high organic matter contents are present in Oregon, Washington, and along the western coastline. The

reported range of values (0.01 to 6.6 % for organic matter content and 1.04 to 1.23 g/cm−3 for bulk density), upon which the
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regression for the TF was computed (Vereecken et al., 1989) is based on a small dataset of soil samples from Belgium. This

does not cover the range of the values present in the chosen soil dataset (i.e., SG). The applicability of a given TF needs to be

evaluated in the context of the utilized soil database (Wösten et al., 2001).445

The model bias for a standard Noah-MP configuration in comparison to the reference product FLUXNET has been assessed

in a previous study (Ma et al., 2017). They observed a spatial pattern in the long-term bias of ET in regards to prescribed leaf

area index (LAI), which showed similarities to the pattern seen in Fig. 5 in maps 2c, 3c, 4c. Although the setup of Noah-MP

was not identical, MPR might serve as a valuable tool in addressing the problem of model bias through improved parameter

estimation.450

Cuntz et al. (2016) investigated parameter sensitivity in simulated fluxes by Noah-MP. They reported a strong sensitivity of

ET on the soil parameters θs and Ks, which is in accordance to our findings shown in Fig. 5. One limitation in their results

is that they directly investigated grid cell-specific parameters. As a result, the dimensionality of the parameter space linearly

scales with the area of the model domain. Thus, only a few catchments using a spatially constant scale factor could be used.

Using MPR, the number of TF parameters remains independent of the size of the model domain, which allowed us to conduct455

a more spatially comprehensive sensitivity analysis. At the same time, MPR requires TFs for every parameter, which indicates

that the uncertainty due to the choice of TF cannot be neglected when conducting a sensitivity analysis. For example, MPR and

Noah-MP can be executed subsequently by an optimization algorithm. The optimizers draws new parameter sets for MPR that

result in updated soil parameter maps for Noah-MP. In turn, updated ET fields are calculated by Noah-MP.

4.4 Application with land-surface model HTESSEL460

We used the land surface model HTESSEL (Balsamo et al., 2009) as an example to showcase the capability of MPR in cou-

pling with state-of-the-art distributed environmental models. HTESSEL is the land-surface scheme used within the integrated

forecasting system developed at the European Center for Medium-Range Weather Forecasts (ECMWF). The model description

and its configuration can be found in the Appendices B4, C4, the MPR configuration in the Supplement.

Similar to the application of Noah-MP (Fig. 5), we found differences in the long-term evapotranspiration (ET) flux of up to465

15% over the Mississippi river basin (Fig. 6) when using different transfer functions to compute soil hydraulic properties.

Fig. 6 is organized in the same way as Fig. 5. In its default configuration based on SoilGrids (SG), there exist only five

different soil classes over the entire domain. Through a lookup table, each class is assigned the values for the van Genuchten

model (Genuchten, 1980) of the hydraulic conductivity curve (Equation 1) and moisture retention curve (Equation 2): Ks, α,

n, l, θr, and θs. It is worth mentioning that this lookup table was originally derived for the FAO 2003 soil map (, CBL).470

γ =Ks

[
(1+ (αh)

n
)
1−1/n − (αh)

n−1
]2

(1+ (αh)
n
)
(1−1/n)(l+2)

(1)

θ(h) = θr +
θs − θr

(1+ (αh)
n
)
1−1/n (2)
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Figure 6. Maps of parameters and simulation results for HTESSEL. Columns denote: a) Soil parameterKs (saturated hydraulic conductivity)

at the soil horizon between 0.07 and 0.28 m b) Soil parameter θs (maximum soil moisture content) at the soil horizon between 0.07 and 0.28

m c) Mean annual evapotranspiration (ET) values of HTessel. Rows denote: 1) Standard HTESSEL setup using the dominant soil classes

based on the SoilGrids dataset (Hengl et al., 2017) and lookup table based on the TF from (Balsamo et al., 2009), 2-3) Relative differences

((MPR− default)/default) of parameters and simulation results using MPR based on SoilGrids (Hengl et al., 2017) with TFs from

Zacharias and Wessolek (2007) (TF2) and Wösten et al. (2001) (TF3), respectively.

The most common values are 1.16e-6ms−1 and 0.439 % forKs and θs, respectively. These values correspond to the medium

soil texture class in the lookup table. High Ks values (up to 4.6e-5 ms−1) can be found in Missouri, Kansas and the Nebraska

Sandhills. Occurrences of high θs values of 0.52 (fine texture) can be found in Missouri and Kansas. Notably, both parameter475

maps show the distribution of only two out of the six soil hydraulic parameters. This parameter selection is a dominant part of

all soil hydraulic properties that are relevant for simulated ET. Yet, it is not sufficient to show the highly non-linear relationship

between soil hydraulic properties (i.e., hydraulic conductivity curves and moisture retention curve) and simulated ET at every

location. Long-term ET values increases from 250 to 1450 mm per year along a gradient from the north-west to the south-east

of the domain (Fig. 6 1c). We selected two sets of TFs from the literature to calculate soil hydraulic properties (Zacharias and480

Wessolek, 2007; Wösten et al., 2001). These TFs are applied to SG and can easily be implemented in MPR. After application of

TF 2 (Zacharias and Wessolek, 2007), the parameter values θs are reduced by about -9.0 % (Fig. 6 2b). The highest differences

occur again in Missouri and Kansas (around -30 to -47 % for θs). This TF does not contain Ks and the default Ks values

are thus used. The change in θs reduces long-term ET flux by about -5.0 % (Fig. 6 2c). This can be expected because soil
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moisture storage (i.e., porosity) is generally reduced (Fig. 6 2b). In turn, the amount of water available for plant transpiration485

is limited. The usage TF 3 (Wösten et al., 2001) for the estimation of Ks and θs reduces parameter values by approximately

-6 % for Ks and -7 % for θs on average over the entire domain. Applying TF 3 reduces porosity (Fig. 6 3b) in a similar order

of magnitude compared to TF 2. Additionally, saturated hydraulic conductivity is reduced at most by 16% resulting in reduced

ET in comparison to the default setup (Fig. 6 3c). This reduction is not as strong as that of TF 2 because the reduced Ks values

increase the water holding capacity of the soil.490

By producing continuous fields of parameter values with MPR, increased/decreased Ks values are found in regions with

low/high default values. Similarly, the highest reductions of θs are found in regions with the highest default values. This

highlights that the MPR-derived fields reduce the amplitude of the parameter values, but substantially increase the spatial

variability. MPR-derived fields make more use of the spatial information of the soil dataset and lead to more realistic spatial

parameter fields. It is worth mentioning that the spatial patterns for changes in ET do not correspond to neither changes in495

parameter fields nor the spatial pattern of the default ET values. This indicates the complex interplay between ET and soil

hydraulic properties and calls for a deeper analysis of all MPR-derived soil parameters (i.e. also α, n, l and θr etc.).

4.4.1 Differences between HTESSEL and Noah-MP over the Mississippi river basin

This section compares the effect of similar changes in soil parameters on long-term model outputs for both models presented in

the previous sections. While it does not provide a rigorous model intercomparison, it puts the results into context and provides500

a template for future studies that can use MPR to systematically assess differences in parameters and parameterizations across

models.

There are several differences between the simulations conducted with Noah-MP and HTESSEL that go beyond the fact that

these are two are based on different mathematical models. First, the default simulations compute different amounts of long-

term ET (compare 1c in figures 5 and 6). Both maps exhibit a similar spatial pattern, but the long-term ET flux for HTESSEL505

is approximately 20 % higher than that of Noah-MP. This might be due to the use of different forcing datasets NLDAS2 (Xia

and NCEP/EMC, 2009) and ERA5 (ECMWF, 2019) for Noah-MP and HTESSEL, respectively. Xu et al. (2019) and Saxe

et al. (2020) suggest mean precipitation of ERA5 is higher than in NLDAS2 in the study domain.

Second, the default soil hydraulic parameters show a different spatial pattern (compare 1a and 1b in Figures 5 and 6). The

default setup uses lookup-table with a limited number of soil classes based on the TFs from Cosby et al. (1984) for Noah-MP510

and HYPRES (1997) for HTESSEL. The estimation of the effective soil class follows the dominant class approach, which leads

to a limited spatial variability of soil hydraulic properties for both models. It is worth mentioning that both lookup-tables were

derived for other soil maps than the one used in this study (for example (CBL) for HTESSEL). Here, we applied both default

lookup-tables on the same dataset (SG) to rule out differences coming from different soil maps. While a decreased spatial

variability especially for HTESSEL with only five active soil texture classes is found, the Cosby TF leads to a more consistent515

spatial pattern for Noah-MP. Additionally to the spatial pattern, the parameter values themselves are also different for both

models. θs for Noah-MP varies around 0.46, and HTESSEL again shows slightly lower values of approximately 0.44. Ks is on

average around 2.5e-6 for Noah-MP and much lower with 1.16e-6 for HTESSEL. These striking differences are in agreement
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with Samaniego et al. (2017), where a more exhaustive model comparison was performed. This study again highlights the need

for a common protocol to assess parameter uncertainty in distributed models.520

Third, using other TFs than the default ones leads to reductions in long-term ET around less than 10% in magnitude for

both models (compare right column in figures 5 and 6). A similar magnitude of influence by varied soil parameters on ET

has been reported previously by Livneh et al. (2015) for mHM in the Mississippi river basin. There is no consistent pattern

between models in regard to where these changes manifest themselves. An example for that are the Nebraska Sandhills. While

ET is generally increased by TFs in HTESSEL in this region, the opposite is the case in Noah-MP. Direct interpretation of the525

interplay of soil parameters in the soil water hydraulics is easier with Noah-MP due to the simpler mathematical model for soil

hydraulic parameterization. Noah-MP uses the Campbell parameterization to relate hydraulic conductivity to soil saturation

(Campbell, 1974). In contrast, HTESSEL uses Mualem-van Genuchten parameterization (Genuchten, 1980), which leads to

complex changes of moisture retention curves and hydraulic conductivity curves that are highly non-linearly impacted by

changes in model parameters (not all of them shown here). Notably, models react to changes in (a limited number of) model530

parameters for the case of ET fluxes investigated here. Larger changes can be found for other fluxes of the water cycle and

sub-annual time scale (not shown).

In spite of demonstrated differences in model forcing, configuration and the process parameterization, MPR-derived param-

eter fields significantly changed long-term model output. The harmonization and reproducibility of parameter estimation across

models through MPR opens up an avenue to a deeper understanding of the relationship between predictors, parameters and535

model parameterization.

4.5 Limitations and outlook

MPR was tested with compiler GNU gfortran versions > 7.3, the NAG Fortran Compiler version > 6.2, and Intel ifort version >

18. Those compiler configurations are tested continuously. We will invest further efforts in developing MPR so that scalability

on high-performance computers (HPCs) and paralellization is improved. A hybrid MPI and Open-MP parallelization will be540

applied. The need for support of advanced and massively parallel regridding and interpolation capabilities will likely lead to

the integration of one of the existing remapping libraries used in GCM couplers in an upcoming version of MPR. The coupling

of MPR to the LSM HTESSEL by extraction of hard-coded and hidden parameters and the development of TFs in an ongoing

project will likely serve as a template that can be adapted for other models.

5 Conclusions545

Parameter regionalization enables the creation of seamless parameter fields for complex distributed models that can otherwise

only be inferred through calibration or by default values, often obtained at inappropriate scales (Samaniego et al., 2017). MPR is

a framework that regionalizes parameters through the application of transfer functions and aggregations to any spatiotemporal

coordinate system. In this study, we introduced a complete rewrite of the MPR framework (Samaniego et al., 2010; Kumar

et al., 2013b) to overcome the limitations of previous implementations and comparable software (for example, Mizukami550
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et al., 2017). MPR is able to introduce new flexibility to mHM and other models accepting distributed parameters through

the support of multiple grid structures and a more flexible configuration of the parameter estimation process. It is capable

of reproducing effective parameter fields (Tóth et al., 2017) by applying TFs (Tóth et al., 2015), while also being able to

remap/upscale the parameters onto every modeling unit (rectangular grids, HRUs, arbitrary shapes) required by the model. We

demonstrated that parameter estimation not only exerts a strong influence on effective model parameter fields but also results555

in modified evapotranspiration simulated by land-surface models, even when MPR is applied to only two sensitive parameters.

The same holds true for models that use a tiling approach for handling subgrid heterogeneity.

The superiority of the MPR approach toward standard parameter estimation approaches was first demonstrated by Samaniego

et al. (2010); Kumar et al. (2013b); Samaniego et al. (2017) and is now available for use with many other models. This is

possible because MPR is designed to flexible, modular, and as easy to use. We provide an API that users can easily modify560

and that can be successfully tightly coupled to the hydrologic model mHM. As such, we invite implementation of further

TFs and upscaling operators in the other distributed modeling code. MPR provides a way forward in addressing many current

challenges regarding the estimation of distributed parameter fields in the Earth System Model community (as postulated by

Van Looy et al., 2017), such as coupled parameterizations and TF validation in large-scale applications, among others. It

serves as a protocol for systematic development of new TFs and aggregation schemes or upscaling approaches. As such, it565

makes the whole process of parameter estimation transparent and reproducible. It can easily produce time or process-dependent

parameters (e.g., tillage systems, swell/shrink behavior of clay minerals). MPR can also be used to combine multiple predictors

to obtain new TFs (e.g., soil and land use predictors for plant root parameters, or topology and climate for snow parameters).

Most importantly, MPR enables users to specifically consider multiple commonly neglected uncertainty sources inherent in the

geo-physical data, TF, and upscaling function. It is valuable for large-scale environmental models, where there is a current lack570

in effective parameter estimation, sensitivity analysis, and calibration (Beck et al., 2016).

Code availability. The software is publicly available at git.ufz.de/CHS/MPR and uses git for version control. The current version is 1.0.0

and the code is referenced by a Zenodo ID at https://zenodo.org/record/4650513. The code is published under the GNU GPLv3 license.

The code can be compiled by any recent Fortran compiler supporting the Fortran2008 standard and needs the netcdf-fortran library.

In order to automatically add TFs to the code with a preprocessing script, the Python library f90nml must be installed.575

The documentation framework FORD is used to create a https://chs.pages.ufz.de/MPR/index.html, which hosts a tutorial,

documentation, and extensive overview of the source code.
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Appendix A: Data processing

A1 Processing of input data for minimal working example

1. Download the data from the server https://files.isric.org/soilgrids/data/recent/. The bulk density (fine earth), clay content,580

sand content, and soil organic carbon content (fine earth fraction) for all available soil depths at the original resolution

of 250m.

2. Transform the data from the tiff to the NetCDF format, clip the selected domain and merge the different layers into one

file per variable (script in annex).

3. Download the target grids (e.g. for the ICON model (Zängl et al., 2015) grids, refer to http://icon-downloads.mpimet.585

mpg.de/mpim_grids.xml) following the SCRIP convention (Jones, 2010) for storing grids in the NetCDF format.

4. Select an example TF from the literature (e.g. Weynants et al. (2009)).

5. We constructed a configuration file mpr.nml for MPR in the native Fortran namelist format (Fig. 2).

Appendix B: Model descriptions

B1 mHM590

mHM conceptualizes the dominant hydrological processes on the land surface through multiple reservoirs. The processes

of canopy interception, snow accumulation and melting, water infiltration into the soil and percolation to the groundwater,

evaporation and transpiration, runoff generation, and river routing are accounted for on a spatially explicit grid. The model has

been applied in a wide range of applications and has been shown to be able to fulfill the flux-matching criterion over multiple

scales (Samaniego et al., 2017).595

B2 SoilHydroGrids

An increasing number of publications on high-resolution land surface datasets has led to the development of derivative datasets

providing model parameters. Usually these datasets are available for a fixed resolution and domain only. Here, we demonstrate

how MPR can be used to apply the TFs and remap the result on the domain and resolution as required. MPR is capable of

reproducing the EU-SoilHydroGrids dataset (SHG) (Tóth et al., 2017) at a given 250m and 1km resolution.600

B3 Noah-MP

Noah-MP simulates the terrestrial water, energy, and carbon budget and estimates fluxes between various storage components

in the biosphere, lithosphere, and hydrosphere. Its predecessor Noah (Ek et al., 2003) was superseded by Noah-MP by im-

plementing multiparameterization options and improved physics for various ecohydrological processes. For each grid cell, the
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vertical model structure was discretized into one canopy layer using a semi-tile approach, three snow layers, four soil layers,605

and an unconfined subsurface layer.

B4 HTESSEL

It calculates water, energy, and carbon fluxes and storage across the land surface. HTESSEL uses a tiling approach to represent

different land covers within one model grid cell. It uses 20 plant functional types to describe vegetation and constant soil

properties throughout the soil column. The soil has a standard depth up to 2.89 m.610

Appendix C: Model configuration for application

C1 mHM

MPR is required in order to reproduce the model parameters created by the internal version of MPR in mHM version

5.10 (Samaniego et al., 2019), and consequently, the same model results. The fact that mHM incorporates various auto-

calibration approaches which need control over the parameter estimation process necessitates a tight coupling of mHM to615

MPR in Fortran. We configured MPR to represent the complex interplay of model parameters. The configuration for mHM

encompassed the use of over 100 different Data_Array instances with over 60 TFs (see configuration in Supplement). The

mHM code was refactored and adapted to allow for the passing of global parameters from mHM to MPR, and to allow the

effective parameter fields to be received.

C2 SoilHydroGrids620

It is based on the SG dataset (Hengl et al., 2017) at 250m and an aggregated 1km resolution. Linear functions as well as

decision tree-based functions were used for the TFs (Tóth et al., 2015). A collection of relevant soil hydraulic parameters for

the European domain are provided in SHG. We selected the subdomain of the Netherlands for the parameter saturated hydraulic

conductivity, as it shows a large degree of variability in this region. The MPR configuration file is attached in the Supplement.

C3 Noah-MP625

We use the default WRF-Hydro parameterization process (version 3.6), at NCAR (2020), except for the radiative transfer op-

tion where a modified two-stream option was used. Meteorological model forcings were taken from the NLDAS-2 dataset (Xia

and NCEP/EMC, 2009). The 1/8◦ spatial resolution and hourly temporal resolution of the forcing variables (air temperature,

precipitation, specific humidity, wind speed, surface pressure, downward shortwave radiation, and downward longwave radia-

tion) also constitute the chosen model resolution for Noah-MP. The SG dataset (Hengl et al., 2017) was used to estimate soil630

parameters, whereas the MODIS-IGBP (FRIEDL et al., 2010) dataset was used to derive vegetation parameters. In the default

setup, soil textural data was averaged over the soil column and classified into 12 classes using the Staff (1993) scheme. Finally,

the dominant type within a model grid cell was used. The exact parameters were then derived from class-specific default values
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provided in the lookup tables. These default values were derived by applying a set of TFs (Cosby et al., 1984) to the mean

textural properties of the respective soil class. Vegetation parameters were also estimated based on the default values for each635

effective land cover class. The Noah-MP model version 3.9 was used and slightly modified to explicitly allow for two specific

spatially distributed model parameters to be read. We used the default soil layering of horizon boundaries at depths of 0.1, 0.3,

0.6, and 1 m.

In addition to this default setup, we used MPR to estimate the soil parameters SATDK (soil saturated hydraulic conductivity)

and MAXSMC (maximum soil moisture content). Noah-MP shows a substantial sensitivity to both of these parameters along640

a gradient of hydro-climate conditions in CONUS (Cuntz et al., 2016). The two parameters were estimated directly on a high-

resolution soil dataset using the following continuous TFs: TF 1 (Cosby et al., 1984), TF 2 (Saxton and Rawls, 2006), and

TF 3 (Vereecken et al., 1989, 1990). TF 1 is used in Noah-MP as a default option, TF 2 was later introduced as an option in

Noah-MP version 4.0, and TF 3 was chosen in this study to demonstrate the effect of a TF based on soil samples from outside

the study domain. The arithmetic mean was used to upscale the parameters to the model resolution, except for the vertical645

scaling of Ks along the soil horizons for which the harmonic mean was used. The parameters REFSMC (soil moisture content

at field capacity) and WLTSMC (soil moisture content at wilting point) were rescaled by the ratio of the default and modified

θs values (θ′ref = θref ∗ θ′s/θs).

The Noah-MP model was run for 28 years at an hourly time step from 1980 to 2007. We allowed the model to run for an

entire period and used the resulting state variables as initial conditions for the final run. The final evaluation period covered the650

decade 1991–2000. The hourly simulation results were aggregated to mean annual values.

C4 HTESSEL

Meteorological forcing data were taken from the ERA5 dataset (ECMWF, 2019). The 1/4◦ spatial resolution and 3-hourly

temporal resolution of the forcing variables (air temperature, precipitation (rain and snow), specific humidity, wind speed, sur-

face pressure, downward shortwave radiation, and downward longwave radiation) also constitute the chosen model resolution655

for HTESSEL.

We used a process parameterization based on the default configuration presented in the development branch CY47R1 of

HTESSEL (nemk_CY47R1.0_v6b_cmflood_mpr). In addition to this default setup, we used MPR to estimate the six soil

parameters of the Mualem-van Genuchten model for the hydraulic conductivity curve (Equation 1) and soil moisture retention

curve (Equation 2). These parameters were estimated directly on the SG dataset (Hengl et al., 2017) using the following660

TFs: categorical TF 1 based on lookup-table values (HYPRES, 1997), continuous TF 2 (Zacharias and Wessolek, 2007) with

the estimation of only the four parameters of Equation 2, and continuous TF 3 (Wösten et al., 2001). Soil textural data was

averaged over the soil column for TF 1, classified into 7 classes using the HYPRES soil texture triangle (HYPRES, 1997;

Wösten et al., 1999), with some additions for organic soils. Finally, the dominant type within a model grid cell was used. The

exact parameters were then derived from class-specific default values provided in the lookup tables. TF 1 is used in HTESSEL665

as a default option. The arithmetic mean was used to upscale the parameters to the model resolution, except for the vertical

scaling of Ks along the soil horizons, for which the harmonic mean was used.
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1 abstract interface
function transfer_func_alias (x, param ) result ( func_result )

! import the double precision kind specification and custom
type

import dp , InputFieldContainer
!> an array containing the predictor variables ( access values

through ‘data_p ‘ property )
6 type( InputFieldContainer ), intent (in) :: x(:)

!> an array containing the TF parameters
real(dp), intent (in) :: param (:)
!> the resulting TF result
real(dp), allocatable :: func_result (:)

11

! ! allocate the func_result to the size of the predictors
(all have the same size)

! allocate ( func_result (size(x(1)% data_p )))
! ! enter the TF function here
! func_result = x(1)% data_p + x(2)% data_p * param (1)

16

end function transfer_func_alias
end interface

Figure D1. Template for user-defined TFs as an abstract interface.

1 abstract interface
real(dp) function upscale_func_alias (array , weights , p)

! import the double precision kind specification
import dp
!> the array of subgrid values (no missing values )

6 real(dp), dimension (:) , intent (in) :: array
!> the array of weights (same shape as array )
real(dp), dimension (:) , intent (in), optional :: weights
!> an optional parameter passed to the function ( power mean)
real(dp), intent (in), optional :: p

11 end function upscale_func_alias
end interface

Figure D2. Template for user-defined upscale operators as an abstract interface.

The HTESSEL model version CY47R1 was used and modified to explicitly allow for the reading of spatially distributed

model parameters. We used the default soil layering of horizon boundaries at depths of 0.07 m, 0.28 m, 0.1 m, and 2 m. Due to

limitations in the HTESSEL solver for the soil physics processes, we enforced vertically homogeneous soil parameters.670

The HTESSEL model was run for 8 years at a daily time step from 1979 to 1986. We allowed the model to run for an entire

period and used the resulting state variables as initial conditions for the final run. The final evaluation period covered the years

1979 to 1986. The 3-hourly simulation results were aggregated to mean annual values.

Appendix D: Templates for user-defined functions
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Appendix E: Inventory of operators in transfer functions and for upscaling675
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Table E1. Table of operators that can be specified in a string for the property transfer_func in the configuration file mpr.nml. They are

directly parsed to the Fortran code.

operator type description

+ binary operator -

- binary operator -

** binary operator -

* binary operator -

/ binary operator -

max binary operator -

min binary operator -

exp unary operator -

sqrt unary operator -

log10 unary operator -

log unary operator -

abs unary operator -

( delimiter -

) delimiter -

if conditional statement -

else conditional statement -

then conditional statement -

where conditional statement -

end conditional statement -

<= relation operator -

< relation operator -

>= relation operator -

> relation operator -

== relation operator -

.and. logic notation -

.or. logic notation -

.not. logic notation -

sin trigonometric function -

cos trigonometric function -

tan trigonometric function -

tanh trigonometric function -

acos trigonometric function -

asin trigonometric function -

atan trigonometric function -

atan2 trigonometric function -

cosh trigonometric function -

sinh trigonometric function -
29



Table E2. Table of operators that can be specified in a string for the property upscale_ops in the configuration file mpr.nml. The values

x of the array with size n (with indices i) are passed to the operator with weights w of the same size.

operator equation description

p,p= 0
∏n

i=1x
wi
i geometric mean

p,p ∈ R
(∑n

i=1wix
p
i

) 1
p power mean

min min{xi} minimum

max max{xi} maximum

sum
∑n

i=1xi sum

var
∑n

i=1wi (xi−x)2 variance

std
√∑n

i=1wi (xi−x)2 standard deviation

laf min{xj |j ∈ 1, ..., |x| : ∀i : wi <= wj} largest area fraction

30



Author contributions. RS and ST designed the study. RS was the primary code developer with support from ST and SM. RS conducted all

simulations and evaluations of the application, except for HTESSEL (simulations conducted by MK ). RS, ST, RK, SA, and LS prepared the

manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank the developers of the scientific softwares that enabled this study, namely: mHM, Noah-MP, and HTESSEL680

developers, many NumFOCUS-sponsored Python libraries (above all numpy, xarray) and many privately-run projects (f90nml, FORD, tikz,

dot2tex). We are grateful to Christel Prudhomme and Florian Pappenberger from ECMWF for making the HTESSEL model available to us

and the group from Gianpaolo Balsamo for providing extraordinary support with the HTESSEL Fortran code. This project contributes to the

Helmholtz ESM project https://www.esm-project.net/.

31

https://www.esm-project.net/


References685
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