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Abstract. A numerical model, ISWFoam, for simulating internal solitary waves (ISWs) in continuously 7 

stratified, incompressible, viscous fluids is developed based on a fully three-dimensional (3D) Navier-8 

Stokes equation using the open source code OpenFOAM. This model combines the density transport 9 

equation with the Reynolds-averaged Navier-Stokes equation with the Coriolis force, and the model 10 

discrete equation adopts the finite volume method. The k-ω SST turbulence model has also been modified 11 

accordingly to the variable density field. ISWFoam provides two initial wave generation methods to 12 

generate an ISW in continuously stratified fluids, including solving the weakly nonlinear models of the 13 

extended Korteweg–de Vries (eKdV) equation and the fully nonlinear models of the Dubreil-Jacotin-14 

Long (DJL) equation. Grid independence tests for ISWFoam are performed, considering the accuracy 15 

and computing efficiency, the appropriate grid size of the ISW simulation is recommended to be one-16 

one hundred and fiftieth of the characteristic length and one-twenty fifth of the ISW amplitude. Model 17 

verifications are conducted through comparisons between the simulated and experimental data for ISW 18 

propagation examples over a flat bottom section, including laboratory scale and actual ocean scale, a 19 

submerged triangular ridge, a Gaussian ridge and slope. The laboratory test results, including the ISW 20 

profile, wave breaking location, ISW arrival time, and the spatial and temporal changes in the mixture 21 

region, are well reproduced by ISWFoam. The ISWFoam model with unstructured grids and local mesh 22 

refinement can effectively simulate the evolution of ISWs, the ISW breaking phenomenon, waveform 23 

inversion of ISWs, and the interaction between ISWs and complex topography. 24 

Keywords. OpenFoam, Internal solitary wave tank, Stratified fluid, the DJL equation, Grid 25 

independence. 26 

1. Introduction 27 

 Internal solitary waves (ISWs) are commonly observed in oceans, particularly on continental shelf 28 
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regions, due to strong tidal current flows over large topographic features (Huthnance, 1981), such as in 29 

the northern South China Sea (Alford et al., 2010; Alford et al., 2015; Cai et al., 2012). ISWs play an 30 

important role in both conveying nutrients from the deep ocean to shallower layers and promoting 31 

biological growth (Sandstrom et al., 1984). Additionally, ISWs are a potential threat to the ocean 32 

structures of resource exploration, exploitation, and submarine navigation vehicles (Alford et al., 2010; 33 

Osborne et al., 1980). A considerable number of studies, which include field measurements, remote 34 

sensing, experiments, theoretical analysis and numerical simulations, have been carried out due to the 35 

significance of ISWs (Vlasenko et al., 2005; Apel et al., 2006; Alford et al., 2011; Guo et al., 2014).  36 

For numerically simulated ISWs, many models have been adopted, including the Euler equation, 37 

the inviscid/viscid incompressible Boussinesq model, the hydrostatic model, the non-hydrostatic model, 38 

and the VOF based two-phase flow model. Among these models, the representative hydrostatic models 39 

include the Naval Research Laboratory Ocean Nowcast/Forecast System (ONFS) (Ko et al.,2008), the 40 

Regional Hallberg Isopycnal Tide Mode (RHIMT) (Hallberg and Rhines, 1996; Hallberg, 1997), and the 41 

Ostrovsky-Hunter model. The representative non-hydrostatic models include the Bergen Ocean Model 42 

(BOM), the nonhydrostatic Regional Ocean Modeling System model (ROMS), the Stanford 43 

Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS), and the 44 

Massachusetts Institute of Technology general circulation model (MITgcm). For example, Zhang et al 45 

(2012) established a variable water depth internal wave numerical model in a continuously stratified fluid 46 

system based on the Euler equation. Xu and Stastna (2020) used the viscid incompressible Boussinesq 47 

model to study cross-boundary-layer transport (Boegman and Stastna, 2019) by the fissioning process of 48 

shoaling ISWs. Lamb (1994) established a non-hydrostatic model, using a second-order projection 49 

method developed by Bell and Marcus (1992), which is used for internal wave research including 50 

boundary layer instability (Aghsaee et al., 2012), reflection (Lamb, 2009), and the interaction of the tides 51 

with the topography (Lamb, 2007; Aghsaee et al., 2010). Diamessis (2005) developed a spectral 52 

multidomain penalty method model and correctly reproduced the characteristic vorticity and internal 53 

wave structure. Subich et al (2013) developed a spectral collocation method for the solution of the 54 

Navier–Stokes equations under the Boussinesq approximation, and simulated the internal wave in 55 

continuously stratified fluid. Smedstad et al (2003) employed the ONFS model to establish a global ocean 56 

real-time forecasting system with an operational eddy resolution of 1/16°, which effectively tracks ocean 57 
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eddies, ocean currents and ocean fronts. Simmons et al (2004) employed the RHIMT model to carry out 58 

a global numerical simulation of tidal currents, and analyzed the whole process of the conversion rate of 59 

barotropic waves into baroclinic waves. Thiem (2011) used the Bergen Ocean Model to explore the 60 

bottom boundary layer flow caused by waves beneath a propagating ISW in a two-fluid system. Li and 61 

Farmer (2011) employed the Ostrovsky-Hunter model to study the nonlinear evolution of a 62 

monochromatic internal wave. Buijsman et al (2010) employed ROMS model to study the asymmetry in 63 

solitons to the east and west of Luzon Strait. Zhang et al (2011) used the nonhydrostatic SUNTANS 64 

model (Fringer et al., 2006) to study the dynamics of A wave and B wave formation. Rayson et al (2018) 65 

used the modified SUNTANS model to study the internal waves around Scott Reef and provided the 66 

generation process of internal lee waves. Vlasenko et al (2010) employed the MITgcm model to 67 

investigate the baroclinic tidal energy conversion in the area west of the Luzon Strait.  68 

In summary, for continuously stratified fluids in complex ocean environments, numerical simulation 69 

has become a leading method for ISW investigations. However, there are presently few versatile 70 

numerical models with share code that can accurately simulate the ISW flow around complex topography 71 

and submarine navigation vehicles in continuously stratified fluids. Therefore, the main objective of this 72 

paper is to develop a solver, referred to as ISWFoam with a modified k-ω SST model that considers the 73 

variable density field, which simulates the ISW in continuous density stratification, incompressible and 74 

viscous fluids using the finite volume method with unstructured grids based on a fully three-dimensional 75 

(3D) Navier-Stokes equation using the OpenFOAM library.  76 

Notably, the open source field operation and manipulation code OpenFOAM®, as an object-77 

oriented C++ open source library that can be used to build a variety of solvers for computational fluid 78 

problems based on the finite volume method, is becoming increasingly popular in the computational fluid 79 

research community. At present, the official version of OpenFOAM® does not have a solver or boundary 80 

conditions for solving the ISW in continuously stratified fluids. Although some researchers simulate 81 

ISWs by modifying the OpenFOAM® code, most of these studies are based on a two-fluid system 82 

without considering continuous stratification in density, such as Meng and Zhang (2016) and Li et al 83 

(2017). Though recent work by Ding et al (2020) and Li et al (2021) considered continuous stratification 84 

in density, their wave generation theories does not consider continuous stratification in density. To 85 

extensively use of the numerical model of ISWs as a tool in the future, we will develop ISWFoam to 86 
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simulate the ISW in continuously stratified, incompressible and viscous fluids based on the OpenFOAM 87 

library. The turbulence model will consider the variable density field. In addition, ISWFoam will provide 88 

two initial methods to generate an ISW in continuously stratified fluids, including solving the weakly 89 

nonlinear models of the extended Korteweg-de Vries (eKdV) equation and the fully nonlinear models of 90 

the Dubreil-Jacotin-Long (DJL) equation. This approach renders the numerical model suitable for the 91 

simulation of ISW flows in complex geometries and topographies. It is worth noting that ISWFoam does 92 

not consider the generation process of ISWs, but focuses on the propagation and evolution of ISWs that 93 

have already been generated, and the interaction between ISWs and complex structures and topography 94 

on field scales. 95 

The outline of the paper is described as follows. First, in Section 2, the governing equations for a 96 

continuously stratified fluid are presented, and discrete forms of these equations are derived. Then, grid 97 

independence tests of the developed ISWFoam model are described in Section 3. Subsequently, in 98 

Section 4, a series of test cases are presented to verify the model. Simulation examples at the field scale 99 

in Section 5. Finally, the conclusions are drawn in Section 6. 100 

2. ISWFoam: A three-dimensional numerical solver for ISWs in a continuously stratified fluid 101 

2.1 Governing equations 102 

We present an ISW numerical model by solving the motion of a three-dimensional, viscous, 103 

incompressible fluid with the Boussinesq approximation and rigid lid hypothesis. The governing 104 

equations of the model are 105 

0  =U ，                                                                    (1) 106 
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where U = (ui, uj, uk) is the velocity vector, t is time,   is the gradient operator, Q is the source term, ρ0 109 

is the reference density, ρ is the density field, p_rgh is a modified pressure field, g is the gravitational 110 

acceleration vector, and X is the position vector. vEff is the effective kinematic viscosity defined as vEff = 111 

μEff /ρ0, where μEff is the effective dynamic viscosity including the molecular viscosity (μl) and turbulent 112 

viscosity (μt). k is the diffusion coefficient, and its value is the same as the effective dynamic 113 
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viscosity(μEff). Ω is the Coriolis parameter, which is the twice the speed of rotation around the vertical 114 

unit vector e3 = (0, 0, 1). ISWFoam uses a modified pressure p_rgh instead of a total pressure p, and their 115 

relationship is given by 116 

rgh = ,
-

p p − g X
rgh =

-
p p    − −  g g X ，                                     (4) 117 

The upper boundary (z = H, with H the depth of computation domain) is treated as a rigid lid, the 118 

kinematic boundary conditions for this boundary are given by 119 

uk(x, y, H, t)=0                                                            (5) 120 

To close the above equations, the turbulence model needs to be employed. The two-equation k-ε 121 

model is widely used as an effective turbulence model, but it cannot capture the proper behaviour of 122 

turbulent boundary layers up to separation due to adverse pressure gradients (Wilcox, 1993). For the 123 

above boundary layers separation problem, Bardina et al. (1997) and Menter et al. (2003) suggested the 124 

use of the k-ω Shear Stress Transport (SST) model to obtain substantially more accurate results. Therefore, 125 

the turbulence model used in this paper is the k-ω SST model. Notably that in OpenFOAM, the 126 

incompressible version for turbulence models does not consider the variable density field, and instead, it 127 

treats the density as a constant, such as the k-ω SST model 128 
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where k is the turbulent kinetic energy, ω is the specific dissipation rate, Pk is the production term of k, 133 

:R

kP = U , *

kP  is related to the production term of turbulence kinetic energy Pk in the k equation, vt 134 

is the turbulent kinematic viscosity, St is the mean rate of the flow strain, St =0.5( U+  UT), the model 135 

constants are assigned the values β*
 = 0.09, a1 =0.31, c1 = 10 and Cμ = 0.09, F1 and F2 are blending 136 

functions, the value of σk, σω, Cγ and Cβ are blended using the equation Ф = F1 Ф1+(1- F1) Ф2 in which 137 

Ф1 and Ф2 are given in Table 1. 138 

Table 1 Default values for Ф1 and Ф2 139 

Ф σk σω Cβ Cγ 

Ф1 0.85 0.5 0.075 5/9 
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Ф2 1.0 0.856 0.0828 0.44 

 140 

Considering the variable density field during the solution process, it is necessary to consider the 141 

change in the density field in the turbulence model. Therefore, we modify the turbulence model to 142 

consider the change in density, and finally a modified k-ω SST model that considers the change in density 143 

is used to close the equation 144 
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 147 

2.2 Numerical discretization 148 

The governing equations are numerically discretized using the finite volume method based on the 149 

C++ open source library of OpenFOAM. The finite volume method requires that Eqs. (2) and (3) are 150 

satisfied over the control volume VP around point P in integral form: 151 

( ) ( ) = Q
P P
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t


 

 
+  −     

   
U

U U U ，                            (12) 152 
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  U ，                                      (13) 153 

where Δt is the time step. 154 

The momentum equation in ISWFoam is solved by constructing a predicted velocity field and then 155 

using the Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa, 1986) to modify it. n is 156 

defined to represent the current moment. The PISO iteration process is marked as m; when m is equal to 157 

zero, it represents the current time (tn). 158 

First, only the temporal, convection and diffusion terms appear in the discrete version of the 159 

equation momentum, and the other terms are ignored. After this operation, we obtain an explicit 160 

expression for the predicted velocity field 
r

PU , namely, 161 

( )+  0,
P P

r n
n r rP P

P f f Eff f f

f V f V

V
t

 
 

−
−   =


 

U U
U U S                              (14) 162 

where P represents the centre of the grid cell, = Sn n

f f f U  is the volume flux at the initial time n and 163 
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fS is the face vector.  164 

The solution process requires the velocity on the surface f. Assuming the variation in 
r

fU  between 165 

the centre P of the grid and the centre N of the adjacent grid, the face values are calculated using a mixture 166 

method (blended differencing) of the central scheme (central differencing) and the upwind scheme 167 

(upwind differencing) as follows (Jasak, 1996): 168 

( )( ) ( )1f U f U fUD CD
 = − +U U U                                                 (15) 169 

where 170 
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where N represents the centre of the adjacent grid cells, = Sf f f U is volume flux. The limiter U  172 

can be selected from several alternatives (OpenFOAM, 2019), including linear, QUICK, vanLeer, etc. In 173 

the following derivation process, the vanLeer scheme was used to calculate the velocity of the face centre 174 
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Inserting Eq. (17) into Eq. (14) yields 178 

P

( )
n

r m mP
P P N P

f V

A A H
t

= + =



U

U U U                                           (19) 179 

After some manipulation, the quantities AP and AN are given as 180 
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Including the effect of gravity and the Coriolis force in Eq. (19) 183 

( ) ( )0 3X( )
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r
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gU
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Notably, that when m is equal to zero, it represents the initial moment n, and the value of the initial 185 

moment is known. Therefore, we obtain the predicted velocity field 
r

PU  in the first iteration. We define 186 

the surface gradient operator ( 1
f

  ), and the type of gradient operator acting on U is187 

( )1 m m

N Pf
d = −U U U , which represents the distance from the centre of the grid N to P. Similarly, 188 

the surface gradient operator ( 1
f

 ) acting on scalar γ is ( )1 m m

N Pf
d   = − . The associated flux 189 

( = Sf f f U ) is achieved by executing an inner product with a surface vector (Sf) on the left and right 190 

parts of Eq. (22), giving 191 

( )
( )31

0

( ) 1 1
= ,

n nm
nr

f f f fff
P P Pf f f

eH

A A A
 



       
  −   −                 

U
S g X S S        (23) 192 

Eq. (23) completed the flux calculation without considering the influence of the pressure term. The 193 

pressure contribution in terms of a flux can be expressed as 194 
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Then, Eq. (24) is now added to Eq. (23) to yield 196 
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Combined with Eq. (23), Eq. (25) is simplified and rewritten as 198 

1 11
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Using conservation of mass, we solve the pressure field 
1m

rghp
−

+
, which results in 200 

P P
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The preconditioned conjugate gradient method is used to solve the linear system constructed by Eq. 202 

(27) (OpenFOAM, 2019). After 
1m

rghp
−

+
 is obtained using Eq. (27), we calculate the volume flux using 203 

Eq. (26) for each face. The cell centred velocity fields 1m

P

+
U  are calculated by reconstructing the face 204 

velocity flux using the following expression (Deshpande, 2012) 205 
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Eq. (28) completes the velocity field calculation of the first iteration step in the PISO algorithm. By 207 

converting the identifier m to m+1, the next PISO iteration is completed and updating the velocity in Eq. 208 

(19) with the velocity 1m

P

+
U  calculated from Eq. (28), thereby updating p_rgh, ϕf and U. This procedure 209 

is performed M times to guarantee that the results of the velocity and pressure together conform to the 210 

continuity and momentum equations. Considering that PISO iteration levels require more than 1, but 211 

typically not more than 4 (OpenFOAM, 2019), we specify that the number of PISO iteration levels is 3 212 

in the computations presented in this paper. After completing the three iterations, the converged values 213 

are considered the result of the next time step (n + 1), namely, 214 

+1= ,n M

f f   
+1 ,n M

P P=U U  
+1 ,n M

rgh rghp p
− −

=                                        (29) 215 

We discretize the convection-diffusion equation of density (Eq. (13)) to obtain 216 
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1 1 1( ) =
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V
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t d
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+ + +  −

− +  
  

  S ，                         (30) 217 

At the end of the iteration procedure, we bring the results of the volume flux into Eq. (30) to 218 

calculate the density field at the next time ( 1

P

n + ), thereby updating the density field for the next step 219 

calculation (
2 1= n nt t t+ + − ). 220 

2.3 Initialized field of ISW generation 221 

ISW generation methods mainly include the gravity collapse mechanism, double push-pedals 222 

method (Fu et al., 2008), velocity-inlet method (Gao et al., 2012), mass source method (Wang et al., 223 

2018), initialization method, and methods addressing the interaction between tidal current and 224 

topography. For example, Hsieh et al (2014) investigated the flow evolution of a depression ISW 225 

generated by the gravity collapse mechanism. Cheng et al (2020) studied the interaction between ISWs 226 

and a cylinder using the gravity collapse mechanism. The initialization method involves solving the 227 

internal solitary wave theory at the initial moment, such as the Korteweg-de Vries (KdV) equation 228 

(Grimshaw et al., 2010), the modified KdV (mKdV) equation, the extended KdV (eKdV) equation, the 229 

forced KdV equation, the Ostrovsky equation (Li and Farmer, 2011), the Miyata-Choi-Camassa (MCC) 230 

model (Miyata 1985 and 1988; Choi and Camassa, 1999), and the Dubreil-Jacotin-Long (DJL) equation 231 
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(Long, 1953; Turkington, 1991; Brown and Christie, 1997; Dunphy et al., 2011), to obtain the wave 232 

surface, velocity field. The method of an interacting between tidal current and terrain that stimulates 233 

ISWs is adopted by many scholars, such as Farmer and Smith (1980), Lamb et al (1994), and Shaw et al 234 

(2009). 235 

In this paper, the method of initializing the field is selected to generate the ISWs. To increase the 236 

application range of the ISWFoam model, two initialization methods are provided, including solving the 237 

weakly nonlinear models of the eKdV equation (Helfrich and Melville, 2006) and the fully nonlinear 238 

models of the DJL equation for continuously stratified fluids (Turkington, 1991; Dunphy et al, 2011). 239 

The Dubreil-Jacotin-Long (DJL) equation is expressed as 240 

( )2

2

2
+ 0 0 at 0,
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N z
z H

c

x


  



−
 = = = −

= → 

，
                             (31) 241 

where η is the isopycnal displacement, H is the water depth, c is the propagation speed, N is the definition 242 

of the buoyancy frequency, and z is vertical position. 243 

( )2 0 (z)d
N z g

dz


= − ，                                                 (32) 244 

where ρ0(z) is the reference density, and g is the gravitational acceleration. 245 

By solving the above DJL equation we can obtain η and c, and then through the relationship ψ= ηc, 246 

where ψ is the stream function, we can obtain the wave-induced velocity field. We use the DJLES open 247 

source package provided by Dunphy et al (2011) to solve the DJL equations. Then we input the initial 248 

field calculated by DJLES into OpenFOAM to obtain the initial field required for OpenFOAM numerical 249 

simulation. 250 

 Another theory of ISWFoam model wave generation involves the weakly nonlinear models of the 251 

eKdV equation. Using the first order stream function for the DJL equation, we can obtain the well-known 252 

KdV equation and further obtain the eKdV equation. For the specific derivation, please refer to the paper 253 

by Lamb and Yan (1996). The eKdV equation (Helfrich and Melville, 2006) is 254 

3
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where ζ is the isopycnal vertical displacement; c0 is the linear phase speed; the coefficients c1, c2 and c3 260 

are functions of the steady background stratification and shear through the linear eigenmode (vertical 261 

structure function) of interest (Helfrich and Melville, 2006); h1 and h2 are the mean upper and lower layer 262 

depths, respectively; ρ1 and ρ1 are the fluid densities of the upper and lower layers, respectively. The 263 

theoretical solution of Eq. (33) above is  264 

( ) ( )2
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=
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1 eKdV

1

u c
h




= −

−
， 2 eKdV

2

u c
h




=

+
，                                           (42) 269 

where a is the ISW amplitude, λeKdV is the wavelength, ceKdV is the wave speed, B is an auxiliary parameter, 270 

and u1 and u2 are the speeds of the upper and lower layers of the fluid, respectively. The waveform and 271 

velocity field of the ISWs are solved at the initial moment by the developed function and then assigned 272 

to the calculation domain.  273 

The vertical profile of the initial density is given by a hyperbolic tangent function profile (Aghsaee 274 

et al., 2010) 275 

( ) 1 2 2 1 tanh
2 2

pyc

pyc

z z
z

d

   


 −+ −
= −   

 

                                      (43) 276 

where z is the vertical position; ρ1 and ρ2 are the fluid densities of the upper and lower layers, respectively; 277 

zpyc is the location of the centre of the pycnocline; and dpyc is the thickness of the pycnocline. In this paper, 278 

unless otherwise specified, the form of the density profile adopts Eq. (43). The internal solitary wave 279 
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surface is obtained by calculating the gradient of the density field, and the absolute value of the maximum 280 

value of the gradient represents the vertical position of the wave surface. Notably, the density profile of 281 

the actual ocean is not always hyperbolic, so our model provides a function for users to modify the 282 

density profile according to the actual situation. 283 

2.3.1 Comparison between the DJL equation and the eKdV equation 284 

To compare the DJL equation and the eKdV equation, we set up a numerical simulation, which 285 

includes a tank that is 15 m long, 1 m wide and has a water depth of 0.5 m. The depths of the upper (h1) 286 

and lower (h2) layers are 0.1 m and 0.4 m, respectively, the densities of the upper and lower layers are 287 

1022 kg/m3 and 1028 kg/m3, respectively, the location of the centre of the pycnocline (zpyc) is 0.4 m, the 288 

pycnocline thickness (dpyc) is 0.04 m vertically, the initial ISW amplitude (a) is 0.065 m and the location 289 

of the centre of ISW is 12.5m. The ISWs propagate from right to left. The measuring point P is set at a 290 

position 10m away from the initial ISW. The grid is uniform in the x-direction, y-direction and z-direction, 291 

and the sizes are x = 1×10-2 m, y = 1×10-2 m and z = 1×10-3 m, respectively. Slip boundary conditions 292 

are applied to the bottom and both sides, while cyclic boundary conditions are assigned to the inlet and 293 

outlet boundaries. The top boundary is a rigid lid. The boundary conditions related to the density field 294 

are no-flux boundary conditions. 295 

    Fig. 1 shows the comparison of the horizontal velocity component field when the DJL equation and 296 

the eKdV equation are used to generate ISWs. At the initial moment, the ISW generated by the eKdV 297 

equation is not as smooth as the ISW generated by the DJL equation, and the horizontal velocity at the 298 

interface area is discontinuous as shown in Fig. 1(a) and (b). With the propagation of ISWs, the ISWs 299 

generated by the DJL equation are always smooth at the interface area, and the velocity field is always 300 

continuous as shown in Fig. 1(a), (c), (e) and (g). Correspondingly, the ISW generated by the eKdV 301 

equation gradually produces a gradient in the vertical direction of the horizontal velocity in the interface 302 

area, thus, the interface area becomes smooth, and the velocity becomes continuous. Fig. 1(d) shows this 303 

evolution process, which is basically completed in 5s as shown in Fig. 1(f). At 50s, the difference between 304 

the horizontal velocity fields of the two equations is very small as shown in Fig. 1(g) and (h).  305 
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 306 
Figure 1: Comparison chart of the horizontal velocity component field: DJL equation (left) and eKdV equation 307 

(right). 308 

Fig. 2 shows the comparison of the vertical velocity component field when the DJL equation and 309 

the eKdV equation are used to generate ISWs. Since the theoretical solution of the eKdV equation only 310 

obtain the average horizontal velocity of the upper and lower layers of the fluid, there is no vertical 311 

velocity at the initial moment, as shown in Fig. 2(b). With the propagation of ISWs, the vertical velocity 312 

field will gradually be generated and finally stabilized, and the stable time occurs at 5s as shown in Fig. 313 

2(b), (d), (f) and (h). At 50s, the difference between the vertical velocity fields of the two equations is 314 

very small as shown in Fig. 2(g) and (h). 315 

 316 

Figuire 2: Comparison chart of the vertical velocity component field: DJL equation (left) and eKdV equation 317 

(right). 318 

The ISW propagates for 10 m, and the amplitudes of the ISWs generated by the DJL equation and 319 

the eKdV equation are reduced by 9.88% and 17.96%, respectively, as shown in Fig. 3. Overall, the 320 

reduction in energy leads to the attenuation of the amplitude of the ISW, which in turn reduces the wave 321 

speed. Except for the difference in initial fields, the grid sizes, time step, turbulence model, and other 322 
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features are the same. Therefore, the initial stage of ISWs generated by the eKdV equation leads to 323 

excessive energy loss compared with those generated by the DJL equation. From the above analysis of 324 

the velocity field, we know that the method of initializing the field with the eKdV equation requires a 325 

period of movement before the jump of the velocity field develops into a field with continuous changes 326 

in velocity. In addition, the DJL equation, as a fully nonlinear model, can better reflect its superiority for 327 

internal waves with strong nonlinearity. Therefore, the wave generation of the subsequent numerical 328 

cases in this paper adopts the method of initializing the field with the DJL equation. 329 

 330 

Figure 3: Time series of the interface displacement. The probe was 10 m away from the initial ISW. 331 

3. Grid independence of the ISW simulation 332 

 These grid independence tests were performed in the horizontal and vertical directions by applying 333 

meshes of different sizes. The sizes of the mesh determined in this paper are calculated based on the 334 

amplitude of the ISW and a characteristic length determined through the integration of the wave profile 335 

(Michallet and Ivey, 1999) 336 

1
= ( )L x dx

a




−                                                             (44) 337 

where ζ is the isopycnal vertical displacement and a is the ISW amplitude. 338 

 To determine the appropriate mesh size, the propagation of ISWs on flat bottoms is calculated, and 339 

the numerical results are compared with the DJL theoretical solution. We set up a numerical simulation, 340 

which includes a tank that is 50 m long, 0.5 m wide and has a water depth of 0.5 m. The depths of the 341 

upper (h1) and lower (h2) layers are 0.1 m and 0.4 m, respectively, the densities of the upper and lower 342 

layers are 1000 kg/m3 and 1030 kg/m3, respectively, the location of the centre of the pycnocline (zpyc) is 343 

0.4 m, and the pycnocline thickness (dpyc) is 0.05 m vertically, the ISW amplitude (a) is 0.065 m. The 344 

measuring point P is set at a position 10L away from the initial ISW. The sponge layer on both sides, 345 

whose length is the double wave characteristic length, has been checked to properly dissipate the 346 

reflected wave. Slip boundary conditions are applied to the bottom and both sides, while cyclic boundary 347 
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conditions are assigned to the inlet and outlet boundaries. The top boundary is a rigid lid. The boundary 348 

conditions related to the density field are no-flux boundary conditions. 349 

3.1 Grid independence in the horizontal direction 350 

 First, we analyse the grid independence in the horizontal direction, with a constant cell height of z 351 

= a/20 m. Fig. 4 shows the results of the comparison of the waveform and decay rate in the horizontal 352 

direction at probe P1 with the ISWFoam using a wide range of grid configurations. The results show a 353 

negligible difference in the waveform when the mesh size is less than L/40, so it is difficult to accurately 354 

analyse the grid independence just by the waveform. A traditional decay rate parameter is adopted, 355 

namely δ = (aprobe – ainitial)/ainitial, where ainitial is the ISW amplitude value at the initial moment, aprobe is 356 

the ISW amplitude value of the probe 10L away from the initial ISW. Fig. 4(b) shows the relationship 357 

between the decay rate of the ISW amplitude and the grid quantity per unit length for different mesh 358 

sizes. As shown in Fig. 4(b), the decay rate of the ISW amplitude tends to be smooth as the grid number 359 

per unit length increases to 160 (x = L/150), and then the increase in the grid quantity has a relatively 360 

small effect on the decay rate. Therefore, for ISWFoam developed in this paper, we suggest that the 361 

dimensions of the horizontal grid are L/150. 362 

  363 
Figure 4: Grid independence in the horizontal direction at probe P1: (a) comparison of waveform and (b) decay 364 

rate. 365 

3.2 Grid independence in the vertical direction 366 

Second, we analyse the grid independence in the vertical direction, with a constant cell width of x 367 

= L/150 m. Fig. 5 shows the results of a comparison of the waveform and decay rate of the ISW amplitude 368 

in the vertical direction at probe P1 with the ISWFoam using a wide range of grid configurations. The 369 
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results also show a negligible difference in the waveform when the mesh size is less than a/10, so it is 370 

difficult to accurately analyse the grid independence just by the waveform. As shown in Fig. 5(b), the 371 

decay rate of the ISW amplitude decreases as the grid quantity increases in a wave height range before 372 

the numerical oscillation occurs. Here, we assume that the grid size with the decay rate of the ISW 373 

amplitude less than one percent is the appropriate vertical grid size; namely, the vertical grid size is a/25 374 

m. Therefore, for ISWFoam developed in this paper, we suggest that the dimensions of the vertical grid 375 

be a/25. 376 

 377 

Figure 5: Grid independence analysis in the vertical direction at probe P1: (a) comparison of waveform and (b) 378 

decay rate. 379 

Finally, for ISWFoam developed in this paper, we suggest that the dimensions of the horizontal grid 380 

are L/150, while the vertical grid is a/25. 381 

4. Model verification and results 382 

To verify the numerical model of the ISWs, the propagation of ISWs on a flat bottom section, 383 

submerged triangular ridge and slopes is calculated, and the numerical results are compared with the 384 

corresponding experimental results. To verify the correctness of Coriolis code implantation and reflect 385 

the role of local mesh refinement, the propagation of ISWs on a flat bottom section of actual ocean scale 386 

and a Gaussian ridge is calculated. 387 
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4.1 ISW propagating on a flat bottom section 388 

4.1.1 Experimental data used 389 

In this section, ISWFoam is verified by employing ISWs propagating on a flat bottom section with 390 

Case Flat_4 in the continuously stratified laboratory experiment described in Hsieh et al. (2014). The 391 

physical dimensions and ultrasonic probe locations in the experiments of Hsieh et al. (2014), as shown 392 

in Fig. 6, are adopted to establish the numerical computation domain. We set up a numerical tank of the 393 

experiment of Hsieh and co-authors, which includes a tank that is 15 m long, 0.5 m wide and has a stable 394 

water depth of 0.5 m; the fluid densities of the upper (ρ1) and lower (ρ2) layers are 996 kg/m3 and 1030 395 

kg/m3, respectively; the ISW amplitude (a) is 0.068 m; the location of the centre of the pycnocline (zpyc) 396 

is 0.4 m, the pycnocline thickness (dpyc) is 0.04 m vertically, and the depths of the upper (h1) and lower 397 

(h2) layers are 0.1 m and 0.4 m, respectively. The grid is uniform in the x-direction, y-direction and z-398 

direction, and the sizes are x = 1.5×10-2 m, y = 1.5×10-2 m and z = 2.72×10-3 m, respectively. The 399 

sponge layer on both sides, whose length is double wave characteristic length, has been checked to 400 

properly dissipate the reflected wave. Slip boundary conditions are applied to the bottom and both sides, 401 

while cyclic boundary conditions are assigned to the inlet and outlet boundaries. The top boundary is a 402 

rigid lid. The boundary conditions related to the density field are no-flux boundary conditions. 403 

 404 
Figure 6: Schematic diagram of probe position (P1–P5) (Hsieh et al. (2014)). 405 

4.1.2 Comparisons between the numerical and experimental results 406 

Fig. 7 shows the density contours at three different times from Case Flat_4 in the laboratory 407 

experiment of Hsieh and coworkers, showing the stable evolution of an ISW. The results also show the 408 

realistic evolution of the thickening of the pycnocline after ISW propagation because of convection and 409 

diffusion. At the same time, the propagation of the ISW is stable and unbroken.  410 
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411 

412 

 413 
Figure 7: Density contours at different moments. 414 

To further verify the model, the waveform is compared between the numerical simulations and the 415 

experimental measurements, and the measurement point selection is the same as the experimental setting, 416 

as shown in Fig. 6. Fig. 8 shows the comparison results between the waveform simulated by ISWFoam 417 

and the experimental results at probes P1-P5. Fig. 8 shows that the results of the numerical simulations 418 

agree with the experimental results (red circle). Notably, the laboratory wave height at the probe P1 419 

measurement point is greater than the numerical simulation results, and the wave surface of the laboratory 420 

wave is not smooth, which is caused by the wave generation method using the gravity collapse 421 

mechanism in the laboratory. In general, the model developed in this paper can simulate the generation 422 

and evolution of ISWs in continuously stratified fluids. 423 
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426 

427 

 428 

Figure 8: Comparison of the waveform between the experimental results and numerical simulation results at 429 

probes P1-P5. 430 

4.2 ISW propagating over a submerged triangular ridge 431 

4.2.1 Experimental data used 432 

In this section, the validation of the numerical model is conducted through an ISW propagating over 433 

a submerged triangular ridge with the continuously stratified experiments described in Hsieh et al. (2015). 434 

The laboratory tank is 12 m long and has a stable water depth of 0.5 m, with which the fluid system has 435 

a finite thickness of the pycnocline. The specific experimental parameters used for validation of 436 

ISWFoam include the various depths of the upper (h1) and lower (h2) layers; the fluid density of the upper 437 

(ρ1) and lower (ρ2) layers of 996 kg/m3 and 1030 kg/m3, respectively; the ISW amplitude (α = 0.056 m); 438 

the location of the centre of the pycnocline (zpyc = 0.4 m); the thickness of the pycnocline (dpyc = 0.04 m 439 

vertically); the height of the isosceles triangular ridge (hs = 0.30 m vertically); and the slope angle of the 440 

ridge for α = 45°. The physical dimensions, and ultrasonic probe locations in the experiments of Hsieh 441 

et al. (2015), as shown in Fig. 9, are adopted to establish the numerical computation domain.  442 
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 443 
Figure 9: Schematic illustration of the laboratory setup and the locations of the probes (Hsieh et al. (2015)). 444 

4.2.2 Numerical implementation 445 

 The numerical tank is designed to reproduce the experiment described in Fig. 9. The unstructured 446 

grid and local mesh refinement based on the finite volume method are used to construct the computational 447 

domain and discretize the governing equations. The grid is uniform in the x-direction, y-direction and z-448 

direction, and the sizes are x = 2×10-3 m, y = 2×10-3 m and z = 2×10-3 m, respectively. The precise 449 

grid described triangular ridge section is x = 2.5×10-4 m, y = 2.5×10-4 m and z = 2.5×10-4 m at the 450 

slope, as shown in Fig. 10. The sponge layer on both sides, whose length is double the wave characteristic 451 

length defined through integration of the wave profile in Section 3 for this case, has been checked to 452 

absorb the reflected wave well. A rigid wall conditions is applied to both sides, while the slip and slip 453 

conditions are assigned to the bottom and the surface of the submerged ridge boundaries, respectively. 454 

The top boundary is a rigid lid. The inlet and outlet boundaries adopt cyclic boundary condition. The 455 

boundary conditions related to the density field are no-flux boundary conditions. 456 

 457 
Figure 10: Schematic of the mesh 458 



21 

 

4.2.3 Comparisons between the numerical and experimental results 459 

Fig. 11 shows the comparison results between the waveform calculated by ISWFoam and the 460 

experimental results at probes P1-P5. In each subplot, the results of the numerical simulations (blue line) 461 

are found to be in good agreement with the experimental results (red circle). From Fig. 11 (a), the 462 

numerical simulation result of the probe P1 measurement after 20 s is different from the experimental 463 

results, which is caused by the different ISW generation methods. For the experimental results, the first 464 

large leading ISW is formed via the gravity collapse mechanism, which is trailed by a train of small-465 

amplitude mode-one waves that is generated due to shear instabilities. However, the initialization method 466 

used to generate an initial ISW for the numerical simulation in this paper is more stable than the gravity 467 

collapse mechanism, so the rear part of the ISW is relatively flat compared to the experimental results 468 

for probe P1. In Fig. 11, the waveform of the ISW gradually evolves towards a flat waveform due to the 469 

interaction between the ISW and the ridge. In general, the model developed in this paper can simulate 470 

the interaction between ISWs and structures. 471 

472 
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475 

 476 
Figure 11: Comparison of the waveform between the experimental results in Hsieh et al. (2015) and numerical 477 

simulation results at probes P1-P5. 478 
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4.3 ISW propagating on a slope 479 

To verify the ability and accuracy of simulating the ISW breaking of the numerical model, two 480 

continuously stratified laboratory experiments (12 and 15) of Michallet and Ivey. (1999) are chosen for 481 

the simulation in this section. The experimental setup is represented schematically in Fig. 12. We set up 482 

a numerical tank of the experiment of Michallet and Ivey. (1999), which includes a tank is L= 4.2 m long, 483 

0.25 m wide and has a water depth of 0.15 m. The layer thickness ratio (h/H) varies from 0.60~0.91. A 484 

linear slope s = 0.214 starts at 0.7 m from the right end of the tank for experiments 12 and 15. The grid 485 

is uniform in the x-direction, y-direction and z-direction, and the sizes are x = 2.5×10-3 m, y = 2.5×10-486 

3 m and z = 1.25×10-3 m, respectively. The precise grid describing the slope section is x = y = 6.25×10-487 

4 m and z = 3.125×10-4 m at the slope.  488 

 489 

Figure 12: Schematic diagram of the laboratory setup. “C” and “US” represent the experimental device at probes. 490 

The sponge layer on the left side, whose length is the double wave characteristic length, is checked 491 

to properly dissipate the reflected wave. Slip boundary conditions are applied to the bottom and both 492 

sides, while slip boundary conditions are assigned to the top boundaries. The boundary conditions related 493 

to the density field are no-flux boundary conditions.  494 

The vertical profile of the initial density is given by a hyperbolic tangent function profile 495 

( )
( )

1 1 tanh
2

pyc

pyc

z z
z

d


 

  − −  
= + +   

    

                                      (45) 496 

where z is the vertical position, ρ1 = 1×103 kg/m3 is the base density field, Δρ is the change in the density, 497 

zpyc is the location of the centre of the pycnocline, and dpyc is the thickness of the pycnocline. 498 

4.3.1 Case one and results 499 

 The first case of model verification is experiment 12 of Michallet and Ivey. (1999) in this section. 500 

The layer thickness ratio (h/H) is 0.84, and the density change (Δρ) value is 14 kg/m3. Fig. 13 presents 501 

the time series for the interface displacement (ζ) for experiment 12 of Michallet and Ivey. (1999). The 502 
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results indicate reasonably good agreement between the time series of the simulated interface 503 

displacement and that of the laboratory results. The first trough centred around t = 25 s represents the 504 

incident ISW propagating the probe 99.8 cm away from the start of the slope. The second trough centred 505 

at approximately t = 87 s represents the reflected ISW at the generation side, which has a smaller 506 

amplitude and a longer wavelength than the incident ISW as the energy in the wave decreases. As shown 507 

in Fig. 13, the smooth waveform of the incident ISW of the numerical simulation indicates that the 508 

initialization method of wave generation in this paper is more stable than the experiment. 509 

 510 
Figure 13: Time series of the interface displacement. The probe was 99.8 cm away from the start of the slope. 511 

Fig. 14 shows a comparison of ISWFoam results and the experimental observations of the velocity 512 

field associated with the ISW run-up process along the slope. The model effectively reproduces 513 

laboratory tests, such as the intensity and direction of the velocity field, the location of the vortices, and 514 

the occurrence of boundary-layer separation beneath the ISW. Therefore, the model developed in this 515 

paper can reflect the ISW breaking phenomenon during the propagation of ISWs along the slope. 516 
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 519 
Figure 14: Comparison of the velocity field between the experimental observation results in Michallet and Ivey. 520 

(1999) (left) and numerical simulation results (right). 521 

4.3.2 Case two and results 522 

Another laboratory experiment that more clearly shows the ISW breaking phenomenon from 523 

Experiment 15 of Michallet and Ivey. (1999) is used to verify the numerical model presented in this paper, 524 

and the corresponding numerical case is set corresponding to it. The layer thickness ratio (h/H) is 0.77, 525 

and the density change (Δρ) value is 47 kg/m3. The wave amplitude and phase velocity at the slope 526 

calculated by ISWFoam are 2.71×10-3 m and 10.83×10-1 m/s, which fit well with the experimental results 527 

of 2.7×10-3 m and 10.8×10-1 m/s. 528 

Fig. 15 shows the results of the numerical simulations of the ISWs propagating along the slope and 529 

wave breaking using ISWFoam. As the ISW propagates to the slope, according to the conservation of 530 

mass, the upper fluid forward and the downward velocity of the lower fluid increasing along the slope 531 

results in the formation of a thin boundary layer, as shown in Fig. 15(a), (b), and (c). At the same time, 532 

the amplitude of the ISW increases, and the rear of the ISW gradually becomes very steep but does not 533 

overturn. With the development of the ISW, the rear waveform of the ISW cannot maintain its stability 534 

and overturns forward, resulting in wave breaking, as shown in Fig. 15(d). After wave breaking occurs, 535 

the denser lower layer flow accelerates into the less dense upper layer flow, forming a mixture region, as 536 

shown in Fig. 15(e). After the lower layer flow is drawn downward from beneath the ISW, a mixing 537 

region comprised of vortices is pushed upwards along the slope while the leading waveform is reflected, 538 

as shown in Fig. 15(f), (g), and (h). Fig. 15(i), (j) shows the falling process of ISWs. From the perspective 539 

of the entire process of wave breaking, the steepening of the rear waveform in this case is the main reason 540 

for wave breaking. 541 
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 542 
Figure 15: Temporal and spatial variations in the ISWs breaking calculated using ISWFoam (the black line 543 

represents the waveform). 544 

For comparison with the flow visualization image of the experiment, a specified thickness of the 545 

pycnocline is presented, and the pycnocline ranges from 1003 kg/m3 to 1045 kg/m3 with dark colours as 546 

shown in Fig. 16. 547 

Fig. 16 compares the ISWFoam results and the experimental results of Michallet and Ivey. (1999) 548 

before, during, and after ISW breaking. The results indicate that some main features of the laboratory 549 

tests are reasonably well reproduced by ISWFoam, such as the profile of ISW, the location of the wave 550 

breaking point, ISW arrival time, and spatial and temporal changes in the mixture region. Therefore, the 551 

model developed in this paper can accurately simulate the ISW breaking phenomenon during the 552 

propagation of ISWs along the slope. 553 

 554 

555 

556 
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 557 

Figure 16: Comparison of the density fields between the experimental observation results in Michallet and Ivey. 558 

(1999) (left) and the numerical simulation results (right). 559 

5. Simulation examples at the field scale 560 

 The ISWFoam model developed in the present paper can be used as a tool to investigate the 561 

interaction between ISWs and complex structures and topography. In this section, two numerical 562 

examples are presented to show the capability of ISWFoam on field scale simulation. 563 

5.1 ISW propagating over a 3D Gaussian ridge  564 

 We designed a case of an ISW propagating over a 3D Gaussian ridge. The 3D Gaussian ridge is 565 

obtained by rotating a 2D Gaussian ridge 566 

( )
2

/x l
z ae

−
=                                                                  (46) 567 

where a is the ridge amplitude, and l is the standard deviation. With a = 100 m and l = 10, we can obtain 568 

a 2D Gaussian ridge with a height of 100 m and a bottom width of 40 m. Subsequently, the 3D Gaussian 569 

ridge can be obtained after a vertical rotation of 180 degrees. 570 

 We set up a 3D numerical tank, which includes a tank that is 3 km long, 400 m wide (y-direction 571 

from -200 m to 200 m) and has a water depth of 120 m. The depths of the upper (h1) and lower (h2) layers 572 

are 20 m and 100 m, respectively, the densities of the upper and lower layers are 1000 kg/m3 and 1030 573 

kg/m3, respectively, the location of the centre of the pycnocline (zpyc) is 100 m, and the pycnocline 574 

thickness (dpyc) is 1.5 m vertically, the ISW amplitude (a) is 20 m. The Gaussian ridge is located at 800 575 

m horizontally. The grid is gradually changed from x = 20 m to x = 2.5 m in the x-direction, the grids 576 

in the y-direction are uniform with a constant cell width of y = 2.5 m, and the grids in the z-direction 577 

are non-uniform, with a minimum cell height of z = 1 m near the interface of the ISW. The precise grid 578 

described the 3D Gaussian ridge section as x = 3.9×10-2 m, y = 3.9×10-2 m and z = 1.56×10-2 m, as 579 

shown in Fig 17. The sponge layer on both sides, whose length is the double wave characteristic length, 580 

has been checked to properly dissipate the reflected wave. Slip boundary conditions are applied to the 581 

bottom and both sides, while cyclic boundary conditions are assigned to the inlet and outlet boundaries. 582 
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The top boundary is a rigid lid. The boundary conditions related to the density field are no-flux boundary 583 

conditions. 584 

 585 
Figure 17: Schematic of the local refinement of the grid. 586 

Fig. 18. shows the temporal and spatial variations in the ISWs propagating over a 3D Gaussian 587 

ridge. The ISW reaches the Gaussian ridge, causing the wave surface in front of the ridge to decrease, 588 

and the wave surface behind the ridge to climb up the ridge, as shown in Fig. 18(a). Due to being 589 

obstructed by the Gaussian ridge, flow around a ridge and wave surface uplift are generated on both sides 590 

of the Gaussian ridge (perpendicular to the direction of wave propagation), as shown in Fig. 18(b). As 591 

the ISW propagated over the Gaussian ridge, the wave surface climbed along the ridge, and at the same 592 

time, low velocity was generated behind the ridge, as shown in Fig. 18(c). Since the top of the ridge is in 593 

the pycnocline, there will be a low velocity area behind the ridge for a period of time after the ISW passes, 594 

as shown in Fig. 18(d). In general, the ISWFoam model with unstructured grids and local mesh 595 

refinement can simulate the interaction between ISWs and complex structures and topography at the field 596 

scale. 597 
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598 

Figure 18: Temporal and spatial variation in the ISWs propagating over a 3D Gaussian ridge.  599 

5.2 ISW propagating over a hyperbolic tangent terrain 600 

 The propagation of ISWs to the shore is bound to be affected by the continental shelf, and 601 

shallow water evolution phenomena such as nonlinear evolution, breaking phenomenon and 602 

waveform inversion occur on the undulating continental shelf. For simplicity, this section simplifies 603 

the continental shelf into a hyperbolic tangent terrain, the terrain profile formula is as follows (Lamb, 604 

2002) 605 

1 tanh
2

Ta x
z

L

  
= +   

  
                                                          (47) 606 

where Ta  is the ridge amplitude, which is 60 m, and l is the width of the continental shelf change area, 607 

which is 200 m, and x and z are the horizontal and vertical coordinate positions, respectively.  608 

We set up a 3D numerical tank, which includes a tank that is 7.5 km long, 200 m wide (y-direction 609 

from -100 m to 100 m) and has a water depth of 100 m (z-direction from 0 m to 100 m). The depths of 610 

the upper (h1) and lower (h2) layers are 20 m and 80 m in the deep water, respectively, and the depths of 611 

the upper (h1) and lower (h2) layers are both 20 m in the shallow water. The densities of the upper and 612 

lower layers are 1000 kg/m3 and 1012 kg/m3, respectively, and the pycnocline thickness (dpyc) is 2 m, the 613 

location of the pycnocline (zpyc) centre is at 80 m, the ISW amplitude (a) is 20 m. The starting point of 614 

the hyperbolic tangent terrain is located at 0 m horizontally, and the top of the terrain is 40 m underwater. 615 

Therefore, ISWs will gradually propagate from deep water area with a water depth of 100 m to shallow 616 

water area with a water depth of 40 m. The horizontal grid is gradually changed from 40 m at the inlet to 617 
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4 m in the study area, and then from the study area to 60 m at the outlet, the grid is uniform in the y-618 

direction and z-direction, which are 4 m and 1 m. The hyperbolic tangent terrain is characterized by 4-619 

level local mesh refinement, and the minimum grid size is 5 cm, as shown in Fig 19. The sponge layer 620 

on both sides, whose length is the double wave characteristic length, has been checked to properly 621 

dissipate the reflected wave. Cyclic boundary conditions are assigned to the inlet, outlet and both sides, 622 

while the slip and non-slip conditions are assigned to the bottom and the shelf topography. The top 623 

boundary is a rigid lid. The boundary conditions related to the density field are no-flux boundary 624 

conditions. 625 

 626 

Figure 19: Schematic of the local refinement of the grid. 627 

Fig. 20. shows the waveform and velocity field when the ISW passes through the hyperbolic tangent 628 

terrain. From Fig. 20, it can be seen that the ISW breaks and has a significant waveform inversion when 629 

propagating from deep water of 100 m to shallow water of 40 m. As the ISWs propagate to the continental 630 

shelf, the water depth gradually becomes shallower, and the thickness of the lower fluid gradually 631 

decreases as shown in Fig. 2-20(a). Due to the presence of the continental slope, the nonlinearity of the 632 

ISWs becomes stronger, and the trough velocity of the ISWs is significantly lower, which causes the 633 

waveform at the rear of the ISW to become steep, as shown in Fig. 2-20(b). At the same time, the front 634 

waveform of the ISW gradually becomes flat and parallel to the shelf topography. As the waveform at 635 

the rear of the ISW becomes steeper and loses balance, the waveform at the rear of the ISW rolls forward, 636 

leading to the occurrence of ISW breaking phenomenon, as shown in Fig. 2-20(c). It is worth noting that 637 

the ISW breaking occurs at the rear of the ISW, while the front waveform does not break, but transforms 638 

into another form of wave (referred to as the head wave), and continues to propagate steadily along the 639 

continental shelf. The breaking of ISWs causes severe disturbances in the water, and excite a series of 640 

secondary waves at the tail of the head wave, represented by elevation ISWs (as shown in Fig. 2-20(d), 641 

(e), (f)), and then elevation ISWs propagate forward steadily in shallow water (as shown in Fig. 2-20(g), 642 

(h), (i)). The shelf slope of the case in this section is the same as the shelf slope of s8_c1c case studied 643 
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by Lamb and Xiao (2014), both of which are 0.1. The research results of Lamb and Xiao (2014) show 644 

that waveform inversion of a depression ISW will occur at this shelf slope, and a series of elevation 645 

ISWs will be generated and propagate stably in shallow water. The simulated results have good 646 

agreement with that of Lamb and Xiao (2014). 647 

648 

649 

 650 

651 

652 

 653 
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654 

655 

 656 

Figure 20: Velocity field diagram of ISW propagation (the black solid line is the iso-density contours). 657 

The vortex structure has an important influence on the material transport at the bottom of the shelf, 658 

so it is very necessary to study the vortex structure when the ISW breaks. Fig. 2-21 shows the vorticity 659 

field of the ISW at the breaking stage. With the occurrence of ISW breaking, a significant 660 

counterclockwise vortex structure is generated below the waveform at the rear of the ISW, as shown in 661 

Fig. 2-21(a). With the propagation of the head wave, the vortex climbs along the shelf, and the vortex 662 

continues to develop horizontally and vertically during the upward climb, and the vertical scale is about 663 

1/3 of the local water depth (as shown in Fig. 2-20(b), (c)). As the vortex structure continues to climb, 664 

the vorticity decays, and the vortex structure gradually disappears, as shown in Fig. 2-21(d), (e). 665 

Combined with the velocity field in Fig. 2-20, it can be seen that the vorticity before and after the ISW 666 

breaks is the largest, and the vortex structure is the most obvious. As the wave train of elevation ISWs 667 

propagates steadily, the vortex structure climbs up the shelf and gradually disappears.  668 

669 
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670 

671 

672 

 673 

Figure 21: Vorticity field (A-E represents transverse section)  674 

    In order to analyze the vortex of the three-dimensional structure, Fig. 2-22 shows the vorticity 675 

field diagram on the transverse section, and the position of the transverse section corresponds to the 676 

marked section in Fig. 2-21. It can be seen from Fig. 2-22 that the vortex also evolves in the 677 

transverse section. Obviously, the bottom vortex structure generated by ISW breaking shows three-678 

dimensional non-uniform features. 679 

680 

681 
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682 

683 

 684 

Figure 22: Vorticity field of transverse section. 685 

The velocity vector field of the head wave and the wave train of elevation ISWs in the shallow 686 

water area are shown in Figure 2-23. The head wave generated by the breaking of the ISW loses the 687 

original wave shape of the ISW, the wave height becomes smaller, the wavelength becomes longer, 688 

and the velocity field is still in the form of upper layer forward and lower layer backward (as shown 689 

in Fig. 2-23(a), (b)). In Fig. 2-23(c), (d), the velocity field and waveform of the entire wave train 690 

following the head wave are stable, and the velocity field of each wave is backwards in the upper 691 

layer and forwards in the lower layer, and the wavelength gradually becomes longer as the wave 692 

train propagates. As the wave train propagates in shallow water, there is a large vorticity in the crest 693 

and trough areas of each wave, and it propagates forward steadily as the wave train propagates, as 694 

shown in Fig. 2-24. Generally, the waveform inversion and breaking phenomenon of ISWs is well 695 

indicated, and the propagation and evolution of the wave train generated by waveform inversion is 696 

also accurately described through ISWFoam simulation. 697 

698 

699 
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700 

 701 

Figure 23: Velocity vector field of wave train in shallow water area. 702 

703 

704 

705 

 706 

Figure 24: Vorticity field of wave train in shallow water (the black solid line is the waveform). 707 

6. Conclusions 708 

 In this paper, a numerical model referred to as ISWFoam with a modified k-ω SST model, 709 

established by combining the density transport equation with a fully three-dimensional (3D) Navier-710 
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Stokes equation, is developed to simulate ISWs in continuously stratified, incompressible, viscous fluids 711 

based on the finite volume method with unstructured grids and local mesh refinement of OpenFOAM. 712 

ISWFoam provides two initial wave generation methods to generate an ISW in continuously stratified 713 

fluids, including solving the weakly nonlinear models of the eKdV equation and the fully nonlinear 714 

models of the DJL equation. The verification process presents several applications, such as ISWs 715 

propagating on flat bottoms including laboratory scale and actual ocean scale, and ISWs over a 716 

submerged triangular ridge, a Gaussian ridge and slopes. The following conclusions were obtained as a 717 

result of this study. 718 

 ISWFoam using the finite volume method with unstructured grids and local mesh refinement can 719 

accurately simulate the generation and evolution of ISWs, the ISW breaking phenomenon, waveform 720 

inversion of ISWs and the interaction between ISWs and complex structures and topography. The 721 

method of initializing the ISW using weakly nonlinear eKdV equation models requires a period of 722 

movement before the jump of the velocity field develops into a field with continuous changes in velocity. 723 

The DJL equation wave generation method that considers the vertical velocity and the horizontal velocity 724 

along the vertical gradient is better than the eKdV equation wave generation method that only provides 725 

the horizontal average velocity. Using ISWFoam to simulate an ISW with infinite wave length, the metric 726 

for the appropriate mesh size is given as follows: the dimensions of the horizontal grid are one-one 727 

hundred and fiftieth of the characteristic length, while the vertical grid takes one-twenty fifth of the ISW 728 

amplitude. 729 
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