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Abstract. Most radiation schemes in weather and climate models use the ‘correlated k-distribution’ (CKD) method to treat gas

absorption, which approximates a broadband spectral integration by N pseudo-monochromatic calculations. Larger N means

more accuracy and a wider range of gas concentrations can be simulated, but at greater computational cost. Unfortunately, the

tools to perform this efficiency–accuracy trade-off (e.g., to generate separate CKD models for applications such as short-range

weather forecasting to climate modelling) are unavailable to the vast majority of users of radiation schemes. This paper de-5

scribes the experimental protocol for the Correlated K-Distribution Model Intercomparison Project (CKDMIP), whose purpose

is to use benchmark line-by-line calculations: (1) to evaluate the accuracy of existing CKD models, (2) to explore how accuracy

varies with N for CKD models submitted by CKDMIP participants, (3) to understand how different choices in way that CKD

models are generated affects their accuracy for the same N , and (4) to generate freely available datasets and software facilitat-

ing the development of new gas-optics tools. The datasets consist of the high-resolution longwave and shortwave absorption10

spectra of nine gases for a range of atmospheric conditions, realistic and idealized. Thirty-four concentration scenarios for the

well-mixed greenhouse gases are proposed to test CKD models from palaeo- to future-climate conditions. We demonstrate

the strengths of the protocol in this paper by using it to evaluate the widely-used Rapid Radiative Transfer Model for General

Circulation Models (RRTMG).

1 Introduction15

Despite being fundamental for climate projections, there are still substantial differences in estimates of the radiative impact of

greenhouse gases between the climate models used by the Intergovernmental Panel on Climate Change. For example, Soden

et al. (2018) showed that the inter-model spread in radiative forcing due to increased CO2 is around 35% of the mean, a figure

that has remained unchanged for nearly three decades. DeAngelis et al. (2015) reported an even greater spread in estimates

of the sensitivity of shortwave atmospheric absorption to water vapour concentration, a spread responsible for much of the20

uncertainty in future changes to global-mean precipitation. Collins et al. (2006) compared calculations from climate-model

radiation schemes and six line-by-line (LBL) radiation models, finding that the spread in H2O and CO2 radiative forcing

estimates was 5–6.5 times less between the LBL models than between the climate models. We conclude that errors in climate-

model radiation schemes cannot be blamed primarily on our lack of knowledge of the spectroscopy of greenhouse gases; rather,
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there must be a problem in the fast algorithms that attempt to mimic the results of expensive LBL calculations. The need to25

improve these algorithms is one of the main motivations for the intercomparison proposed in this paper.

The gas absorption spectra of planetary atmospheres typically contain hundreds of thousands of spectral lines, so LBL

radiative transfer calculations require O(106− 107) monochromatic calculations to cover the full shortwave and longwave

spectrum, which is far too costly for most applications. The correlated k-distribution (CKD) method (e.g., Goody et al., 1989;

Lacis and Oinas, 1991; Petty, 2006) underpins most modern radiation schemes in weather and climate models; it avoids the30

need to resolve spectral lines by reordering the mass absorption coefficient, k(ν), over a particular range of wavenumbers,

ν, such that the resulting function k(g) increases smoothly and monotonically from the least absorbing (g = 0) to the most

absorbing (g = 1). The smooth function k(g) may be discretized using far fewer quadrature points than k(ν), with the result that

the entire shortwave and longwave spectrum can be represented by O(102) independent pseudo-monochromatic calculations,

usually referred to as k terms or g points. In order to perform radiation calculations over the full atmospheric column, we35

typically need to assume perfect rank correlation between the k spectra at each height. The CKD method has the advantage

over random-band models that it is easy to incorporate scattering.

The more k terms we use to discretize the k(g) function, the greater the accuracy we should expect, but for a larger computa-

tional cost. Therefore, we have a trade-off to make depending on the application. For climate modelling we require schemes that

can accurately compute the radiative forcing of a number of different greenhouse gases over a wide range of concentrations.40

By contrast, for short-range weather forecasting with present-day greenhouse gas concentrations, the priority is much more on

efficiency: the radiation scheme must be called frequently to capture the local radiative impact of evolving cloud fields, and

forecasts must be delivered to customers in a timely fashion. The lower model top in many limited-area weather models also

means that, in principle, fewer k terms are required to compute the heating-rate profile. The priorities may be different in other

applications of CKD models, such as offline calculations to interpret observations (e.g., Loeb and Kato, 2002), computing the45

3D radiative effect of clouds (e.g., Chen and Liou, 2006; Jakub and Mayer, 2016) and providing accurate reference spectra

(e.g., Anderson et al., 1999).

Unfortunately, the tools and know-how to generate new CKD models and to make this accuracy–efficiency trade-off are

available to only a handful of specialists worldwide, with the result that most atmospheric models are available with only one

gas-optics configuration, which is often not optimized for the application at hand. Indeed, Hogan et al. (2017) surveyed seven50

models used for the same application of global weather forecasting, and reported that the total number of k terms (shortwave

plus longwave) ranged from 68 to 252.

The purpose of the Correlated K-Distribution Model Intercomparison Project (CKDMIP) is to address these issues. First

in CKDMIP we will use benchmark LBL calculations to evaluate the accuracy of existing CKD models, followed by the

main part of the project in which CKDMIP participants generate new CKD models with different numbers of k terms targeting55

applications including short-range weather forecasting and climate modelling. By providing participants with common datasets

of high spectral resolution gas absorption, we hope to avoid differences due to inconsistent spectroscopy, enabling the results to

be interpreted purely in terms of the algorithms used by each CKD tool. Two different band structures are proposed for them to

use. The accuracy versus number of k terms will be computed for each submission, and the results compared to understand how
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different techniques for constructing CKD models affect their accuracy for the same number of k terms. Participants include60

the developers of numerous CKD tools, e.g. those described by Edwards and Slingo (1996), Kato et al. (1999), Zhang et al.

(2003), Sekiguchi and Nakajima (2008), Hogan (2010), Doppler et al. (2014), André et al. (2018) and Pincus et al. (2019).

Finally, it is hoped that the freely available CKDMIP datasets and software will facilitate the development of community tools

to allow users to generate their own gas-optics models targeted at specific applications.

The project has similarities to the Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016), which used65

LBL calculations to evaluate the radiation schemes of a number of climate models in terms of surface and top-of-atmosphere

(TOA) irradiances for a range of atmospheric profiles and climate scenarios. However, CKDMIP goes further in that it includes

the weather forecasting application, and provides the means to improve the way that CKD schemes make the trade-off between

accuracy and efficiency. This is possible by making available the spectral optical depth of each layer of the atmosphere due to

each gas separately. The CKDMIP software package allows participants to combine and scale the optical depths of the gases70

they are interested in and perform LBL radiative transfer calculations on the result, producing their own reference profiles of

spectral or broadband irradiances and heating rates.

This protocol paper describes the design and generation of these datasets and software, and what comparisons will be

performed. Section 2 describes the overarching design decisions of CKDMIP, including which gases to include, which weather

and climate applications to target, and for climate modelling which range of gas concentrations to consider. Section 3 describes75

in detail how the datasets are produced, how the spectral resolution has been chosen and what radiative transfer calculations

are performed. Section 4 then describes what is required of CKDMIP participants, the spectral band structures that should be

used, the metrics that will be used to quantify errors in irradiances and heating rates, and how errors due to the representation of

the spectral variation in cloud properties will be assessed. Section 5 demonstrates the use of the dataset to evaluate an existing,

widely used CKD model.80

Finally a note on terminology. Throughout this paper we define a CKD scheme as a software component (usually embedded

within the radiation scheme of an atmospheric model) that takes as input profiles of atmospheric temperature, pressure and the

concentrations of a number of gases, and outputs profiles of optical depth for each of a number of k terms. It also includes

a means to compute the Planck function to use for each longwave k term and the TOA solar irradiance for each shortwave k

term. A CKD model is one configuration of a CKD scheme with a particular number of k terms, which might consist of a set85

of look-up tables that can be used by the CKD scheme. A CKD tool is a method (which may be fully automated or involve

some hand-tuning) for generating individual CKD models, with some means to control the trade off between accuracy and the

number of k terms.

2 Design of evaluation scenarios

2.1 Which gases?90

The absorption spectra of nine gases are considered in CKDMIP in both the longwave and the shortwave: H2O, O3, O2,

N2, CO2, CH4, N2O, CFC-11 and CFC-12. The first two have very variable concentrations and are important in both the
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longwave and the shortwave. The concentrations of the second two gases may be treated as fixed both spatially and over the

timescales commonly considered by climate models. O2 is important mainly in the shortwave, but reduces outgoing longwave

radiation (OLR) by around 0.11 W m−2 globally (Höpfner et al., 2012). Absorption by N2 is ignored by most operational95

radiation schemes, yet it reduces OLR by around 0.17 W m−2 (Höpfner et al., 2012), and as will be shown in section 3.6,

has a comparable effect in the shortwave. The concentrations of N2 and O2 are also needed to compute the collision-induced

contribution to the continuum absorption and the broadening efficiency of these molecules, where applicable.

The final five gases listed above are well-mixed greenhouse gases with a significant anthropogenic component. There is a

much larger number of greenhouse gases that could have been included, many of which have a very small individual impact.100

However, the purpose of CKDMIP is to evaluate the techniques used by schemes for generating CKD models based on the

different requirements of weather and climate modelling, rather than to produce a single optimum CKD model that explicitly

represents all the greenhouse gases that anyone might want to simulate. Therefore, we have chosen to follow the pragmatic

approach of Meinshausen et al. (2017). They stated that 94.5% of the anthropogenic greenhouse warming (in terms of radiative

forcing) between 1750 and 2014 was due to increases in CO2, CH4, N2O, CFC-11 and CFC-12, with the remaining 5.5%105

being attributable to 38 further gases. Their ‘Option 2’ approximately represents the radiative forcing of these 38 gases by arti-

ficially increasing the concentration of CFC-11 (by around a factor of 3.9 in the present day), and the CMIP6 (Coupled Model

Intercomparison Project Phase 6) historic concentrations and future scenarios are available with these ‘CFC-11-equivalent’

concentrations. From Cycle 47R1, ECMWF’s Integrated Forecasting System has taken this approach, using concentrations

from the CMIP6 SSP3-7.0 scenario (O’Neill et al., 2016), where ‘SSP3-7.0’ is the ‘regional rivalry’ Shared Socioeconomic110

Pathway of CMIP6 with an anthropogenic radiative forcing of 7.0 W m−2 in 2100.

2.2 Numerical weather prediction

Table 1 lists the three main applications for which we envisage that CKD models could be optimized. The first two correspond

to present-day Numerical Weather Prediction (NWP) at the local and global scale. Both need to represent variable water vapour

and ozone, but to a good approximation can assume all other gases to have a constant mole fraction, or to vary as a function of115

pressure alone. (Note that since the atmosphere is an ideal gas to a good approximation, we can assume the mole fraction of a

gas to be equal to its volume mixing ratio.) In principle, this allows the number of k terms to be reduced since, for example, all

the well-mixed gases could be merged into a single ‘hybrid’ or ‘composite’ gas whose optical properties vary as a function of

temperature and pressure alone (e.g., Ritter and Geleyn, 1992; Niemelä et al., 2001).

In terms of the present-day concentrations of the well-mixed gases, we assume that O2 and N2 have constant dry-air mole120

fractions of 0.20946 and 0.78102 mol mol−1, respectively, independent of pressure (Jones and Schoonover, 2002). These

concentrations are also assumed for all past and future scenarios in section 2.3. The present-day surface concentrations of the

five other well-mixed gases are shown in Table 2, and were taken from the CMIP6 SSP3-7.0 scenario for calendar year 2020.

The vertical profiles of these gases are discussed in section 3.2.

The difference between the two NWP applications listed in Table 1 is in the location of the model top. The model top quoted125

for all current configurations of the ECMWF model and all global configurations of the Met Office model used for weather
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Table 1. The three modelling applications of radiation schemes that we envisage would need to be targeted by a different CKD model.

The present-day and ‘variable’ well-mixed greenhouse gas (GHG) concentrations for these scenarios are provided in Table 2. Heating-rate

calculations by CKD models will be evaluated at pressures down to the indicated ‘lowest pressure’, although note that the reference LBL

calculations are performed down to lower pressures than these.

Application Lowest pressure GHG concentrations

Limited-area NWP 4 hPa Present-day (2020)

Global NWP 0.02 hPa Present-day (2020)

Climate 0.02 hPa Variable

Table 2. Surface mole fractions of the five main anthropogenic greenhouse gases for the 34 scenarios considered in CKDMIP, where ‘CFC-

11 equivalent’ is an artificially increased CFC-11 concentration to represent 38 further greenhouse gases (Meinshausen et al., 2017). The

present-day scenario will be used to test CKD models developed for the two NWP applications in Table 1, while all scenarios will be used to

test CKD models for climate. Scenarios 1–18 are used for both the longwave and shortwave evaluation, while scenarios 19–34 (marked with

an asterisk) are used for the longwave only. Numbers in bold have been perturbed from their present-day values.

CO2 CH4 N2O CFC-11 eq. CFC-12

Scenario Comment ppmv ppbv ppbv pptv pptv

1 Glacial maximum 180 350 190 32 0

2 Preindustrial 280 700 270 32 0

3 Present-day (2020) 415 1921 332 861 495

4 Future (2110) 1120 3500 405 2000 200

5–9 CO2 forcing 180, 280, 560, 1120, 2240 1921 332 861 495

10–14 CH2 forcing 415 350, 700, 1200, 2600, 3500 332 861 495

15–18 N2O forcing 415 1921 190, 270, 405, 540 861 495

*19–20 CFC-11 forcing 415 1921 332 0, 2000 495

*21–22 CFC-12 forcing 415 1921 332 861 0, 550

*23–24
CO2/CH4 overlap

180, 2240 350 332 861 495

*25–26 180, 2240 3500 332 861 495

*27–28
CO2/N2O overlap

180, 2240 1921 190 861 495

*29–30 180, 2240 1921 540 861 495

*31–32
CH4/N2O overlap

415 350, 3500 190 861 495

*33–34 415 350, 3500 540 861 495
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and climate is 0.01 hPa (around 80 km). In the case of the ECMWF model this actually means that the highest model layer

spans the pressure range 0–0.02 hPa. Since the temperature of the highest layer of a model is strongly affected by the ‘sponge’

(Shepherd et al., 1996), we limit evaluation of heating rates to pressures greater than 0.02 hPa. For the limited-area NWP

application we evaluate heating rates only for pressures greater than 4 hPa, comparable to the model top used in the Met Office130

high-resolution UK model.

All heating-rate calculations in CKDMIP make the assumption of Local Thermodynamic Equilibrium (LTE), which becomes

invalid in the mid-mesosphere and above. Parameterizations of non-LTE heating rates in the upper atmosphere are typically

blended with heating rates from a CKD model assuming LTE; for example, Fomichev et al. (1998) blended smoothly between

the two over the pressure range 0.016–0.045 hPa. Therefore, in CKDMIP it is appropriate to evaluate heating rates assuming135

LTE to a pressure of around 0.02 hPa, but we should be aware that for the most accurate results in an atmospheric model, these

heating rates would need to be blended with those from a non-LTE scheme at pressures lower than around 0.045 hPa.

2.3 Climate modelling

CKD models used for climate modelling should be able to simulate a wide range of greenhouse gas concentrations. The first

four lines of Table 2 list individual scenarios that will be tested. They include present-day and preindustrial conditions, plus140

the conditions at a glacial maximum, with the values for CO2 and CH4 taken from Petit et al. (1999) and for N2O from the

shorter period reported by Schilt et al. (2010). The fourth row shows a ‘future’ scenario consisting of worst-case conditions for

2110 by extracting the maximum concentrations from any of the CMIP6 scenarios at this time. In this year, the concentration

of CH4 peaks at 3500 ppbv in the SSP3-7.0 scenario, and equivalent CFC-11 peaks at 2000 pptv in the SSP5-8.5 scenario.

Scenarios 5–22 in Table 2 show the range of concentrations that will be used in testing the radiative effect of individual145

gases, keeping all others constant. For each gas we require the capability to simulate the minimum concentrations found in the

last million years, which occurred at glacial maxima, up to the maximum concentrations found in any of the CMIP6 future

scenarios, which extend until 2250. In the case of CO2 we consider concentrations ranging up to eight times preindustrial.

These ranges are very similar to those considered by Etminan et al. (2016). Scenarios 19–22 concern CFC-11 and CFC-12,

but as will be shown from LBL calculations in section 3.6, the magnitude of their instantaneous TOA and surface shortwave150

radiative forcing is less than 0.002 W m−2, so these scenarios are used only for longwave evaluation.

Etminan et al. (2016) reported that due to the overlap of the absorption spectra of CO2, CH4 and N2O, the longwave radiative

forcing associated with changing the concentration of one of these gases can depend on the concentration of the other two. To

test the ability of CKD models to simulate this effect, the final 12 scenarios in Table 2 perturb the concentrations of pairs of

these gases to their extreme values, while keeping the others at present-day concentrations. These scenarios are also only for155

longwave evaluation since we calculate that overlap effects change shortwave TOA forcings by only of order 0.001 W m−2.

In principle, there are important applications in addition to those shown in Table 1, such as atmospheric reanalysis, which

have been generated back to the mid-19th century (e.g. Compo et al., 2011). A CKD model targeted at this application would

only need to span greenhouse gas concentrations from preindustrial to present-day. We decided not to include this application
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Table 3. The four spectral optical depth datasets generated as part of CKDMIP, where T is temperature, p is pressure and q is specific

humidity.

Name Purpose Layers T profiles Description

Evaluation-1 Training & evaluation 54 50 Realistic profiles selected from NWP-SAF dataset

Evaluation-2 Independent evaluation 54 50 Further profiles selected from NWP-SAF dataset

MMM Training 52 3 Median, min. and max. of NWP-SAF T , q and O3 profiles

Idealized Generating look-up tables 53 11 Idealized profiles regularly spaced in T , logp and logq

in CKDMIP, partly not to overload the participants, but also because of the expectation that the number of k terms required160

would not be very different between the reanalysis and climate modelling applications.

3 Generating datasets

Table 3 lists the four CKDMIP datasets. Each consists of profiles of layer-wise spectral optical depth due to individual gases.

The first two (Evaluation-1 and Evaluation-2) each consist of 50 realistic profiles of temperature, water vapour and ozone

(described in section 3.1), accompanied by vertical profiles of the well-mixed gases (described in section 3.2). Evaluation-165

1 is provided to participants and may be used to train individual CKD models, while Evaluation-2 is held back to provide

independent evaluation. Section 3.3 describes the last two datasets, which could also be useful in the training of new CKD

models. Section 3.4 then describes how the profiles of spectral optical depth were computed for each dataset. Section 3.5

describes the radiative transfer calculations performed on these absorption spectra, an example of which is given in section 3.6

where we estimate the longwave and shortwave radiative importance of each of the seven well-mixed gases.170

3.1 Temperature, humidity and ozone

For evaluating radiation schemes in RFMIP, Pincus et al. (2016) extracted a set of 100 contrasting atmospheric profiles from

the 60-layer ERA-Interim reanalysis dataset, whose highest model level spans the pressure range 0–0.2 hPa. As well as being

ten times greater than the pressure of the highest model level in the current ECMWF and Met Office global models, this vertical

grid is not sufficient to fully resolve the strong peak in atmospheric heating and cooling rates that occurs at the stratopause, nor175

to test solar absorption by carbon dioxide in the mesosphere.

Therefore, we have selected a new set of temperature, pressure, humidity and ozone profiles from the 25,000 ‘NWP-SAF’

profiles of Eresmaa and McNally (2014), which they extracted from ECMWF operational model forecasts in 2013 and 2014.

By this time the model used 137 layers with the highest layer spanning pressures 0–0.02 hPa, as in its current configuration. As

in the ECMWF operational model, CKDMIP assumes a hydrostatic atmosphere, in which case the mass of a layer is defined180

purely from the pressure at the layer interfaces and the acceleration due to gravity.

The 50 profiles of the ‘Evaluation-1’ dataset consist of 33 randomly taken from the NWP-SAF dataset. An additional 17

profiles are selected to contain the extreme values (both maximum and minimum) in the entire dataset of (a) temperature in the
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Figure 1. Vertical profiles of the temperature, specific humidity and ozone concentration for the ‘Evaluation-1’ dataset described in section

3.1.

layer nearest the surface, (b) temperature at 400 hPa, (c) temperature at 100 hPa, (d) temperature at 10 hPa, (e) temperature at

1 hPa, (f) specific humidity at 400 hPa, (g) specific humidity at 100-hPa (maximum only), (h) ozone concentration at 10-hPa,185

and (i) ozone concentration at 1 hPa.

The ‘Evaluation-2’ dataset, intended to provide independent evaluation of the CKD models, uses a different set of 33 random

profiles from the NWP-SAF dataset, along with 17 profiles containing the extreme values at different levels from those used

by Evaluation-1, specifically (a) temperature where the pressure falls to 90% of its surface value, (b) temperature at 200 hPa,

(c) temperature at 50 hPa, (d) temperature at 5 hPa, (e) temperature at 0.5 hPa, (f) specific humidity at 200 hPa, (g) specific190

humidity at 50 hPa (maximum only), (h) ozone concentration at 5 hPa and (i) ozone concentration at 0.5 hPa.

It was apparent from inspection of the data that there was virtually no variability in stratospheric water vapour in the ECMWF

model at the time the NWP-SAF profiles were generated, which is a problem for training and evaluating a gas-optics model.

Therefore, additional variability has been added by multiplying the humidity profiles by the following function of pressure, p:

f(p,r) = exp

r× 1− erf
(
p−100 hPa

50 hPa

)
2

 , (1)195

where r is a random number drawn from a Normal distribution with mean of zero and standard deviation 0.25, and is constant

for each individual profile. This function adds around 25% variability in the stratosphere and mesosphere, but leaves the

troposphere virtually unchanged. Unrealistically low humidities have been removed by setting the minimum specific humidity

to 10−7 kg kg−1. The resulting temperature, humidity and ozone mixing ratios in the Evaluation-1 dataset are shown by the

red and blue lines in Fig. 1.200
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Figure 2. Vertical profiles of the five well-mixed greenhouse gases for the present-day (2020) surface concentrations listed in Table 2.

Training and evaluating a CKD model is costly both in terms of computation and storage due to the high spectral resolution

required, and 137 layers is more than needed for evaluating clear-sky radiative transfer. Therefore, we interpolate the profiles on

to a coarser grid with 54 layers. We use the Line-By-Line Radiative Transfer Model (LBLRTM; Clough et al., 2005), version

12.8, which takes as input the temperature, pressure and gas concentrations at the interfaces between layers. The highest two

layers of the coarser grid are bounded by pressures of 0.0001, 0.01 and 0.02 hPa; the first of these pressures represents TOA205

since LBLRTM cannot compute gas properties at zero pressure. As shown in Table 1, the pressure surfaces 0.02 and 4 hPa

mark the point at which evaluation of heating rates begins. We assign 15 layers between these two pressure surfaces, with

the interfaces between them spaced linearly in p0.15 space. The pressures defining the remaining layers vary according to the

surface pressure ps: we assign 35 layers between 4 hPa and ps/1.005, again spaced linearly in p0.15 space. Finally, a further

two layers are added very close to the surface (bounded by ps/1.005, ps/1.002 and ps) in order to resolve sharp temperature210

gradients in the surface layer. The black dots in Fig. 1 mark the corresponding interfaces between layers for the median profiles

described in section 3.3.

3.2 Well-mixed gases

Many weather and climate models assume a spatially constant mole fraction for each of the well-mixed gases, whereas for

a little more realism they should decrease with height. The radiation scheme in the ECMWF model uses climatologies of215

these gases that vary with month, latitude and pressure, with the CO2 and CH4 climatologies taken from the MACC analysis

system (Inness et al., 2013) and the N2O, CFC-11 and CFC-12 climatologies from the Cariolle chemistry model (Bechtold

et al., 2009). Long-term changes due to anthropogenic emissions are represented by scaling these fields so that the global-

mean surface values match either historic measurements (for hindcasts and reanalysis) or the CMIP6 SSP3-7.0 scenario (for

operational forecasts from model cycle 47R1). We have averaged these climatologies globally and annually, and scaled them220

to the 2020 surface values in SSP3-7.0, to obtain the profiles shown in Fig. 2. Present-day CO2 has a difference of 10 ppmv

between the values at 1000 and 0.01 hPa. In the case of CFC-11 and CFC-12, the concentrations from the Cariolle model
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Figure 3. The solid lines show the minimum and maximum temperatures of the NWP-SAF dataset, also shown in Fig. 1a. The dashed lines

show the 6 idealized temperature profiles, 20 K apart, used in the ‘Idealized’ dataset in Table 3.

drop to almost zero in the upper stratosphere and mesosphere, which could be problematic for using them to train the pressure

dependence in a CKD model. Therefore, the profiles of these two gases have been artificially modified to fall to no less than

5% of their surface value. In order to obtain profiles with the surface concentrations shown in Table 2, we simply scale the225

profiles shown in Fig. 2.

We have computed that the difference in the instantaneous TOA longwave radiative forcing of a gas with a constant mole

fraction with pressure, versus the more realistic profiles in Fig. 2 but the same surface concentration, is 10% for CFC-11, 5%

for CFC-12, and less than 0.2% for the other three gases.

3.3 Additional training datasets230

Two additional datasets are shown at the bottom of Table 3, which are intended to facilitate the development of CKD schemes,

while being consistent with the datasets that will be used to evaluate them. The ‘MMM’ dataset contains the optical properties of

all nine gases but using the median, minimum and maximum temperature profiles derived from the entire 25,000-profile NWP-

SAF dataset; these temperatures are shown by the black lines in Fig. 1. In the case of H2O and O3 only, three concentration

profiles are used for each temperature, corresponding also to the median, minimum and maximum of the NWP-SAF profiles235

(shown in Figs. 1b and 1c). For all other gases the present-day concentrations shown in Fig. 2 are used. The vertical grid

is the same as for the Evaluation-1 and Evaluation-2 datasets, except that surface pressure is set to mean sea level pressure

(ps = 1013.25 hPa), and the two layers very close to the surface are not used so that the total number of layers is 52 rather than

54.

The final ‘Idealized’ dataset contains absorption spectra for idealized temperature and concentration profiles that are intended240

to cover the full range of likely temperature, pressure and concentrations found in the atmospheres that any CKD model
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would be applied to. Therefore, they can be used to populate look-up tables of molar absorption to be used by CKD models.

We envisage that the maximum layer-mean pressure that needs to be accommodated by a radiation scheme is 1100 hPa, so

construct a logarithmically spaced pressure profile of 53 elements, containing ten points per decade with a maximum layer-

mean pressure of 1100 hPa. At each pressure, 6 temperatures are simulated spanning a 100 K range at 20 K intervals. We245

use idealized temperature profiles shown in Fig. 3 that are intended to encompass the maximum and minimum temperatures

found in the NWP-SAF dataset. For all gases, absorption spectra are computed for mole-fraction profiles that are constant with

pressure, using the present-day values for the five well-mixed gases shown in Table 2, and 5 ppmv for O3. Since the molar

absorption of these gases is very close to constant with concentration (see section 3.4), only one concentration needs to be

simulated for each. In the case of water vapour whose absorption varies with concentration, we simulate 12 logarithmically250

spaced specific humidities from 10−7 to 10−1.5 kg kg−1, i.e., using two values per decade.

During the course of the project it may become clear that further LBL datasets are required, in which case they will be

designed and generated in consultation with the participants. This could arise if some CKD tools are unable to use the CKDMIP

datasets and we suspect that errors are due to inconsistent spectroscopy rather than the CKD algorithms themselves. For

example, if it is apparent that CKD schemes differ in their treatment of water vapour, then this could be quantified using a set255

of profiles in which water vapour alone was perturbed.

3.4 Line-by-line modelling

The spectral optical depths of the individual gases have been computed using version 12.8 of the Line-by-Line Radiative

Transfer Model (LBLRTM) (Clough et al., 2005) developed at Atmospheric & Environmental Research (AER). LBLRTM in-

corporates the self- and foreign-broadened water vapour continuum via the Mlawer-Tobin-Clough-Kneizys-Davies (MT_CKD)260

continuum model, version 3.2 (Mlawer et al., 2012). Continua for CO2 and for the collision induced bands of O2 and N2 are

also included in the computations. Line coupling for CO2 is treated as first order with coefficients computed as specified by

Lamouroux et al. (2015). It should be noted, however, that line coupling coefficients for the 30012←00001 and 30013←00001

bands of the main isotopologue (at 6348 cm−1 and 6228 cm−1, respectively) have been calculated from the tridiagonal re-

laxation matrix parameters of Devi et al. (2007a, b). The spectroscopic input parameters have been taken from the AER line265

parameter database, version 3.6, which is largely drawn from HITRAN 2012 (Rothman et al., 2013) but with AER customized

modifications, most notably for H2O, CO2 and O2. The AER line parameters for CH4 include line coupling parameters for the

ν3 (3000 cm−1) and ν4 (1300 cm−1) bands of the main isotopologue.

Rather than defining radiation as ‘longwave’ or ‘shortwave’ depending on whether its wavenumber is less than or greater

than some specific value, we define the longwave as any radiation originating from emission by the surface or atmosphere,270

and shortwave as any radiation originating from the sun. The longwave spectrum is taken to span the wavenumber range 0–

3260 cm−1, which covers 99.997% of the Planck function at 0◦C and 99.971% at +50◦C. The shortwave spectrum is taken to

span the range 250–50,000 cm−1 (0.2–40 µm), which misses only 0.012 W m−2 of the solar irradiance at wavenumbers less

than 250 cm−1 and 0.103 W m−2 at wavenumbers greater than 50,000 cm−1. These ranges are shown in the top two panels of
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Fig. 4, while the bottom panel shows the spectral absorption of the nine gases at 100 hPa for the ‘median’ profile of the MMM275

dataset using present-day concentrations of the well-mixed gases.

An important practical consideration is to determine at what spectral resolution to produce the absorption spectra. They

need to be fine enough resolution that the most narrow spectral lines are resolved and the resulting irradiance and heating-rates

profiles are an accurate benchmark, but also a manageable data volume for storage, processing and distribution. LBLRTM can

inform the user of the spectral resolution it needs to resolve the lines at a particular pressure, and for CO2 in the longwave at280

0.01 hPa (the most important gas at the pressure where the lines are finest), it recommends a wavenumber resolution such that

more than 20 million spectral points are required. Using this resolution as a reference, we have experimented with degrading

the spectral resolution in four spectral ranges bounded by the wavenumbers 0, 350, 1300, 1700 and 3260 cm−1. Computing

the heating rate error for each spectral range leads us to adopt spectral resolutions of 0.0002, 0.001 and 0.005 cm−1 in the

three spectral ranges 0–1300, 1300–1700 and 1700–3260 cm−1, respectively. This leads to heating-rate errors of no more than285

around 0.005 K d−1 (all of which occur in the upper stratosphere and mesosphere) in any of the four original wavenumber

ranges, even for the most challenging scenario of 8 times preindustrial concentrations of CO2. This leads to 7,211,999 spectral

points in the longwave.

A similar approach has been taken in the shortwave, resulting in spectral resolutions of 0.002, 0.001, 0.002, 0.02 and 1 cm−1

in the spectral ranges 250–2200, 2200–2400, 2400–5150, 5150–16000 and 16000–50000 cm−1, respectively. For overhead290

sun this also leads to heating-rate errors of no more than around 0.005 K d−1 in any of these wavenumber ranges, for 8 times

preindustrial CO2. This leads to 3,126,494 spectral points in the shortwave.

A further significant reduction in data volume is possible if the absorption cross-section per molecule is independent of the

concentration of that gas, so varies only as a function of temperature and pressure. In this case, for well-mixed gases, the profile

of layer-wise optical depth need only be provided for a single concentration profile; if optical depths are required for concen-295

tration profiles scaled by a constant, then the optical depths themselves may simply be scaled. We have computed absorption

spectra for each gas over the full range of concentrations required in Table 2, and found that to a very good approximation mo-

lar absorption can be treated as independent of concentration for all gases except water vapour. Therefore, for the well-mixed

gases, absorption spectra are provided only for present-day concentrations. The CKDMIP software accordingly allows the user

to scale the optical depth of each gas before performing radiative transfer calculations on the mixture.300

The CKDMIP software calculates the spectral optical depth due to Rayleigh scattering using the model of Bucholtz (1995),

in which the per-molecule Rayleigh scattering cross section, in m2, is given by the following for wavelengths of less than

0.5 µm:

σr = 3.01577× 10−32λ3.55212+1.35579λ+0.11563/λ, (2)

where wavelength λ is in µm, and by the following for wavelengths greater than 0.5 µm:305

σr = 4.01061× 10−32λ3.99668+0.00110298λ+0.0271393/λ. (3)
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Table 4. Instantaneous radiative forcing at top-of-atmosphere (TOA) and the surface (in W m−2) of each of the seven well-mixed gases at

present-day concentrations, compared to setting their concentration to zero while leaving the other gases unchanged. The values are from LBL

radiative transfer calculations using the settings in section 3.5, averaging over the 50 Evaluation-1 profiles. The shortwave calculations are

averaged over the five zenith angles so represent a daytime average. Since there is substantial profile-to-profile variation, only two significant

digits are shown.

N2 O2 CO2 CH4 N2O CFC-11 eq. CFC-12

Longwave TOA 0.15 0.096 22 1.5 1.5 0.22 0.17

Longwave surface 0.067 0.0069 21 0.86 0.91 0.23 0.17

Shortwave TOA 0.062 1.25 0.57 0.32 0.054 0.00042 0.00053

Shortwave surface −0.24 −4.3 −2.7 −1.2 −0.27 −0.0014 −0.0017

A realistic TOA solar irradiance spectrum was extracted from the climate data record of Coddington et al. (2016) by averag-

ing over the last 33 years (1986–2018 inclusive), i.e., three solar cycles. It has a resolution of 1 nm at wavelengths shorter than

750 nm, and is interpolated to the spectral resolution of the shortwave gas absorption spectra.

As stated above, the water vapour spectra include the continuum computed using the MT_CKD model, but there is still310

considerable uncertainty on the strength of the water vapour continuum, particularly in the near infrared (Shine et al., 2016),

and indeed this could be a source of difference between individual gas optics schemes and the reference calculations produced

in CKDMIP. Therefore, for each dataset, we produce an additional set of water vapour files but with no representation of the

continuum. If needed, evaluation can be carried out using only the contribution from spectral lines, or alternatively different

models of the continuum can be tried.315

The absorption spectra are stored, one gas per file, in netCDF4/HDF5 format with compression, so the file size depends on

the spectral extent and degree of fine structure in the spectrum. In the longwave, the volume of a single file (containing 10

profiles) varies from 0.5 GB for CFC-11 to around 10 GB for CH4, and the 50-profile Evaluation-1 dataset amounts to 222 GB

in total. In the shortwave the Evaluation-1 dataset amounts to 109 GB.

3.5 Generating irradiance and heating-rate benchmarks320

The CKDMIP software takes as input the spectral optical depths of each of a number of gases, optionally scales the opti-

cal depths of the well-mixed gases if a different concentration is required, and computes clear-sky aerosol-free irradiances

(broadband or spectral) at layer interfaces for each of the test profiles. These can be used to compute broadband or spectral

heating-rate profiles. The intention is that the radiative transfer equations are then the same as those used by large-scale atmo-

spheric models, and the same solver is used with the various CKD models in order that any differences to the LBL broadband325

irradiances are due to the representation of gas optics, not the details of the solver.

In the longwave we use a no-scattering solver with the following properties:

– Surface emissivity is assumed to be unity.
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– The skin temperature of the surface is assumed to be equal to the air temperature at the base of the lowest atmospheric

layer.330

– Local thermodynamic equilibrium is assumed.

– The angular distribution of radiation is approximated by four discrete zenith angles in each hemisphere (8 streams in

total), chosen using the rules of Gauss-Legendre Quadrature. The software supports between one and eight angles per

hemisphere, although we find that broadband longwave calculations with four angles agree with those from eight to

within 0.05 W m−2 in terms of irradiances and 0.02 K d−1 in terms of heating rates.335

– The temperature at layer interfaces is taken as input and a linear-in-optical-depth variation of the Planck function within

each layer is assumed, leading to the use of Eqs. 6–12 of Hogan and Bozzo (2018).

The shortwave scheme has the following characteristics:

– The surface is assumed to be a Lambertian reflector with an albedo of 0.15, the global mean value according to Wild

et al. (2013).340

– It uses a direct-beam calculation plus a two-stream diffuse calculation, with the Zdunkowski et al. (1980) coefficients

characterizing the rate of exchange of energy between the three streams, and the Meador and Weaver (1980) solutions

to the two-stream equations in individual layers. While two streams is fewer than used in the longwave, it is of sufficient

accuracy because shortwave gaseous absorption in clear skies is predominantly by the direct solar beam.

– Calculations are performed at five values of the cosine of the solar zenith angle (µ0): 0.1, 0.3, 0.5, 0.7 and 0.9. This even345

sampling is appropriate given that the sunlight striking the Earth during daytime has a uniform µ0 distribution between 0

and 1. We do not account for the fact that individual test profiles at a particular latitude would each experience a different

µ0 distribution.

– No account is made for Earth curvature.

– Local thermodynamic equilibrium is assumed.350

The atmospheric heating rate in layer i is computed from the net irradiance divergence across a layer, as:

dTi
dt

=− g0
Cp

Fni+1/2−F
n
i−1/2

pi+1/2− pi−1/2
, (4)

where pi+1/2 and Fni+1/2 are the pressure and net downward irradiance, respectively, at the interface between layers i and i+1

(counting down from TOA), g0 is the acceleration due to gravity (standard gravity) and Cp is the specific heat of dry air, taken

to be constant at 1004 J kg−1 K−1.355
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3.6 Radiative forcing of well-mixed gases

Many current CKD models omit some of the gases considered in CKDMIP, particularly in the shortwave. Table 4 provides

an estimate of the instantaneous radiative forcing of individual well-mixed gases at present-day concentrations, compared to

setting their concentration to zero, computed from averaging over LBL calculations on the 50 Evaluation-1 profiles. This is

not an accurate estimate of the climatic impact of each gas since it neglects clouds and fast stratospheric adjustment, and the360

profiles are not necessarily globally representative, but it gives an indication of the error incurred by neglecting particular

gases. The longwave impacts of N2 and O2, ignored by many CKD models, are similar to the values reported by Höpfner et al.

(2012). Most shortwave CKD models ignore N2 and N2O, but the results here indicate that this leads to an overestimate of

daytime clear-sky net surface solar irradiance by around 0.5 W m−2. It would be interesting to investigate the impact of this

on the climate of a global model.365

4 CKDMIP experimental protocol

Anyone with a CKD tool can take part in CKDMIP. Participants are provided with access to the Evaluation-1, MMM and

Idealized datasets, and the software described in section 3.5 to perform LBL radiation calculations on them. They may use

these or their own datasets as input to their CKD tool. In section 4.1 we describe the band structure that should be used by

participants, if possible. Section 4.2 describes the calculations that should be performed by participants and the data they370

provide. In section 4.3 we outline the how these data are processed to quantify accuracy, and to investigate the accuracy–

efficiency trade-off.

4.1 Common band structures

Virtually all operational CKD models for weather and climate split the longwave and shortwave spectra into bands, and compute

k distributions within each one. As shown in the survey of Hogan et al. (2017), the number of bands is strongly correlated to375

the total number of k terms, and therefore to the overall computational efficiency of a CKD model. The choice of bands can

be dependent on the constraints of a particular CKD scheme: some require the longwave bands to be narrow enough that the

Planck function may be assumed constant (e.g. Fu and Liou, 1992); some need to restrict the number of active gases in a band

(e.g. Mlawer et al., 1997); some assume the spectral overlap of different gases is random, invalid for wide bands (e.g. Ritter

and Geleyn, 1992); while most assume that cloud and surface properties are constant within each band, which could lead to380

significant errors in the shortwave if the bands are too wide (Lu et al., 2011). All of these arguments deserve detailed scrutiny

within CKDMIP.

We propose two band structures, shown in Table 5 for the longwave and Table 6 for the shortwave. Since RRTMG (Mlawer

et al., 1997) is so widely used, our proposed ‘narrow bands’ are modelled on RRTMG, except that we merge a few of the

very narrow or very low-energy bands that RRTMG represents with four or fewer k terms. This leads to 13 bands in both385

the longwave and shortwave. These bands should be narrow enough to satisfy all the needs for narrowness cited previously.
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Table 5. The spectral boundaries of the (left) ‘narrow’ and (right) ‘wide’ longwave bands, in which participants are asked to generate CKD

models. The narrow bands are essentially the same as those in RRTMG, except for the final band which spans the last four bands of RRTMG.

The band boundaries are depicted in Fig. 4a.

Narrow bands Wide bands

Spectral RRTMG

# interval (cm−1) k terms # Label

1 0–350 8
1 Far infrared

2 350–500 14

3 500–630 16

2 Main CO2 band4 630–700 14

5 700–820 16

6 820–980 8

3 Infrared window7 980–1080 12

8 1080–1180 8

9 1180–1390 12

4 Mid-infrared A10 1390–1480 6

11 1480–1800 8

12 1800–2080 8
5 Mid-infrared B

13 2080–3260 10

To assist participants who do not wish to download all the large spectral absorption files, much smaller files are available

containing benchmark irradiance profiles computed for each scenario of the Evaluation-1 dataset, both broadband values and

values averaged in each of the narrow bands.

The ‘wide bands’, of which there are five in both the longwave and the shortwave, consist of groupings of the narrow390

bands. In the longwave these are purposefully somewhat wider than in most current CKD models, in order to really test the

limits of some of the restrictions cited above. The wide-band models will be compared to the narrow-band models in terms of

both accuracy and efficiency, which may allow the advantages of CKD schemes that do not assume the Planck function to be

constant across a band, or do not assume random spectral overlap, to become apparent.

Some participants may wish to use their own sub-bands within these wide bands if they think it will achieve a better395

accuracy–efficiency trade-off for a particular wide band. For example, Cusack et al. (1999) used two ‘split bands’ in the

longwave, one which represented the wings of the main CO2 band (essentially a merger of our narrow bands 3 and 5) and the

other which represented the parts of the infrared window on either side of the ozone band (essentially a merger of our narrow

bands 6 and 8).
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Table 6. As Table 5 but for the shortwave. The narrow bands are as in RRTMG, except for band 7 which spans two RRTMG bands. The band

boundaries are depicted in Fig. 4b.

Narrow bands Wide bands

Spectral RRTMG

# interval (cm−1) k terms # Label

1 250–2600 12

1 Mid-infrared2 2600–3250 6

3 3250–4000 12

4 4000–4650 8

2 Shortwave infrared
5 4650–5150 8

6 5150–6150 10

7 6150–8050 12

8 8050–12850 10
3 Near infrared

9 12850–16000 8

10 16000–22650 6
4 Visible window

11 22650–29000 6

12 29000–38000 8
5 Ultraviolet

13 38000–50000 6

Finally, CKDMIP welcomes submissions using even wider bands. Indeed, the ‘full-spectrum correlated-k’ (FSCK) technique400

has been proposed as a means to achieve good accuracy using only one band in the longwave (Hogan, 2010) and two in the

shortwave (Pawlak et al., 2004). The investigation of the effect of spectral variations of cloud properties within bands and k

terms described in section 4.4 will be particularly important for FSCK submissions.

All submissions, whether using ‘narrow’, ‘wide’ or other band structures, will be compared to each other according to their

broadband accuracy and their overall efficiency (total number of k terms).405

4.2 Contribution of CKDMIP participants

Ideally, CKDMIP participants would use their tool to generate a CKD model for all combinations of the following:

– The longwave and shortwave.

– The three applications listed in Table 1.

– The narrow and wide band structures described in section 4.1 (and optionally even wider bands).410
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– A range of total number of k terms (at least three configurations), in order that the efficiency–accuracy trade-off can be

explored.

This could potentially lead to a full submission involving the generation of 36 CKD models. It is recognized that this is

potentially very demanding, so reduced submissions are welcome according to the scientific interests of the participant. In

principle, a participant could submit just one longwave and one shortwave CKD model; if it used the narrow bands specified415

in section 4.1 and targeted climate modelling, then it could still be tested against other models in all scenarios.

Participants do not submit the code for their CKD models, but rather run each of them on the 100 profiles of the Evaluation-1

and Evaluation-2 datasets. For CKD models generated for the two NWP applications, the well-mixed greenhouse gas concen-

trations use the present-day values given in the third line of Table 2. For CKD models generated for climate modelling, they

run each of the 34 scenarios given in Table 2 in the longwave, and the first 18 scenarios in the shortwave.420

For each of these scenarios, they submit a netCDF file containing the following variables as a function of profile number for

the Evaluation-1 and Evaluation-2 datasets:

– Pressure at layer interfaces, copied from the input file;

– The absorption optical depth of all gases in each layer, in each of N k-terms;

– In the shortwave only, the Rayleigh scattering optical depth in each layer and k term;425

– In the shortwave only, the TOA solar irradiance integrated over the parts of the spectrum contributing to each k term,

scaled such that these numbers sum to a total solar irradiance of 1361 W m−2.

– In the longwave only, the Planck function at each layer interface, integrated over the parts of the spectrum contributing

to each k term. At a given layer interface, these values should sum to σT 4, where σ is the Stefan-Boltzmann constant

and T is the temperature at the layer interface (provided in the input file).430

These files should be compatible with the CKDMIP software, which can then read them in and compute profiles of upwelling

and downwelling irradiances, both at each k term and as broadband values. This ensures that the radiative transfer is identical

to that used in generating the LBL benchmarks, so that when the irradiances are compared to the benchmarks, the differences

are only due to the spectral approximations made in the CKD model.

A further file is required for each CKD model generated, describing which parts of the spectrum are represented by each k435

term, to be used in section 4.4 for investigating the representation of cloud optical properties. In the longwave this should be

expressed at a resolution of 10 cm−1 and in the shortwave at a resolution of 50 cm−1. This is commensurate with the spectral

scale at which the optical properties of clouds vary.

In addition to data files, we require detailed information from each participant about how their CKD tool works, including

how the spectrum is reordered, how the number of k terms is chosen in a given band, how g-space is partitioned amongst the k440

terms, how the spectral absorptions are averaged to a k term, and how the spectral overlap of gases is treated. If participants use
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a different spectroscopic database from the one provided by CKDMIP then they should describe it in detail. This information

will then be invaluable when we come to interpret the results from different tools.

The protocol above assumes that participating radiation schemes have a clean separation between the generation of optical

depths in each k term and the radiative transfer performed on them. Allowance will need to be made for some schemes in445

which the separation is not so clean. For example, SOCRATES (the Suite Of Community Radiation codes based on Edwards

and Slingo, 1996) uses the concept of ‘equivalent extinction’ to treat minor gases (Edwards, 1996). In the longwave this involves

performing M no-scattering radiation calculations to work out the contribution from minor gases in a band. The net irradiance

from these profiles are analyzed to work out the equivalent extinction, which is then added to theN k-terms for representing the

major gases in the band. A full longwave radiative transfer calculation, including scattering, is then performed on these N k-450

terms. This approach could be accommodated in CKDMIP by the participant performing the M initial calculations themselves

and providing the resulting N optical depth profiles. The CKDMIP radiative transfer software would then be run on these

N k-terms (verifying that it gives very similar results to the SOCRATES radiative transfer solver), but when assessing the

accuracy–efficiency trade-off, the cost of the scheme would be counted as aM +N , the a factor being optionally less than one

to account for the fact that equivalent extinction can be computed with a cheaper solver.455

In the shortwave, the SOCRATES scheme uses a more sophisticated treatment of gas optics (M +N k-terms) for the cheap

direct-beam radiative transfer calculation, and a simpler treatment of gas optics (N k-terms) for the more expensive solver

for scattered radiation. This could be accommodated by the participant providing CKDMIP with separate direct and a diffuse

optical depths in the N k-terms, and again the cost of the scheme being counted as aM +N , with a this time representing the

cost of the direct-only versus full shortwave radiation calculation.460

4.3 Error metrics

The irradiance profiles computed from the submissions of participants for the relevant scenarios in Table 2 will be compared to

the equivalent LBL benchmarks, with differences in upwelling and downwelling irradiances being characterized by the bias and

root-mean-squared error (RMSE) over each set of 50 profiles. Particular emphasis will be placed on the surface downwelling

and TOA upwelling irradiances.465

Atmospheric heating-rate bias and RMSE will be examined as a function of pressure. The profile of heating-rate error will

be summarized by a few error metrics, such as the whole-profile RMSE, or the values for the troposphere, stratosphere and

(except for the ‘limited-area NWP’ application) mesosphere separately. An appropriate weighting with pressure will need to be

specified; rather than weighting linearly with pressure, which overweights the troposphere, Hogan (2010) proposed weighting

by the square-root of pressure, which increases the weighting of stratospheric errors, but other powers (e.g., the cube-root) are470

possible. Naturally, the heating-rate errors will only be counted down to the lowest pressure for the application in question (see

Table 1). The handful of RMSE values will then be plotted as a function of number of k terms to compare how different CKD

tools perform in terms of accuracy versus efficiency.
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In addition, we will look at the accuracy of the CKD models for climate in terms of the TOA and surface radiative forcing

they predict when the five well-mixed anthropogenic greenhouse gases are perturbed as described by the scenarios in Table 2.475

This will involve simple averaging over the 50 profiles.

Note that we do not propose to define a ‘cost function’ that combines multiple error measures into a single metric, as it

may not align with those used explicitly or implicitly by the various CKD tools. Nonetheless, all model output will be freely

available for participants to compute their own error metrics should they wish.

4.4 Errors due to the spectral variation of cloud properties480

Until this point, we have considered exclusively clear-sky radiation calculations with a spectrally constant surface albedo. It

is known that errors can arise in cloudy skies if cloud optical properties are assumed constant across spectral bands (Lu et al.,

2011), primarily due to the spectral correlation of absorption by water vapour, liquid water and ice. In principle, this error can

be ameliorated by computing cloud properties separately for each k term, possible if we have fine-scale information on which

parts of the spectrum each k term contributes to. As described in section 4.2, this information is requested of participants for485

each of their CKD models.

In the final part of CKDMIP, errors in cloudy skies will be estimated. This may be achieved using the clear-sky submissions

of the CKDMIP participants, so requiring no additional simulations from them. Firstly, LBL cloudy-sky benchmarks are

produced. For liquid clouds, Mie calculations have been performed for distributions of droplets at a sufficiently high spectral

resolution to resolve variations of refractive index. For ice clouds we use the generalized habit mixture of Baum et al. (2014).490

The CKDMIP software is then used to add horizontally homogeneous clouds of varying optical depth to the gas optical depth

in the Evaluation-1 dataset for present-day conditions, and to perform LBL calculations. Then the equivalent calculations are

performed for the various CKD models, by taking their present-day optical depth files and adding the contribution from clouds.

From the information they provide on the spectral contributions to each k term, average cloud properties will be computed for

each k term using the appropriate combination of ‘thick’ and ‘thin’ averaging (Edwards and Slingo, 1996). Errors in irradiances495

and heating rates will then be computed.

A similar procedure would be possible for aerosols, or to quantify errors due to spectrally varying surface albedo, particularly

over snow and vegetation where the variations are largest.

5 Evaluation of RRTMG

In this section we demonstrate the CKDMIP approach by using the Evaluation-1 dataset to evaluate an existing CKD model:500

RRTMG. This model is very widely used; for example, Hogan et al. (2017) reported in their survey of seven global NWP

models that three used RRTMG for gas optics in both the longwave and the shortwave, and one used it in the longwave only.

We evaluate the RRTMG implementation in the ECMWF radiation scheme (Hogan and Bozzo, 2018), which is only slightly

modified from the original implementation by Morcrette et al. (2008) and has been found to be indistinguishable from from

the gas optics in version 3.9 of RRTMG available from AER.505
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Scenario: Present-day (2020)

CKD model: ecRad-RRTMG

Bias TOA upwelling: -0.35 W m-2

Bias surface downwelling: -0.40 W m-2

RMSE TOA upwelling: 0.59 W m-2

RMSE surface downwelling: 0.73 W m-2

RMSE heating rate (0.02-4 hPa):  0.194 K d-1

RMSE heating rate (4-1100 hPa):  0.106 K d-1

Figure 5. Evaluation of longwave irradiances and heating rates from the RRTMG CKD model for the 50 profiles of the Evaluation-1 dataset

with present-day concentrations of the well-mixed greenhouse gases: The left three panels show the upwelling and downwelling irradiances

and heating rates from the reference LBL calculations. The red lines in the middle three panels show the corresponding bias in the calculation

of these quantities from RRTMG. The shaded regions encompass 95% of the errors in the instantaneous profiles (estimated as 1.96 multiplied

by the standard deviation of the error). Panels c and f depict instantaneous errors in upwelling TOA and downwelling surface irradiances.

The statistics of the comparison are summarized in the lower right, including the root-mean-squared error (RMSE) in heating rate (weighted

by the cube-root of pressure) in two ranges of pressure indicated by the horizontal dotted lines in panel h.
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Figure 6. Comparison of reference LBL and RRTMG calculations of the instantaneous longwave clear-sky radiative forcing from perturbing

each of the five well-mixed greenhouse gases from their present-day values, at (top row) top-of-atmosphere and (middle row) surface,

averaged over the 50 profiles of the Evaluation-1 dataset. The bottom row shows the mean change to heating rate resulting from perturbing

the concentration of a gas from its present-day value to either the maximum or minimum value in the range shown in Table 2.

Figure 5 evaluates longwave irradiances and heating rates for the present-day scenario described in Table 2. The same

radiative transfer algorithm is used for the reference LBL calculations and the CKD model: no scattering with four zenith

angles per hemisphere. Irradiance errors are almost all within 2 W m−2 at any altitude, and the magnitude of the biases at the

surface and TOA are around 0.4 W m−2. Panel h shows that for pressures down to 4 hPa, the heating rate bias is low and the

RMSE is only 0.1 K d−1. For lower pressures than this in the upper stratosphere and mesosphere, the heating-rate RMSE is510

twice as large and the bias profile exhibits distinct ‘wiggles’ with pressure. The equivalent plots for the ‘preindustrial’, ‘glacial

maximum’ and ‘future’ scenarios may be viewed at the CKDMIP web site, along with an evaluation of the contributions from

each of the narrow spectral intervals listed in Table 5.

Figure 6 uses scenarios 5–22 of Table 2 to evaluate the instantaneous radiative forcing associated with perturbing the con-

centrations of individual well-mixed greenhouse gases from their present day values. Instantaneous radiative forcing is defined515

here as the change to the net (downwelling minus upwelling) irradiance at TOA or the surface, keeping atmospheric and sur-

face temperatures fixed. The radiative forcings have been averaged over the 50 Evaluation-1 profiles. We see that in general
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Scenario: Present-day (2020)

CKD model: ecRad-RRTMG (fix SSI)

Bias TOA upwelling: 0.68 W m-2

Bias surface downwelling: 1.75 W m-2

RMSE TOA upwelling: 0.76 W m-2

RMSE surface downwelling: 1.96 W m-2

RMSE heating rate (0.02-4 hPa):  0.660 K d-1

RMSE heating rate (4-1100 hPa):  0.136 K d-1

Figure 7. Similar to Fig. 5 but for the shortwave. The reference LBL calculations in the left panels are for all 50 Evaluation-1 profiles at five

values of the cosine of the solar zenith angle, µ0. The subsequent evaluation considers all 250 combinations. The blue lines in the middle

column of panels show the unmodified RRTMG, and in red after scaling the irradiance profiles in each of the 13 bands in Table 6 to use the

same solar irradiance as the reference calculations. Panels c and f compare TOA and surface irradiances for the unmodified and modified

versions of RRTMG, with the five clusters of points in each panel corresponding to the five values of µ0.

RRTMG captures the radiative forcings accurately, including CO2 increased to eight times its preindustrial concentrations. The

one exception is the forcing associated with reducing CH4 to 350 ppbv, the magnitude of which is underestimated by around

a factor of two. Recent evaluation (not shown) of the new ‘parallel’ version of RRTMG (RRTMGP; Pincus et al., 2019) has520
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found that this problem has since been fixed, although note that at present RRTMGP uses 256 k-terms in the longwave so is

more expensive than RRTMG.

Figure 7 evaluates the shortwave irradiance and heating-rate profiles from RRTMG for present-day concentrations of the

well-mixed greenhouse gases. RRTMG up to and including version 3.9 uses a solar spectrum from the mid-1990s that has

7–8% more energy in the ultraviolet than the up-to-date Coddington et al. (2016) spectrum used in CKDMIP. This results in525

an overestimate in solar heating by O2 and O3, which the blue line in Fig. 7h shows to peak at on average 1.5 K d−1 at the

stratopause. Hogan et al. (2017) reported that the resulting warm bias in the stratospheric climate of the ECMWF model could

be reduced by scaling the irradiances in each RRTMG band to match the solar spectral irradiance of Coddington et al. (2016).

The red lines and symbols in Fig. 7 show that the effect of doing the same in the 13 bands of Table 6 is to significantly reduce

the heating-rate overestimate in the upper atmosphere. Plots evaluating the performance in each of these narrow bands are530

shown on the CKDMIP web site.

Figure 8 depicts the instantaneous shortwave radiative forcing resulting from perturbing the concentrations of CO2 and CH4

in the range shown in scenarios 5–14 of Table 2. We see that the radiative forcing is underestimated by 25–45% for both gases,

yet the heating rate response is generally good. This implies that there is scope for improvement in the parts of the spectrum

where the absorption by CO2 and CH4 is weak but not zero.535

The change to the shortwave radiative forcing of perturbing N2O across its 190–540 ppbv range is around 0.03 W m−2 at

TOA and 0.15 W m−2 at the surface, which is around 10% of that from perturbing CH4 across its 350–3500 ppbv range. Since

N2O is not represented in the shortwave part of RRTMG, a comparison has not been plotted.

6 Conclusions

The Correlated K-Distribution Model Intercomparison Project (CKDMIP) is an international collaboration whose aim is to540

evaluate and improve the treatment of gas optics in the radiation schemes used for weather and climate prediction. In this paper

we have described the detailed experimental protocol for CKDMIP, along with the generation of the associated large dataset of

gaseous absorption spectra and radiative transfer software.

The nine most radiatively important atmospheric gases in the terrestrial atmosphere have been selected, and via the use of an

equivalent concentration of CFC-11 the next 38 most radiatively significant gases are implicitly accounted for. We have found545

that N2 and N2O each reduce the daytime surface downwelling shortwave irradiance by of order 0.25 W m−2, so ought not to

be ignored by shortwave CKD models as they generally are at present.

The primary datasets for evaluation consist of 100 profiles extracted from the ECMWF model, a third of which have been

chosen to have extremes of temperature, humidity and ozone. Thirty-four scenarios have been devised for the well-mixed

greenhouse gases, intended to span terrestrial concentrations over the last million years and out to the highest concentrations550

in any of the CMIP6 projections to the year 2250. We have found that the per-molecule absorption is essentially independent

of concentration for all gases except water vapour, which means that LBL reference calculations can easily be performed for

any scenario (using the CKDMIP software) by scaling the absorption spectra from their present-day values.
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Figure 8. As Fig. 6 but for the instantaneous shortwave radiative forcing by CO2 and CH4. The five solar zenith angles have been averaged

so the values shown here represent a daytime average.

We have demonstrated the strengths of the CKDMIP approach by using the dataset and software to evaluate RRTMG, an

existing widely used CKD model. This has revealed some particular strengths of RRTMG, such as its ability to estimate the555

longwave radiative forcing of the main anthropogenic greenhouse gases in future climate scenarios, but has also uncovered

some shortcomings in a few of the bands that will be improved in future versions of RRTMG.
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The next step will be to evaluate not just CKD models with fixed numbers of k terms, but CKD tools that can generate new

CKD models, quantifying how their accuracy varies with the number of k terms (a proxy for the computational cost of an entire

radiation scheme). An objective comparison of the performance of different CKD tools will provide crucial insights into which560

strategies and approximations yield the most accurate CKD models for a given computational cost, hopefully stimulating the

replacement of the older and less accurate radiation schemes used by some climate models (see Soden et al., 2018). Moreover,

the evidence compiled could form a springboard for the development of a more formal theory to underpin CKD tools, such

as how to optimally partition g space. We will also use the submissions by the CKDMIP participants to quantify the errors

associated with representing the spectral variation of cloud optical properties, and the extent to which these can be mitigated565

by using different optical properties for each k term rather than just each band. If during the analysis of the results it becomes

apparent that further scenarios and LBL datasets are required then they will be added.

In the longer term it is hoped that CKDMIP will stimulate the development of community tools to allow users of radiation

schemes to more easily generate CKD models targeted at specific applications. It could also form the basis for improving the

consistency between the broadband irradiance models considered in this paper and the narrowband radiance models used for570

data assimilation, since the latter are also often trained using LBL calculations on a set of training profiles (e.g., Matricardi

et al., 2004). Furthermore, while the focus of the CKDMIP dataset is on the terrestrial atmosphere, what is learned during the

project should translate easily to radiative transfer on other planets.

Code and data availability. The code and technical documentation are available at the project web site http://confluence.ecmwf.int/display/

CKDMIP. The username and password needed to access the FTP site containing the CKDMIP datasets are available on request from the first575

author.
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