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Abstract. The Energy Exascale Earth System Model (E3SM) developed by the Department of Energy has a goal of addressing
challenges in understanding the global water cycle. Success depends on correct simulation of cloud and precipitation element
However, lack of apppriate evaluation metrics has hindered the accurate representation of these elements in general
circulation models. We derive metrics from the thiémensional data of the grouiised Next generation radar (NEXRAD)
network over the U.S. to evaluate Ihdiorizontal and vertical structures of precipitation elements. We coarsened the resolution
of the radar observations to be consistent with the model resolution and improved the coupling of the Cloud Feedback Mode
Intercomparison Project Observation Siatal Package (COSP) and E3SM Atmospheric Model Version 1 (EAMv1) to obtain

the best possible model output for comparison with the observations. Three warm seaseB8X@Pa#EAMv1 simulations

of 3D radar reflectivity features at an hourly scale arduated. A general agreement in domaiean radar reflectivity
intensity is found between EAMv1 and NEXRAD below 4 km altitude; however, the model underestimates reflectivity over
the central United States, which suggests that the model does not captoesdiseale convective systems that produce much

of precipitation in that region. The shape of the model estimated histogram of subgrid scale reflectivity is improved by
correcting the microphysical assumptions in COSifferent from previous studies thavaluate modelled cloud top height,

we find he model severely underestimates radar reflectivity at upper detledssimulated echo top height is ab&utm

lower than in observatioBsand this result is not changed by tuning any single physics parafatenore accurate model

evaluation, a higheorder consistency between the COSP and the host model is warranted in future studies.

1 Introduction

Clouds and precipitation play a major role in Eaectt hds
simulation of 3D structures of clouds and precipitation has been challenging in general circulation models (GCMs) (Trenberth
et al., 2007; Randall et al., 2007; Eden and Widmann, 2012), partially because model grid spacings generally do ngt adequate

resolve the cloudtructure details important to these budgets. In addition, the lack of appropriate evaluation metrics also
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hinders the evaluation of GCMs. Over ttantiguousU.S. (CONUS) the detailed 3D radar reflectivity field (indicating the

3D distibution of precipitation particles) is observed by the grebhased Next Generation Radar (NEXRAD) network of S

band weather radar8 GHz;Zhang et al., 2011 and 2015). In this study, we use the mosaic of NEXRAD observations called
Gridded Radar Data (GlRad) developed by Homeyer and Bowman (2017), which have a horizontal resolufid?2 of
(regridded to 4 knin this study, vertical resolution of 1 km (24 levels), and an update cycle of 1 hoorder to compare

these data appropriately with outputtioé global model used here, we further coarsen the horizontal resolution, as described
in Section 2.

The Energy Exascale Earth System Model (E3SM) is an ongoing effort of the Department of Energy (DOE) to advance the
nextgeneration of climate modeling é8er et al., 2014). Version 1 of E3SMmosphere ModglEAMV1) is a descendent of

the National Center for Atmospheric Research (NCAR) Community Atmosphere Model vers{@AMS.3; Neale et al.,

2012. However, it has evolved substantially in coding, performance, resolution, physical processes, testing and developmen
proceduregRasch et al., 20)9Previous model evaluation has focused on the-teng climatological properties of certain

cloud fields, surface precipitation, and water conservation on the global(sogleQian et al., 2018; Xie et al., 2018; Zhang

et al., 2018; Lin et al., 20)9Evaluations of the vertical structures of cloud and precipitation elements have used vertically
pointing radar observations obtained during field campai@ieang et al., 2018; Zhang et al., 2D1bowever, these tests
lacked evaluation of fully 3D cloud and precipitation structure over large regions of the globe and over long time periods.
For this study, w have built data processing techniques to evaluate EAMv1 simulation of the 3D radar reflectivity field at its
default setting of 1° grid spacing and 72 vertical layers at an hourly time scale. Our goal is to provide a comprehensive
evaluation of both harbntal pattern and vertical structure of cloud and precipitation. We use radar observations obtained from
the NEXRAD over the CONUS for the three years 2Q046. In order to directly compare the model results with NEXRAD,

we have implemented and improvite Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator
Package (COSRBodasSalcedo, et al., 20)into EAMv1. We restrict the evaluation to the warm sea@@n, April to
September)Over the CONUS, warigseasorprecipitationis dominated by convective processes, which are very different from

the more widespread frontal cloud systems of-cgldson precipitation. As discussed by Iguchi €RalL8), precipitating ice
particles have large variation in habits and scattering preperind the effect of ndRayleigh scattering and multiple
scattering by large precipitating ice particles could introduce large uncertainty into simulating the radar refledtivify fiel
reduceuncertaintydue to these factgrave examine only the warseason of the three years from 2014 to 2016.

This paper is organized as follows: Section 2 describes the model, the GridRad dataset, the COSP simulator, alog the step
step methodology of data processtogaccount for differences between the modelled @rserved datasets, specifically (1)
horizontal and vertical resolutions of EAMv1 (1°, 72 vertical levels) and NEXRAD (4 km horizontally, 1 km vertically) and
(2) minimum detectable limits between the model and NEXR3&xtion 3 presents the model evabratesults and tests of

the sensitivity to physics parameters. Section 4 provides synthesis and conclusions.
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2 Methodology
2.1 EAMv1 Description and Configuration

EAMv16s dynamics core and physics par a208t Tde cortirmaus Galerkin ar e
spectral finite element method s ol Demisaétal.e20)2;rTayhon&Foumer, e q u
2010.Tracer transport on the cubed sphere is handled usin
Lin (2004). The method locally conserves air mass, trace constituent mass, and moist totaTengogy201). Turbulence,

shallow cumius clouds, and cloud macrophysics are parameterized with the Cloud Layers Unified By Binormals (CLUBB)
parameterizatiorfGolaz et al., 2002; Larson, 201 Deep convection is based upon the formulation originally described in
Zhang and McFarlanél995, heeafter ZM), with modifications by Neale et a{2008 and Richter and Rasc{2008.
Stratiform clouds are represented with the AMorrison a
parameterizatioriGettelman and Morrison, 20L5Aerosol nicrophysics and interactions with stratiform clouds are treated
with an updated and i mproved version of (MAMdeLiufetal, 201no d e
Regarding the stratiforraonvection partition, the MG2 stratiform cloud nicp hy si ¢s and CLUBB hi gh:¢
parameterization explicitly provide values for condensate mass and number, as well as an estimate of stratiform agud fractio
whereas the convective cloud fractisnnot parameterized in mass flbased ZM schme (assumed to be <<1 for typical

GCM resolutions such as atdegree grid spacing or coarseajd isdiagnosed from cloud mass fldiar cloud radiation
calculation whichis treatedasatunable parameter.

The EAMv1 used in this study has 30 spectral elements (ne30), which corresponds to approximately 1° horizontal grid spacing
and the total number of grid columns is 48,602. Vertically, there are 72 layersausaujtional hybridized sigma pressure
coordnate. The simulation is run for the time period from 1 January 2014 to 1 October 2016. We use a dynamic tiBestep of
min and a cloud microphysics timesteB06imin. The largescale circulation in the simulation is constrained using the nudging
technique(Zhang et al., 2014; Ma et al., 2015; Lin et al., 20%6 that the model simulations can be constrained by realistic
largescale forcing. Specifically, horizontal winds (U, V components) are nudged towardiéottexnEra Retrospective
analysis for Reseeh and Applications, Version 2 (MERRAReanalysis datéGelaro, et al., 201Ayith a relaxation time

scale of 6 hours. Nudging is applied to all grid boxes at each time step, with the nudging tendency calculated using the mode
state and the linearyterpolatedMERRA2 data(Sun et al., 2019

To facilitate the comparison with observations, model outputs are regridded to the geographic coordinate system with &
horizontal grid spacing of 100 km, and the vertical coordinate is converted to the aboveunfeaa level height in meters.

By default, all the regridding processes in this study are based on the Earth System Modeling Framework (ESMF) Pythor

Regridding Interface (https://www.earthsystemcog.org/projects/esmpy/) using bilinear interpolation.
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2.2 COSP Radar Simulator

The retrieved spaceborne satellite and grelasked radar products such as cloud water content, and effective particle size
(e.g., Randel et al., 1996; Wang et al., 2015; Tian et al., 2016; Um et al) a281fften treated as the grosindth for model
evaluation(e.g., Fan et al., 2017; Han et al., 2DI19owever, the retrieved products often have large uncertébtephens

and Kummerow, 2007 To allow the comparison of model results with direct measents fom3D scanning radars (ground

based or satellitborne), the CFMIP Observation Simulator Package (COSP) was developed for use iiBada&Salcedo

et al., 201). Instead of using retrieved products to evaluate the model simulation, COSP comdet®utput into pseudo
observations using forward calculatigBodasSalcedo et al., 2011; Swales et al., 2018; Zhang et al.).2010

The COSP consists of three steps, as detailed in Zhang20H). The first step is to gener
of cloud and precipitation, which is done by using the Subgrid Cloud Overlap Profile S#8|P@PS; Klein and Jakob,
1999; Welb et al., 2001and SCOPS for precipitation (SCOPS_PREC), respectively. Each GCM grid box is divided into 50
subcolumns in this study. Detailed description of SCOPS and SCOPS_PREC can be found in Zhé@éx dlhen, the

radar signals are calculatbyg the QuickBeam codglaynes and Stephens, 20@8ing the column distribution of cloud and
precipitation.Thus,COSP calculates the reflectivity for the combined cloud properties using its own subgrid asswangtion,

it does notlistinguishconvective ad stratiform cloud contributions to reflectivityinally, the grid box mean radar reflectivity

is calculated through the method of linear averaging (i.e., the reflectivity values [in dBZ] are converted to the Z wallues [m
m] to calculate the mean Zen mean Z is converted back to the dBZ). In addition to averaging, all the processing of radar
reflectivity data from model and NEXRAD in this study utilizes the linearized Z values, including horizontal averagicey, verti
interpolation, calculation ancbmparison of mean values, etc.

The COSP version 1.4 used in this study has no scientific difference from vers{&o2glet al., 2018, Swales et al., 2018
Following the general usage of COSP, we modiftezl microphysics assumptions used for the raelfectivity calculation
regarding hydrometeor density, size distribution, etc., making those assumptions consistent with those used in the MG2 clou
microphysics scheme that is used in E3SM. The detailed documentation of those changdsdd ilNote that, #houghwe

tried to make the COSP use the sdipdrometeor sizdistributionfunctions as MG2the three parameterslope, intercept,

and shape parametgere still separately defined in COSRKe use horizontally homogeneous clamhdensate distribution

within the model grid element, and maximuandom overlapping scheme for cloud occurrerddar¢hand et al., 2009;
Hillman et al., 2018).

2.3NEXRAD Observations

The NEXRAD network consists of 15%1#&nd (3 GHz) Doppler radars, whiébrm a dense observational network nearly
covering the CONUS. We use the GridRad mosaic product of Homeyer and Bowman (2017), which combines all NEXRAD
radar data covering the region 1557W9°W, 25°Ni 49°N. To compare the GridRad data to the E3SM mbedkls, the

radar frequency in the COSP was set to 13.6 GHz, consistent with the Global Precipitation Measurement (G&id) Ku
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radar, since we originally aimed at evaluating the E3SM simulation with GPM data. However, due to the high detectable
thresholdof 13 dBZ, low sampling frequency-{#overpasses over CONUS per day), and the narrow swath width (245 km)

for each overpass, GPM data within the thyear period (201-£2016) have a significant undeampling issue. That is, the

GPM sample sizes over Yodel grid boxes are generally too small to robustly represent the grid element mean value.
Therefore, we decided not to use GPM data in this study. As GPM operates over the whole earth and is anticipated to run fc
a longtime period, it will likely be avery useful dataset to evaluate the coaesmlution global model in the future.

The GPM radar frequency is higher than the NEXRAD (13.6 GHz vs. 3 GHz). Previous studies have shown conversions from
Ku (13.6 GHz) to S band (3 GHz) are necessary when &g Ku band radar to calibrate the grotbrabsed radars (Warren

et al., 2018). Based on our previous study that quantitatively evaluated the coincident observations from NEXRAD and GPM
over the CONUS, we found the 3D radar reflectivity fields obtained frentwo independent platforms are highly consistent

with each other after proper smoothing of GPM data in the vertical (Wang et al., 20E9p¢rformed a series of offline tests

of COSP simulation using the frequency of 3 GHz (NEXRAD), 13.6 GHz (GPMdfadl), and 94 GHz (the cloud profiling

radar onboard of the CloudSat satelliiE)eir corresponding reflectivities are compared in Fig. 1. As shown, the reflectivit
values with 3 GHz are very similar to those with 13.6 GHz, indicating the Rayleighriscpisesatisfied for both frequencies

in this applicationTo examine if the COSP can correctly handle the Mie scattering calculation, the frequency of 94 GHz used
by the CloudSat is also tested, whose products have been widely used for the evalgagwsesdsolution modelsZhang

et al., 2010 As shown in Fig. 1, the reflectivities simulated with 94 GHz significantly deviate from those simulated with 3
GHz and 13.6 GHz when reflectivities > 10 dBZ, which reveals that the COSP simulator is capabldiiafy both Rayleigh

and Mie scattering calculations. Howewigre is no difference using Ku band or S band in the COSP simulator in this study,
because the simulated condensates are not large enough to leadRiytedgh scattering, which is typidaobserved at Z >

40 dBZ for the Kuband (Matrosov, 1992).

An attenuation correction has been applied in case of existence of any large particles although they are extremety unlikely t
occurin this applicationSince the COSP mimics tkatellite view from space to the ground, the layer beldunlaltitude is

most vulnerable to the possible attenuation caused by large precipitation particles, which has been excluded from the
comparisonlin this study, biases caused by the temporal midimate minimal at the horizontal resolution of 1° (~100 km),

we nevertheless perform Gaussian smoothing of GridRad data to match the model t(3@ stiepin the comparison.

2.4Mapping the Radar Observations to the Model Grid

As shown in previous stugl (e.g., Wang et al., 2015, 2016, 2018; Feng et al., 2012, 2019), the minimum reflecthty of
3D mosaic NEXRAD datasé$ 0 dBZ (Fig.2a). However, the model grishean reflectivity can be as low as00 dBZ.
Because our focus is on significantly ppataiting clouds, the minimum threshold of reflectivity at 1° grid scale is set to be 8
dBZ (correspondi ng bHtWe alsodested withaattheesh@ld o 0 dBZ andareplort later on how it only has

minor effects on our conclusions. For ourim@sults, after coarsening thekeh GridRad data to a model grid element, only

5
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the grid elements with a mean value larger than 8 dBZ are taken into account in both observations (Fig. 2b) and itidime simula
(Fig. 2c).In the vertical direction, the EAML-simulated radar reflectivity field (72 vertical levels, hybrid coordinate) is
interpolated to the levels of GridRad (vertical resolution of 1 km). The simulation data are saved hourly, consistent with th
hourly GridRad data.

3 Results

After the horizottal averaging, vertical interpolation, and truncation at the identified minimum threshold of 8 dBZ, the 3D
radar reflectivity fields obtained from GridRad and the model simulation become comparable. The EiisMidted

reflectivity is evaluated from the pspectives obubgrid distributionhorizontal patternandvertical distribution.

3.1Comparison on Subgrid Distribution of Reflectivity

The horizontal resolution difference between GC4 00 km) and NEXRAD o bsaxhaleage forons |
testing the model simulated radar reflectivity. To mimic the observations, COSP divides #imegniatloud and precipitation
properties into subcolumns (Pincus et al., 2006) that statistically downscale the data in a way that shoulstdrg eotis
observations. The way this is done in COSP is discussed by Zhang et al. (2010) and Hillman et al. (2018). In this section w
examine whether the subgrid reflectivitistribution generatedy COSP is consistent with the observed subigilcivity
distribution shown by the NEXRAD observations.

In EAMv1, 50 subcolumns are used for calculating the mean radar reflectivity for a model grid box. There are 625 péxels insid
each 1° grid for NEXRAD data to provide a probability density function (RidBpserved reflectivity within the boXAfter
averagingheNEXRAD pi xel s at subgrid scal e t oFig33comparesphe snwlatedo ma
subgrid reflectivityPDF to the NEXRADPDF based on all the GridRad samples combinedtie 3year period at each
individual leve|] where the interval of reflectivity bins is 1 dBFhe results for the default microphysics assumptions in COSP,
which are for a singkenoment scheme, produce arbodal distribution at and belo@+km altitudes(blue histograms in the
left-hand column of Fig3). The bimodality is significantly different from the obsenkdF, which forms a smooth gamma
distribution. Song et al. (2018) also found bimodal distributions when the COSP was implemented in the GA&osiginal
microphysics assumptions, which are clearly uniéda observed radar reflectivity distributions.

Our modification of the microphysical assumpsam COSP (righthand column of Fig3) greatly reduces the bimodality. In
addition, themodified microphysial assumptions produce higher values of reflectivity, in better agreement with observations,
and the gridmean radar reflectivities increase by ~4 dBZ (Bjgnainly for values less than 25 dBFhe improvement in the

subgrid distribubn and gridmean reflectivity brought by the change of microphysics assumptions indicates the necessity of
microphysical consistency betwete COSP and the host model. It should be noted that the simulated radar reflectivity and

its subgrid distributiomre sensitive to the overlap assumption and the distribution function of condensates that are setin COSP



190

195

200

205

210

215

220

(Hillman et al., 2018). Our results are from the default setup of these aspects of COSP. It is not the purpose oftthis study
test those assumptisn

Although the simulated subgrid reflectivity distribution is improved by setting the microphysics assumptions used in COSP
consistent with the MG2, thmodelis still significanty biased In addition to the intrinsic modebservation differences in
thenumber concentrations and mixing ratios of hydrometeors, there are other possible error sources related to the reflectivity
calculation as mentioned in Section 2.2. For exampléhélmixing ratios of hydrometeor typgem differenttypes of clouds

arenot directly passed from the host model to COSP, instead they are lumped together and equally divided among all the
precipitating subcolumn$2) the spectral parameters for defining a Gamma distribution are not consistent fropard G2)
theassumptions of subgrid distribution and hydrometeor vertical overlap are simple and not consistent with etif¢hg@art

host model.In addition, the subgrid distribution results from COSP are calculated based on the assumbptitrthe
distribution ofcloud and precipitation among the 50kcolumns, which is independent of what E3SM auSeherefore, a
higherorder consistency between the COSP and the host model is warranted in future studies.

In this following analysis, we focus on the evaluation ofshe mul at ed 3D radar reflectivit
which is 1°, since the subgrid information from COSP does not directly reflect how E3SM does it. Also, the convective cloud
fraction is not parameterized in mass flbased ZM scheme and dtagnosed from cloud mass flux for cloud radiation
calculation, which is treated as a tunable parameteyse evaluation is not very meaningful unless it becomes an independent
variable, for instance, for gregone resolutions.

3.2 Comparison of Horizontal Patterns

Now wecomparehetemporal mean reflectivity through the entire study pebetiveen théNEXRAD observatior(Figs.5a,

d, g and j) and EAMvEimulation(Figs.5b, e, h, and kjith the consistent microphysical assumptions between COSP and
the host modeét the vertical levels of 2, 4, 8, and 11 .Kife mean, standard deviation, 95th percentile valaes valid
sample numbergetween the model and NEXRAD aremparedn Table2. At 2-km altitude, the EAMv1 estimates higher
reflectivity than the NEXRAD observations (Biga-b) except over the central United States. The overall mean value is 28.7
dBZ for EAMv1 and 25.1 dBZ for NEXRAD. The negative bias for the model is in therrégtween the Rocky Mountains

and Mississippi basin (Figc), where precipitation is heavily contributed by Mesoscale Convective Systems (MCSs). Those
MCSs propagate eastward from their initiation over or just east of the Rocky Mountains, go thraraja gpsnth, and

finally dissipate in the eastern part of the Mississippi B@éamg et al. 2017; Feng et al., 2018, 2DThe standard deviations

of the two individual datasets are quite similar, and EAMv1 geneegatigher 95th percentile value than the observation,
indicating the modebverestimates thextremehigh values at lower tropospheda. addition,those simulated extreme values

are evenly distributed across the entire domain, which fail to mimgpdigalfootprintof MCSsas depicted by the NEXRAD

data.

At 4-km altitude (Figsbd-e) , t he model 6s underestimati on ovemaltudent r al

and the overestimation at the foothills of Rocky Mountains also bexlanger. Themodel also overestimates reflectivity in

7
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the east region of the domain. These results indicate that the E3SM simulation fails to capture the observed spatyal variabil
The domain mean value between the model and observations is the same (24.0 d&¥jsag@ence of the offset between

the negative and positive biases in different ar€asstandard deviation and 95th percentile valunesomparable with the
observatios as wellAt 8 km, underestimation of the reflectivity by the model occurs oveost the entire domain (Figi),

with a domain mean of 15.0 dBZ, much lower than 19.2 dBZ in the NEXRAD Htganwhile,the modelledstandard
deviationand the extreme values are smaller, indicating the model has a difficultyicgter observedariability .

At 11-km altitude, the EAMv1 severely underestimates the reflectivity values compared to NEXRAGjdkigsvith a mean

value of 9.8 dBZ for EAMv1 while 16.6 dBZ for NEXRAD. The negative bias is generally more than 7.5 dBZ in the central
United States (Figbl), and the model severely underestimates the standard deviation and extreme refleicireibyer,

EAMv B@apl e size is 50 time | ower than that of the NEXR/
dBZ.

Cleary, above 4 km, the model 6s negat i v.&fibandd mansdestédinthe ecatrale  w i
United States. There is no valid reflectivity value simulated by EAMv1 abodenlaltitude , whereNEXRAD still shows
reflectivity values up to 15.7 dBZ, indicating that the simulated deep convection in the warm season is not deep enough, ¢
problem that is further examined in the following section.

In addition to the mean values, the histograms of observed and simulated redévitefs are compared for different
altitudes, where the interval of reflectivity bins is 2 d@Zg. 6). By comparing the occurrence
and observations, the model apparently has narrower distribution than the observatitims namdielobservation deviation

in maximum values increases with height. At 8 km and below, the model generally overestimates the sample sizes of smalle
reflectivity values but lacks extreme high reflectivity values. However,-&thi altitude, the modejreatly underestimates the
sample sizes of the entire reflectivity spectrum compared to the observation, causing the severe underestimation in the mes

value

3.3 Comparison of Vertical Distribution of Radar Reflectivity

To quantitatively examine th@mulated vertical distribution of radar reflectivity, contoured frequency by altitude diagrams
(CFADs, Yuter and Houze 1995) are generated from NEXRAD and EAMv1 and comparedinHig CFADs represent

the frequency of occurrence of reflectivity in@oedinate system having reflectivity bins (interval of 1 dBZ) on tagiz and

altitude bins (interval of 1 km) on theaxkis. The frequency within each bin box is calculated as the number of valid samples

it contains divided by the total sample numbealbfreflectivity bins at all levels, meaning that the integrated value of all
frequencies in each plot is 100%.

Fig. 7 shows the CFADs for both NEXRAD observations (Figgs.d, g, j, m, and p) and the EAMv1 simulation (Figs. e,

h, k, n, and q) forach month from April to September combined over 20Q46. The most distinct difference between the
model and observations is the simulated echo top height. The echo top height in the simulation generally is at 11tkm, at lea:

5 km lower than the @km topseen in the observations. At levels below 4 km, the NEXRAD data show a high freqoeecy

8
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(> 3.2%) concentrated betweef2B dBZ, whereas the simulated high frequenogeis at 1328 dBZ. For reflectivity >335

dBZz, thesimulation has higher probabilitf occurrence than the NEXRAD observations.

Regarding the overall shape of CFADs, the model follows thekmelvn pattern where theflectivity value rangef high
frequency zone (> 3.2%) increases from cloud tofédreezing level, and then slowlyedreases or remains constant below

the freezing levelThe cores of maximum frequency (> 5%) are located icéméresof the high frequencgones However,

these characteristics are not presented in the observations, whose high fremprezsare greatly skewed to the lower
reflectivity valuesThecharacteristice f N E X R A D 6ceuld @d-déexaveraging from fine resolution (4 km) to coarse
resolution (1°),as well asaweraging ofconvective and stratiforntomponentsbecausethe two components produce
significantly different reflectivity profiles and magnitudes.

The boxwhisker plots (Figs7c, f, i, I, 0, and r) represent the same results diffarent way where the normalization is
conducted at each levedther thamagainst the entirdataset at all level8elow 4 km, the percentile values are consistent
betweerthemodel and observations except for tHem altitude wher¢hemodel overeimates the reflectivity. The simulated
25-75th percentiles are located at the reflectivity values e2718BZ at tkm altitude, which is higher than the NEXRAD
observation (12 28 dBZ). As noted in the discussion of Figthe consistency &w-levels (e.g., 2 kmpetweerthe model

and observations is mainly due to the offset of negative and positive biases at different regions of the domain. Moreover.
EAMv1l underestimates the frequency of e crhls ensl 30QBZ] whicld B Z
causes the higher median valuegha model. From 4 km upward, the modsdservation differences become much larger

than at low levels, consistent with the result shown in Bihe underestimation of 95th percentile value in@sdom 10

dBZ at 7 km to more than 20 dBZ at 11 km. Above 11 #tra,model fails to generate average reflectivity above 8 dBd

the typical reflectivity value is between 0 and 2 dBZ at 12 km.

From Fig.7 it is clear thathe model severely underestites the echo top heighy at least 5 kmTo look at how this result

is sensitive to the threshold reflectivity, we reprocessed the results with the 0 dBZ threshold. By lowering the thr@shold to
dBZ, an increment of ~1 km in the vertical extensionh&CFADs is found in the modelbutthe echo top height of the
observatios is not changed much. As a result, the choice of threshold does not change the conclusion of severe mode|
underestimation in echo top height.

The CFADs of NEXRAD observations varydm month to month. For exampldée echo top height is at 15 km in April,

which increases to 16 km in May, then reaches 17 km in June and July, and finally decreases to 15 km in September. Similarly
the 0.6%0.8% contour level in the observations stop8-km altitude in April, but extends to 10 km in May and reaches 11

km in June. It increases to the highest at 11.5 km in July and August, then decreases to 11 km in September. This seasonal
follows the seasonal variation of intensity of convection (gvetral., 2019a)which is not captured in the EAMv1 simulation
(Figs.7b, e, h, k, n, and q)

The severe underestimation of the echo top height by EAMv1 has been reported for simulation of tropical convection with the
Community Atmosphere Model versiofGAMDb) in a recent study (Wang and Zhang, 2019). Although EAMvVL1 is different

from CAM5 in many aspects such as vertical resolution and dynamical core, they share the sanMcEadage (ZM)

9
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cumulus parameterization (Zhang and McFarlane, 1995) for eineg deep convection. Wang and Zhang (2019) found the
cloud top height of tropical convection is underestimated by more than 2 km, which can be alleviated by the adjustment of the
ZM scheme. We have performed a series of sensitivity tests by changsiggpiparameters in ZM and cloud microphysics
schemes to explore the possibility of model improvement in echo top height. These tests are detailed in Section 3.4.

As evaluated in Zheng et al. (2019), E3SM v1 failed to simulate the ditariation of precipitation over the central United
Stateswhere the observed nocturnal peak is greatly underestinxadeet al. (2019) improved the diurnal cycle of convection

in E3SM v1 recently by modifying convective trigger function in the ZM schénvell be interesting to see the 3D radar

reflectivity fields can be better simulated using the updated ZM scheme

3.4 Sensitivity of Simulated Echo Top Heighto Tunable Parameters of the Global Model

Differenty from the model evaluation of cloudp heightand high cloud fractiofe.g., Xie et al., 2018WwhereEAMv1 has

shown good agreements with satellite observations over the CO®dBiation of radar echo top height indicates whether

the processes internal to the cloud are producing pre@pitaorrectly. To examine if any model parameters inZhe

cumulus parameterization scheme and/or MG2 microphysics parameterization scheme can significantly influence the echo to
height, we conducted a series of sensitivity tests for the tunable paramelisted in Tab 3. In each test a single parameter

is changed, and all other parameters retain their default values

Wang and Zhang (2018) suggested that the restriction of neutral buoyancy level (NBL) from the dilute CAPE calculation
(Neale etal. 2008) can limit the depth of deep convection in ZM. When the convective plume reaches the NBL, all mass flux
is detrained even if the updraft is still positively buoyant from the cloud model calculation (Zhang, 2009). To allow deep
convection to grow eeper, we performed a sensitivity test following Wang and Zhang (2018), where the NBL determined in
the dilute CAPE calculation is removed, and the upper limit of the integrals of mass flux, moist static energy, andidther clo
properties is set to be vehygh (70 hPa in this study). After the modification, the convective cloud top height increases as
shown in Wang and Zhang (2018), however there is no change in the radar echo top height, i.e., the maximum altitude at whic
precipitationsized particles awr. A possible reason for the limited effect on echo top height is that the cloud ice content is
too low in midlatitude continental convection without convective microphysics parameterization (Song et al., 2012), which
cannot be improved by merely increagsthe NBL.

Other parameters that we tested in the ZM cumulus parameterization with the dilute CAPE calculation include convective
entrainment rate (zmconv_dmpdz), the convection adjustment time scale (zmconv_tau), the coefficient of autoconversion rate
(zmconv_c0_Ind), ice particle size (clubb_ice deep), convective fraction (cldfrc_dp), and number of layers allowed for
negative CAPE (zmconv_cape_cin). The overall conclusion is that separately tuning any of these parameters does not impro\
the simulatiorof echo top height. For the convective entrainment rate (zmconv_dmpdz), we deitsaadadfrom -0.7x10
3t0-1.0x10° which means that the entrainment in convection is almost turned off, similar to the undiluted CAPE assumption.
Results show the sinfated echo top height is increased by-800 m in theEAMv1-testsimulation, and the reflectivity span

in the lower troposphere is narrowed b #IBZ, which is closer to the observations (B)g.This result is consistent with the
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previous studies thégsted the undiluted CAPE assumption as well (Neale et al., 2008; Hannah and Maloney, 2014). However,
that assumption is unrealistic given the fact that the undiluted @®&BEd closure strongly deviated from observations
(Zhang, 2009)In summary, changmanyof our selectegharametes individuallyin the ZM scheme does not improve the
simulation of echo top height.

The MG2 cloud microphysics parameterization in E3SM determines only-daede cloud and precipitation (i.e., those
resolved bythe mode). Changes in the MG2 cloud microphysics parameterization could affect the parameterized cumulus
cloud and precipitation by changing the laggale forcingwhich feeds into the cumulus cloud calculatioBg decreasing

the MG2 autoconversion rate (prc_€&be ideally the depletion of moisture within the atmospheric column is slowed down
and more water vapor can be supplied to cumulus convection. Results show, however, that the echo top height is not affecte
by changing the MG2 assumptions. Attemgtsicelerating the WegeniBergerofi Findeisen process in MG2 to increase

the conversion of liquid to snow/ice, as well as using lower size threshold for #teesicew conversion have also proven to

be unimportant to the simulation of echo top height.

Thus, ebo top height proves to be insensitive to the available tunable parameters. Setting the value of convective entrainmen
rate to be unrealistically low only gaias500-800 m increment in echo top height. Given that the model underestimation is
more tharb km, the increment is insufficient to solve the discrepancy. Note that each individual tunable parameter was changec
without retuning the model to keep the 4ofsatmosphere radiative energy budget balanced and the model performance
optimized. Thus, some p&cted improvement in echo top height can be subsequently offset by other untuned processes.
Instead of providing quantification of how the model responds to the changes of parameters, we emphasize the trend of chang
in echo top height, in which the sinatibn of the echo top height cannot be significantly improved by tuning only one of those

physical parameters. Further investigation of combinations of two and more parameters is a topic for a future study.

4 Conclusions and Discussion

We haveevaluated the model performance of E3SM EAMv1 in simulating the vgaamon 3D radar reflectivity at an hourly

scale over the North American sector of the globe by comparing the model results to the 3D distribution of radar reflectivity
observed by NEXRADradars over the CONUS during ApBeptember of 2022016. The evaluation is achieved by
improving the COSP radar simulator and employing special data processing techniques to ensure fair comparison betwee
model and observations that are different in darggrequency, horizontalertical resolutions, and minimum detection limit.

We find that:

1. With the default microphysics assumptions in COSP, the simulated subgrid reflectivity PDF is bimodal, in
disagreement with radar observations which show that thgrisureflectivity follows a gamma distribution.
Changing the microphysics assumptions in COSP to be consistent with the MG2 microphysics parameterization usec
in E3SM, the bimodality of the subgrid distribution is nearly eliminated. It is therefore mmpdd maintain
consistency of microphysics assumptions between the host model andehdaimulator attached to the modsl

11



355

360

365

370

375

380

385

advocated by the COSP community (Swales et al. 2(A@) more accurate model evaluation, a higbreier
consistency betweendfCOSP and the host model is warranted in future studies.

2. Below the 4km altitude, the simulated domainean reflectivities by EAMv1 agree with NEXRAD observations in
the magnitude, but the simulation fails to capture the spatial variability. The mo@eéstichates the reflectivity in
central U.S. between the Rocky Mountains and Mississippi River. This pattern suggests that the model is not
adequately representing the mesoscale convective systems that dominate warm season rainfall in that region. Th
modéd overestimates the reflectivity outside this region.

3. Above 4km altitude, EAMv1 shows a severe underestimation of the demaan reflectivity, and the negative bias
increases with altitude up to 11 km, above which model fails to simulatevaiayreflectivity at all, whereas
NEXRAD observations show strong radar echoes ujs tari.

4. EAMv1 is able to simulate the variability and extreme value of reflectivity at the lower troposphere but significantly
underestimate them at high levels.

The NEXRAD observations used in this study reveal B#gtlv1 fails to simulate the occurrence of larigephase particles

at high |l evels in deep convective clouds. I n addition,
echoes the dry bias seen in GCMs as manifested in underestimations of total precipitation and indivigkiediy leates over

the CONUS (e.g., Zheng et al., 2019). We have now shown that this model deficiency cannot be significantly improved by
tuning a single valuef the physical parameters in the ZM cumulus and MG2 cloud microphysics scidoteshelarge

scale circulation is nudged towards observationgi®simulations in this studyso our resultsepresent thbestcasemodel
performanceCompared to the nudged simulations, free runohAMv1 has shown nonnegligible biases in the regional
circulaion (Sun et al., 2019)With the nudged simulations, the large biases in circulation can be excluded so that the
performances of physics parameterizations in simulating convective systems can be more insightfully understood.

The data processing techniques and metrics we have developed in this study can be used globally for model evaluation whe
satellitebased radars provide global 3D radar observations. The GPM radar observations will eventually be able to provide
global radaecho coverage (Houze et al., 2019), whose data have been proven consistent with NEXRAD (Wang et al., 2019b).
However, as discussed in Section 2, the sampling by GPM at 1° model grid elements for only three years of GPM data is
insufficient for obtainingobust gridmean values to compare with tBAMv1 simulation.In addition to the restriction in the
availability of observational data, the high computation cost with the incorporation of COSP simulator in simulation and the
demand of large data space (30 core hours anl2TB data per simulation month at hourly output frequency) have hindered

the modelling for an extended periatthen GPM has run for a much longer time peaod more powerful computational
resources become availapiewill bea veryusefulstudyto evaluatehe longtermmodel simulationst the global scalén

addition, the results of this study can provide metrics for evaluating the cumulus parameterizations or provide insights for
further improving the cumulus parameterizatioks Labbouz et al. (2018), which can be a folowwork.Future studies

can alsofocus on separately evaluatimgyoperties in convective and stratiform regions, sitiee thermodynamic and

reflectivity profiles are fundamentally different between the tegions.
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Code Availability

The source code in this study is based on the Department of Energy (DOE) Energy Exascale Earth System Model (E3SM
Project version 1 at revision 9a86ab9 whose code can be acquired from the E3SM refiufirigithub.com/E3SM
Project/E3SM/tree/kaizhangpnl/atm/cm2017022@hich is also permanently archived the National Energy Research
Scientific Computing Canter (NERSC) High Performance Storage System (HPSS) at
https://portal.nersc.gov/archive/home/w/wang406/www/Publication/Wang2020GMD

Data Availability

The observational data is available through National Center for Atmospheric Research (NCAR) ResearcichDaga Ar
(https://doi.org/10.5065/D6NK3CRY7). Model results can be accessed from
https://portal.nersc.gov/archive/home/w/wang406/www/Publication/Wang2020GMD
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Table List

Table 1. Modification of the hydrometeor assumptions used in COSP.

Distribution T Density (kg 1) Particle Mean Distribution Widti?

istribution Type ensi

Hydrometeor P (g Di ameter (Unitless)
Typéet

Default Modified Default Modified Default Modified Default Modified

LSL Lognormal Gamma 524xD? - 6 12 0.3 0
CVL Lognormal  Gamma 524xD? - 6 12 0.3 0
LSI Gamma - 110.8x3** 500 4 - 2 0
Ccvi Gamma - 110.8x[¥°1 500 4 - 2 0
LSS Exponential - 100 250 N/A - N/A -
CvVs Exponential - 100 250 N/A - N/A -

ILS: LargeScale; CV: Convective; L: Cloud Liquid; I: Cloud Ice; S: Snow.
2Distribution width:3 in N(D) = No D¢ ¥ D which is a shape parameter in Gamma distribution describirdjshersion of
615 the distribution.
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Table 2. The statistical comparisohradar reflectivitypbetween NEXRAD and EAMv1

NEXRAD EAMv1
. Standard 95th Sample Standard 95th Sample
Altitude Mean Mean
Deviation Percentile  Numbers Deviation Percentile Numbers
(dBZ) (dBZ)
(dBZ2) (dB2) (dBZ) (dBZ)
2 km 25.1 7.7 32.1 1.7x16¢ 28.7 7.4 35.8 4.1x16
4 km 24.0 7.2 31.6 1.6x16¢ 24.0 6.4 30.2 4.2x10
8 km 19.2 5.2 24.4 7.9x10¢ 15.0 3.9 21.0 1.5x16
11 km 16.6 4.4 21.8 2.2x10 9.8 1.6 12.9 4.1x16G
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650

655
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660

Table3. Changes of the tunable parameters in the sensitivity tests for echo top height.

Parameter Physics Meaning Default Changed Values Impact
NBL restriction The upper limit level of the  Calculated 200 hPa, 70 hPa  No
integral of the mass flux, NBL
moist static energy etc. in
ZM
zmconv_dmpdz ZM entrainment rate in -0.7e3 -1.0e3,-1.0e5 Yes
c
-% CAPE calculation
N
% zmconv_tau Convection adjustment time 1hr 15min, 6 hr No
g scale
8
4] zmconv_c0_Ind Coefficient of 0.007 0.01, 0.002 No
E autoconversion rate in ZM
]
O
zmconv_cape_cin ~ Number of layers allowed 1 5,10 No
for negative CAPE
clubb_ice_deep Assumed ice condensate 16e6 32e6, 8e6 No
radius detrained from ZM
cldfrc_dp1l Convective fraction 0.045 0.01, 0.2 No
s prc_coefl Coefficient of 30500 10000, 675 No
© autoconversion rate in MGz
B
GEJ berg_eff factor Efficiency factor for the 0.1 0.2,0.7 No
% WegenerBergerori
9 Findeisen process
‘©
S: thres_ice_snow Autoconversion size Temperature Maximize at No
o
o threshold from cloud ice to ~ dependent 175e6
p=

sSnow
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Figure List

Comparison of Simulated Radar Reflectivity (dBZ)
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Figure 1: Scatter plots between radareflectivity values simulated by the COSP simulator at 3 GHz @axis) versus those simulated
at 13.6 GHz (left yaxis) and 94 GHz (right yaxis).
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11 May 2016 07:00 UTC 2-km Altitude

(a) GridRad (Original) (b) GridRad (Coarsened) (c) EAMv1
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Figure 2: Examples of (a) original GridRad observation, (b) GridRad mapped over the E3SM modejrid, and (c) the concurrent
model simulation on 2016 May 11, 07:00 UTC, at the-2m altitude.
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The Comparison of Radar Reflectivity Subgrid Distribution

Simulation with Default COSP
Microphysical Assumptions

Simulation with Modified COSP
Microphysical Assumptions
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680 Figure 3: Comparison of radar reflectivity subgrid distribution between NEXRAD observations (red bars) and the simulations (blue
bars) at the vertical levéds of 2 km, 4 km, 8 km, and 11 km. Simulation results in the left and right columns are from the default
microphysics assumptions in COSP and modified COSP microphysics assumptions, respectively.
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Comparison of Simulated Radar Reflectivity
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685 Figure 4: Scatter density plot between radar reflectiviy values from the simulation with the modified microphysics assumptions {y
axis) versus those with the default microphysics assumptions-éxis). The data shown are for April 2014. The dots are color labelled
with their frequency of occurrence.
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700 Figure 5: Plan view of radar reflectivity averaged from NEXRAD observations (a, d, g, j), EAMv1 simulatiorwith the modified
microphysics assumptions in COSRb, e, h, k), as well as their absolute differences (c, f, i, I) at the level ek, 4-km, 8-km, and
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