
Response to Editor 
Thank you very much for the advice to improve the quality of this manuscript. We carefully addressed the 
comments and made corresponding changes to the manuscript.  In this “response to editor” document, we 
provided detailed responses in blue bold as below. 

 
Editor’s comments 
As the only model used in your study is the E3SM model, provide its name and version number 
in the title. (e.g., "by the global mode E3SM (V...)" 
The title of this manuscript has been changed to “Using Radar Observations to Evaluate 3D Radar 
Echo Structure Simulated by the Global Model E3SM Version 1”. 

 

Additionally, note that Github is not a permanent repository. Thus ensure permanent archiving of 
the exact version used for this publication. (e.g., by upload on Zenodo).  
The model source code has been permanently archived in the National Energy Research Scientific 
Computing Canter (NERSC) High Performance Storage System (HPSS) at 
https://portal.nersc.gov/archive/home/w/wang406/www/Publication/Wang2020GMD. This has been 
added to the code and data availability sections in the revised manuscript.  

 
 



Responses to Reviewer #1 
This is a nice paper testing the performance of the NCAR climate model against observations 
from the US weather radar network. My view is this is important and that more climate models 
need to be tested against observations, both for current and recent climate but also studies such 
as this focusing on representation of key processes.  
We thank the reviewer for recognizing our efforts and providing helpful suggestions and 
comments. Our point-by-point responses are provided as below. 

Note the large scale circulation in this model is being nudged towards observations, so that the 
performance being discussed represents an upper bound. It would be interesting to also compare 
the output from an extended period of the model in free running mode as for CMIP and looking 
at the latter part of 20th Century and early 21st century runs so that the forcings are consistent 
with current observations. I suspect the key limitations outlined in the nudged runs will be at 
least as large and possibly greater.  
Free-run simulations could cause a large bias in circulation, especially regional circulation, making 
the comparison with observation in convective systems difficult.  We wanted to start from the 
nudged runs to exclude the large biases from circulation. We agree that further study can be 
extended to free runs.  We have added this clarification in the conclusions: “Note the large-scale 
circulation is nudged towards observations for the simulations in this study, which represents the 
upper bound of model performance. Compared to the nudged simulations, the free running of 
EAMv1 has shown nonnegligible biases in the regional circulation (Sun et al., 2019). With the 
nudged simulations, the large biases in circulation can be excluded so that the performances of 
physics parameterizations in simulating convective systems can be more insightfully understood.”  
We were not able to provide evaluation for a longer period, because “in addition to the restriction 
in the availability of observational data, the high computation cost with the incorporation of COSP 
simulator in simulation and the demand of large data space (14,000 core hours and 1.2 TB data per 
simulation month at hourly output frequency) have hindered the modeling for an extended period.” 

 

The analysis looks at a few metrics including the overall spatial distribution and the vertical 
profiles of reflectivity. This is OK as far as it goes, but I feel further and deeper analysis will 
yield more information on the process limitations in the model. For example, further insights 
would be gained by examining the mean diurnal cycle of convection and how that compares with 
observations over the great Plains. Does the model reproduce the night-time maxima over the 
eastern plains and as a difficult test are propagating modes observed modulating the diurnal 
convective activity (cf. Carbone and Tuttle, J Clim., 2008). Is the spatial distribution of time of 
peak convection at all captured or is it dominated by a morning maxima as convection triggers 
too early in daily heating as occurs in many simulations in the tropics. The diurnal cycle of 
convection is also important for the resulting cloud and radiation climatology of the model.  
The precipitation including the diurnal cycle has been evaluated for EAMv1 (Zheng et al., 2019), 
which showed the model failed to simulate the diurnal variation of precipitation over the central 
United States.  To avoid the redundancy, here we have added a plot for comparing the diurnal cycle 
of column-maximum reflectivity (Fig. 6), which can indicate the intensity of precipitation. The 
following text has been added to the last paragraph of Section 3.3, “As evaluated in Zheng et al. 
(2019), E3SM v1 failed to simulate the diurnal variation of precipitation over the central United 
States. Here we examine the diurnal cycle of column-maximum reflectivity (Fig. 6), which can 



indicate the intensity of precipitation (Carbone and Tuttle, 2008). The observation shows two 
peaks, one in the early morning and the other in the late afternoon. This pattern differs from the 
observation of total precipitation, which only has one nocturnal peak with a smooth transition from 
the minimum at local noon. The difference between the two observed variables is expected, as the 
column-maximum reflectivity most likely represents convective (not stratiform) precipitation, 
which occurs significantly in the early morning and late afternoon. In contrast with the two peaks 
in observed column-maximum reflectivity, the EAMv1 simulation demonstrates a flat diurnal curve 
without any obvious peak, suggesting the model has a difficulty in simulating the convective 
precipitation. 

 

In Sect 3.1, where there is a mean difference in reflectivity. Noting these are linear averages over 
a 100 km area, do you have a feel how much of this is associated with differing convective 
fractions within the grid points, differing fractions of precipitation or differences in the PDF of 
the reflectivities not associated with the convective/precipitating fraction? Have you compared 
convective fraction from the model paramaterisations with observations? Diagnostics looking at 
fractional cover can also aid interpretation and diagnose issues. 
Thanks for the comment. We did not output the convective fraction for model grids, which prevents 
us from looking at the relationship of mean reflectivity with the convective fraction. Since the 
subgrid distributions of cloud and precipitation assumed in the COSP simulator have nothing to do 
with a convective fraction which is calculated by the ZM cumulus parameterization, we think the 
relationship of mean reflectivity with the convective fraction might not mean much. 

In Section 3.3, comparing NEXRAD and subscale distributions – testing maybe could be earlier 
in the paper and is there is a degree of circularity in your argument since you are adjusting the 
sub-grid scale distributions with the observed NEXRAD data and so naturally there is increased 
agreement. Note that the bimodality in the original distributions shown in Fig 4 are not generally 
observed in nature. 
We agree with the reviewer that the structure of the manuscript should be adjusted to avoid 
circularity. Section 3.3 has been moved to the beginning of the results. 

We agree that the bimodality shown in original distribution in the left column of Figure 5 disagree 
with the general observation. However, this was the result from the COSP in the E3SM v1 in which 
cloud microphysical parameters are not aligned with the microphysics scheme used in the host 
model. After the correction, the distribution is more-like a Gamma distribution,  

 

As a minor point, on line L130, using NEXRAD also simplifies the radar scattering calculations 
compared with GPM and TRMM with the 10 cm wavelength radar being close to Rayleigh 
scatter most of the time although the scattering calculations are still complex for ice habits. 
We agree with the reviewer and have added a clarification at the end of Section 2.3, i.e., “For the 
NEXRAD observation, its 10 cm wavelength guarantees Rayleigh scattering for most situations.” 

 



Overall, I think this is a useful study, but would benefit from being taken further. It is clearly 
addressing important issues with climate models and as noted these kind of studies are sorely 
needed. The methods are clearly articulated. 
Thanks.  



Reponses to Reviewer #2 
This paper uses three years of post-processed NEXRAD radar data to assess the performance of 
a recent version of the new E3SM model, using reflectivity simulations. The results are 
interesting, and the presentation of the results is clear. I have a number of comments and 
suggestions to improve the scientific content of the paper, which is a bit on the light side. They 
are all somewhat minor comments for consideration by the authors, except one more major 
comment that should be fully addressed. Therefore, I recommend the paper be accepted with 
minor revisions provided that at least my major comment is addressed.  
Thanks Alain, for your valuable comments to improve the paper. See our point-by-point responses 
as below. 
 
Major comment:  
My main comment is about the use of an 8 dBZ threshold and the implication for echo top height 
conclusions in the paper. There is nothing wrong with using such threshold, but it introduces in 
my opinion a possible misinterpretation of the results regarding the echo top height statistics to 
address the all-important question: does my model reproduces the vertical development of 
convection well, statistically? Comparing echo top heights between observations and models is 
very tricky, because using a threshold in reflectivity implicitly carries the assumption that the 
echo top height is not affected by the threshold when you draw conclusions. Let me give an 
example: say the model is underestimating reflectivities in ice phase by 5 dBZ (in your case it 
seems to be more than that). If you want to learn something about how good the model 
approximates cloud top height statistics (and indirectly your vertical air velocities in deep 
convection), you should actually use 3 dB echo top heights from the model compared to 8 dB 
echo top height in the observations to be fair to the model. In your case, you find a substantial 
underestimation of reflectivities in the upper levels, well, then it's not surprising that you are 
underestimating the 8 dB echo top height by a large amount.  
Thanks for the comment. We agree with the reviewer on the possible caveats with the threshold of 
reflectivity. But this cannot be avoided when comparing with model values over a 100-km grid. We 
have used a lower threshold of 0 dBZ to see how the results are sensitive to the choice of the 
threshold. As shown in Figure R1, we do see an increment of ~1 km in the simulated echo top 
height, however the observation doesn’t change much. As a result, switching to the lower threshold 
of 0 dBZ has a very limited impact on the main conclusion that the model severely underestimates 
the echo top height. 



 
Figure R1. The sensitivity test of changing the minimum reflectivity threshold from 8 dBZ (a, b) to 
0 dBZ (c, d). 
We have added statements to Section 3.3, “From Fig. 5 it is clear that the model severely 
underestimates the echo top height by at least 5 km. To look at how this result is sensitive to the 
threshold reflectivity, we reprocessed the results with the 0 dBZ threshold. By lowering the 
threshold to 0 dBZ, an increment of ~1 km in the vertical extension of CFAD is found in the model, 
but the echo top height of the observation is not changed much. As a result, the choice of threshold 
does not change the conclusion of severe model underestimation in echo top height.” 
 
But what do you learn with this about the deficiencies in the model, especially about the 
convective vertical velocities and convective mass flux assumptions. You could check, maybe. 
There is a very good discussion on this in the Labbouz et al. (2018) paper. This paper also 
tackles similar issues but using different types of comparisons, so I believe it should be quoted in 
your paper (as well as references therein).  
The literature recommended and references therein provided an in-depth discussion of how to 
improve the modeling of convective clouds in GCMs to better match radar retrievals. In this study, 
we are not aiming for that purpose.  We conducted the direct comparison of reflectivity between 
model and radar to identify model biases, and we did some tests by tuning a series of parameters in 
the ZM cumulus scheme and cloud microphysics scheme to see if the large biases in the echo top 
height can be alleviated. The results of this study can provide metrics for evaluating the cumulus 
parameterizations or provide insights for improving the cumulus parameterizations, which would 
be nice follow-on work.  
We have cited the paper and provided a discussion about the further work at the end of Section 4. 
“In addition, the results of this study can provide metrics for evaluating the cumulus 
parameterizations or provide insights for further improving the cumulus parameterizations like 
Labbouz et al. (2018), which can be a follow-on work.” 

 



On another hand if you take the model cloud top height, chances are that the NEXRAD radars 
won't have the sensitivity to detect it, and this time the radar statistics will show lower cloud top 
heights than the model (I think I have seen statistics somewhere showing a systematic ~ 2km 
difference between cloud top height and 0-dBZ echo top heights, but I can't find the reference 
just yet). If it does not though, it would mean that the model really underestimates cloud top 
heights, which would be very interesting.  
We would like to clarify that we only focused on the echo top height and did not look at cloud top 
height. Evaluating echo top height allows us to know that the model failed to simulate the 
occurrence of large ice-phase particles at high levels in deep convective clouds. As the reviewer 
mentioned, NEXRAD won’t have enough sensitivity to detect the cloud top height so we cannot 
compare the observed echo top height with the modeled cloud top height. To ensure a fair 
comparison, the same radar threshold has to be applied. We tested the sensitivity of our results 
with a different threshold (0 dBZ) as shown in Fig. R1, and the model still severely underestimates 
the echo top height.  

 
Specific comments:  
1. The 13.6 GHz versus 3 GHz difference: my only issue with this is that you should make sure 
that you have switched off any Ku-band attenuation correction in COSP. Have you? If so you 
should mention it in the paper.  
We actually turned on the Ku-band attenuation correction in COSP, and we believe this is still a 
valid comparison. First, Rayleigh scattering is satisfied at 13.6 GHz frequency with respect to gases 
and most ice/liquid particles, thus the attenuation correction making no differences for those 
hydrometeor species. Secondly, it is extremely difficult for the global model to simulate ice particles 
with a size large enough to be comparable with the wavelength (~2 cm), which has been discussed in 
the CFAD comparison. Last and the most important, the COSP mimics the satellite view from 
space to the ground, therefore the layer most vulnerable to the attenuation caused by large 
precipitation droplets is close to the ground (i.e., 1 km), which has been excluded from the 
comparison. The clarification has been added, “In the COSP simulator, the 13.6 GHz frequency 
ensures the Rayleigh scattering calculation. Although an attenuation correction has been applied, 
because the COSP mimics the satellite view from space to the ground, the layer below 1-km altitude 
is most vulnerable to attenuation caused by large precipitation particles, which has been excluded 
from the comparison.” 
 
2. Line 139: it does not make sense to say that the minimum detectable reflectivity of NEXRAD 
radars is 0 dBZ. The MDR varies with range (MDR(range)=MDR(1km) + 20 log10(range_km)), 
so you either need to provide the sensitivity at 1 or 10 or 100km (whatever you prefer) or state 
that a hard threshold of 0 dBZ is applied somewhere in the NEXRAD processing. Also, I would 
be surprised if the NEXRAD radars can detect 0 dBZ at 250km range (but I don't have those 
numbers).  
We didn’t directly use the original NEXRAD scan data, but the gridded 3D mosaic data. The 0 dBZ 
should not be the threshold of the NEXRAD but the threshold of the dataset we use. A correction 
has been made in the text, “as shown in previous studies (e.g., Wang et al., 2015, 2016, 2018; Feng et 
al., 2012, 2019), the minimum reflectivity of the 3D mosaic NEXRAD dataset is 0 dBZ (Fig. 1a).” 

 



3. Back to the 8-dBZ threshold: how sensitive are all your results to the use of 8-dB threshold? 
What happens if you take 0 dB (you say NEXRAD can detect 0dB), so why didn't you use 0 dB 
to get closer to the true cloud top? It would make more sense in my opinion.  
See our response to your major comment above.  

 
4. Line 180-181: again, you say here that your most distinct result is about echo top height. But I 
believe it does not teach you anything about potential model deficiencies, including the 
convective vertical velocities and mass flux issues highlighted in Labbouz et al. (2018) and 
others. Your main result is actually that the model is underestimating reflectivities, but may well 
be excellent at producing realistic cloud tops. The only thing is that they have lower reflectivities 
than in reality.  
See our response to the major comment above. 
 
5. Line 194: this statement is likely wrong. I would bet that it simulates reflectivities at heights 
greater than 11km, but they are under your 8 dB threshold due to ice microphysics deficiencies.  
We used a lower threshold 0 dBZ and the conclusion is not affected, as seen from our response to 
your major comment.  
 
6. Line 226: ~5dBZ: it is more like 4 dB and only for Z<25 dBZ, so maybe this statement should 
be modified to reflect this.  
We have modified the statement to “In addition, the modified microphysics assumptions produce 
higher values of reflectivity, in better agreement with observations, and the grid-mean radar 
reflectivities increase by ~4 dBZ (Fig. 3) mainly for values less than 25 dBZ. 

 
7. Line 323: typo "Brodzik"  
The correction has been made.  

 
8. Figure 2 and associated discussion in section 3: comparing mean reflectivities is interesting, 
but only one aspect of what you'd like to get right with a model. The two main other things I 
would personally try to assess is the standard deviation of reflectivity at 100km scale (to check if 
the model reproduces the observed variability even if it does not have the mean right) and the 
95th percentile or even 99th percentile if you have enough samples (to check if the model has 
any skills in forecasting extremes). These two additional things would greatly enhance the 
scientific content and scope of this model evaluation exercise.  
We have added a Table to the manuscript (Table 2) to include the standard deviation and the 95th 
percentile values. The discussion has been added correspondingly in Section 3.2 and the following 
sentence has been added to the Conclusion. “EAMv1 can simulate the variability and extreme value 
of reflectivity at the lower troposphere but significantly underestimate them at high levels.” 
 
References:  



Labbouz, L., Z. Kipling, P. Stier, and A. Protat, 2018: How well can we represent the spectrum 
of convective clouds in a climate model? Journal of the Atmospheric Sciences, 75(5), 1509–
1524.  
Good luck with the review,  
Alain Protat  
Melbourne, 25/06/2020 
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Abstract. The Energy Exascale Earth System Model (E3SM) developed by the Department of Energy has a goal of addressing 10 

challenges in understanding the global water cycle. Success depends on the correct simulation of cloud and precipitation 

elements. However, the lack of appropriate evaluation metrics has hindered the accurate representation of these elements in 

general circulation models. We derive metrics from the three-dimensional data of the ground-based Next-generationNext 

generation radar (NEXRAD) network over the U.S. to evaluate both horizontal and vertical structures of precipitation elements. 

We coarsened the resolution of the radar observations to be consistent with the model resolution and improved the coupling 15 

of the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) and E3SM Atmospheric Model 

Version 1 (EAMv1) to obtain the best possible model output for comparison with the observations. Three warm seasons (2014-

2016) of EAMv1 simulations of 3D radar reflectivity features at an hourly scale are evaluated. A general agreement in domain-

mean radar reflectivity intensity is found between EAMv1 and NEXRAD below 4 km altitude; however, the model 

underestimates reflectivity over the central United States, which suggests that the model does not capture the mesoscale 20 

convective systems that produce much of precipitation in that region. The shape of the model estimated histogram of subgrid-

scalesubgrid scale reflectivity is improved by correcting the microphysical assumptions in COSP. The model severely 

underestimates radar reflectivity at upper levels—the simulated echo top height is about 5 km lower than in observations—

and this result is not changed by tuning any single physics parameter. 

1 Introduction 25 

Clouds and precipitation play a major role in Earth’s budgets of energy, water, and momentum. However, the correct 

simulation of 3D structures of clouds and precipitation has been challenging in general circulation models (GCMs) (Trenberth 

et al., 2007; Randall et al., 2007; Eden and Widmann, 2012), partially because model grid spacings generally do not adequately 

resolve the cloud-structure details important to these budgets. In addition, the lack of appropriate evaluation metrics also 

hinders the evaluation of GCMs. Over the continental U.S., the detailed 3D radar reflectivity field (indicating the 3D 30 
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distribution of precipitation particles) is observed by the ground-based Next-GenerationNext Generation Radar (NEXRAD) 

network of S-band weather radars (Zhang et al., 2011 and 2015). In this study, we use the mosaic of NEXRAD observations 

called Gridded Radar Data (GridRad) developed by Homeyer and Bowman (2017), which have a horizontal resolution of 0.02° 

(regridded to 4 km in this study), a vertical resolution of 1 km (24 levels), and an update cycle of 1 hour. In order to compare 

these data appropriately with the output of the global model used here, we further coarsen the horizontal resolution, as described 35 

in Section 2. 

The Energy Exascale Earth System Model (E3SM) is an ongoing effort of the Department of Energy (DOE) to advance the 

next generationnext-generation of climate modeling (Bader et al., 2014). Version 1 of the E3SM Atmosphere Model (EAMv1) 

is a descendent of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 

(CAM5.3; Neale et al., 2012). However, it has evolved substantially in coding, performance, resolution, physical processes, 40 

testing and development procedures (Rasch et al., 2019). Previous model evaluations has have focused on the long-term 

climatological properties of certain cloud fields, surface precipitation, and water conservation on the global scale (e.g., Qian 

et al., 2018; Xie et al., 2018; Zhang et al., 2018; Lin et al., 2019). Evaluations of the vertical structures of cloud and precipitation 

elements have used vertically pointing radar observations obtained during field campaigns (Zhang et al., 2018; Zhang et al., 

2019). However, these tests lacked evaluation of fully 3D cloud and precipitation structure over large regions of the globe and 45 

over long time periods. 

For this study, we have built data processing techniques to evaluate EAMv1 simulation of the 3D radar reflectivity field at its 

default setting of 1° grid spacing and 72 vertical layers at an hourly time scale. Our goal is to provide a comprehensive 

evaluation of both horizontal pattern and vertical structure of cloud and precipitation. We use radar observations obtained from 

the NEXRAD over the CONUS for the three years (2014-2016). In order to directly compare the model results with NEXRAD, 50 

we have implemented and improved the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator 

Package (COSP) (Bodas-Salcedo, et al., 2011) into EAMv1. We restrict the evaluation to the warm season (i.e., April to 

September). Over the CONUS, warm-season is dominated by convective processes, which are very different from the more 

widespread frontal cloud systems of cold-season precipitation. As discussed by Iguchi et al. (2018), precipitating ice particles 

have a large variation in habits and scattering properties, and the effect of non-Rayleigh scattering and multiple scattering by 55 

large precipitating ice particles could introduce large uncertainty into simulating the cold-season radar reflectivity field. To 

avoid this uncertainty, we examine only the warm season of the three years from 2014 to 2016.  

This paper is organized as follows: Section 2 describes the model, the GridRad dataset, the COSP simulator, and the step-by-

step methodology of data processing to account for differences between the modeledmodelled and observed datasets, 

specifically (1) horizontal and vertical resolutions of EAMv1 (1°, 72 vertical levels) and NEXRAD (4 km horizontally, 1 km 60 

vertically) and (2) minimum detectable limits between the model and NEXRAD. Section 3 presents the model evaluation 

results and tests of the sensitivity to physics parameters. Section 4 provides synthesis and conclusions. 
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2 Methodology 

2.1 EAMv1 Description and Configuration 

EAMv1’s dynamics core and physics parameterizations are described in detail by Rasch et al. (2019). The continuous Galerkin 65 

spectral finite element method solves the primitive equations on a cubed‐sphere grid (Dennis et al., 2012; Taylor & Fournier, 

2010). Tracer transport on the cubed sphere is handled using a variant of the semi‐Lagrangian vertical coordinate system of 

Lin (2004). The method locally conserves air mass, trace constituent mass, and moist total energy (Taylor, 2011). Turbulence, 

shallow cumulus clouds, and cloud macrophysics are parameterized with the Cloud Layers Unified By Binormals (CLUBB) 

parameterization (Golaz et al., 2002; Larson, 2017). Deep convection is based upon the formulation originally described in 70 

Zhang and McFarlane (1995, hereafter ZM), with modifications by Neale et al. (2008) and Richter and Rasch (2008). 

Stratiform clouds are represented with the “Morrison and Gettelman version 2” (MG2) two‐moment bulk microphysics 

parameterization (Gettelman and Morrison, 2015). Aerosol microphysics and interactions with stratiform clouds are treated 

with an updated and improved version of the four‐mode version of the Modal Aerosol Module (MAM4; Liu et al., 2016; Wang 

et al., 2020).  75 

The EAMv1 used in this study has 30 spectral elements (ne30), which corresponds to approximately 1° horizontal grid spacing, 

and the total number of grid columns is 48,602. Vertically, there are 72 layers using and the pressure-based terrain-following 

coordinate is used. The simulation is run for the time period from 1 January 2014 to 1 October 2016. We use a dynamic 

timestep of 5 min and a cloud microphysics timestep of 30 min. The large-scale circulation in the simulation is constrained 

using the nudging technique (Zhang et al., 2014; Ma et al., 2015; Lin et al., 2016), so that the model simulations can be 80 

constrained by realistic large-scale forcing. Specifically, horizontal winds (U, V components) are nudged towards the Modern-

Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data (Gelaro, et al., 2017) with a 

relaxation time scale of 6 hours. Nudging is applied to all grid boxes at each time step, with the nudging tendency calculated 

using the model state and the linearly-interpolated MERRA2 data (Sun et al., 2019).   

To facilitate the comparison with observations, model outputs are regridded to the geographic coordinate system with a 85 

horizontal grid spacing of 100 km, and the vertical coordinate is converted to the above mean surface level height in meters. 

By default, all the regridding processes in this study are based on the Earth System Modeling Framework (ESMF) Python 

Regridding Interface (https://www.earthsystemcog.org/projects/esmpy/) using bilinear interpolation. 

2.2 COSP Radar Simulator 

The retrieved spaceborne satellites and ground-based radar products such as cloud water content, and effective particle size 90 

(e.g., Randel et al., 1996; Wang et al., 2015; Tian et al., 2016; Um et al., 2018) are often treated as the ground-truth for model 

evaluation (e.g., Fan et al., 2017; Han et al., 2019). However, the retrieved products often have large uncertainty (Stephens 

and Kummerow, 2007). To allow the comparison of model results with direct measurements form 3D scanning radars (ground- 

based or satellite-borne), the CFMIP Observation Simulator Package (COSP) was developed for use in GCMs (Bodas-Salcedo 
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et al., 2011). Instead of using retrieved products to evaluate the model simulation, COSP converts the model output into pseudo-95 

observations using forward calculation (Bodas-Salcedo et al., 2011; Swales et al., 2018; Zhang et al., 2010). 

The COSP consists of three steps, as detailed in Zhang et al. (2010). The first step is to generate a subgrid‐scale distribution 

of cloud and precipitation, which is done by using the Subgrid Cloud Overlap Profile Sampler (SCOPS; Klein and Jakob, 

1999; Webb et al., 2001) and SCOPS for precipitation (SCOPS_PREC), respectively. Each GCM grid box is divided into 50 

subcolumns in this study. Detailed description of SCOPS and SCOPS_PREC can be found in Zhang et al. (2010). Then, the 100 

radar signals are calculated by the QuickBeam code (Haynes and Stephens, 2007) using the column distribution of cloud and 

precipitation. Finally, the grid box mean radar reflectivity is calculated through the method of linear averaging (i.e., the 

reflectivity values [in dBZ] are converted to the Z values [mm6 m-3] to calculate the mean Z, then mean Z is converted back to 

the dBZ). In addition to averaging, all the processing of radar reflectivity data from model and NEXRAD in this study utilizes 

the linearized Z values, including horizontal averaging, vertical interpolation, calculation and comparison of mean values, etc. 105 

The COSP version 1.4 used in this study has no scientific difference from version 2.0 (Song et al., 2018, Swales et al., 2018). 

The most important change we made was to modify the microphysics assumptions used for the radar reflectivity calculation 

regarding hydrometeor density, size distribution, etc., making those assumptions consistent with those used in the MG2 cloud 

microphysics scheme that is used in E3SM. The detailed documentation of those changes is in Table 1. We use a horizontally 

homogeneous cloud condensate distribution within the model grid element, and maximum-random overlapping scheme for 110 

cloud occurrence (Hillman et al., 2018). 

2.3 NEXRAD Observations 

The NEXRAD network consists of 159 S-band (3 GHz) Doppler radars, which form a dense observational network nearly 

covering the CONUS. We use the GridRad mosaic product of Homeyer and Bowman (2017), which combines all NEXRAD 

radar data covering the region 155°W – 69°W, 25°N – 49°N. To compare the GridRad data to the E3SM model fields, the 115 

radar frequency in the COSP was set to 13.6 GHz, consistent with the Global Precipitation Measurement (GPM) Ku-band 

radar, since we originally aimed at evaluating the E3SM simulation with GPM data. However, due to the high detectable 

threshold of 13 dBZ, low sampling frequency (4-7 overpasses over CONUS per day), and the narrow swath width (245 km) 

for each overpass, GPM data within the three-year period (2014-2016) have a significant under-sampling issue. That is, the 

GPM sample sizes over 1° model grid boxes are generally too small to robustly represent the grid element mean value. 120 

Therefore, we decided not to use GPM data in this study. As GPM operates over the whole earth and is anticipated to run for 

a long-time period, it will likely be a very useful dataset to evaluate the coarse-resolution global model in the future.  

The GPM radar frequency is higher than the NEXRAD (13.6 GHz vs. 3 GHz). Based on our previous study that quantitatively 

evaluated the coincident observations from NEXRAD and GPM over the CONUS, we found the 3D radar reflectivity fields 

obtained from the two independent platforms are highly consistent with each other after proper smoothing of GPM data in the 125 

vertical to mimic the temporal averaging used in the GridRad processing of NEXRAD data (Wang et al., 2019b). For the 

NEXRAD observation, its 10 cm wavelength guarantees Rayleigh scattering for most situations. In the COSP simulator, the 
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13.6 GHz frequency ensures the Rayleigh scattering calculation. Although an attenuation correction has been applied, because 

the COSP mimics the satellite view from space to the ground, the layer below 1-km altitude is most vulnerable to attenuation 

caused by large precipitation particles, which has been excluded from the comparison. In this study, biases caused by the 130 

temporal mismatch are minimal at the horizontal resolution of 1° (~100 km), we nevertheless perform the Gaussian smoothing 

of GridRad data to match the model time step (30 min) in the comparison. 

2.4 Mapping the Radar Observations to the Model Grid 

As shown in previous studies (e.g., Wang et al., 2015, 2016, 2018; Feng et al., 2012, 2019), the minimum reflectivity of the 

3D mosaic NEXRAD dataset is 0 dBZ (Fig. 1a). However, the model grid-mean reflectivity can be as low as -100 dBZ. 135 

Because our focus is on significantly precipitating clouds, the minimum threshold of reflectivity at 1° grid scale is set to be 8 

dBZ (corresponding to rain rate ≥ 0.1 mm hr-1). We also did the test with 0 dBZ to look at the sensitivity of our key results to 

the choice of the threshold value. Thus, after coarsening the 4-km GridRad data to a 1° model grid element, only the grid 

elements with a mean value larger than 8 dBZ are taken into account in both observations (Fig. 1b) and simulation (Fig. 1c). 

In the vertical direction, the EAMv1-simulated radar reflectivity field (72 vertical levels, hybrid coordinate) is interpolated to 140 

the levels of GridRad (vertical resolution of 1 km). The simulation data are saved hourly, consistent with the hourly GridRad 

data. 

3 Results 

After the horizontal averaging, vertical interpolation, and truncation at the identified minimum threshold of 8 dBZ, the 3D 

radar reflectivity fields obtained from GridRad and the model simulation become comparable. The EAMv1 simulated 145 

reflectivity is evaluated from the perspectives of subgrid distribution, horizontal pattern, and vertical distribution. 

3.1 Comparison ofon Subgrid Distribution of Reflectivity 

The horizontal resolution difference between GCMs (∼100 km) and NEXRAD observations (4 km) presents a challenge for 

testing the model simulated radar reflectivity. To mimic the observations, COSP divides the grid-mean cloud and precipitation 

properties into subcolumns (Pincus et al., 2006) that statistically downscale the data in a way that should be consistent with 150 

observations. The way this is done in COSP is discussed by Zhang et al. (2010) and Hillman et al. (2018). In this section, we 

examine whether the subgrid reflectivity distribution generated by COSP is consistent with the observed subgrid reflectivity 

distribution shown by the NEXRAD observations. 

In EAMv1, 50 subcolumns are used for calculating the mean radar reflectivity for a model grid box. There are 625 pixels inside 

each 1° grid for NEXRAD data to provide a probability density function (PDF) of observed reflectivity within the box. Fig. 2 155 

compares the simulated subgrid reflectivity distribution to the NEXRAD distribution based on all the GridRad samples 

combined for the 3-year period at each individual level. The results for the default microphysics assumptions in COSP, which 
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are for a single-moment scheme, produce a bi-modal distribution at and below 8-km altitudes (blue histograms in the left-hand 

column of Fig. 2). The bimodality is significantly different from the observed histogram, which forms a smooth gamma 

distribution. Song et al. (2018) also found bimodal distributions when the COSP was implemented in the CAM with the original 160 

microphysics assumptions, which are clearly unlike real observed radar reflectivity distributions.  

Our modification of the microphysical assumptions in the COSP (right -hand column of Fig. 2) greatly reduces the unrealistic 

bimodality. In addition, the modified microphysical assumptions produce higher values of reflectivity, in better agreement 

with observations, and the grid-mean radar reflectivities increase by ~4 dBZ (Fig. 3) mainly for values less than 25 dBZ. The 

improvement in the subgrid distribution and grid-mean reflectivity brought by the change of microphysics assumptions 165 

indicates the necessity of microphysical consistency between COSP and the host model. It should be noted that the simulated 

radar reflectivity and its subgrid distribution are sensitive to the overlap assumption and the distribution function of 

condensates that are set in COSP (Hillman et al., 2018). Our results are from the default setup of these aspects of COSP. It is 

not the purpose of this study to test those assumptions. 

3.2 Comparison of Horizontal Patterns 170 

Now we compare the temporal mean reflectivity through the entire study period between the NEXRAD observation (Figs. 4a, 

4d, 4g and 4j) and EAMv1 simulation (Figs. 4b, 4e, 4h, and 4k) with the consistent microphysical assumptions between COSP 

and the host model at the vertical levels of 2, 4, 8, and 11 km. The mean, standard deviation, and 95th percentile values between 

the model and NEXRAD are provided in Table 2. At 2-km altitude, the EAMv1 estimates higher reflectivity than the NEXRAD 

observations (Figs. 4a-b) except over the central United States. The overall mean value is 28.7 dBZ for EAMv1 and 25.1 dBZ 175 

for NEXRAD. The negative bias for the model is in the region between the Rocky Mountains and Mississippi basin (Fig. 4c), 

where precipitation is heavily contributed by Mesoscale Convective Systems (MCSs). Those MCSs propagate eastward from 

their initiation over or just east of the Rocky Mountains, go through upscale growth, and finally dissipate in the eastern part of 

the Mississippi Basin (Yang et al. 2017; Feng et al., 2018, 2019). The standard deviations of the two individual datasets are 

quite similar, and EAMv1 generates a higher 95th percentile value than the observation, indicating the model overestimates 180 

the extremelyextreme high values at the lower troposphere. In addition, those simulated extreme values are evenly distributed 

across the entire domain, which failsfail to mimic the spatial footprint of MCSs as depicted by the NEXRAD data. 

At 4-km altitude (Figs. 4d-e), the model’s underestimation over the central U.S. becomes larger compared to the 2-km altitude 

and the overestimation at the foothills of Rocky Mountains also become larger. The model also overestimates reflectivity in 

the east region of the domain. These results indicate that the E3SM simulation fails to capture the observed spatial variability. 185 

The domain mean value between the model and observations is the same (24.0 dBZ) as a consequence of the offset between 

the negative and positive biases in different areas. The standard deviation and 95th percentile values are comparable with the 

observations as well. At 8 km, underestimation of the reflectivity by the model occurs over almost the entire domain (Fig. 4i), 

with a domain mean of 15.0 dBZ, much lower than 19.2 dBZ in the NEXRAD data. Meanwhile, the modeledmodelled standard 

deviation and the extreme values are smaller, indicating the model has a difficulty to capture the observed verifiability. At 11-190 
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km altitude, the EAMv1 severely underestimates the reflectivity values compared to NEXRAD (Figs. 4j-k), with a mean value 

of 9.8 dBZ for EAMv1 while 16.6 dBZ for NEXRAD. The negative bias is generally more than 7.5 dBZ in the central United 

States (Fig. 4l), and the model severely underestimates the standard deviation and extreme reflectivity.  

Clearly, above 4 km, the model’s negative biases increase with height as shown from Figs. 4f, 4i, and 4l, manifested in the 

central United States. There is no valid reflectivity value simulated by EAMv1 above 12-km altitude, where NEXRAD still 195 

shows reflectivity values up to 15.7 dBZ, indicating that the simulated deep convection in the warm season is not deep enough, 

a problem that is further examined in the following section. 

3.3 Comparison of Vertical Distribution of Radar Reflectivity 

To quantitatively examine the simulated vertical distribution of radar reflectivity, contoured frequency by altitude diagrams 

(CFADs, Yuter and Houze 1995) are generated from NEXRAD and EAMv1 and compared in Fig. 5. The CFADs represent 200 

the frequency of occurrence of reflectivity in a coordinate system having reflectivity bins (interval of 1 dBZ) on the x-axis and 

altitude bins (interval of 1 km) on the y-axis. The frequency within each bin box is calculated as the number of valid samples 

it contains divided by the total sample number of all reflectivity bins at all levels, meaning that the integrated value of all 

frequencies in each plot is 100%.  

Fig. 5 shows the CFADs for both NEXRAD observations (Figs. 5a, d, g, j, m, and p) and the EAMv1 simulation (Figs. 5b, e, 205 

h, k, n, and q) for each month from April to September combined over 2014-2016. The most distinct difference between the 

model and observations is the simulated echo top height. The echo top height in the simulation generally is at 11 km, at least 

5 km lower than the 16 km top seen in the observations. At levels below 4 km, the NEXRAD data show a high frequency core 

(> 3.2%) concentrated between 8-25 dBZ, whereas the simulated high frequency core is at 13-28 dBZ. For the reflectivity >35 

dBZ, simulation has a higher probability of occurrence than the NEXRAD observations. The box-whisker plots (Figs. 5c, f, i, 210 

l, o, and r) represent the same results in a different way, where the normalization is conducted at each level rather than against 

the entire dataset at all levels. Below 4 km, the percentile values are consistent between model and observations except for the 

1-km altitude where the model overestimates the reflectivity. The simulated 25-75th percentiles are located at the reflectivity 

values of 15-27 dBZ at 1-km altitude, which is higher than the NEXRAD observation (12 - 28 dBZ). As noted in the discussion 

of Fig. 4, the consistency at low-levels (e.g., 2 km) between model and observations is mainly due to the offset of negative and 215 

positive biases at different regions of the domain. Moreover, EAMv1 underestimates the frequency of echoes ≤ 15 dBZ and 

overestimatesoverestimate it for echoes between 15 and 30 dBZ, which causes the higher median values in the model. From 4 

km upward, the model-observation differences become much larger than at low levels, consistent with the result shown in Fig. 

4. The underestimation of the 95th percentile value increases from 10 dBZ at 7 km to more than 20 dBZ at 11 km. Above 11 

km, the model completely fails to simulate any reflectivity. 220 

From Fig. 5 it is clear that the model severely underestimates the echo top height by at least 5 km. To look at how this result 

is sensitive to the threshold reflectivity, we reprocessed the results with the 0 dBZ threshold. By lowering the threshold to 0 

dBZ, an increment of ~1 km in the vertical extension of CFAD is found in the model, but the echo top height of the observation 
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is not changed much. As a result, the choice of threshold does not change the conclusion of severe model underestimation in 

echo top height.  225 

The CFADs of NEXRAD observations vary from month to month. For example, the echo top height is at 15 km in April, 

which increases to 16 km in May, then reaches 17 km in June and July, and finally decreases to 15 km in September. Similarly, 

the 0.6%-0.8% contour level in the observations stops at 9-km altitude in April, but extends to 10 km in May and reaches 11 

km in June. It increases to the highest at 11.5 km in July and August, then decreases to 11 km in September. This seasonality 

follows the seasonal variation of intensity of convection (Wang et al., 2019a), which is not captured in the EAMv1 simulation 230 

(Figs. 5b, e, h, k, n, and q).  

The severe underestimation of the echo top height by EAMv1 has been reported for simulation of tropical convection with the 

Community Atmosphere Model version 5 (CAM5) in a recent study (Wang and Zhang, 2019). Although EAMv1 is different 

from CAM5 in many aspects such as vertical resolution and dynamical core, they share the same Zhang-McFarlane (ZM) 

cumulus parameterization (Zhang and McFarlane, 1995) for representing deep convection. Wang and Zhang (2019) found the 235 

cloud top height of tropical convection is underestimated by more than 2 km, which can be alleviated by the adjustment of the 

ZM scheme. We have performed a series of sensitivity tests by changing physical parameters in ZM and cloud microphysics 

schemes to explore the possibility of model improvement in echo top height. These tests are detailed in Section 3.4. 

As evaluated in Zheng et al. (2019), E3SM v1 failed to simulate the diurnal variation of precipitation over the central United 

States. Here we examine the diurnal cycle of column-maximum reflectivity (Fig. 6), which can indicate the intensity of 240 

precipitation (Carbone and Tuttle, 2008). The observation shows two peaks, one in the early morning and the other in the late 

afternoon. This pattern differs from the observation of total precipitation, which only has one nocturnal peak with a smooth 

transition from the minimum at local noon. The difference between the two observed variables is expected, as the column-

maximum reflectivity most likely represents convective (not stratiform) precipitation, which occurs significantly in the early 

morning and late afternoon. In contrast with the two peaks in observed column-maximum reflectivity, the EAMv1 simulation 245 

demonstrates a flat diurnal curve without any obvious peak, suggesting the model has a difficulty of simulating the convective 

precipitation. Xie et al. (2019) improved the diurnal cycle of convectionprecipitation in E3SM v1 recently by modifying the 

convective trigger function in the ZM scheme. It will be interesting to see if it is able tocan simulate the double-peaks in 

observed column-maximum reflectivity in the future.  

3.4 Sensitivity of Simulated Echo Top Height Tunable Parameters of the Global Model 250 

Different from the model evaluation of cloud top height (e.g., Xie et al., 2018), evaluation of radar echo top height indicates 

whether the processes internal to the cloud are producing precipitation correctly. To examine if any model parameters in the 

cumulus parameterization ZM scheme and/or MG2 microphysics parameterization scheme can significantly influence the echo 

top height, we conducted a series of sensitivity tests for the tunable parameters as listed in Table 3. Each test is based on the 

default setup for all other parameters. 255 
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Wang and Zhang (2018) suggested that the restriction of neutral buoyancy level (NBL) from the dilute CAPE calculation 

(Neale et al. 2008) can limit the depth of deep convection in ZM. When the convective plume reaches the NBL, all mass flux 

is detrained even if the updraft is still positively buoyant from the cloud model calculation (Zhang, 2009). To allow deep 

convection to grow deeper, we performed a sensitivity test following Wang and Zhang (2018), where the NBL determined in 

the dilute CAPE calculation is removed, and the upper limit of the integrals of mass flux, moist static energy, and other cloud 260 

properties is set to be very high (70 hPa in this study). After the modification, the convective cloud top height increases as 

shown in Wang and Zhang (2018), however there is no change in the radar echo top height, i.e., the maximum altitude at which 

precipitation-sized particles occur. A possible reason for the limited effect on echo top height is that the cloud ice content is 

too low in midlatitude continental convection without convective microphysics parameterization (Song et al., 2012), which 

cannot be improved by merely increasing the NBL. 265 

Other parameters that we tested in the ZM cumulus parameterization with the dilute CAPE calculation include convective 

entrainment rate (zmconv_dmpdz), the convection adjustment time scale (zmconv_tau), the coefficient of autoconversion rate 

(zmconv_c0_lnd), ice particle size (clubb_ice_deep), the convective fraction (cldfrc_dp), and the number of layers allowed for 

negative CAPE (zmconv_cape_cin). The overall conclusion is that separately tuning any of these parameters does not improve 

the simulation of echo top height. For the convective entrainment rate (zmconv_dmpdz), we decreased its value from -0.7×10-270 
3 to -1.0×10-5, which means that the entrainment in convection is almost turned off, similar to the undiluted CAPE assumption. 

Results show the simulated echo top height is increased by 500-800 m in the EAMv1-test simulation, and the reflectivity span 

in the lower troposphere is narrowed by 1-2 dBZ, which is closer to the observations (Fig. 7). This result is consistent with the 

previous studies that tested the undiluted CAPE assumption as well (Neale et al., 2008; Hannah and Maloney, 2014). Moreover, 

its corresponding diurnal cycle of column-maximum reflectivity is also shown in Fig. 6, whose mean value is closer to the 275 

observation but still misses the nocturnal peaks. However, that assumption is unrealistic given the fact that the undiluted 

CAPE-based closure strongly deviated from observations (Zhang, 2009). In summary, changing any single parameter alone in 

the ZM scheme does not improve the simulation of echo top height.    

The MG2 cloud microphysics parameterization in E3SM determines only large-scale cloud and precipitation (i.e., those 

resolved by model resolution). Changes in the MG2 cloud microphysics parameterization could affect the parameterized 280 

cumulus cloud and precipitation by changing the large-scale forcing on which cumulus clouds are calculated. By decreasing 

the MG2 autoconversion rate (prc_coef1), ideally the depletion of moisture within the atmospheric column is slowed down 

and more water vapor can be supplied to cumulus convection. Results show, however, that the echo top height is not affected 

by changing the MG2 assumptions. Attempts of accelerating the Wegener–Bergeron–Findeisen process in MG2 to increase 

the conversion of liquid to snow/ice, as well as using lower size threshold for the ice-to-snow conversion have also proven to 285 

be unimportant to the simulation of echo top height. 

Thus, echo top height proves to be insensitive to the available tunable parameters. Setting the value of convective entrainment 

rate to be unrealistically low only gains 500-800 m increment in echo top height. Given that the model underestimation is more 

than 5 km, the increment is insufficient to solve the discrepancy. Note that each individual tunable parameter was changed 
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without retuning the model to keep the top-of-atmosphere radiative energy budget balanced and the model performance 290 

optimized. Thus, some expected improvement in echo top height can be subsequently offset by other untuned processes. 

Instead of providing quantification of how the model responds to the changes of parameters, we emphasize the trend of change 

in echo top height, in which the simulation of the echo top height cannot be significantly improved by tuning only one of those 

physical parameters. Further investigation of combinations of two and more parameters is a topic for a future study. 

4 Conclusions and Discussion 295 

We have evaluated the model performance of E3SM EAMv1 in simulating the warm-season 3D radar reflectivity at an hourly 

scale over the North American sector of the globe by comparing the model results to the 3D distribution of radar reflectivity 

observed by NEXRAD radars over the CONUS during April-September of 2014-2016. The evaluation is achieved by 

improving the COSP radar simulator and employing special data processing techniques to ensure a fair comparison between 

model and observations that are different in sampling frequency, horizontal-vertical resolutions, and minimum detection limit. 300 

We find that: 

1. With default microphysics assumptions in COSP, the simulated subgrid reflectivity PDF is bimodal, in disagreement 

with radar observations which show that the subgrid reflectivity follows a gamma distribution. Changing the 

microphysics assumptions in COSP to be consistent with the MG2 microphysics parameterization used in E3SM, the 

bimodality of the subgrid distribution is nearly eliminated. It is therefore important to maintain consistency of 305 

microphysics assumptions between the host model and radar-echo simulator attached to the model. 

2. Below the 4-km altitude, the simulated domain-mean reflectivities by EAMv1 agree with NEXRAD observations in 

the magnitude, but the simulation fails to capture the spatial variability. The model underestimates the reflectivity in 

the central U.S. between the Rocky Mountains and Mississippi River. This pattern suggests that the model is not 

adequately representing the mesoscale convective systems that dominate warm- season rainfall in that region. The 310 

model overestimates the reflectivity outside this region.  

3. Above 4-km altitude, EAMv1 shows a severe underestimation of the domain-mean reflectivity, and the negative bias 

increases with altitude up to 11 km, above which model fails to simulate any valid reflectivity at all, whereas 

NEXRAD observations show strong radar echoes up to 16 km.  

4. EAMv1 is able tocan simulate the variability and extreme value of reflectivity at the lower troposphere but 315 

significantly underestimate them at high levels.  

The NEXRAD observations used in this study reveal that EAMv1 fails to simulate the occurrence of large ice-phase particles 

at high levels in deep convective clouds. In addition, the conclusion of “simulated deep convection is not deep enough” also 

echoes the dry bias seen in GCMs as manifested in underestimations of total precipitation and individually large rain rates over 

the CONUS (e.g., Zheng et al., 2019). We have now shown that this model deficiency cannot be significantly improved by 320 

tuning a single value of the physical parameters in the ZM cumulus and MG2 cloud microphysics schemes. Note the large-
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scale circulation is nudged towards observations for the simulations in this study, which represents the upper bound of model 

performance. Compared to the nudged simulations, the free running of EAMv1 has shown nonnegligible biases in the regional 

circulation (Sun et al., 2019). With the nudged simulations, the large biases in circulation can be excluded so that the 

performances of physics parameterizations in simulating convective systems can be more insightfully understood. 325 

The data processing techniques and metrics we have developed in this study can be used globally for model evaluation when 

satellite-based radars provide global 3D radar observations. The GPM radar observations will eventually be able to provide 

global radar echo coverage (Houze et al., 2019), whose data have been proven consistent with NEXRAD (Wang et al., 2019b). 

However, as discussed in Section 2, the sampling by GPM at 1° model grid elements for only three years of GPM data is 

insufficient for obtaining robust grid-mean values to compare with the EAMv1 simulation. In addition to the restriction in the 330 

availability of observational data, the high computation cost with the incorporation of COSP simulator in simulation and the 

demand of large data space (14,000 core hours and 1.2 TB data per simulation month at hourly output frequency) have hindered 

the modelingmodelling for an extended period. When GPM has run for a much longer time period and more powerful 

computational resources become available, it will be a very useful study to evaluate the long-term model simulations at the 

global scale. In addition, the results of this study can provide metrics for evaluating the cumulus parameterizations or provide 335 

insights for further improving the cumulus parameterizations like Labbouz et al. (2018), which can be a follow-on work. 
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 575 

Table List 

Table 1. Modification of the hydrometeor assumptions used in COSP. 

Hydrometeor 

Type1 

Distribution Type Density (kg m-3) 
Particle Mean 

Diameter (μm) 

Distribution Width 

(Unitless) 

Default Modified Default Modified Default Modified Default Modified 

LSL Lognormal Gamma   6 12 0.3 0 

CVL Lognormal Gamma   6 12 0.3 0 

LSI   110.8×D2.91 500   2 0 

CVI   110.8×D2.91 500   2 0 

LSS   100 250     

CVS   100 250     

1LS: Large-Scale; CV: Convective; L: Cloud Liquid; I: Cloud Ice; S: Snow.  
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 595 

 

Table 2. The statistical comparison of radar reflectivity between NEXRAD and EAMv1 

Altitude 

NEXRAD EAMv1 

Mean (dBZ) 

Standard 

Deviation 

(dBZ) 

95th 

Percentile 

(dBZ) 

Mean (dBZ) 

Standard 

Deviation 

(dBZ) 

95th 

Percentile 

(dBZ) 

2 km 25.1 7.7 32.1 28.7 7.4 35.8 

4 km 24.0 7.2 31.6 24.0 6.4 30.2 

8 km 19.2 5.2 24.4 15.0 3.9 21.0 

11 km 16.6 4.4 21.8 9.8 1.6 12.9 
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Table 3. Changes of the tunable parameters in the sensitivity tests for echo top height. 

 Parameter Physics Meaning Default Changed Values Impact 

Cu
m

ul
us

 p
ar

am
et

er
iz

at
io

n  

NBL restriction The upper limit level of the 

integral of the mass flux, 

moist static energy etc. in 

ZM  

Calculated 

NBL 

200 hPa, 70 hPa  No 

zmconv_dmpdz ZM entrainment rate in 

CAPE calculation 

-0.7e-3 -1.0e-3, -1.0e-5 Yes  

zmconv_tau Convection adjustment time 

scale 

1 hr 15min, 6 hr No 

zmconv_c0_lnd Coefficient of 

autoconversion rate in ZM 

0.007 0.01, 0.002 No 

zmconv_cape_cin Number of layers allowed 

for negative CAPE 

1 5, 10 No 

clubb_ice_deep Assumed ice condensate 

radius detrained from ZM 

16e-6 32e-6, 8e-6 No 

cldfrc_dp1 Convective fraction 0.045 0.01, 0.2 No 

M
ic

ro
ph

ys
ic

s p
ar

am
et

er
iz

at
io

n 
 prc_coef1 Coefficient of 

autoconversion rate in MG2 

30500 10000, 675 No 

berg_eff_factor Efficiency factor for the 

Wegener–Bergeron–

Findeisen process 

0.1 0.2, 0.7 No 

thres_ice_snow Autoconversion size 

threshold from cloud ice to 

snow 

Temperature 

dependent 

Maximize at 

175e-6 

No 
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Figure List 

 
Figure 1: Examples of (a) original GridRad observation, (b) GridRad mapped over the E3SM model grid, and (c) the concurrent 
model simulation on 2016 May 11, 07:00 UTC, at the 2-km altitude. 
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Figure 2: Comparison of radar reflectivity subgrid distribution between NEXRAD observations (red bars) and the simulations (blue 635 
bars) at the vertical levels of 2 km, 4 km, 8 km, and 11 km. Simulation results in the left and right columns are from the default 
microphysics assumptions in COSP and modified COSP microphysics assumptions, respectively. 
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Figure 3: Scatter density plot between radar reflectivity values from the simulation with the modified microphysics assumptions (y-640 
axis) versus those with the default microphysics assumptions (x-axis). The data shown are for April 2014. The dots are color 
labeledlabelled with their frequency of occurrence. 
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Figure 4: Plan view of radar reflectivity averaged from NEXRAD observations (a, d, g, j), EAMv1 simulation with the modified 655 
microphysics assumptions in COSP (b, e, h, k), as well as their absolute differences (c, f, i, l) at the level of 2-km, 4-km, 8-km, and 
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11-km altitude. The NEXRAD data are spatially averaged from native resolution to the model grid over 2014-2016 April-September 
period, and the simulation isare vertically interpolated to the NEXRAD levels. 

 

 660 
Figure 5: Contoured-Frequency-by-Altitude-Diagrams (CFADs) normalized by the total number of samples at all altitude levels for 
NEXRAD (a, d, g, j, m, p) and EAMv1 simulation with the modified microphysics assumptions in COSP (b, e, h, k, n, q) for the 
months from April to September averaged over 2014-2016 period. The box-whisker plots (c, f, i, l, o, r) for NEXRAD (red) and 
EAMv1(blue) are calculated using normalization at each individual level, where the center of the box represents the 50th percentile 
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value, and the 25th and 75th percentiles are represented by the left and right boundary of the box, respectively. Whiskers correspond 665 
to the 5% and 95% values. 

 

 

 

 670 
Figure 6: Comparison in the diurnal cycle of column maximum reflectivity between observation (black) and EAMv1 simulation 
(red), as well as the EAMv1-test simulation with the purpose of improving modeledmodelled echo top height (blue). 
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 675 
Figure 7: Comparison of Contoured-Frequency-by-Altitude-Diagrams (CFADs) for the warm seasons over 2014-2016 between (a) 
NEXRAD, (b) EAMv1 simulation, and (c) the EAMv1-test simulation with reduced convective entrainment rate. 
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