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Abstract. The Arctic regional coupled sea ice-ocean-atmosphere model (ArcIOAM) has been developed to provide reliable 

Arctic sea ice prediction on seasonal timescale. The description and implementation of ArcIOAM and its preliminary results 

for the year of 2012 are presented in this paper. In the ArcIOAM configuration, the Community Coupler 2 (C-Coupler2) is 

used to couple the Arctic sea ice-oceanic configuration of the MITgcm (Massachusetts Institute of Technology general 15 

circulation model) with the Arctic atmospheric configuration of the Polar WRF (Weather Research and Forecasting) model. 

A scalability test is performed to investigate the parallelization of the coupled model. As the first step toward reliable Arctic 

seasonal sea ice prediction, ArcIOAM implemented with two-way coupling strategy, along with one-way coupling strategy, 

is evaluated with respect to available observational data and reanalysis products for the year of 2012. A standalone MITgcm 

run with prescribed atmospheric forcing is performed for reference. From the comparison, all the experiments simulate 20 

reasonable evolution of sea ice and ocean states in the Arctic region over a one-year simulation period. The two-way 

coupling has better performance in terms of sea ice extent, concentration, thickness and SST, especially in summer. This 

result indicates that sea ice-ocean-atmosphere interaction plays a crucial role in controlling Arctic summertime sea ice 

distribution.  

1 Introduction 25 

It is widely recognized that coupling between different earth system components (ocean, atmosphere, sea ice, and land) 

provides improved forecasts of oceanic and atmospheric states on various timescales (Neelin et al., 1994). As an essential 

component in the climate system, sea ice plays a crucial role in the global energy and water budget, and has a substantial 

impact on atmospheric and oceanic circulation. In polar regions, strong interactions at different interfaces disturb sea ice 

motion and affect sea ice growth-melt process (Jung et al., 2016). Due to the combined physics of solid and fluids, sea ice 30 
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thermodynamical and dynamical representations in coupled models are complicated (Bailey et al., 2020). Due to projected 

increase in marine traffic through the Arctic marginal seas as climate change continues, there is amplified demand for 

reliable polar sea ice and marine environmental predictions from synoptic timescale to seasonal and interannual timescales. 

In past decades, a number of coupled models have been developed with various sea ice prediction capacities on various 

timescales (Pellerin et al., 2004;Williams et al., 2018;Chen et al., 2010;Skachko et al., 2019). Climate models comprising 35 

phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used for state-of-the-art sea ice prediction on seasonal to 

longer timescales. Recently within the GODAE (Global Ocean Data Assimilation Experiment) Oceanview community, there 

is an increasing interest of using coupled global models to predict sea ice on shorter timescales (Brassington et al., 2015). In 

Canada, a coupled global forecasting system is now operationally running at the Canadian Centre for Meteorological and 

Environmental Prediction (Smith et al., 2018), providing global 10 days forecasts of ocean and sea ice states. The ocean-sea 40 

ice component of this system, namely the Global Ice-Ocean Prediction System (GIOPS, runs in real time since March 2014) 

(Smith et al., 2016), are based on the Nucleus for European Modelling of the Ocean (NEMO) and the Community Ice CodE 

(CICE) model. The GIOPS is coupled to an operational global deterministic medium-range weather forecasting system, 

namely the Global Deterministic Prediction System (GDPS) (Smith et al., 2014), which is based on the Global 

Environmental Multiscale (GEM) atmosphere model. In the United Kingdom, Hadley Centre Global Environment Model 45 

version 3 (HadGEM3) is under development and is planning to provide seasonal sea ice prediction (Williams et al., 2018). 

The HadGEM3 is made up of the UK Met Office Unified Model (UKMO UM) atmosphere model (Walters et al., 2011), the 

Joint UK Land Environment Simulator land-surface model (Brown et al., 2012), the NEMO model and the CICE model. In 

the United States, a coupled global sea ice-ocean-wave-land-atmosphere prediction system providing operational daily 

predictions out to 10 days and weekly predictions out to 30 days is being developed by the US Navy (Brassington et al., 50 

2015;Posey et al., 2015).  

Although global coupled models are now being run with increased horizontal resolution, higher-resolution regional coupled 

models can provide an affordable way to study interactive ocean-atmosphere and sea ice-atmosphere feedbacks for polar 

weather and sea ice processes, if properly forced by initial and boundary conditions. On the regional scale, there are also a 

few coupled sea ice-ocean-atmosphere model systems for Arctic climate studies and operational sea ice forecasts. The Arctic 55 

Region Climate System Model (ARCSyM) was developed to simulate coupled interactions among the atmosphere, sea ice, 

ocean, and land surface of the western Arctic (Lynch et al., 1995;Rinke et al., 2000). Schrum et al. (2003) introduced a 

coupled sea ice-ocean-atmosphere model for the North and Baltic Seas. In their work, the regional atmospheric model 

REgional MOdel (REMO) was coupled to the HAMburg Shelf Ocean Model (HAMSOM) with a sea ice module. Pellerin et 

al. (2004) demonstrated that significant sea ice forecasting improvements occurred when implemented the two-way coupling 60 

between the Gulf of St. Lawrence model with the GEM atmosphere model. The Regional Arctic System Model (RASM) is a 

fully coupled, regional Earth system model covering the pan-Arctic domain (Maslowski et al., 2012;Cassano et al., 2017). 

The component models of RASM include the Weather Research and Forecasting (WRF) atmospheric model, the Variable 

Infiltration Capacity (VIC) land and hydrology model, and regionally configured versions of the ocean and sea ice models 
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used in the Community Earth System Model (CESM): the CICE model and Parallel Ocean Program (POP). Van Pham et al. 65 

(2014) compared basin-scale climate simulation in the regional coupled model COSMO-CLM-NEMO with that in the stand-

alone COSMO-CLM model for the North and Baltic Seas, and found large improvement in the simulated atmospheric low 

boundary temperature. As part of the Canadian Operational Network of Coupled Environmental PredicTion Systems 

(CONCEPTS), a fully coupled sea ice-ocean-atmosphere forecasting system for the Gulf of St. Lawrence has been 

developed (Faucher et al., 2009) and running operationally at the Canadian Meteorological Centre since June 2011. The new 70 

model development plan is to couple a high-resolution (1/12 degree) sea ice-ocean regional model which covering the North 

Atlantic and Arctic Ocean (Dupont et al., 2015) to the regional weather and wave prediction system of Environment Canada 

and provides short-term sea ice and ocean predictions to users. Yang et al. (2020) has developed a coupled atmosphere-sea 

ice-ocean model configured for the pan-Arctic with the Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling 

system (COAWST). A data assimilation system using an ensemble Kalman filter is combined with this coupled model to 75 

assimilate satellite sea ice observations to improve initial sea ice conditions. Since regional models can be run at higher 

resolution than global models, regional models can explicitly represent mesoscale features that may not be resolved in global 

models. Another potential advantage of regional systems is that lateral boundary conditions can be controlled to get an 

optimal model input (Cassano et al., 2017). In coupled model systems, moisture, heat and momentum are often coupled 

through the use of a separate coupling software like OASIS-MCT (Craig et al., 2017) or framework like the Earth System 80 

Model Framework (ESMF) (DeLuca et al., 2012) which links component models flexibly and controls the exchange and 

interpolation of coupling variables. The coupler, which can handle data interpolation and data transfer between different 

models and different grids, is the crucial part in the coupled systems. Using the ESMF and the National United Operational 

Prediction Capability (NUOPC), Sun et al. (2019) introduced a regional ocean-atmosphere coupled model covering the Red 

Sea based on the MITgcm (Marshall et al., 1997) and the WRF model (Skamarock et al., 2008). 85 

To provide operational seasonal sea ice prediction in the National Marine Environmental Forecasting Center (NMEFC) of 

China, the motivation of this work is to develop a fully coupled Arctic sea ice-ocean-atmosphere model (ArcIOAM) as a 

new tool to perform regional sea ice simulation and operational sea ice prediction on seasonal timescale.. In our study, we 

use a newly developed efficient coupling framework, the Community Coupler 2 (C-Coupler2) (Liu et al., 2018), to couple 

the Arctic sea ice-oceanic configuration of the MITgcm (Nguyen et al., 2011;Liang and Losch, 2018) with the Arctic 90 

atmospheric configuration of the Polar WRF model (Hines and Bromwich, 2008) model. By coupling the Polar WRF and the 

MITgcm for the first time in Arctic region, a series of specific procedures including data interpolation between different 

grids and relaxation algorithm in lateral boundaries are implemented. After describing the ArcIOAM, we evaluate the model 

performance in 2012 against available observational and reanalysis data. This year is selected because of the historical sea 

ice extent minimum record in the satellite era. To evaluate the role of sea ice-ocean-atmosphere interaction in Arctic sea ice 95 

seasonal cycle, we compare the simulation results of the two-way coupling experiment with that of the one-way coupling 

experiment in which the coupling variables are only transmitted from the Polar WRF to the MITgcm. Also, a stand-alone 

MITgcm simulation with prescribed atmospheric forcing is performed for reference. 
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The paper is organized as follows. The description of the component models and coupling strategy are detailed in Section 2. 

In section 3, a scalability test of the coupled model is performed to investigate its parallel capability. Section 4 introduces the 100 

designs and configurations of coupling experiments. Section 5 discusses the preliminary results in the validation test. The 

last section concludes the paper and presents an outlook for future work. 

2 Model Description 

The newly developed regional coupled modeling system of ArcIOAM is introduced in this section. The descriptions of 

individual model components and the coupling strategy with C-Coupler2 are presented below. Detailed options of physical 105 

parameterizations and model settings for the Polar WRF, MITgcm models and C-Coupler2 are summarized in Table 1. 

2.1 The Oceanic and Sea Ice Component Model 

The ocean and sea ice component of ArcIOAM is an Arctic configuration of the MITgcm (Nguyen et al., 2011;Liang and 

Losch, 2018;Liang et al., 2019;Liang et al., 2020). The model has an average horizontal resolution of 18 km and covers the 

whole Arctic Ocean with open boundaries close to 55 °N in both the Atlantic and Pacific sectors (Losch et al., 2010). The 110 

ocean model includes 420x384 horizontal grid points and 50 vertical model layers based on Arakawa C grid and Z 

coordinates and a time step of 1200 seconds. The ocean model uses curvilinear coordinates and the model grid is locally 

orthogonal. Vertical resolution of the ocean model layers increases from 10 m near the surface to 456 m near the bottom. 

The K-profile parameterization (KPP) (Large et al., 1994) is used as the vertical mixing scheme.  

The sea ice model shares the same horizontal grid with the ocean model and divides each model grid into two parts: ice and 115 

open ocean. In the open ocean area, ocean-atmosphere heat and momentum fluxes are calculated following the standard bulk 

formula (Doney et al., 1998). In the ice-covered area, the ice surface and bottom heat and momentum fluxes are calculated 

according to viscous-plastic dynamics and zero-layer thermodynamics (Hibler, 1980;Semtner, 1976). The so-called zero-

layer thermodynamic model assumes one-layer ice underneath one-layer snow and assumes ice does not store heat, therefore 

tends to exaggerate the seasonal variability in ice thickness. Snow modifies ice surface albedo and conductivity. If enough 120 

snow accumulates on top of the ice, its weight submerges the ice and the snow is flooded. In order to parameterize a sub-grid 

scale distribution for sea ice thickness, the mean sea ice thickness in each grid can be split into as many as 7 thickness 

categories in the MITgcm sea ice model. In our coupled model for simplicity, we use 2 thickness categories: open water and 

sea ice. 

2.2 The Atmospheric Component Model 125 

The atmospheric component of ArcIOAM is based on the Polar WRF (Bromwich et al., 2013;Hines and Bromwich, 2008) 

model, which is an optimized version of the WRF model (Skamarock et al., 2008) for use in polar regions. Previous 

researchers have made several specific modifications for polar environments, which primarily encompass the land surface 
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model and sea ice to adapt to the particular conditions in Arctic Regions. The Noah land surface model is embedded inside 

the Polar WRF. The changes made in the Noah land surface model (LSM;  Chen and Dudhia, 2001) include using the latent 130 

heat of sublimation for calculating latent heat flux over ice surface, increasing the snow albedo and the emissivity value for 

snow, adjusting snow density, modifying thermal diffusivity and snow heat capacity for the subsurface layer, changing the 

calculation of skin temperature, and assuming ice saturation in calculating the surface saturation mixing ratio over ice. Other 

modifications of the Polar WRF include a fix to allow specified sea ice quantities and the land mask associated with sea ice 

to update during a simulation. These modifications improve model performance over the pan-Arctic for short-term forecasts.  135 

The Arctic configuration of the Polar WRF model has been tested and evaluated by a set of simulations over several key 

surface categories, including large permanent ice sheets with the Greenland/North Atlantic grid and Arctic land (Hines et al., 

2011;Hines and Bromwich, 2008) and the production of the Arctic System Reanalysis (ASR) (Bromwich et al., 2010). In this 

study, the Polar WRF model covers the Arctic regions with a horizontal resolution of 27 km. The model has 306x306 

horizontal grid points and 60 vertical layers and a time step of 120 seconds. The Polar WRF model employed physics 140 

options that included the Mellor Yamada-Janjic boundary layer scheme in conjunction with the Janjic-Eta Monin Obukhov 

surface layer scheme (Janjić, 2002), the WRF single-moment 6-class microphysics scheme for microphysics, the Grell-

Devenyi scheme for clouds (Grell and Dévényi, 2002), and the new version of the rapid radiative transfer model for both 

shortwave and longwave radiation. 

2.3 The Coupler  145 

We have implemented the C-Coupler2 to couple the MITgcm and the Polar WRF model. The first version (C-Coupler1) 

includes features such as flexible coupling configuration and 3-D coupling capability (Liu et al., 2014). Two coupled models 

have been built using the C-Coupler1. The first is a coupled climate system model version FGOALS-gc at the Institute of 

Atmospheric Physics, Chinese Academy of Sciences. The FGOALS-gc can achieve exactly the same (bitwise identical) 

simulation results as same model components with different coupler the CPL6 (Liu et al., 2014). The second is a regional 150 

coupled model FIO-AOW (Zhao et al., 2017) which includes an atmosphere model WRF, an ocean model POM (Princeton 

Ocean Model) , and a wave model MASNUM (Yang et al., 2005).  

The second version of the C-Coupler family, the C-Coupler2 (Liu et al., 2018), is equipped with many advanced functions, 

including 1) a common, flexible, user-friendly coupling configuration interface, 2) the capability of coupling within one 

executable or the same subset of Message Passing Interface (MPI) processes, 3) flexible and automatic coupling procedure 155 

generation for any subset of component models, 4) dynamic 3-D coupling that enables convenient coupling of field on 3-D 

grids with time-evolving vertical coordinate values, 5) non-blocking data transfer, 6) model nesting, 7) increment coupling 

and 8) adaptive restart capability (Liu et al., 2018). 
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2.4 Coupling Strategy 

In ArcIOAM, the requested CPUs are assigned equally to the MITgcm and Polar WRF model. The C-Coupler2 is employed 160 

as a library to achieve the two-way parallel coupling between the Polar WRF and the MITgcm (Figure 1). The coupling 

interval is set to 20 minutes. The component models are running in concurrent mode (Figure 2), that is, the component 

models run on mutually exclusive sets of cores, if one component model finishes earlier than the other, its resources are idle 

and wait for the other component model. At each coupling time step, data transfer from the MITgcm to the Polar WRF is 

executed when data transfer from the Polar WRF to the MITgcm is completed, and vice versa. During coupling execution, 165 

the MITgcm sends SST, sea ice concentration, sea ice thickness, snow depth and ice surface albedo to the coupler, and these 

coupling variables are used directly as the bottom boundary conditions in the Polar WRF model. The Polar WRF model 

sends the atmospheric bottom boundary variables to the coupler, including downward longwave radiation, downward 

shortwave radiation, 10-m wind speed, 2-m air temperature, 2-m air specific humidity, and precipitation. The MITgcm uses 

these atmospheric variables to compute the open ocean and ice surface heat, freshwater and momentum forcing.    170 

Model domains of the MITgcm and the Polar WRF model are shown in Figure 3a. As the model domain and grid of the 

Polar WRF and the MITgcm are generally different, several important procedures are carried out in our coupled system. The 

model domain of the Polar WRF is larger than that of the MITgcm, producing a non-overlapped area between the MITgcm 

domain and the Polar WRF domain. Also, the MITgcm model only produces surface variables over ocean, and the Polar 

WRF model also needs bottom boundary conditions over land. Thus, the coupling variables received by the Polar WRF 175 

model need to be concatenated by value in the non-overlapped area and in the land area from an external forcing file, and 

value in the overlapped ocean area from the MITgcm model together. To diminish the abrupt value changes from two 

sources, a simple linear relax zone is designed near the open boundaries of the MITgcm model in both the Atlantic and 

Pacific sectors (Figure 3b). The coupling variables (VARrecbyWRF) received by the Polar WRF model can be expressed as: 

𝑉𝐴𝑅𝑟𝑒𝑐𝑏𝑦𝑊𝑅𝐹 = (1 − 𝛼)𝑉𝐴𝑅𝑠𝑒𝑑𝑏𝑦𝑀𝐼𝑇 + 𝛼𝑉𝐴𝑅𝑒𝑥𝑡𝑒𝑟𝑛         (1) 180 

where α is relaxation coefficient, which is equal to 0 in the overlapped ocean area away from the MITgcm open boundaries, 

and equal to 1 in the land area and in the non-overlapped area away from the MITgcm open boundaries. While in the relax 

zone, α increases from 0 to 1 linearly from the overlapped side to the non-overlapped side. VARsedbyMIT  are the coupling 

variables which are sent by the MITgcm model. VARextern are the bottom boundary variables of the Polar WRF model which 

are read from external forcing file.  185 

Normally in coupled models the coupler controls the exchange of heat and momentum fluxes among component models. In 

our model configuration, instead of coupling fluxes directly, we use the C-Coupler2 to control the exchange of fields 

between the Polar WRF and the MITgcm. Heat and momentum fluxes are calculated separately in each component model. 

Both the Polar WRF and the MITgcm use the same bulk formula and similar parameters in calculating fluxes, which 

guarantees the quasi-conservation of heat and momentum transmission between the component models. The bilinear 190 

interpolation algorithm is used to transform model variables between the horizontal grid of the Polar WRF and that of the 
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MITgcm. Figure 4 shows wind stress curl derived from the Polar WRF output and the MITgcm output, as well as their 

difference on March 1, 2012. It can be seen that the Polar WRF and MITgcm model generate similar wind stress curl pattern, 

and the difference due to interpolation algorithm and momentum calculation accounts for less than 5% of the wind stress curl 

(Figure 4c). 195 

3 Scalability test 

In this section, the parallel efficiency of the ArcIOAM is investigated. Different numbers of CPU cores are used to evaluate 

the parallel speed-up of the coupled model. The CPU elapsed time spent on coupling interface of each component model in 

the coupled runs are detailed. Additionally, the parallel efficiency of each component model in the stand-alone runs are 

calculated for references. The parallel efficiency tests are performed on the High performance computing cluster at NMEFC. 200 

The High performance computing cluster is a Lenovo Blade Server system composed of 240 dual-socket compute nodes 

based on 14-core Intel Haswell processors running at 2.4 GHz. Each node has 128GB DDR4 memory running at 2133 MHz. 

Overall the system has a total of 6270 CPU cores (240 nodes x 2 x 14 CPU cores) and has a theoretical peak speed of 258 

teraflops. The parallel efficiency of the scalability test is Np0 tp0/ Npn tpn, where Np0  and Npn  are the number of CPUs 

employed in the  base case and the test case, respectively; tp0 and tpn  represent the CPU elapsed time in the base case and the 205 

test case. The speed-up is defined as tp0 / tpn, which is the relative improvement of the CPU time. The scalability tests are 

performed by integrating 7 model days for the stand-alone Polar WRF, the stand-alone MITgcm and the coupled runs. 

In the ArcIOAM runs, the requested CPUs are assigned equally to the component models. The minimum CPUs we use is 28, 

i. e. Np0  = 28. Limited by computational resource, the maximum number of CPUs we can use is 896. The total CPU elapsed 

time in the coupled runs decreases from 12840 s to 1380 s when the requested CPUs increases from 28 to 896 (Table 2). 210 

When the requested CPUs are less than 448, the CPU elapsed time used for numerical integration by the MITgcm is 

substantially smaller than that for numerical integration by the WRF, meaning that the efficiency of the coupled model 

depends on the WRF component model. When the requested CPUs are larger than 448, the efficiency of the coupled model 

depends on the MITgcm component model. 

The parallel efficiency of the coupled model remains more than 90% when employing less than 112 cores and is still as high 215 

as 80% when using 224 cores (Figure 5). The parallel efficiency of the stand-alone MITgcm is near to that of the stand-alone 

Polar WRF when the requested CPUs are less than 448, while both of them are substantially lower than the coupled model. 

The parallel speed-up of the coupled model is higher than the stand-alone component model. The decrease in parallel 

efficiency results from the increase of communication time, load imbalance, and I/O (read and write) operation per CPU core 

(Christidis, 2015).  220 
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4 Numerical Experiments 

As a starting point, we evaluate the performance of ArcIOAM on a seasonal timescale. In this work, we perform the coupled 

model simulations in the year 2012, because an unusually strong storm formed off the coast of Alaska on 5 August 2012, and 

tracked into the center of the Arctic Basin where it lingered for several days and generated strong sea ice-ocean-atmosphere 

interaction (Simmonds and Rudeva, 2012). With more open ocean area exposed to atmosphere, we expect that sea ice-ocean-225 

atmosphere interaction processes are more intense in the summertime than in the wintertime. In the Arctic regions, there is 

also higher demand for seasonal prediction in the summertime when more commercial and Arctic shipping occurs. The main 

aim of this paper is to assess the sea ice and ocean simulation capabilities of the coupled system. For this reason, less 

attention will be paid on the atmosphere simulation. Future work will emphasize atmospheric variables and seasonal sea ice 

prediction skill with available observations assimilated.  230 

Three experiments using different coupling strategy are performed in this study (Table 3). The first experiment which is 

denoted by OCNCPL, is a two-way coupled simulation where the MITgcm receives the coupled variables from the Polar 

WRF, and the Polar WRF receives the coupled variables from the MITgcm. The second experiment which is denoted by 

OCNDYN, is a one-way coupled simulation where the MITgcm only receives the coupled variables from Polar WRF, but 

without sending the coupled variables back to Polar WRF. α in Equ. 1 is set to 1 in the OCNDYN run. The third experiment, 235 

OCNSTA, represents the stand-alone MITgcm simulation with the same sea ice albedo parameters to the coupled model but 

prescribed atmospheric forcing to keep consistency with previous two coupling experiments. The model state deviation 

between these cases represents the influences of sea ice-ocean-atmosphere interaction in the Arctic Ocean.  

The atmospheric initial and lateral boundary conditions, the bottom boundary conditions in the external forcing file used in 

the OCNCPL and OCNDYN runs, and the prescribed atmospheric forcing used in the OCNSTA run are derived from the 6-240 

hourly National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data (Saha et al., 

2010). The oceanic monthly lateral boundary condition of the coupled model is derived from the Estimating the Circulation 

and Climate of the Ocean phase Ⅱ (ECCO2): high-resolution global-ocean and sea ice data synthesis (Menemenlis et al., 

2008), including potential temperature, salinity, current, and sea surface elevation. The discrepancy of atmosphere and ocean 

boundary condition is less of an issue since the ocean does not vary much on shorter time scale and the zones of sea ice are 245 

far away from the lateral boundary. The initial condition of ocean and sea ice on 1 January 2012 are derived from a stand-

alone MITgcm simulation initialized from climatological temperature and salinity field derived from the World Ocean Atlas 

2005 (WOA05) (Locarnini et al., 2006;Antonov et al., 2006) and forced by the 3-hourly Japanese 55-year Reanalysis data 

(JRA55) (Harada et al., 2016;Kobayashi et al., 2015) from 1979 to 2011 (Liang and Losch, 2018). After 33-year integration, 

the ocean and sea ice initial condition on 1 January 2012 used in the coupled model are retrieved from a quasi-equilibrium 250 

ocean-sea ice evolution period. River runoff is based on the Arctic Runoff Data Base (Nguyen et al., 2011). The model states 

are output on daily basis.  
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5 Results 

5.1 Sea Ice Extent and Concentration 

The minimum Arctic sea ice extent in the satellite era occurred in the summer of 2012 (Francis, 2013). Arctic sea ice extent 255 

grew to maximum value of 14.5 million km2 in March 2012 and dropped to minimum value of 3.5 million km2 in September 

2012(Figure 6a) according to the Multisensor Analyzed Sea Ice Extent-North Hemisphere (MASIE-NH) data (NSIDC, 

2010) . The MASIE-NH data is provided daily by the National Ice Center Interactive Multisensor Snow and Ice Mapping 

System with a spatial resolution of 4 km. Compared with the OCNSTA run, results from the experiments with coupling 

(OCNCPL and OCNDYN) are closer to observations (Figure 6). It is noted that both the OCNCPL and OCNDYN runs 260 

simulate lower sea ice extent than the observations by a bias of 1-1.5 million km2 (Figure 6a) after the first 2 weeks of 

January. Because the sea ice initial condition on 1 January 2012 is derived from a stand-alone MITgcm simulation which is 

forced by the JRA55 data, the change of atmospheric forcing data from the JRA55 to the NCEP CFSR induces a model state 

adjustment period which lasts about 2 weeks. By comparing the sea ice extent evolution of the OCNCPL and OCNDYN run, 

it appears that sea ice-ocean-atmosphere interaction generates only a small change in sea ice extent. Based on our analysis of 265 

sea ice spatial distribution, sea ice-ocean-atmosphere interaction plays a decisive role in summertime sea ice spatial 

distribution. 

Figure 6b shows the modeled and observed sea ice extent anomaly. After the model state adjustment period, both the 

amplitudes and phase of sea ice extent seasonal cycle in the OCNCPL and OCNDYN runs are close to the observations. 

Results of the stand-alone run show that sea ice melts and freezes in advance of the observations. Nguyen et al. (2011) 270 

pointed out that optimized parameters of sea ice and snow albedo depend on selected atmospheric forcing in the MITgcm. In 

the sea ice model of MITgcm, the actual surface albedo changes with time and is a function of four foundational albedo 

parameters (dry ice, dry snow, wet ice, wet snow), as well as ice surface temperature and snow depth. A series of sensitivitiy 

experiments are performed to get an optimal combination of sea ice parameters (figures not shown). The sea ice model 

systematic bias could also be reduced by assimilating sea ice data (Liang et al., 2019) when conducting seasonal sea ice 275 

prediction system. 

The modeled sea ice concentration is compared with the observations derived from the EUMETSAT Ocean and Sea Ice 

Satellite Application Facility (OSISAF) (Eastwood et al., 2011). The observations are reprocessed daily sea ice concentration 

fields which are retrieved from the Scanning Multichannel Microwave Radiometer/Special Sensor Microwave Imager 

(SMMR/SSMI) data with a spatial resolution of 10 km. Figure 6c shows the root mean square error (RMSE) evolution of the 280 

modeled sea ice concentration with respect to the OSISAF data. After 1 month of model state adjustment, three experiments 

shows similar patterns that RMSE is lower in winter and spring than in summer and autumn. The Arctic basin is almost fully 

covered by sea ice from November to May (Figure 7), thus the two coupling experiments do not produce substantial sea ice 

concentration differences. With more open ocean exposed to atmosphere, from June to September the sea ice concentration 
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RMSE of the OCNCPL run is significantly lower than that of the OCNDYN run. This result indicates that sea ice-ocean-285 

atmosphere interaction plays a crucial role in controlling Arctic summertime sea ice distribution.  

We show the modeled and observed monthly mean sea ice concentration (Figure 7) and deviation of model results and 

observation (Figure 8) in March, June, September and December. In March, when the Arctic Ocean is almost fully covered 

by sea ice, the main source of discrepancy appears in sea ice edge zones on the Atlantic side (Figure 7a-c). In June, sea ice 

concentrations are overestimated in the Arctic marginal seas in the OCNCPL and OCNDYN runs (Figure 8d-e). The 290 

modeled sea ice concentration in the OCNSTA run is closer to the observations (Figure 7f) than the two coupled runs. In 

September, the modeled sea ice in the marginal sea ice zone melts out in all runs (Figure 7i-k). Compared with the satellite 

observations (Figure 7l), sea ice in the OCNSTA run overmelts in summertime which leads to an anomalous negative bias of 

sea ice concentration in the Arctic (Figure 8i), the two coupled runs overestimate sea ice concentration in the southern 

Beaufort Sea while underestimates sea ice concentration in the center Arctic basin (Figure 8g-h). Although the two coupled 295 

runs simulate similar sea ice extent patterns, due to the inclusion of sea ice-ocean-atmosphere interaction in the OCNCPL 

run, the modeled sea ice distribution of the OCNCPL run is closer to the observations (Figure 7i and Figure 7l). In December, 

the situation is similar with that in March when sea ice dominates almost the entire Arctic. 

5.2 Sea Ice Volume and Thickness 

Satellite sea ice thickness data is not currently available in melt seasons from May to September. We compare the modeled 300 

sea ice volume with that from a widely used sea ice volume data source (Figure 9a), the Pan-Arctic Ice Ocean Modeling and 

Assimilation System (PIOMAS) developed at the Applied Physics Laboratory of the University of Washington (Zhang and 

Rothrock, 2003). PIOMAS assimilates sea ice concentration data from the National Snow and Ice Data Center (NSIDC) and 

SST data from NCEP/NCAR Reanalysis. The OCNSTA run simulates more realistic sea ice growth rates from January to 

May but systematic negative sea ice volume bias compared with the PIOMAS data. The sea ice volume in the OCNCPL and 305 

OCNDYN runs shows better results than that in the OCNSTA run from June to December. However, both the two coupled 

runs produce less sea ice volume than the PIOMAS data in most of 2012, partly because our model underestimates sea ice 

extent (Figure 6a) without assimilating observations. It is notable that the sea ice volume evolution of the OCNCPL run is 

closer to the PIOMAS data at the end of 2012. 

Satellite sea ice thickness observations are usually retrieved from either ice surface brightness temperature or radar altimetric 310 

measurement of sea ice freeboard. We use three kinds of satellite sea ice thickness data to validate our model results (Figure 

9b and Figure 9c). Daily sea ice thickness observations provided by the University of Hamburg are derived from the Soil 

Moisture Ocean Salinity (SMOS) brightness temperature combined with a sea ice thermodynamic model and a three-layer 

radiative transfer model (Kaleschke et al., 2012). Weekly sea ice thickness observations provided by the Alfred Wegener 

Institute, Helmholtz Centre for Polar and Marine Research are derived from the European Space Agency satellite mission 315 

CryoSat-2 radar altimetric data (Ricker et al., 2014). The SMOS observations retrieved from satellite brightness temperature 

data are more accurate in marginal sea ice zone where ice thickness is thinner than 1 m (Tian-Kunze et al., 2014) while the 
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CryoSat-2 observations retrieved from radar altimetric data have higher accuracies in pack sea ice zone than in marginal sea 

ice zone (Laxon et al., 2013;Wingham et al., 2006). Taking the spatial complementarity of the SMOS and CryoSat-2 data 

into consideration, Ricker et al. (2017) introduced a weekly sea ice thickness product covering the entire Arctic, the 320 

CS2SMOS sea ice thickness, which is generated by merging the SMOS sea ice thickness with the CryoSat-2 sea ice 

thickness (Ricker et al., 2017). The CS2SMOS data with observational uncertainty is also added to our comparison. 

The weekly CryoSat-2 data include several banded sea ice thickness records which are collected in one week when polar 

orbital satellites pass the Arctic region. The SMOS data used in this study are those in thin ice (< 1 m) region. Considering 

spatial coverage of the observations, we compare spatial-mean sea ice thickness evolution with the CS2SMOS data (Figure 325 

9b). Comparing with the CS2SMOS data, both coupled runs produce more realistic sea ice thickness evolution than the 

stand-alone run from January to April. However, large sea ice thickness errors between the model and the observations exist 

in October and November. We attribute these large errors to the observational uncertainties induced by radar altimetric 

measurement errors when sea ice starts to freeze. The modeled sea ice in the OCNCPL run is thinner than that in the 

OCNDYN run, and the sea ice thickness deviations between the two runs amplify after the summer. Meanwhile, the sea ice 330 

volume and thickness of the OCNCPL run are closer to the PIOMAS data and the CS2SMOS observations at the end of 

2012. Day et al. (2014) pointed out that sea ice thickness incorporates the long-term memory of melting-freezing processes. 

Notz and Bitz (2017) indicated that summertime sea ice thickness has an important influence on sea ice state in the following 

spring through the ice thickness-ice growth feedback. A negative anomaly of sea-ice area in late summer induces larger heat 

losses in autumn and winter from the ocean to the atmosphere due to enhanced outgoing long-wave radiation and turbulent 335 

heat fluxes, this causes thinner snow and ice due to later freeze-up and hence larger heat-conduction fluxes through sea ice, 

eventually leading to larger ice-growth rates. We speculate that in the OCNCPL run sea ice-ocean-atmosphere interaction 

causes a more realistic sea ice thickness distribution in the summer of 2012 which preconditions the sea ice thickness 

evolution in the following freezing season. 

The sea ice thickness RMSEs of the three runs with respect to three kinds of satellite sea ice thickness data are shown in 340 

Figure 9c. Compared with the coupled runs, the sea ice thickness in the OCNSTA run shows larger bias in pack ice zone 

while smaller bias in marginal ice zone. The sea ice thickness RMSE between the OCNCPL run and the SMOS data is 

smaller than that between the OCNDYN run and the SMOS data, indicating that sea ice-ocean-atmosphere interaction 

substantially improves the sea ice thickness simulation in the marginal sea ice zone in the coupled runs. The sea ice thickness 

RMSEs between the coupled runs and the CryoSat-2 data are generally larger than those between the coupled runs and the 345 

CS2SMOS data especially in October and November, which is partly due to the large uncertainty of radar altimetric 

measurement when sea ice starts to freeze, and partly due to the low spatial coverage of the CryoSat-2 data. 

Normally, satellite sea ice thickness data has large uncertainties due to limitations of the retrieval algorithm. In-situ sea ice 

thickness observations with higher accuracy can provide a direct reference for the model. To further evaluate the modeled 

sea ice thickness, we compare the time evolution of modeled and in-situ observed sea ice thickness at three locations in the 350 

Beaufort Sea in 2012 (Figure 10). The observations are derived from moored upward-looking sonar (ULS) ice draft data 
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from the Beaufort Gyre Exploration Project (BGEP) (Proshutinsky et al., 2005). The ULS samples the ice draft with a 

precision of 0.1 m (Melling and Riedel, 1995), and the ice draft can be converted to ice thickness assuming hydrostatic 

equilibrium (Nguyen et al., 2011). Generally speaking, at all three locations in the Beaufort Sea, when the modeled sea ice is 

thinner than 1 m, the sea ice thickness evolution improves in the OCNCPL run comparing with those in the OCNDYN run. 355 

This result further demonstrates that sea ice-ocean-atmosphere interaction plays an important role in marginal sea ice 

evolution. 

Spatial distributions of monthly mean sea ice thickness and its bias with respect to available  CS2SMOS data in March, June, 

September, and December are shown in Figure 11 and Figure 12. In March and December, all three runs underestimate sea 

ice thickness in central Arctic, while overestimating sea ice thickness in the marginal sea ice zone (Figure 12). In March, the 360 

OCNSTA run overestimates sea ice thickness in the Pacific sector of the Arctic Ocean and in Baffin Bay (Figure 12e). The 

coupled runs overestimate sea ice thickness in the northern Barents Sea while underestimating sea ice thickness in the 

western Chukchi Sea (Figure 12a and Figure 12c). In December, compared with the OCNDYN run, the modeled sea ice 

thickness in marginal sea ice zone in the OCNCPL run is closer to the CS2SMOS data (Figure 12b), partly due to the more 

realistic sea ice distribution at the beginning of freezing season, as summertime sea ice thickness has a strong effect on 365 

preconditioning the following wintertime sea ice thickness (Day et al., 2014). 

5.3 Ocean Temperature and Current 

Sea ice state is intimately linked to ocean state, both dynamically and thermodynamically. The modeled spatial distribution 

of sea ice concentration in the OCNCPL run exhibits great improvement comparing with the OCNDYN run. Since sea ice in 

the marginal ice zone is strongly affected by SST through lateral heat transport, we suspect that sea ice-ocean-atmosphere 370 

interaction should impose a positive influence on the modeled ocean temperature in the marginal sea ice zone. 

The modeled SST is validated against the Group for High-Resolution SST Multi-Product Ensemble (GMPE) data (Martin et 

al. 2012). The GMPE SST data provided by the UKMO is a reanalysis daily global SST product that is computed as the 

median of a large number of SST products. Each product contributing to the GMPE product uses different observational data 

sets or different retrieval algorithms. As a median product of multiproduct ensemble, the GMPE SST data greatly reduces 375 

observational uncertainties. The SST RMSE of the three runs with respect to the GMPE data are shown in Figure 13. In 

general compared with the coupled runs, the SST RMSE in the OCNSTA run is smaller in the summertime but larger in the 

rest. Spatial patterns of the modeled and observed SST in March, June, September and December are shown in Figure 14. 

Deviation of the modeled SST and the GMPE SST observation is demonstrated in Figure 15. The GMPE SST data is 

available in ice-free areas (Figure 14d, Figure 14h, Figure 14l and Figure 14p). In March and June, the OCNSTA run 380 

produces a warmer sea surface in the Nordic Seas, which explains the positive SST bias from January to June in Figure 13 

compared with the coupled runs. In September the SST RMSE in the OCNCPL run (Figure 13) arises from the strong 

negative bias in the southern Beaufort Sea and the Baffin Bay (Figure 15g). 
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Ocean current observations in the Arctic Ocean are quite sparse, so we evaluate the modeled ocean velocity and temperature 

with climatological observation generated from the 1998-2003 mooring data in Fram Strait. Under the framework of the 385 

European Union projects Variability of Exchanges In the Northern Seas (VEINS) and Arctic Subarctic Ocean Fluxes - North 

(ASOF-N), a series of moorings in Fram Strait had been deployed to record ocean properties since September 1997 to 2004. 

The observations include the water column from 10 m above the seabed to about 50 m below the surface. Although the 

observations were conducted at least one decade earlier than 2012, we believe that the comparison between the modeled and 

observed monthly mean value would likely still apply since the phase of the Atlantic Multidecadal Oscillation did not 390 

reverse between 1995 and 2012. The modeled and observed northward cross-section velocity and temperature averaged 

between 5°E and 8°40'E at 78°50'N are listed in Table 4. The observations show that the northward velocity of the West 

Spitsbergen Current (WSC) increases from July to September, and the mean temperature of the section of 78°50'N also 

increases from July to December. It is notable that the modeled velocity and temperature of the OCNCPL run in Fram Strait 

are closer to the observations comparing with those of the OCNDYN run, although there are still large biases of the modeled 395 

velocity between the OCNCPL run and the observations. Vertical temperature distribution in the section averaged between 

July and September shows that sea ice-ocean-atmosphere interaction induces warming of the WSC until 700 m depth 

accompanied with strong cooling beside the WSC (Figure 16c). The cross-section velocity deviation between the OCNCPL 

and OCNDYN run is characterized by enhanced northward velocity over the whole water column around 0 °E and east of 

6 °E, and reduced northward velocity between them (Figure 16f). 400 

6 Conclusion and Discussion 

This paper describes the implementation of an Arctic regional sea ice-ocean-atmosphere coupled model (ArcIOAM). To 

connect the component models, a newly developed coupler, C-Coupler2 is implemented to couple the Arctic sea ice-oceanic 

configuration of the MITgcm model with the Arctic atmospheric configuration of the Polar WRF model. To couple the Polar 

WRF and the MITgcm for the first time in Arctic region, a series of specific procedures including data interpolation between 405 

different grids and relaxation algorithm in lateral boundaries are designed. The parallel efficiency of the coupled model is 

also investigated. 

After implementing ArcIOAM, we demonstrate it with a seasonal simulation of the Arctic sea ice and ocean states in 2012 to 

evaluate the model capability of seasonal prediction of sea ice. Results from the two-way coupling simulation (OCNCPL), 

the one-way coupling simulation (OCNDYN) and stand-alone oceanic simulation (OCNSTA) are compared to a wide 410 

variety of available observational and reanalysis products. The model state deviation between the two coupled experiments 

represents the influences of sea ice-ocean-atmosphere interaction on the Arctic Ocean and sea ice. From the comparison, 

results obtained from the two-way coupling experiment best capture the sea ice and ocean evolution in the Arctic region over 

a 1-year simulation period. The two-way coupling experiment gives better results compared with the one-way coupling 

experiment and stand-alone oceanic simulation, especially in summertime. 415 
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The amplitudes of sea ice extent seasonal cycle of the two coupled runs are close to the observations. The spatial distribution 

of sea ice concentration in the OCNCPL run is similar to that in the OCNDYN run from January to May. From June to 

September the sea ice concentration RMSE of the OCNCPL run with respect to the observations is significantly lower than 

that of the OCNDYN run, indicating that sea ice-ocean-atmosphere interaction plays a crucial role in controlling Arctic 

summertime sea ice distribution. The sea ice thickness RMSE of the OCNCPL run with respect to the SMOS data in thin ice 420 

areas is smaller than that of the OCNDYN run. Meanwhile, the evolution of the modeled and observed sea ice thickness at 

three locations in the Beaufort Sea show that the modeled sea ice thickness evolution improves in the OCNCPL run when the 

ice is thinner than 1m. This result means that sea ice-ocean-atmosphere interaction is very likely to improve the sea ice 

thickness simulation in the marginal sea ice zone when considering ocean to atmosphere feedbacks. Based on comparison 

with a series of mooring data in Fram Strait, the modeled velocity and temperature in the OCNCPL run are closer to the 425 

observations than those in the OCNDYN run, although large biases of the modeled velocity still exist. Comparing with the 

satellite data, the SST obtained in the OCNCPL run is also better than that in the OCNDYN run in summer 2012. The two-

way coupling between the Polar WRF and the MITgcm provides a more realistic representation of real air-ice-ocean physical 

processes, which includes the important ice-albedo feedback in early summer. In the MITgcm, sea ice albedo is calculated 

based on several variables, such as snow depth on ice, ice surface temperature. In the OCNCPL run, albedo is a coupling 430 

variable which affects both the Polar WRF and the MITgcm. In the OCNDYN run, albedo used in the Polar WRF is directly 

read from the CFSR forcing data. Due to strong sea ice-ocean-atmosphere interaction in summertime, the two-way coupling 

strategy not only improves the sea ice simulation, but also benefit the modeled ocean states.  

The ArcIOAM is designed for seasonal sea ice prediction up to 6 months, while on longer timescale the regional model’s 

capacity is expected to severely depend on the lateral boundary forcing data. Global coupled models, such as those involved 435 

in CMIP6, have innate advantages in sea ice prediction and outlook on seasonal to longer timescale because interactions 

between high- and mid- latitudes are considered. The land component is also important to the Arctic simulation, however at 

current stage, our coupled model does not have the capacity of coupling an individual land model, instead, we use the 

embedded land component in the Polar WRF for technical simplicity. It is noticed that the simulation presented in this paper 

only covers one year, and more results for different years should be carried out to further assess the coupled model. However, 440 

given the encouraging results in 2012, this new developed Arctic regional coupled model displays a potential capacity for 

seasonal sea ice prediction and provides a reliable basis for investigating both thermodynamic and dynamic process and 

forecasting applications. Meanwhile, bias in the modeled sea ice extent and summertime sea ice thickness still exist, 

although satellite sea thickness data normally has large uncertainty in summertime, which partly contributes to the large sea 

ice thickness bias in October-November between the model and CS2SMOS data (Figure 9b). The foundational sea ice albedo 445 

parameters in our current model configuration seem to be underestimated, which allows more heat into the ice and causes 

thinner sea ice thickness, as well as lower sea ice extent. The choice of sea ice albedo parameters also contributes to the large 

sea ice thickness bias in October-November between the model and CS2SMOS data. Though the albedo formulation in the 

MITgcm sea ice model is simple and straightforward, the CICE model provides a more sophisticated scheme for sea ice 
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albedo calculation. In developing operational seasonal sea ice prediction capabilities, the model physics and uncertainty in 450 

the coupled model can be improved by using advanced techniques, such as sophisticated sea ice albedo formulation, 

stochastic physics parameterizations and ensemble approaches. The regional coupled forecasting system also can be 

improved by involving data assimilation capabilities for initializing the forecasts. Future work will involve exploring these 

and other aspects for a regional coupled modeling system suited for forecasting and better understanding of mechanism. 

 455 
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Figure 1: Coupling strategy of the Polar WRF-MITgcm coupled model system. 
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Figure 2:  Concurrent mode of the coupled model. The small blocks under OCN or above ATM are the small subdomains in 695 

each node; the block under CPL is the coupler. The red curve arrows indicate that the component models are sending data to 

the coupler and the red straight arrows indicate that the component models are reading data from the coupler. The horizontal 

arrows in the wall time indicate the time axis of each component model and the ticks on the time axis indicate the coupling 

time steps. 

 700 
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Figure 3: (a) Model domain of the MITgcm and the Polar WRF model. The red and black lines denote the boundaries of the 

Polar WRF and the MITgcm model, respectively. (b) Relaxation coefficient for the external forcing file of the Polar WRF 705 

bottom boundary conditions. 
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Figure 4: Wind stress curl (unit: Nm-2) derived from (a) the MITgcm output, (b) the Polar WRF output, and (c) their 

difference on March 1, 2012. The difference of wind stress curl between the Polar WRF and MITgcm is calculated by 710 

interpolating the Polar WRF output onto the MITgcm grid.     
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Figure 5: The parallel efficiency (left) and speed-up (right) test of the coupled model and the stand-alone component models, 

employing up to 896 CPU cores. The simulation using 28 CPU cores is regarded as the baseline case when computing the 715 

speed-up. The tests are performed on a Lenovo Blade Server system composed of 240 dual-socket compute nodes based on 

14-core Intel Haswell processors. 
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Figure 6: Time series of (a) sea ice extent, (b) sea ice extent anomaly, and (c) root mean square error (RMSE) of modeled sea 

ice concentration with respect to the OSISAF observation in 2012. The black, red, green and blue lines in (a) denote sea ice 

extent of the MASIE observation, the OCNCPL run, the OCNSTA run and the OCNDYN run, respectively. The black, red, 

green and blue lines in (b) denote sea ice extent anomaly of the MASIE observation, the OCNCPL run, the OCNSTA run 

and the OCNDYN run, respectively. The red, green and blue lines in (c) denote the sea ice concentration RMSE of the 725 

OCNCPL run, the OCNSTA run and the OCNDYN run, respectively. MASIE = Multisensor Analyzed Sea Ice Extent; 

OSISAF = Ocean and Sea Ice Satellite Application Facility. 
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 730 

Figure 7: Modeled and observed monthly mean sea ice concentration. From top to bottom panels show the March, June, 

September and December sea ice concentration, respectively. From left to right panels show sea ice concentration of the 

OCNCPL run, the OCNDYN run, the OCNSTA run and the OSISAF observations. OSISAF = Ocean and Sea Ice Satellite 

Application Facility.   
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Figure 8: Deviation between the modeled and observed monthly mean sea ice concentration. From top to bottom panels 

show the March, June, September and December sea ice concentration deviation respect to the OSISAF observations, 

respectively. The left, middle, and right panels show results of the OCNCPL run, the OCNDYN run, and the OCNSTA run. 

OSISAF = Ocean and Sea Ice Satellite Application Facility.    
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 740 

Figure 9: Time series of (a) total sea ice volume, (b) spatial mean sea ice thickness, and (c) the RMSE of sea ice thickness 

with respect to the satellite-retrieved observations in 2012. The black, red, green and blue lines in (a) denote total sea ice 
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volume of the PIOMAS data, the OCNCPL run, the OCNSTA run and the OCNDYN run, respectively. The black, red, green 

and blue dots in (b) denote sea ice thickness of the CS2SMOS observations, the OCNCPL run, the OCNSTA run and the 

OCNDYN run, respectively. The black bar in (b) represents the observational uncertainties of the CS2SMOS data. The red, 745 

green and blue masks in (c) denote sea ice thickness RMSE of the OCNCPL run, the OCNSTA run and the OCNDYN run 

with respect to the SMOS observations in thin ice (< 1 m) region (line), the Cryosat-2 observations (circle), the CS2SMOS 

observations (triangle), respectively. Model grid points without available observations are not taken into the sea ice thickness 

RMSE calculation. PIOMAS = Pan-Arctic Ice Ocean Modeling and Assimilation System; SMOS = Soil Moisture Ocean 

Salinity. 750 
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Figure 10: Time series of sea ice thickness at three positions: (a) (75 °N, 150 °W), (b) (78 °N, 150 °W), and (c) (74 °N, 

140 °W). The red, blue and green lines denote sea ice thickness of the OCNCPL run, the OCNDYN run and the OCNSTA 

run, respectively. The black solid and dashed lines denote sea ice thickness observations of the BGEP ULSs, which were 755 

deployed in the summers of 2011 and 2012. The black lines of the BGEP ULS observations have been smoothed with the 

gray bar representing the observational uncertainties. BGEP = Beaufort Gyre Exploration Project; ULS = upward-looking 

sonar. 
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 760 
 

 

Figure 11: Monthly mean sea ice thickness. From top to bottom panels show the March, June, September, and December sea 

ice thickness, respectively. From left to right panels show sea ice thickness of the OCNCPL run, the OCNDYN run, the 

OCNSTA run and the CS2SMOS data.  765 
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Figure 12: Deviation of the modeled monthly mean sea ice thickness and the CS2SMOS data. The top, middle, and bottom 

panels show sea ice thickness deviation of the OCNCPL run, the OCNDYN run and the OCNSTA run, respectively. The left 

and right panels show results in March and December. 
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Figure 13: Time series of the RMSE of modeled SST with respect to the GMPE observations in 2012. The red, blue and 

green lines denote the SST RMSE of the OCNCPL run, the OCNDYN run and the OCNSTA run, respectively. GMPE = 

Group for High-Resolution Sea Surface Temperature Multi-Product Ensemble.   775 
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Figure 14: Modeled and observed monthly mean SST. From top to bottom panels show the March, June, September and 

December SST, respectively. From left to right panels show the SST of the OCNCPL run, the OCNDYN run, the OCNSTA 780 

run and the GMPE observations, respectively. GMPE = Group for High-Resolution Sea Surface Temperature Multi-Product 

Ensemble.   
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Figure 15: Deviation of the modeled monthly mean SST and the GMPE SST data. From top to bottom panels show the 785 

March, June, September and December SST deviation, respectively. From left to right panels show the SST of the OCNCPL 

run, the OCNDYN run and the OCNSTA run, respectively. GMPE = Group for High-Resolution Sea Surface Temperature 

Multi-Product Ensemble. 

  



43 

 

 790 

Figure 16: July-August-September mean ocean temperature and meridional velocity section along 78 °N in Fram Strait. The 

top and bottom panels show the ocean temperature and meridional velocity, respectively. The left, middle, and right panels 

show the OCNCPL run, the OCNDYN run, and the deviation between them, respectively. 
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Table 1: The summary of physic option and details of coupled system 795 

Atmosphere component (Polar WRF) 

Horizontal spacing 27km 

Horizonal grid points 306 x 306 

Polar WRF time step 120s 

Vertical layers 60 

Lateral boundary conditions CFSR 

Polar WRF version  3.7.1 

Cumulus parameterization Grell-Devenyi scheme (Grell and Dévényi, 2002) 

Microphysics parameterization WRF single-moment 6-class scheme 

Longwave and shortwave radiation Rapid Radiative Transfer Model 

Boundary layer Mellor-Yamada-Janjic scheme 

Land surface Unified Noah LSM (Chen & Dudhia, 2001) 

Ocean/sea ice component (MITgcm) 

Horizontal spacing 18km 

Horizonal grid points 420 x 384 

MITgcm time step 1200s 

Vertical layers 50 

Lateral boundary conditions ECCO2 

MITgcm version checkpoint64a 

Equation of sea water state Jackett and McDougall (1995) 

Vertical mixing scheme K-profile parameterization (KPP) scheme 
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Horizontal advection scheme Seventh-order monotonicity-preserving advection scheme 

(Daru and Tenaud, 2004) 

Ice rheology Viscous-Plastic constitutive law 

Ice momentum solver Line successive over-relaxation (Zhang and Hibler, 1997) 

Ice thermodynamics Zero-layer snow/ice thermodynamics (Semtner, 1976 ) 

Albedo (under CFSR forcing) dry ice: 0.65  wet ice: 0.55  dry snow: 0.8  wet snow: 0.7 

Coupler component (C-Coupler) 

Coupler version C-Coupler2 

Coupling frequency 1200s 

Interpolation scheme  Bilinear remapping algorithm 

Coupling parameters (from MITgcm 

to Polar WRF) 

SST, sea ice concentration, sea ice thickness, snow depth, ice 

surface albedo 

Coupling parameters (from Polar 

WRF to MITgcm) 

Downward longwave radiation, downward shortwave 

radiation, 10 m wind speed, 2 m air temperature, 2 m air 

specific humidity, precipitation 
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Table 2: Comparison of CPU time spent on coupled and stand-alone runs. The CPU time spent on two stand-alone 800 

simulations are presented to show the difference between coupled and stand-alone simulations. ‘total_cpu_number’ denotes 

the requested CPUs, ‘total_run_time’ denotes the total CPU elapsed time. ‘wrf_interface’, ‘wrf_integration’, 

‘mitgcm_interface’ and ‘mitgcm_integration’ denote the CPU elapsed time used for coupling interface by the WRF, 

numerical integration by the WRF, coupling interface by the MITgcm, and numerical integration by the MITgcm, 

respectively. ‘wrf_time_alone’ denotes the CPU elapsed time of the stand-alone WRF runs. ‘mitgcm_time_alone’ denotes  805 

the CPU elapsed time of the stand-alone MITgcm runs. Each run is integrated for 7 model days.    

total_cpu_nu

mber 

cpu_number 

_on_each_co

mponent_mo

del 

total_run_ti

me (unit: s) 

wrf_interfac

e (unit: s) 

mitgcm_inte

rface (unit: 

s) 

wrf_integrati

on (unit: s) 

wrf_time_al

one (unit: s) 

mitgcm_inte

gration (unit: 

s) 

mitgcm_tim

e_alone 

(unit: s) 

28 14 12840 4.8 12131 12835.2 / 709 / 

56 28 12000 4.74 11196 11995.26 7140 804 317 

112 56 10440 5.16 6477 10434.84 3960 3963 154 

224 112 3780 5.26 3550 3774.74 2160 230 96 

448 224 2460 5.21 2116 2454.79 1560 344 68 

896 448 1380 358 48 1022 1320 1332 84 

 

  



47 

 

Table 3: The initial conditions, boundary conditions and forcing terms used in the experiments. 

Experiments description 

Experiment 

name 

Description Bottom boundary forcing for 

atmospheric component 

Surface boundary forcing for 

ice/oceanic component  

OCNCPL two-way coupled simulation MITgcm Polar WRF 

OCNDYN one-way coupled simulation that the 

MITgcm only receives the variables from 

the Polar WRF, but without sending 

variables back to the Polar WRF 

CFSR Polar WRF 

OCNSTA stand-alone MITgcm simulation Not used CFSR 

Note: 

Atmospheric initial and boundary conditions: CFSR 

Oceanic boundary conditions: ECCO2  

Oceanic initial conditions:  restart field on 1 January 2012 derived from a stand-alone MITgcm simulation initialized from 

climatological temperature and salinity field derived from WOA05 and forced by the 3-hourly JRA55 data from 1979 to 

2011  
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Table 4: Monthly mean northward cross-section velocity (cm/s) and temperature (°C) averaged between 5°E and 8°40'E at 

78°50'N in Fram Strait. A1 represents algorithm 1 that values are calculated from sea water with potential temperature higher 

than 1°C. A2 represents algorithm 2 that values are calculated from sea water with potential temperature higher than -0.1°C. 

A3 represents algorithm 3 that values are calculated from sea water with depth shallower than 700 m. The observations are 

averaged between 1998 and 2003. WSCOBS = West Spitsbergen Current Observation. 815 

  July August September 

  Vmean Tmean Vmean Tmean Vmean Tmean 

A1: 

(T>1°C) 

OCNCPL 3.94 3.56 4.03 3.66 4.03 4.02 

OCNDYN 3.22 3.69 2.93 3.79 2.27 3.91 

WSCOBS 6.26 2.76 6.98 2.90 7.36 3.02 

A2: 

(T>-0.1°C) 

OCNCPL 3.53 2.30 3.32 2.35 3.24 2.54 

OCNDYN 2.63 2.58 2.38 2.69 1.98 2.66 

WSCOBS 5.82 2.35 6.39 2.44 6.69 2.51 

A3: 

(0-700 m) 

OCNCPL 4.21 3.97 4.33 4.03 4.16 4.53 

OCNDYN 3.87 4.36 3.53 4.54 2.55 4.65 

WSCOBS 6.09 2.61 6.67 2.72 7.04 2.83 

 


