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Abstract. Including radiative transfer processes within the urban canopy layer into microscale urban climate models (UCMs)

is essential to obtain realistic model results. These processes include the interaction of buildings and vegetation with shortwave

and longwave radiation, thermal emission, and radiation reflections. They contribute differently to the radiation budget of urban

surfaces. Each process requires different computational resources and physical data for the urban elements. This study inves-

tigates how much detail modellers should include to parameterise radiative transfer in microscale building resolving UCMs.5

To that end, we introduce a stepwise parameterization method to the the PALM model system 6.0 to quantify individually the

effects of the main radiative transfer processes on the radiation budget and on the flow field. We quantify numerical simulations

of both simple and realistic urban configurations to identify the radiative transfer processes which have major effects on the ra-

diation budget, such as surface and vegetation interaction with short wave and long wave radiation, and those which have minor

effects, such as multiple reflections. The study also shows that radiative transfer processes within the canopy layer implicitly10

affect the incoming radiation since the radiative transfer model is coupled to the radiation model. The flow field changes con-

siderably in response to the radiative transfer processes included in the model. The study highlights those processes which are

essentially needed to assure acceptable quality of the flow field. Omitting any of these processes may lead to high uncertainties

in the model results.

1 Introduction15

Urban climate models (UCMs) are useful tools to study the interaction between the urban environments and the atmosphere.

They are broadly classified into two categories: The urban canopy-layer models and the urban boundary-layer models. The

first category focuses on the microscale variations occurring below the canopy-height (Maronga et al., 2020; Salim et al.,

2018; Franke et al., 2012; Gross, 2012; Früh et al., 2011; Eichhorn and Kniffka, 2010; Huttner and Bruse, 2009). The second

one examines the mesoscale variations occurring above the canopy-height (Skamarock et al., 2019; Schlünzen et al., 2018;20

Jacob et al., 2012; Rockel et al., 2008). Over the last decades, the first category of UCMs has received an increasing interest
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as modern urban planning tools. They have been used to identify the implications of climate change for urban areas and to

substantiate planning decisions as well as adaptation measures for climate change scenarios. Also they have been used for

a broad range of applications such as air pollution control, heat and wind comfort assessment, and general understanding of

urban boundary layer flows (Erell, 2008). The development of models has been mainly driven by recent advances in computer

capacities, numerical algorithms, parameterization of micrometeorological processes, and data availability for urban structure5

(Masson et al., 2020). Together, these advances enabled UCM to perform high-resolution simulations for large configurations.

Modelling the radiative transfer processes (RTPs) within the urban domain is a key component in any UCM. It provides

the surface radiation budget that is required for solving the surface energy balance. Indeed, an accurate prediction of surface

radiation budget is fundamental to realistically model boundary-layer processes as it strongly affects turbulent surface heat

fluxes (sensible and latent) (Xie et al., 2007), photolysis, and biometeorological parameters. However, modelling RTPs, which10

include radiation absorption, emission, reflection and scattering, in urban areas is a challenging task for many reasons. Firstly,

the variation in surface material properties of different surface cover in an urban area (buildings, water, trees, etc.) generates

a myriad of surfaces with different radiative properties such as emissivity and albedo. This makes it difficult to generate bulk

radiative properties for urban areas (Oke et al., 1986). Secondly, the heterogeneity of shape and orientation of urban surfaces

alters the incoming radiative fluxes through many processes, such as shadow casting and multiple reflections. Thirdly, the15

radiative properties of the atmosphere are highly sensitive to air pollutants, clouds, and air temperature and humidity, which

themselves are highly variable in urban areas (Verseghy and Munro, 1989a, b). Fourthly, modelling the RTPs is demanding

in terms of radiative properties of urban surfaces and computational resources, which are not always available. Finally, the

RTPs are non-local, i.e. urban surfaces may exchange radiation not only with other nearby surfaces but also with more distant

surfaces. This poses technical difficulties to the numerical algorithms of those UCMs employing parallelisation via horizontal20

domain decomposition (Resler et al., 2017).

For these reasons, it is excessively difficult to consider all the RTPs in UCM. Therefore, there exists a range of radiative

transfer models (RTMs) of varying sophistication in the UCMs ranging from neglecting altogether the RTPs to parameterising

most of the important RTPs in the canopy-height. However, there is little knowledge on how these models compare across a

range of urban geometries and material properties encountered in an urban area. This knowledge is needed to estimate when25

these models are valid and how large the errors resulting from neglecting some of the RTPs in such models.

Many studies focused on the general effect of including solar radiation on the simulation of the flow field and pollutant

dispersion in urban areas (Bottillo et al., 2014; Qu et al., 2012; Dimitrova et al., 2009; Xie et al., 2005; Archambeau et al.,

2004). These studies used different methods to include thermal radiation. Some studies, e.g. Xie et al. (2005), used heated

surfaces and other studies, e.g. Qu et al. (2011) and Archambeau et al. (2004), used embedded radiation models to provide30

the net atmospheric radiation flux for each solid surface. These studies showed that including solar radiation has significant

effects on the flow field within the urban canopy layer (UCL) and on the associated processes, such as air pollution transport

(Bottillo et al., 2014; Qu et al., 2012; Dimitrova et al., 2009; Xie et al., 2005; Archambeau et al., 2004). However, all these

studies consider the radiative transfer in the canopy layer as a bulk process without distinguishing its inherent RTPs and most
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of them ignore some RTPs such as radiation reflections. To our knowledge, there is no study which evaluates the radiative

transfer within urban area by splitting down the RTPs and addresses their individual effects.

The main aim of this study is to investigate how much details should we include to reasonably parameterise the radiative

transfer in microscale building resolving UCMs within the available computational resources. We introduce a generic method

to individually evaluate the processes involved in the radiative transfer by isolating its effect on the surface radiative budget as5

well as the flow patterns. The comparison of the individual effects of each process allows an assessment of the applicability of

the approximations applied in the UCMs. We focus on the major RTPs, such as the solid surface interaction with the incoming

shortwave and longwave radiation, vegetation interaction with shortwave and longwave radiation, thermal emission of solid

surfaces and vegetation, radiation reflection and the interaction of vegetation with the reflected radiation. Those major RTPs

exist in the commonly used UCMs. It is worth here mentioning that this study does not engage with validating the RTM of the10

model PALM against observations, which is the scope of other studies (Krč et al., 2020; Krč, 2019; Resler et al., 2017, 2020).

The paper is organised as follows: In Sect. 2, the methodology section, we provide a brief overview of the PALM model

system and its RTM, which is employed in this study. We further describe in this section the stepwise parameterization method

which is used to quantify the effect of each RTP process. The study cases and the quantification measures are described in

Sect. 3. Section 4 presents the findings of the research, focusing on the key features that are modified by radiative transfer, i.e.15

the surface radiation budget and the flow field.

2 Methodology

2.1 PALM model system 6.0

The urban climate model adopted to this study is the PALM model system 6.0. This model system is developed to be a

modern and highly efficient model allowing for simulations over large domains (neighbourhood- and city-scale) with building-20

resolving spatial resolution (Maronga et al., 2019). It is based on the well-established large-eddy simulation (LES) model

PALM version 4.0 (Maronga et al., 2015). The model is particularly enhanced by the components needed for the application

in urban environments (so-called PALM-4U components), such as interactive building surface and air quality schemes. The

model is briefly described below, however for detailed description readers are advised to refer to Maronga et al. (2020).

The PALM model system solves the three-dimensional, non-hydrostatic, filtered, incompressible Navier–Stokes equations25

of wind (u, v, and w) and scalar variables (sub-grid-scale (SGS) turbulent kinetic energy, potential temperature, and specific

humidity). These variables are staggered on an Arakawa-C Cartesian grid (Harlow and Welch, 1965; Arakawa and Lamb,

1977) with scalars defined at the centre of a grid box and the velocity components defined on the respective box faces. The

Boussinesq-approximation is applied to the filtered Navier–Stokes equations, and thus density variations are neglected except

for the buoyancy term. The SGS turbulence parameterization depends on the mode of simulation being LES or the Reynolds-30

averaged Navier–Stokes (RANS).

The PALM model system includes all the modules required for simulating most of the atmospheric processes in complex

urban areas (Salim et al., 2020). The plant canopy module accounts for the leaf-air-interactions, such as the vertically extended
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drag, release of heat, and plant evapotranspiration for resolved vegetation such as trees and shrubs. The urban surface module

(first version described by Resler et al., 2017) provides an energy balance solver for all urban elements (building walls, roofs,

windows, green façades, pavements, etc.). The land surface module comprises an energy balance solver for natural (short non

grid-resolved vegetation, bare soil, and water) surfaces and pavements to realistically predict surface conditions and fluxes of

sensible heat and latent heat as well as a multi-layer soil model to account for vertical diffusion (Maronga and Bosveld, 2017).5

The indoor climate module assesses the anthropogenic effects (i.e. air conditioning) on the urban atmosphere and predicts

both indoor temperature as well as energy demand of buildings and waste heat. The chemistry module considers the chemical

reactions, emission, deposition, and transport of substances, including reactive species to account for air pollution issues in

urban environments. The biometeorological module evaluates the outdoor comfort of individuals in cities. The companion

papers in this special issue as well as Maronga et al. (2020) give detailed descriptions for these model components.10

The model exhibits excellent scalability on massively parallel computer architectures (Maronga et al., 2015). The model

has been successfully evaluated against wind tunnel simulations, previous LES studies, and field measurements (Kanda et al.,

2013; Letzel et al., 2008; Park et al., 2015; Razak et al., 2013).

2.2 Radiative transfer model

The RTM within PALM 6.0 system models the major shortwave (SW) and longwave (LW) radiative processes inside the UCL15

(Krč et al., 2020; Krč, 2019). In particular, it calculates the SW and LW irradiance received by all surfaces in the domain from

the sky according to their orientation. This includes direct and diffuse shortwave irradiance and diffuse longwave irradiance

from the atmosphere. To this end, it calculates for each surface a sky view factor (SVF), using a raytracing algorithm, to adjust

the radiation from the radiation model at the UCL top level to the respective surface. Also, it calculates the attenuation of

SW irradiance due to vegetation (urban trees and shrubs) based on its leaf area density. Thus, the RTM calculates the plant20

canopy sink factor for each grid box containing leafs. For simplicity, vegetation is assumed to have zero heat capacity and the

same temperature as the surrounding air, which is a common assumption in RTM approaches (Dai et al., 2003). The RTM also

calculates the absorbed and the emitted SW and LW radiation from each surface, according to the surface properties, i.e. albedo

and emissivity.

Another important process modelled by the RTM is the exchange of SW and LW irradiance by reflections, in the vicinity of25

vegetation. To enable this, RTM calculates mutual surface view factors (VF). For computational reasons, however, the model

uses a finite number of reflections (Krayenhoff et al., 2007) rather than infinite reflection (Yang and Li, 2013). Additionally, all

surfaces are considered as Lambertian reflectors, hence directional reflection is not considered.

In all these processes the absorption, scattering and thermal emission by air mass are neglected. Consequently, the model

application in some weather situations such as fog, heavy precipitation or dense smog is limited at the moment.30

The RTM processes are briefly described in Sect. 2.4. However, the detailed description of the RTM is given in Krč et al.

(2020) and in Krč (2019).

In order to perform this study, the model PALM 6.0 is edited to implement the stepwise parameterization method described

in Sect. 2.4. In particular, switches were added to isolate the radiation processes according to the required step.
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2.3 Radiation model and coupling

The Rapid Radiative Transfer Model for Global models (RRTMG; (Clough et al., 2005)) is used in PALM, and hence in this

study, to provide the shortwave and longwave radiation components at the top of the urban canopy (highest obstacle, a building

or a tree, plus a height buffer). The RRTMG provides both the direct and the diffuse SW radiation fluxes at this height. The

recent development of the model PALM allows for a 2-way coupling between the radiation model, the RRTMG in this case,5

and the RTM (Krč et al., 2020). For instance, the incoming SW and LW radiation fluxes from the RRTMG are used as inputs

to the RTM so that all the RTPs are calculated and provided to the impeded models (e.g. urban- and land surface model) for

solving the energy balance. Simultaneously, the RTM provides three effective radiation surface parameters to the RRTMG,

which are used as its boundary conditions: the effective surface temperature, the effective surface emissivity, and the effective

surface albedo.10

The RRTMG-RTM coupling is an important feature of PALM. In Sect. 4 we show how the RTPs integrated in the RTM do

not only affect the surface radiation budget directly but also implicitly as these processes change the effective radiation surface

parameters.

2.4 Stepwise parameterization Method (SPM)

A bottom-up approach is used to put together the compositional sub-RTPs to give rise to the more complex RTM. In other15

words, a specific RTP is selected and integrated into the previous RTM to form the next RTM. Thus, the effect of adding

this particular process to the RTM can be isolated and quantified. In this way a series of RTMs with different sophistication

emerged in a stepwise manner, starting from a simple RTM to the full RTM (Table 1). Each RTM is briefly described below.

5
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Table 1. Composition of RTPs for each RTM used in SPM

Radiative

transfer

process

radiation

for hor-

izontal

surface

sky view

effect

(building

shadows)

vegetation

interac-

tion

with SW

radiation

receiving

radiation

from

surface

emission

vegetation

interac-

tion

with LW

radiation

single re-

flection

vegetation

interac-

tion with

reflected

radiation

multiple

reflec-

tions

RTM_00 OFF OFF OFF OFF OFF OFF OFF OFF

RTM_01 ON OFF OFF OFF OFF OFF OFF OFF

RTM_02 ON ON OFF OFF OFF OFF OFF OFF

RTM_03 ON ON ON OFF OFF OFF OFF OFF

RTM_04 ON ON ON ON OFF OFF OFF OFF

RTM_05 ON ON ON ON ON OFF OFF OFF

RTM_06 ON ON ON ON ON ON OFF OFF

RTM_07 ON ON ON ON ON ON ON OFF

RTM_08 ON ON ON ON ON ON ON ON

2.4.1 No radiation (RTM_00)

Radiation is ignored altogether in this parameterization step so that there are no RTPs within the urban domain. This resembles

the simulation of the neutral atmospheric boundary layer. Although radiation is ignored in this parameterization step, it is used

here as a base line for comparing the different RTPs.

2.4.2 Simple RTM (RTM_01)5

All horizontal surfaces receive the incoming radiation (SW and LW) from the radiation model without any interference with

obstacles (buildings or trees), while vertical surfaces receive no radiation from the radiation model. This means that both SVFs

and VFs are not needed here. Although this simplification reduces the memory and the CPU time requirements considerably

(see Sect. 2), major RTPs such as surface orientation, obstacle shadow, surface emission, reflections, etc. are missed out.

2.4.3 Sky view (RTM_02)10

In this parameterization step, the RTM calculates the SVF of each surface, to account for diffuse radiation, as well as shape

factors to determine if, for a specific point in time, a surface is exposed to direct sunlight. This will have a major influence on

the surface received SW and LW fluxes for two reasons. First the model can predict the shadow due to buildings and second

the model can prescribe proper SW flux from the sun and LW flux from the atmosphere to the vertical surfaces. The incoming

SW and LW fluxes are improved, compared to the simple RTM, however, resulting in an increase in the run time as well as the15

memory requirements to calculate SVFs. This RTM does not include the effect of trees on the radiative transfer.
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2.4.4 Vegetation interaction with SW solar radiation (RTM_03)

Resolved vegetation (urban trees) is represented in the model as a porous media by its leaf area density (LAD). In this sub-

process, each grid box with a non-vanishing LAD, i.e. urban vegetation canopy box, absorbs part of the SW radiant flux

passing through it, according to its transmittance (the factor that defines how much incoming radiation is passing through). The

transmittance, T , is defined in PALM as T = exp(−αas) where a is the canopy box LAD, s is the length of ray’s intersection5

with the plant canopy and the constant α is the extinction coefficient, which is set to 0.6. The leaf thermal capacity is assumed

to be zero, so that the absorbed radiation is directly transferred to air.

2.4.5 Surface emission (RTM_04)

In this step, RTM allows all surfaces to receive LW radiation not only from the atmosphere but also from the outgoing LW

radiation emitted from other building surfaces. According to the Stefan-Boltzmann law, a surface of a skin temperature Ts10

emits thermal radiation equal to εσT 4
s , here ε is the emissivity and σ is the Stefan-Boltzmann constant. The amount of thermal

radiation along with the reflected part of the LW radiation from the atmosphere will be transferred to other surfaces according

to their VF. Thus, VFs for each surface to other surfaces must be calculated in advance, and additionally to the SVFs. This

process alone may increase the asymptotic computational complexity of a modelled domain, which has a horizontal size of

(n×n), to O(n5) or O(n3), depending on the raytrace discretisation scheme (Krč, 2019). Also, surfaces may have mutual15

visibility, and hence exchange thermal radiation, even when they are far apart. As a result, this imposes further constrains on

the memory layout of the parallelised models which use the Message Passing Interface system (MPI) for the parallel processes

communication. This represents a further increase in the run time and the memory requirements.

2.4.6 Vegetation interaction with LW irradiance (RTM_05)

The interaction of vegetation with LW irradiance includes mainly two processes: thermal radiative emission from vegetation20

towards the urban surfaces and the sky and the absorption of LW radiation within the vegetation. Minor processes such as

mutual LW radiative transfer and reflections within vegetation itself are neglected to save computations. Such an approximation

is reasonable since vegetation in urban area usually has low reflectivity (high emissivity) in the longwave spectrum and similar

surface temperature. The received radiative flux of a surface j from a vegetation box i is calculated as

Ee,i→j = VFi→jσT 4
i , (1)25

where VFi→j is the respective view factor, σ Stefan-Boltzmann constant, and Ti is the leaves’ temperature (set to the sur-

rounding air temperature). Here, the emissivity of the leaves is set to 1, indicating no reflections. Thermal emission from

vegetation towards the sky is similarly calculated using the SVFs of the vegetation boxes. The absorbed LW by a vegetation

box i originating from face j is calculated as

Φe,i,j = CSFiJe,j , (2)30

7

https://doi.org/10.5194/gmd-2020-94
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.

soswald
Hervorheben
New studies showed that this assumption is not true https://doi.org/10.1016/j.scienta.2012.01.022 . Otherwise use a reference for this value.



where CSF is the canopy sink factor and Je,i is the radiosity of the surface. For the diffuse LW radiation from the sky, the

radiosity of the surface is the diffuse LW radiation flux from the radiation model.

The extra geometrical factors required for this parameterization step, i.e. VF and CSF, are derived from the geometrical

factors calculated for the previous parameterisation steps. Detailed derivation for vegetation view and sink factors are given

in Krč (2019). Although extra computational resources are needed to calculate these factors, the radiant flux emitted from5

vegetation towards each face must be exchanged among processors. This implies further run time due to MPI communications.

2.4.7 Single reflection (RTM_06)

Urban surfaces in this parameterization step may receive reflected LW and SW irradiance in addition to the received irradiance

from the main sources described above. Here we enable only one single reflection of LW and SW irradiance. This process is

particularly important for the surfaces located in shadows because it is their source of SW irradiance along with the incoming10

diffuse SW radiation from sky. Also it enhances receiving LW irradiance along with receiving LW radiation from thermal

emissions of other surfaces. The view factors needed for this step are already calculated (Sect. 2.4.5), however, the reflected

LW and SW irradiance fluxes must be exchanged among processors, similar to the RTM_05.

2.4.8 Vegetation interaction to reflected irradiance (RTM_07)

The reflected irradiance flux originating from surfaces is reduced by partial shading of vegetation in this step. The radiative15

flux absorbed by vegetation is calculated using CSF, similar to Sect. 2.4.6. Fortunately, no MPI communication is need here.

The reflectivity of the vegetation is kept zero.

2.4.9 Multiple reflections (RTM_08)

Four iterative reflections of LW and SW irradiance are applied in this RTM. With each reflection step, surfaces receive radiation

from the reflected LW and SW irradiance. In the meantime, vegetation partially absorb this received radiation flux. With each20

reflection step, the reflected LW and SW irradiance fluxes need to be exchanged among processors, indicating higher run-time

requirements.

3 Study cases

Two study cases are employed in this study. The first case, has a rather simple geometry, while the second one has a realistic

urban configuration. The test cases are designed to this study so that the changes due to each SPM step are explained first on a25

simple configuration and then demonstrated on a realistic case.

3.1 Simple urban configuration

Uniformly distributed buildings of cubic shapes are considered to represent a simple urban configuration with 16 buildings.

However, imposing cyclic boundary conditions at the domain sides implicitly indicates unlimited domain. All buildings have

8
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the same size (building height H = 20m). The buildings are arranged so that they shape street canyons with an aspect ratio of

1. The grid spacing is 1m in the all directions. All surfaces in the domain (buildings and pavements) have the same surface

characteristics. The albedo α and the emissivity ε for all surfaces are set to 0.1 and 0.9, respectively. This is intentionally done

so that comparing the radiative fluxes among surfaces is not biased by different surface characteristics.

All trees in the domain (24 tree in total) are identical in size and foliage density. They are uniformly distributed in the domain5

so that a tree is centred between two buildings. The following empirical equation, suggested by Lalic et al., is used to obtain

the vertical distribution of LAD

LAD(z) = LADm

(
h− zm
h− z

)n
exp

[
n

(
1− h− zm

h− z

)]
, (3)

where h is the tree height, LADm is the maximum value of LAD, and zm is the height this maximum occurs (Lalic et al.,

2013). In this formula the constant n is set as follows to10

n=





6 0≤ z < zm

0.5 zm ≤ z < h
. (4)

Tree height, h, is set relative to the building size, H , so that h/H = 0.67 and the LADm and zm/H values are assumed to

be 1.6m2 m−2 and 0.47, respectively. The crown diameter, Dtree, which describes how many grid boxes are occupied by one

tree is set as Dtree/H = 0.5. The wind direction is set to 270◦ (West wind). The street crossing located in the domain centre

and parts of the buildings in its surrounding are chosen to be the focus domain. The building arrangement as well as the focus15

domain are shown in Fig. 1.

3.2 Realistic urban geometry

A domain extending 1× 1km2 around the town square Ernst-Reuter-Platz located in Charlottenburg in Berlin (Germany) is

employed here to apply the SPM procedures to a realistic urban configuration, as shown in Fig. 2. This domain contains several

features of urban complexity, such as different building heights, street configurations, trees, and open spaces. The available20

information of the real buildings as well as the trees located in the domain is utilized to integrate the buildings and trees into

the computational grid. Moreover, the real orography heights as well as the surface cover characteristics of the domain are

also included. All data are originally taken from the Geoportal Berlin and then preprocessed by the German Aerospace Center

(DLR) to meet the PALM input data standard (PIDS) (Heldens et al., 2019).

3.3 Quantification measures25

In order to quantify the quality of each UCM, we introduce quantification measures that compare the model results of each

step with the step before or the reference RTM_08, which contains all the RTPs considered in this study. In order to eliminate

the boundary bias, a focus domain is chosen so that surfaces near boundaries, which may receive radiation from the domain

sides, are excluded from the analysis (Figs. 1 and 2).
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3.3.1 Surface radiation flux

The individual RTPs are quantified by calculating the change of a relevant radiation flux, ∆φ, of a surface i due to including

this process in the RTM, as follows:

∆φ= φi,RTMc
−φi,RTMp

, (5)

where φi,RTMc is a radiation flux for a surface i in the current RTM and φi,RTMp is the flux using the previous RTM. This is5

done for each surface located in the focus domain every one hour. The distribution of these differences is usually multimodal

due to the surface orientations, thus, summary statistics such as mean/median and interquartile ranges are not meaningful.

Therefore, the data is plotted using violin plots (Hintze and Nelson, 1998), which are similar to a box plot but with the addition

of a rotated kernel density plot on each side.

3.3.2 Flow properties10

For each SPM step, the change in the flow properties is evaluated using a relative error measure of a flow property magnitude

(wind speed and air potential temperature) between the model results of this step and those based on RTM_08. A vector of

relative error values is determined for all grid points located in the focus domain. The normalized root-mean-square error,

nRMSE, of the relative error vector is used to provide a scalar measure of error in the flow properties for a particular SPM

step,15

nRMSEψ =


 1
N

∑

i,j,k

(
ψ (i, j,k)c−ψ (i, j,k)RTM_08

ψref

)2



1/2

, (6)

where ψ(i, j,k)c is the flow property at index i, j,k when using SPM parametrization step, ψ(i, j,k)RTM_08 is its equivalent

when using RTM_08, ψref is a reference property used for normalisation, and N is the number of atmospheric grid points in

the focus domain but excluding buildings.

The normalized volumetric flow rate, V +
z , is also used as a measure for quantitative comparisons of the flow field in the20

domain (Salim et al., 2015). This measure represents the vertical volume flow rate, Vz , through a horizontal plane at a height z

above the ground normalized by the domain cross-sectional area Ad (omitting the buildings area), and a characteristic velocity

U (e.g. undisturbed corresponding velocity at boundary layer height). It is calculated as

V +
z =

Vz
AdU

. (7)

Similar to nRMSEψ , only the focus domain is used to calculate V +
z to eliminate boundary effects.25

These two measures, i.e. nRMSEψ and V +
z , quantify changes in the wind speed, both horizontal and vertical, but not the

changes in the wind direction, which is not covered in the analysis.
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4 Results and discussion

The full 3-D simulations for all cases begin at 0000 solar time on 30th June and lasted for 2 days. No cloud formation is applied

for all cases to ensure clear-sky conditions. Before the 3-D simulation, a precursor simulation for one day using the PALM

spin-up mechanism was done for each case. This is done to properly initiate the surface temperature of all surfaces and to save

the computational load. Further details on the spin-up mechanism in PALM is given in Maronga et al. (2020). The simulations5

of the simple case required between 2.86 and 3.11 wall-clock hours running on 100 computer cores, totalling between 286 and

311 CPU hours per simulation. The simulations of the realistic case were running on 1024 computer cores for 4.53 to 5.55

wall-clock hours. In total, the CPU hours ranged between 4644 and 5685 hours per simulation.

4.1 Surface radiation fluxes for the simple case

Before proceeding to examine the effect of each RTP on the surface radiation budget, we discuss the incoming SW and LW10

radiation fluxes from the radiation model RRTMG at the top of the UCL (Fig. 3), which are used as input for the different

RTM configurations used in the simulations. SW radiation peaks at midday with a value of 1038W m−2 and shows only subtle

differences between the different RTMs of up to 4W m−2 (Fig. 3a). Recalling the RRTMG-RTM coupling, this is not surprising

since the effective urban parameters related to the SW radiation do not significantly vary for such a small configuration. LW

radiation fluxes vary between 148W m−2 and 153W m−2 and feature similarly small but relatively larger differences of up15

to 3W m−2 (Fig. 3b). Recalling again the RRTMG-RTM coupling, the incoming LW radiation from the RRTMG is affected

by the effective urban parameters, i.e. the effective emissivity and temperature. These parameters are sensitive to the reflected,

absorbed, and emitted surface LW radiation flux, which vary with each RTP added to the RTM.

In the next sections we compare the surface radiation fluxes within the focus domain of both the simple and the realistic

urban domains when applying the SPM procedures. We focus mainly on the incident SW and LW irradiance because they20

explicitly show the behaviour of RTM associated to each SPM step.

Beside the violin plots, we occasionally show examples of the spatial distribution of the changes in some relevant radiation

flux components for the surfaces. The walls, the roof, and the pavements of the simple urban configuration are folded in a 2D

plot, showing the radiation flux changes in all the surfaces. The surface fluxes shown on these plots are based on the surface

fluxes at 1400 solar time (instantaneous flux for SW radiation and hourly averaged flux for LW radiation). At this time, the25

surfaces are exposed to direct solar radiation and all surfaces are heated.

The figures are based on the surfaces located only in the focus domain to eliminate boundary effects. The number of surfaces

in the focus domain of the simple configuration is 3200 surfaces (1800 vertical and 1800 horizontal surfaces of 1 square metre

each).

4.1.1 Simple RTM (RTM_01)30

The incident SW and LW irradiance for the surfaces in the focus domain are compared to those of the no radiation interaction

case (RTM_00) (Fig. 4). Incidentally, the median and the average of the respective SW and LW values are identical because

11

https://doi.org/10.5194/gmd-2020-94
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.

Reviewer
Kiemelés

Reviewer
Öntapadó jegyzet
How would the authors explain the results for 3b RTM_04?

soswald
Hervorheben
Please use a dashed line as last to see other colors immedatily.



the number of horizontal and vertical surfaces in the focus domain are the same. Using this simple RTM overestimates the

incoming SW flux in the shadow areas, where only the reflected and the diffuse SW flux are expected. Also the horizontal

surfaces miss the LW emissions from building surfaces and trees as well as from LW reflections. The vertical surfaces miss the

entire SW and LW irradiance.

4.1.2 Sky view (RTM_02)5

The calculated SVFs and sun visibility enable the model to more realistically predict the incoming direct and diffuse SW

radiation flux from the sun on both horizontal and vertical surfaces, giving rise to building shadows. Also, the SVFs adjust the

received LW flux for the horizontal surfaces and add the corrected value to the vertical surfaces. In Fig. 5, the respective values

of this case are compared to those predicted to those of RTM_01.

Large changes in the SW radiation flux (±937W m−2) result from the changes in the direct component. For instance, the10

negative high values are related to the horizontal surfaces located in the shadow, while the positive high values are related to the

unshaded vertical surfaces. The resulting relatively small values in the changes in mean SW irradiance stem from the changes

in the diffusive component. Since surfaces have diverse SVFs, the changes of the diffusive SW component are accordingly

distributed, unlike the direct SW component.

The increased LW radiation flux (+30 to +81 W m−2) belongs to the vertical surfaces, while the negative changes (-4715

to -90 W m−2) are related to the pavement surfaces whose SVFs are reduced in the current parameterization step. The LW

radiation of roof surfaces changes only very little (about ±3W m−2) due to the small changes in the RRTMG’s longwave

radiation discussed above. This behaviour is summarised in the spatial distribution of the changes of the incident LW flux at

1400 UTC in Fig. 6.

4.1.3 Vegetation interaction with SW irradiance (RTM_03)20

The changes in the received SW and LW irradiance due to considering the vegetation interaction with the incoming SW

radiation flux are shown in Fig. 7. The vegetation partially absorbs the incoming direct and diffuse SW flux components based

on its LAD leading to a reduction of up to 900W m−2. For direct SW irradiance, trees partly or fully cast shadows on the

surfaces located in their shadow angle if they are not shaded by buildings anyway. Since direct SW irradiance is the dominant

incoming flux during daytime, the radiation budget of the surfaces impacted by vegetation are highly changed. For diffuse SW25

irradiance, trees decrease the view factor of those surfaces located in their effective view area, and hence decrease the incoming

diffuse SW irradiance as well. Since diffuse SW is not directional, all surfaces having trees in their view angle are affected,

even if they are shaded by buildings (e.g. Fig. 8).

Although this parameterization does not allow direct interaction of vegetation with LW radiation, Fig. 7b shows slight

changes in the incoming LW irradiance, compared to the previous step. This is attributed to the changes in the incoming LW30

radiation from the radiation model (RRTMG) due to the RTM-RRTMG coupling, Fig. 3b.
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4.1.4 Surface thermal emission (RTM_04)

The changes in the received SW and LW irradiance shown in Fig. 9 are due to receiving thermal emissions from urban surfaces

in the RTM. Most of the surfaces receive considerable amounts of LW radiation (Fig. 9b), nevertheless, some surfaces do not

receive LW radiation from surface emissions. Those surfaces do have a vanishing view factor to any other surfaces (i.e. the

roof surfaces, Fig. 10). What stands out in this configuration is the high value of received radiation flux even at nighttime. This5

contribution to the surface radiation budget is considerable and for some surfaces, especially those located in shadows, it is the

main source of radiation.

The SW radiation parametrization is not changed, hence negligible changes less than 1W m−2 in the received SW radiation

flux are simulated (Fig. 9b).

The considered process in RTM_04 has also an implicit implication on the radiation budget. For instance, when a surface10

receives extra LW irradiance from thermal emission of other surfaces, its surface temperature increases. Accordingly, the

thermal emission from this particular surface increases with increasing the surface temperature to the power of four according

to the Stefan-Boltzmann law. Thus, in turn, the other surfaces will receive higher LW irradiance as well.

Including this process decreases the incoming LW radiation from the atmosphere by about 1W m−2 due to the coupling of

RTM and RRTMG. In the previous steps, all the surface LW emission is emitted to the atmosphere while in this step these15

emission are only partially emitted to the atmosphere leading to a lower effective surface temperature.

4.1.5 Tree thermal emission (RTM_05)

So far the entire vegetation interaction with LW transfer has been ignored. The justification is that the absorbed LW radiation

by vegetation may be compensated by the emitted LW radiation from vegetation. This simplification is acceptable provided

that the surface temperature of the plant canopy is similar to the temperature of the surrounding surfaces. However, this is not20

always the case. Therefore, both the absorption and the emission of LW radiation by vegetation are included in this step.

Here, surfaces receive more LW emissions compared to the previous case by up to 130W m−2 (Fig. 11b and 12). This is

an indication that the emitted LW radiation from trees is higher than the absorbed, resulting in higher LW radiation received

by surfaces. Since surfaces have different view factors to trees, the LW radiation received by the surfaces is affected by the

tree-surface relative location (Figs. 11b and 12). Recalling the parameterization of this step in the RTM (Sect. 2.4.6), the leaves’25

temperature is set to the surrounding air temperature. During daytime, the net incoming radiation under the trees is still lower

by 400W m−2 compared to its surrounding. During nighttime, this situation is reversed. We find about 90W m−2 more net

radiation under the tree compared to the surrounding.

Allowing vegetation interaction with LW radiative transfer modifies the radiation balance in urban areas. Particularly, it

increases the outgoing LW radiation due to increasing the LW radiation absorption within vegetation, reflection from surfaces,30

and emission from surfaces due to its higher temperature compared to RTM_04. This in turn modifies the effective urban

parameters which control the RRTMG-RTM coupling.
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4.1.6 Single reflection (RTM_06)

Fig. 13 gives the changes in the SW and LW received radiation due to considering a single reflection in the RTM. The figure

shows that all surfaces received radiation from the reflected radiation from other surfaces, which depends on the surface

albedo and surface emissivity except the roof surfaces that do not have a view to other surfaces. However, how much additional

radiation a surface receives by reflection from another surface depends on their mutual VF as well as on the amount of reflected5

radiation. For such a simple and regular configuration the variability of the reflected LW radiation is low among surfaces.

Therefore, the VFs are predominating. However, this is not the case in SW radiation. Surfaces near unshaded surfaces receive

up to 90W m−2 reflected SW radiation at 1400 UTC while other surfaces receive less (Fig. 14).

The RTM in PALM is designed in such a way that surfaces absorb all the received reflected radiation after the last reflection

step which in the case of RTM_06 is one reflection. In other words, surfaces do not reflect part of the received radiation10

from reflection. For this reason, the consideration of only a single reflection is not enough to account for realistic simulations

especially for surfaces with low emissivity or high albedo.

4.1.7 Vegetation interaction with reflected radiation (RTM_07)

In this parameterization step, vegetation partially absorbs the reflected SW and LW radiation from all the surfaces where

vegetation boxes exist between the target and the source surfaces. The absorbed radiation is directly released to the atmosphere15

since vegetation is assumed to have zero heat capacity. Since the change in the incoming SW radiation from the radiation model

RRTMG is negligible in this step (Fig. 3a), all surfaces receive up to 1.2W m−2 less reflected SW radiation due to vegetation

compared to the previous case (Fig. 15a). Interestingly, small positive values in ∆LW less than 0.6W m−2 (Fig. 15b) are

observed in particular during nighttime although negative values are expected. Some surfaces may receive slightly higher

reflected LW radiation when the RTM includes the vegetation interaction with reflected radiation. Meanwhile, the incoming20

LW radiation from the radiation model RRTMG is slightly less than in the previous case (RTM_06) (Fig. 3a). This behaviour

is attributed to the variability of the vegetation LW emission (see Sect. 2.4.6), which is calculated based on the instantaneous

local air temperature. For instance, the spatial distribution of the received LW radiation for all surfaces in the focus domain,

depicted in Fig. 16 shows that some surfaces receive slightly higher LW radiation flux compared to other surfaces for this

particular time. When the local air temperature changes due to the model dynamics the vegetation LW emission changes as25

well and the surfaces receive different reflected LW radiation accordingly.

4.1.8 Multiple reflections (RTM_08)

The received SW and LW radiation gained by increasing the reflection steps from a single reflection to 4 reflections is depicted

in Fig. 17. During each reflection step, vegetation absorbs part of the reflected radiation, similar to the previous processes

(Sect. 2.4.8). The surface which have no mutual view to other surfaces, in especially roof surfaces in this case, receive no30

reflected SW radiation (Fig. 18). Also, the change in the incoming SW radiation from the radiation model RRTMG is not
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large enough, Fig. 3a, to change their incident SW irradiance. Nevertheless, these surfaces received less LW radiation since the

incoming LW radiation from the radiation model RRTMG is smaller compared to RTM_07 (Fig. 3b).

It is important when performing multiple reflections to monitor the residuals after each reflection step. That is to assure that

the absorbed radiation at the last reflection step is small enough so that any further reflections can be ignored. As a matter of

fact, radiation flux density has an order of αN for shortwave and (1−ε)N for longwave radiation. Figure 18 shows that the SW5

radiation residuals in the surfaces after 4 reflection steps are small enough and the reflection process can be safely terminated.

The LW radiation residuals show similar small values as well (not shown).

4.2 Surface radiation flux for the realistic urban configuration

Generally speaking, the changes in the surface radiation flux of the realistic urban configuration when applying SPM show

similar behaviour to the simple urban configuration. However, due to the complexity of the building configurations and the10

heterogeneity of the surface characteristics of the realistic case, these changes are more complex. In this section we show

examples of the changes in the radiation fluxes for the realistic case and we highlight the differences compared to the simple

case.

First, the incoming SW and LW radiation fluxes from the radiation model RRTMG, shown in Fig. 19, vary more with each

SPM step as a result of RTM-RRTMG coupling than in the simple case. In fact both the effective urban characteristics (albedo,15

emissivity, and temperature) and the atmospheric properties (i.e. air temperature, humidity, pressure, etc.), which are the inputs

to the radiation model RRTMG, change in the realistic case more than the simple case. This represents an implicit effect of the

radiation parameterisation on the simulation of a realistic urban configuration.

Second, the magnitude of the changes in the radiation fluxes due to considering a specific RTP is higher than those in the

simple urban configuration. This can be attributed to the complexity of the urban configurations and its surface characteristics.20

Also, the variability in the incoming radiation from the radiation model RRTMG to the urban domain contributes to these

changes. For instance, including the vegetation interaction with SW radiative transfer (RTM_03) decreases the received SW

radiation of the surfaces located in the view of the vegetation (Fig. 20a). Since the vegetation in the realistic configuration are

heterogeneous and denser than in the simple case their effect is much higher (Fig. 21). Consequently, the urban domain air

cools down compared to the previous RTM and, therefore, the incoming LW radiation is less (Fig. 20b).25

Third, the effect of the RTPs related to the vegetation interaction with LW radiation transfer is more pronounced and even

more complex, compared to the simple case. As described in Sect. 2.4.6 and 2.4.8, the LW emission from vegetation is based

on the leaves’ temperature which is set to the surrounding air temperature. In such complex geometry, the air temperature

varies with the flow dynamics, especially in simulations based on LES, and hence the vegetation thermal emissions. Also, the

absorbed LW radiation by vegetation is directly released to the air which further modifies the temperature field in the domain.30

These vegetation related processes implicitly modify the thermal emissions from urban surfaces (walls, pavements, etc.) by

modifying the surface temperature of these surfaces. This in turn changes the received LW radiation from surface thermal

emission. Ultimately, the total received LW irradiance for a surface is the combination between the received LW radiation from

the sky and from the surface thermal emissions after the partial absorption in the vegetation boxes and the thermal emission
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from the vegetation boxes themselves. For example, Fig. 22 shows two examples of the changes in the received LW radiation

flux for the realistic case. Fig. 22a gives the changes in the received LW radiation flux due to including the thermal emissions

from vegetation. Although most of the surfaces receive higher LW irradiance, due to vegetation emissions, some surfaces

receive slightly less LW irradiance. For those surfaces, the absorbed LW radiation in vegetation is higher than that received

from the vegetation thermal emissions. In Fig. 22b, the changes in LW irradiance due to including multiple reflections are5

depicted. The variability in the temperature field which drives the vegetation thermal emissions affects the total LW radiation

flux received by each surface. The spacial distribution of these changes are plotted in Fig. 23.

4.3 Wind flow properties

The general effect of the thermally driven flow within the UCL has been discussed in many previous studies (e.g. Qu et al.,

2012; Park et al., 2012; Xie et al., 2005). However, we focus here on the dynamic and thermal flow properties response to10

the different combinations of RTPs rather than addressing the radiation as a bulk process. We first show the effect of RTPs

on the average vertical profiles of the flow properties and then we use the quantification measures described in Sect. 3.3.2 to

quantitatively monitor these effects.

Each parameterization step of SPM yields RTM, and hence UCM, with varying combinations of radiative interaction pro-

cesses (Sect. 2.4). The different RTM produce different radiation budgets for surfaces, as discussed in Sect. 4.1 and 4.2. The15

heated surfaces add buoyancy force to the flow in addition to the inertial and the mechanical shear forces. The interaction of

these forces alters the structure of the recirculating flow within street canyons and above building roofs generating different

flow patterns. Presumably, this affects all exchange processes within the urban boundary layer.

Since the flow in each simulation responds to different combinations of RTPs, results are presented in a normalized form.

The average building height, H , is used as the canopy height to characterise the length scale. The velocity scale, Ur, is set20

to be the time-varying horizontally averaged wind speed at the atmospheric boundary layer depth of case RTM_08 (the full

RTM with multiple reflections, Sect. 2.4.8). The horizontally averaged potential temperature of RTM_08 at the same height is

utilised as the reference temperature. Both the horizontal wind speed (uh = (u2+v2)1/2) and the turbulent quantities (turbulent

kinetic energy, e, and vertical turbulent flux of potential temperature, w′θ′) are normalized using these characteristic scales.

4.3.1 Mean profiles25

During the simulations, instantaneous flow properties such as wind velocity components (u, v, w) and potential temperature

(θ) are calculated every time step. After the spinup time, the averaged values as well as the turbulent fluctuations (as deviations

from the averaged values) are calculated every 3600 s of the simulated time. The quantities then are horizontally averaged to

create horizontally averaged vertical profiles every one hour. These time-varying horizontally averaged profiles of the flow

components represent the changes of these quantities during the diurnal cycle. The flow profiles are shown in Fig. 24 and 25 at30

1200 solar time when the effect of radiation parameterisation is most visible. Figures 24 and 25 show the vertical profiles of the

normalized averaged wind speed, the deviation of potential temperature from the near surface value, and the vertical turbulent

flux of potential temperature. These flow properties are chosen to represent the wind, scalar, and scalar statistics.
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Comparing the profile shapes and the vertical gradients, the effect of radiation parametrization on the flow is most prominent

near the horizontal surfaces. Thus, this is more visible in the simple urban geometry, compared to the realistic case where the

horizontal surfaces are distributed at many vertical levels. Three groups of profiles can be identified. The first group is related to

the results based on RTM_00 to RTM_03. Basing the PALM only on these RTMs produces high discrepancies in both the wind

and the turbulence characteristics compared to RTM_08. Interestingly, the simple RTM, i.e. RTM_01, gives even more accurate5

results compared to RTM_02 and RTM_03 at this time of the day. Although the interaction of surfaces and vegetation with SW

radiation in these two RTMs is more accurate compared to RTM_01, the reduction in SW radiation is not compensated by other

RTPs. The second group include the profiles based on RTM_04 to RTM_06 which allow surfaces to receive LW irradiance from

surfaces and vegetation as well as reflected SW radiation from surfaces. These parameterisations enhance both the wind and

the scalar profiles and remarkably adjust the vertical profiles and, hence, represent the minimum parameterization of radiation10

interaction in order to produce reasonable vertical profiles of flow properties. The third group include the profiles based on the

last RTMs, i.e RTM_07 and RTM_08. These parameterisations have subtle effect on the profiles shape and merely serve to

fine-tuning the flow profiles. This finding is not surprising since the change in surface radiation budget due to the additional

radiation interaction processes in these RTMs is low, compared to those in the previous RTMs.

4.3.2 Quantitative analysis15

The heterogeneity of surfaces with different radiation budget due to their orientation and surface characteristics creates local

flow changes that are not visible in the flow profiles discussed above. Each process ultimately initiates different thermally

induced forces which interact with both the shear forces of the flow above the surfaces and the driving forces induced by

building corners, creating eddies yielding to the complex three-dimensional flow field. This spatial variability in the flow field

arising from using different RTMs is quantified by calculating the root-mean-square of the relative error vector in the flow20

properties, nRMSEψ , Eq. 6 and the normalized volumetric flow rate, V +
z , Eq. 7, for each particular SPM step, as discussed in

Sect. 3.3.2.

For the relative error measures, the flow properties chosen are the normalized horizontal and vertical wind speed and the

air potential temperature. According to these measures, successive incorporation of RTPs results in reduction in nRMSE

(Figs. 26 and 27), indicating improvement of solution quality. The results based on RTM_07 are close to the reference results25

(RTM_08) throughout the day. For this RTM, nRMSE of horizontal and vertical wind speed are negligible (less than 2 %) in

both the simple (Figs. 26a and 26b) and the realistic (Figs. 27a and 27b) urban configurations. Also nRMSE values of the air

temperature are very small (less than 0.2 K). Accordingly, including this RTP in the RTM seems to have a marginal effect on

the flow properties even in the realistic urban configurations. The results based on RTM_04 to RTM_06 are in a good quality.

For wind speed, nRMSE values are mostly less than 5 % for both urban configuration. The variability in nRMSE values is not30

high throughout the day, yet higher in the day time (Figs. 26 and 27). On the other hand, RTM_00 to RTM_03 produce low

quality results, based on the calculated nRMSE (Fig. 26 and 27). The discrepancies induced by omitting the processes covered

in RTM_01 to RTM_03 in the velocity field are high and may essentially impact all velocity-related parameters, such as wall

shear stress and others.
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For the normalized volumetric flow rate, V +
z is calculated for a complete diurnal cycle at a horizontal plan set at a height

z/H = 0.5. The characteristic velocity is set to the velocity scale Ur at the corresponding time. Comparing V +
z for all cases

clearly shows that including different RTPs alters the air volume flow through the corresponding plane (Figs. 28). It indicates

that the rotation of air mass in the streets has been changed as a result of the interaction between the mechanically and the

thermally induced forces. The air mass rotation varies during the day as the thermally induced forces change with time, and5

according to the RTM used. The V +
z results for both the simple (Fig. 28a) and the realistic (Fig. 28b) urban configurations

confirm the results of the relative error measures. The V +
z values based on RTM_00 to RTM_03 are quite low compared to

the those based on RTM_08, while the V +
z values based on RTM_04 to RTM_06 are relatively close to the values based on

RTM_08. The effect of multiple reflections, i.e. RTM_07 on the V +
z values is quite small.

4.3.3 Overall effect10

Overall, based on the above discussion the effect of using different RTMs on the flow properties may be summarised as follows:

– In combination, our analysis confirms the hypothesis that using different combinations of RTPs considerably alters the

flow properties (scalar and turbulence) within the urban domain and at the canopy-atmosphere interface.

– Each RTP affects the flow field differently, based on its contribution to the surface radiation budget. Some processes have

primary effects on the flow while other processes have only secondary effects.15

– Considering the SW interaction with buildings and vegetation (shadow casting) only in the RTM is not recommended,

especially during the day, and may produce high discrepancies in the flow properties and all its related parameters.

– The processes of buildings and vegetation interaction with LW transfer, such as thermal emissions, are essential in RTM

to assure acceptable quality of the model results.

– Including SW and LW radiation reflection process in RTM affects the flow properties. It is important to included both20

SW and LW reflection in the RTM to produce high quality model results.

– The changes in the radiation budget of surfaces due to considering vegetation interaction to reflected irradiance and/or

multiple reflections in the RTM are not strong enough to create a considerable effect on the flow properties.

– Generally, the effects of RTPs depend on the time of the simulation. For example, processes related to the interaction

with SW radiation obviously are only important during the day.25

– The change in the flow properties due to the sophistication of RTM is not limited to the flow between buildings, but its

influence extends above street canyons.

4.4 Computational aspects

As pointed out in Sect. 1, computational resources, i.e. computation time (CPU time) and memory space, may pose hard

constraints to include all RTPs into the RTM. The demand for these resources may vary during the simulation, depending on30
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the design of the RTM. For instance, during the model initialization the RTM needs considerable amount of computational

resources to perform the raytracying to calculate the geometrical fields related to the RTM, such as SVFs, SV, and CSF. These

fields are usually not fully aggregated or stored in size-optimised arrays in the initialization phase. Also the model needs other

helping fields to calculate the main fields, which are deallocated after the initialization. During the time integration (time-

stepping) phase, RTM uses less computational resources, compared to the initialization, because it allocates only the required5

fields and, since the geometry is fixed, the geometrical fields are not recalculated. The resources required for the restart and

the post-processing depend on the model steering and usually are not as demanding as in the initialisation phase. We limit

the analysis of the computational resources here to the time-stepping phase because the other two parts are needed only once

during the simulation and may vary depending on the discretisation scheme and the raytracing algorithm.

Table 2 compares the essential computational resources needed for the RTMs of the SPM. These RTMs can be divided ac-10

cording to its computational resources demand into two groups. The first group, RTM_00 to RTM_03, requires low computa-

tional resources because these RTMs consider only the RTPs related to the atmosphere-surfaces interaction. The computational

resources in these processes usually grow in the order of the number of surfaces and plant canopy boxes (first order), since

there is no mutual interaction between the surfaces and the plant canopy boxes. The second group, i.e. RTM_04 to RTM_08,

needs considerable amount of computational resources since RTMs in this group additionally account for the RTPs related to15

surface-to-surface radiative interaction as well as vegetation interaction with LW radiation. These processes, however, increase

the computational resources for a domain size n×n by order of magnitude O(n5) or O(n3), depending on the descretization

scheme.

As Table 2 shows, there is no additional memory demand after the RTM_05 because all the essential fields are already

calculated. This suggests that, from the memory point of view, it is recommended to use the full RTM, i.e. RTM_08 when all20

the RTPs of the RTM_05 are, at least, needed because all other RTPs included in the RTM_08 come with no further memory

space demand. The table shows also that there is a considerable steady increase in the CPU time starting from RTM_04. This is

due to the time needed for MPI data exchange for each timestep for the surface-to-surface and plant canopy box related RTPs.

However this may not represent an issue for the whole model CPU time since the CPU time demand for RTM is small for a

well designed and optimized models (< 5 %). Nevertheless, the RTM may implicitly increase the CPU time by modifying the25

turbulent flow, due to the buoyancy force, which results in a decreased time-step.
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Table 2. The computational resources requirement of the RTMs used in the SPM for the realistic urban configuration. The CPU time is given

relative to the CPU time of RTM_08 (3422 min, excluding the initialisation, restart, and post-processing phases). Note that the RTM requires

< 5 % of total runtime of the model run with RTM_08. The memory space is given for the essential fields only.

RTM relative CPU time (%) memory space (GB)

RTM_01 0.6 0.0

RTM_02 5.5 0.17

RTM_03 5.7 1.41

RTM_04 20.6 17.27

RTM_05 35.9 22.96

RTM_06 40.4 22.96

RTM_07 51.9 22.96

RTM_08 100 22.96

4.5 Limitations and outlook

The generalisability of the results of this study is subject to certain limitations. For instance, all the simulations were performed

on a typical urban scenario during a summer day with clear-sky conditions. Neither clouds nor rain were considered in this

study. The effect of RTPs, especially those controlling SW radiation, will change for other than clear-sky conditions. However,

clear-sky conditions are usually used for urban specific applications. Since the study was based on the model system PALM,5

it was not possible to consider the effect of absorption, emission and scattering of radiation due to air constituents (e.g. fog,

pollutants, etc.). Also, all surfaces are assumed to be Lambertian reflectors, therefore, directional reflection is not considered.

Another limitation is the dependency of the results on the surface properties (albedo, emissivity, roughness and skin layer

thermal conductivity) and parameters of building and pavement materials (volumetric heat capacity and thermal conductivity).

Although we made sure to use typical surface properties in the two urban configurations, simulations for domains with different10

surface properties may show different results.

The current study focuses on the flow changes within the urban domain. Further research could also be conducted to de-

termine the influence of using different radiation transfer processes on the atmospheric boundary layer scale structure and its

impact on turbulent exchange at the canopy–atmosphere interface. Further studies need to be carried out in order to explore

canopy exchange of scalars (e.g. pollutant dispersion).15

5 Conclusions

The purpose of the current study is to determine how much detail should be included to parameterise the radiative transfer in

UCMs. A generic parameterisation method is used to quantify the effect of including the main RTPs into the RTM of an UCM

in a stepwise manner. These processes include interaction of urban elements (buildings and trees) with both the incoming SW
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radiation (e.g. shadow casting) and LW radiation (e.g. thermal emission and absorption) as well as radiation reflections among

urban elements. The results showed that although these processes contribute differently to the surface radiation budget, they

are necessary to accurately estimate the radiation budget of urban surfaces.

However, the study highlights the main major RTPs which greatly affect the ultimate surface radiation budget. For instance,

surface interaction with the incoming SW and LW radiation from the sky is greatly adjusted by calculating the proper SVFs5

and, hence, the received radiation from sky to surfaces is correctly added to the radiation budget. Also, and as expected,

the vegetation interaction with the incoming SW radiation from sky has a great effect on the surfaces located in their view

area. The radiation budget is greatly adjusted by estimating the vegetation shadows due to vegetation. Additionally, receiving

LW irradiance from urban surfaces constitutes a major part of the received LW radiation budget. Similarly, the vegetation

interaction with LW irradiance process affects the radiation budget of the surfaces located in their view by partially absorbing10

the LW irradiance from the sky and emitting LW irradiance from the biomass.

The study shows also that receiving irradiance from the reflected radiation (SW and LW) provides considerable radiation to

the radiation budget of surfaces, especially to those located in the shadow. Most of the received radiation from reflections is

received in the first reflection, however multiple reflections are still needed to reduce the residuals. It is confirmed that using

finite number of reflections is adequate to parameterise radiation reflections since radiation residuals decrease quickly with15

increasing the number of reflections. Nonetheless, the number of reflections should be chosen based on the surface properties

(albedo and emissivity). Vegetation interaction with reflected irradiance has a minor effect on the radiation budget.

The flow field properties (scalar and turbulent) react to the type of the RTM used in the simulation. The flow field is shaped

by the interaction between the inertia, mechanical shear, and buoyancy forces. The latter is mainly controlled by the RTPs

considered in the RTM. The study identified three categories of RTMs. The first category (RTM_00 to RTM_03) produces low20

quality model results. The second category (RTM_04 to RTM_06) gives acceptable model results, based on the quantification

measures. Omission of any RTP in these RTMs may lead to considerable uncertainties in the model predictions. The third

category (RTM_07 and RTM_08) produces high quality model results. Generally, RTPs modify the vertical distribution of

turbulent momentum flux and controll the exchange of momentum and scalars. This is an essential feature especially when

designing/evaluating urban climate application studies, such as pollutant dispersion and outdoor comfort in urban areas.25

The study highlights the implicit effect of each RTP on the surface radiation budget and the flow field by altering the

incoming radiation fluxes from sky, due to the coupling of RTM with the radiation model.

Code availability. The PALM model system is distributed under the GNU General Public License v3 (http://www.gnu.org/copyleft/gpl.

html). The model source, documentation, user manual, and online tutorial are freely-available and can be downloaded from http://palm-model.

org. Version 6.0 of PALM, which is used for this study, is available via https://doi.org/10.25835/0041607. The SPM is freely available upon30

a written request to the corresponding author.
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Data availability. The model output data that has been presented in this manuscript as well as the model driver data are available via

https://doi.org/10.5281/zenodo.3934874.

Appendix A: List of abbreviation

LAD Leaf Area Density

LES Large Eddy Simulation

LW Long Wave

MPI Message Passing Interface

PALM The Parallelized Large-eddy Simulation Model

RANS Reynolds-Averaged Navier–Stokes Equations

RRTMG Rapid Radiative Transfer Model for Global models

RTM Radiative Transfer Model

RTP Radiative Transfer Process

SGS Sub Grid Scale

SPM Stepwise Parametrisation Method

SVF Sky View Factor

SW Short Wave

UCM Urban Climate Model

UCL Urban Canopy Layer

VF View Factor
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Krč, P.: Improved methods of weather forecasting applied in transportation, Ph.D. thesis, Czech Technical University in Prague, Prague,5

Czech Republic, 2019.
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Figure 1. Illustration of the simple urban configuration showing the simulation and the focus domain. The trees (shown in green) are centred

between buildings
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Figure 2. An aerial view of the realistic urban configuration showing the 3-D buildings (fitted to the grid) and the plant canopy boxes (trees,

shown in green points). The configuration is centred around Ernst-Reuter-Platz in Charlottenburg in Berlin (N52◦30.8′ E48◦19.31′). The

copyright for the underlying satellite image is held by GeoBasis-DE/BKG (©2009), Google
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Figure 3. The daily course of (a) incoming shortwave and (b) incoming longwave radiation fluxes for the top of urban layer of the simple

urban configuration at 52◦N on July 1st for different RTM configurations
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 4. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when applying the

simple RTM (RTM_01) compared to the neutral case (RTM_00). The colour of the SW irradiance violin plots is orange and those of the SW

irradiance is blue. The mean values are shown in black dashed line and the median values are shown in black circles
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 5. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering the

surface sky view factors (RTM_02) compared to the RTM_01. Violin, mean, and median colours are used in the same way as in Fig. 4
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Figure 6. Changes in the received LW radiation flux within the focus domain of the simple urban configuration when considering the surface

sky view factors (RTM_02) compared to the RTM_01. Walls (left plot), roofs (in the centre of the right plot), and pavements (rectangles on

all four sides in the right plot) are folded. See the details of the focus domain of the simple urban configuration in Fig. 1
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 7. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering

vegetation interaction with SW solar radiation (RTM_03) compared to the RTM_02. Violin, mean, and median colours are used in the same

way as in Fig. 4
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Figure 8. Changes in the received diffuse SW radiation flux within the focus domain of the simple urban configuration when considering

vegetation interaction with SW solar radiation (RTM_03) compared to the RTM_02. Walls, roofs, and pavements are folded the same was as

in Fig. 6
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 9. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering

surface thermal emissions (RTM_04) compared to the RTM_03. Violin, mean, and median colours are used in the same way as in Fig. 4

36

https://doi.org/10.5194/gmd-2020-94
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.



South wall 1 South wall 2 East wall 2 East wall 1

North wall 1 North wall 2 West wall 2 West wall 1 Horizontal surfaces (pavement + roof)

July 01,  2:00 PM

0

50

100

150

200

250

300

350

L
W

in
Figure 10. Changes in the received diffuse LW radiation flux within the focus domain of the simple urban configuration when considering

surface thermal emissions (RTM_04) compared to the RTM_03. Walls, roofs, and pavements are folde dthe same was as in Fig. 6.
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(a) Changes in SW radiation flux (b) Changes in SW radiation flux

Figure 11. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering tree

thermal emissions (RTM_05) compared to the RTM_04. Violin, mean, and median colours are used in the same way as in Fig. 4
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Figure 12. Changes in the received LW radiation flux within the focus domain of the simple urban configuration when including vegetation

interaction with LW radiation (RTM_05) compared to RTM_04. Walls, roofs, and pavements are folded the same was as in Fig. 6.
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 13. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering one

reflection (RTM_06) compared to RTM_05. Violin, mean, and median colours are used in the same way as in Fig. 4
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Figure 14. Changes in the received SW radiation flux within the focus domain of the simple urban configuration when considering one

reflection (RTM_06) compared to RTM_05. Walls, roofs, and pavements are folded the same was as in Fig. 6.

41

https://doi.org/10.5194/gmd-2020-94
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.

soswald
Hervorheben



(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 15. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering

vegetation interaction with the reflected irradiance (RTM_07) compared to RTM_06. Violin, mean, and median colours are used in the same

way as in Fig. 4
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Figure 16. Changes in the received LW radiation flux within the focus domain of the simple urban configuration when considering vegetation

interaction with the reflected radiation (RTM_07) compared to RTM_06. Walls, roofs, and pavements are folded the same was as in Fig. 6.
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 17. Changes in the received SW and LW irradiance within the focus domain of the simple urban configuration when considering

multiple reflections (RTM_08) compared to RTM_07. Violin, mean, and median colours are used in the same way as in Fig. 4
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Figure 18. The SW residual radiation flux for the focus domain of the simple case after four reflections (RTM_8). Walls, roofs, and pavements

are folded the same was as in Fig. 6.
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Figure 19. The daily course of (a) incoming shortwave and (b) incoming longwave radiation fluxes for the top of urban layer of the realistic

urban configuration at 52◦N on July 1st
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(a) Changes in SW radiation flux (b) Changes in LW radiation flux

Figure 20. Changes in the received SW and LW irradiance for the surfaces of the realistic urban configuration when considering vegetation

interaction with SW solar radiation (RTM_03). Violin, mean, and median colours are used in the same way as in Fig. 4
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Figure 21. Changes in the received SW radiation flux for the realistic urban configuration at 10:00 solar time due to including the vegetation

interaction with the SW radiative transfer (RTM_03). The copyright for the underlying satellite image is held by GeoBasis-DE/BKG (©2009),

Google
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(a) Changes in LW radiation flux, RTM_05 (b) Changes in LW radiation flux, RTM_08

Figure 22. Changes in the received LW irradiance for the surfaces of the realistic urban configuration when considering (a) the vegetation

interaction with LW radiation (RTM_05) and (b) the multiple reflections (RTM_08). Violin, mean, and median colours are used in the same

way as in Fig. 4
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Figure 23. Changes in the received LW radiation flux for the realistic urban configuration at 12:00 solar time due to including multiple

reflections (RTM_08). The copyright for the underlying satellite image is held by GeoBasis-DE/BKG (©2009), Google
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Figure 24. Horizontal- and time-averaged (one hour) vertical profiles of the simple urban configuration at 12:00 solar time of (a) horizontal

wind speed 〈uh〉 = (u2 + v2)1/2, (b) turbulent kinetic energy 〈e〉, (c) normalized vertical potential temperature 〈θ〉 deviation from the near

surface potential temperature 〈θ0〉, and (d) normalized vertical turbulent flux of potential temperature 〈w′θ′〉. Each quantity is normalized

by its relevant combination of velocity (Ur), temperature (θr), and height scale (H).
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Figure 25. Horizontal- and time-averaged (one hour) vertical profiles of the realistic urban configuration at 12:00 solar time of (a) horizontal

wind speed 〈uh〉 = (u2 + v2)1/2, (b) turbulent kinetic energy 〈e〉, (c) normalized vertical potential temperature 〈θ〉 deviation from the near

surface potential temperature 〈θ0〉, and (d) normalized vertical turbulent flux of potential temperature 〈w′θ′〉. Each quantity is normalized

by its relevant combination of velocity (Ur), temperature (θr), and height scale (H).
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Figure 26. Error measure, nRMSE, for (a) the horizontal wind speed 〈Uh,r〉 = (u2 +v2)1/2, (b) the vertical wind speed 〈w〉, and (c) the air

potential temperature 〈θ〉 for the focus domain of the simple urban configuration
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Figure 27. Error measure, nRMSE, for (a) the horizontal wind speed 〈Uh,r〉 = (u2 + v2)1/2, (b) the normalized vertical wind wind speed

〈w〉, and (c) the air potential temperature 〈θ〉 for the focus domain of the realistic urban configuration
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(b) Realistic urban configuration

Figure 28. The normalized volumetric flow rate for (a) the realistic and (b) the simple urban configuration for all SPM steps
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