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Abstract. The availability of phosphorus (P) and nitrogen (N) constrain the ability of ecosystems to use
resources such as light, water and carbon. In turn, nutrients impact the distribution of productivity,
ecosystem carbon turnovers and their net exchange of CO, with the atmosphere in response to variation
of environmental conditions both in space and in time. In this study, we evaluated the performance of
the global version of the land surface model ORCHIDEE-CNP (v1.2) which explicitly simulates N and
P biogeochemistry in terrestrial ecosystems coupled with carbon, water and energy transfers. We used
data from remote-sensing, ground-based measurement networks and ecological databases. Components
of the N and P cycle at different levels of aggregation (from local to global) are in good agreement with
data-driven estimates. When integrated for the period 1850 to 2017 forced with variable climate, rising
CO; and land use change, we show that ORCHIDEE-CNP underestimates the land carbon sink in the
North Hemisphere (NH) during the recent decades, despite an a priori realistic GPP response to rising
CO;. This result suggests either that other processes than CO, fertilization which are omitted in
ORCHIDEE-CNP, such as changes in biomass turnover, are predominant drivers of the northern land
sink, and/or that the model parameterizations produce too strict emerging nutrient limitations on
biomass growth in northern areas. In line with the latter, we identified biases in the simulated large-
scale patterns of leaf and soil stoichiometry and plant P use efficiency pointing towards a too severe P
limitations towards the poles. Based on our analysis of ecosystem resource use efficiencies and nutrient
cycling, we propose ways to address the model biases by giving priority to better representing processes
of soil organic P mineralization and soil inorganic P transformation, followed by refining the biomass
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production efficiency under increasing atmospheric CO,, phenology dynamics and canopy light
absorption.

1 Introduction

Nitrogen (N) and phosphorus (P) are key macronutrients that control metabolic processes and plant
growth and constrain ecosystem-level productivity (Elser et al., 2007; Norby et al., 2010; Cleveland et
al., 2013). The amount and stability of soil carbon (C) stock is also affected by N and P through their
regulating role in the mineralization of litter and soil organic matter (Géardenis et al., 2011; Melillo et al.,
2011). The availability of N and P is likely to limit future carbon storage under climate change and
rising atmospheric CO,. Empirical stoichiometry observations were applied in the posteriori estimates
of future carbon storage from land surface models (LSMs) lacking an explicit simulation of N and P
biogeochemistry, which led consistently to an overestimation of future carbon storage in LSMs
(Hungate et al., 2003; Wang and Houlton, 2009; Zaehle et al., 2015; Wieder et al., 2015). Nevertheless,
this approach has large uncertainties (Penuelas et al., 2013; Sun et al., 2017) and relies on unproven
assumptions (Brovkin and Goll, 2015).

An alternative is to represent directly the complex interactions between N, P and carbon in a LSM.
Several LSMs incorporated different parameterizations of N interactions (e.g. Thornton et al., 2007,
Zachle et al., 2014) but very few global models have included P interactions. The few models accounted
for P limitation in plant growth showed that P availability limit primary productivity and carbon stocks
on highly weathered soils of the tropics (Wang et al., 2010; Yang et al., 2014) and one study also
suggested that P limitations could also occur in the northern hemisphere in the near future (Goll et al.,
2012). Model representations of P interactions are highly uncertain since the critical processes are
poorly constrained by current observational data. In particular, the desorption of P from soil minerals
surface and the enhancement of P availability for plants by phosphatase enzymes secreted by plant roots
and microbes were identified to be critical but poorly constrained (Fleischer et al., 2019).

Previous studies (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014; Thum et al., 2019) have
suggested that the inclusion of the phosphorus cycle improves model performances with regard to
reproducing observed C fluxes. But adding new and uncertain P-related processes does not grant an
automatic improvement of a LSM in general. First, more (nutrient-related) equations with more
uncertain parameters can result in less robust predictions. Second, models ignoring nutrients were often
calibrated on available carbon data, so that a new model with nutrients inevitably needs a parameter
recalibration to reach the similar performances as the same model without nutrients. Third, for
evaluating a large-scale model resolving both nutrient and carbon biogeochemistry, one needs specific
nutrient related datasets which are more scarce than classical biomass, productivity, soil carbon data
used for benchmarking carbon only models.

The evaluation for N and P together with carbon cycling in global LSMs remains very limited (Wang et
al., 2010; Goll et al., 2012) but recent advances in ground-based measurements, ecological datasets and
process understanding have made a better evaluation of C, N, P models feasible. The available nutrient
datasets have allowed for meta-analyses of site-level nutrient fertilization experiments (e.g. Yuan and
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Chen, 2015; Wright, 2019), data-driven assimilation schemes to constrain nutrient budgets (Wang et al.,
2018), new knowledge about the critical P-processes of sorption (Helfenstein et al., 2018; 2020) and
phosphatase-mediated mineralization (Sun et al., 2020), global datasets of leaf nutrient content (Butler
et al., 2017), and empirical constraints on the CO, fertilization effect on land carbon storage (Terrer et
al., 2019; Liu et al., 2019). In addition to direct comparison with nutrient datasets, it is also possible to
diagnose emerging model responses in terms of ecosystem resource use efficiencies (RUE) and confront
them to observations for identifying how ecosystems adjust and optimize nutrient, water, light, and
carbon resource availabilities (Fernandez-Martinez et al., 2014; Hodapp et al., 2019). In particular,
modeled N and P use efficiencies can be compared to observation-based estimates at ecosystem scale
(Gill and Finzi, 2016) and at biome scale (Wang et al., 2018).

Here we evaluate the global cycles of C, N and P in the nutrient-enabled version of the LSM
ORCHIDEE, ORCHIDEE-CNP (v1.2). The model has been previously evaluated for tropical sites (Goll
et al., 2017a, 2018) and for coarse scale global carbon fluxes and stocks using the International Land
Model Benchmarking system iLAMB by e.g. Friedlingstein et al., (2019). The results from this
evaluation showed a slightly worse performance for ORCHIDEE-CNP (v.1.2) than the carbon-only
version of ORCHIDEE which has been extensively calibrated (Friedlingstein et al., 2019). In this study,
we perform a detailed evaluation of ORCHIDEE-CNP focusing on four ecosystem characteristics which
were found to be critical for the response of land C cycling to increasing CO; and climate change: (1)
vegetation resource use efficiencies, (2) the response of plant productivity to increasing CO,, (3)
ecosystem N and P turnover and openness, and (4) large-scale pattern of ecosystem stoichiometries.
Point (1) and (2) control the response of vegetation carbon storage operating on timescales of years to
decades, while point (3) and (4) control the carbon storage potential on ecosystem-level which
determines the response on much longer timescales. Further, the implications of including nutrient
cycles on the simulated land C cycling are discussed.

2 Modelling

2.1 Model description

ORCHIDEE-CNP simulates the exchange of greenhouse gases (i.e. carbon dioxide, nitrous oxide),
water and energy at the land surface and features a detailed representation of the root uptake of
dissolved N and P, the allocation of N and P among tissues, and the N and P turnover in litter and soil
organic matter (Goll et al., 2017a, 2018) (Fig. 1). In this study, we present the first global application of
the model and an evaluation against global carbon and nutrient datasets. ORCHIDEE-CNP simulates
the cycles of C, N and P which are described in detail elsewhere (Krinner et al., 2005; Zaehle and
Friend 2010; Goll et al., 2014, 2017a, 2018). We here give a brief overview. P enters the ecosystem by
release from minerals into the soil solution, whereas N is biologically fixed from an ample reservoir of
dinitrogen. Dissolved nutrients are either taken up by vegetation, converted into soil organic matter or
absorbed onto soil particles. Losses occur as leaching of dissolved nutrients, gaseous soil N emissions,
or occlusion of P in secondary minerals. When nutrients are taken up by vegetation they are either
stored internally or used to build new plant tissue driven by the availability of C, N and P in vegetation.
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The nutrient concentration of plant tissue varies within a prescribed range depending on the relative
availability of C, N and P. Before plant tissue is shed, depending on the tissue a fixed fraction of the
nutrients is recycled. The nutrients contained in dead plant tissue and organic matter are mineralized
and released back into the soil solution. The model version applied in this study is based on Goll et al.
(2017a, 2018) and referred to as ORCHIDEE-CNP v1.2. Major modifications compared to v1.1 are
described as follows (details can be found in the Text S1).

The original formulation of photosynthetic capacity in ORCHIDEE-CNP v1.1 assumed leaf N to be the
sole regulator of leaf photosynthetic characteristic (Kattge et al., 2009). Here, we applied a new
empirical function that relates photosynthetic capacity to both leaf N and P concentration based on data
from 451 species from 83 different plant families (Ellsworth et al., in prep.). A priori and narrow plant
functional type (PFT)-specific range of leaf C:N:P ratios that were prescribed in ORCHIDEE-CNP v1.1
are now given a larger range common to all PFTs (Table S1), allowing for the prediction of variation of
leaf stoichiometry across climate and soil gradients, independently of the prescribed vegetation (PFT)
map.

In ORCHIDEE-CNP v1.1, an empirical function, f(Tsi) was used to reduce biochemical mineralization
and plant nutrient uptake at low soil temperature (Eq.5 in Goll et al., 2017a) which was adopted from
the N enabled version of ORCHIDEE (Zaehle and Friend, 2010) to avoid an unrealistic accumulation of
N within plants when temperatures are low. We found that this function was not needed when P uptake
is accounted for and was thus removed. It should be noted that this temperature dependence is different
from the one which describes the temperature dependence of soil organic matter (SOM) and litter
decomposition. For grasslands and croplands, we implemented root dormancy which is triggered by
drought or low temperatures. During dormancy, root maintenance respiration is reduced by 90%
following (Shane et al., 2009) but root acquisition of soil nutrients continues as long as root biomass
exists (Malyshev and Henry, 2012). It should be noted that total root loss can occur for extremely long
droughts or cold periods when maintenance respiration depletes root carbon.

Several parameters were re-calibrated, i.e. the coefficient relating maintenance respiration to biomass
and the leaf to sapwood ratio, or corrected in case of the turnover of sapwood for tropical evergreen
broadleaf forest (TREBF) and tropical rain-green broadleaf forest (TRDBF) to achieve more realistic
wood growth rates for those forests (not shown). We also adjusted the recycling efficiency of nutrients
from root (ftIXans,roota ftf‘ans,root) and leaf (ftl;*’ans,leafa ft};ans,leaf) according to data compilations from
Freschet et al. (2010) and Vergutz et al. (2012). The new values of these parameters and their sources
are given in Supplementary Information (Text S1).

2.2 Simulation setup

We performed a global simulation at 2° x 2° spatial resolution for the historical period (1700-2017)
adapting the TRENDY version 6 protocol (Sitch et al., 2015; Le Quér¢ et al., 2018). The simulation was
performed using historical climate forcing, land cover changes and management (i.e. mineral fertilizer
application, crop harvest, see 3.1.6), and atmospheric CO, concentrations (S3 type simulation). Prior to
the historical simulation, we performed a model spin-up to equilibrate the C, N and P pools and fluxes
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(Sect. S1A in supplement) by forcing the model with cycled climate forcing of 1901-1920 and the land
cover map and land management corresponding to the year 1700. To disentangle the effect of
introducing nutrient cycles into ORCHIDEE, we performed the same simulation with ORCHIDEE
(revision 5375) which has no nutrient cycles and a comparable parameterization for other processes.
ORCHIDEE was run at a higher spatial resolution (0.5°x0.5°) than ORCHIDEE-CNP. Prior to the
analysis, the data from ORCHIDEE was remapped to the resolution of ORCHIDEE-CNP.

2.2.1 Meteorological data

The model was forced by CRU-JRA-55 meteorological data provided at a spatial resolution of 0.5° x
0.5° and upscaled to a resolution of 2° x 2°. This data comprises global 6-hourly climate forcing data
providing observation-based temperature, precipitation, and incoming surface radiation. It is derived
from Climatic Research Unit (CRU) TS3.1 monthly data (Harris et al., 2014) and the Japanese 55-year
Reanalysis (JRA-55) data (Kobayashi et al., 2015), covering the period 1901 to 2017. This climate
dataset was provided by the TRENDY-v6 model-intercomparison project (Le Quéré et al., 2018).

2.2.2 Land cover

The historic land-cover change maps were based on the European Space Agency Climate Change
Initiative (ESA-CCI) land-cover data (Bontemps et al., 2013). To be used by global vegetation models
ORCHIDEE-CNP, ESA-CCI land-cover data were aggregated to 2° x 2°, and grouped into PFTs using
the reclassification method from Poulter et al. (2011, 2015). The fraction of cropland and pasture in the
PFT map was further constrained by the cropland area and the sum of pasture and rangeland area of the
year 2010 in the History Database of the Global Environment land use data set (HYDE 3.2; Klein
Goldewijk et al., 2017a, b) respectively, which were also aggregated to 2° x 2°. The above processes
produced a reference ESA-CCI-based PFT map for the year 2010. The land-use changes derived from
and Land-Use Harmonization (LUH) v2 (http://luh.umd.edu/data.shtml; an update release of Hurtt et al.,
2011) were aggregated to 2° x 2° and then were applied to this reference PFT map to constrain the land-
cover changes of forest, grassland, pasture and rangeland, and cropland during the period 1700-2017
using the backward natural land cover reconstruction method of Peng et al. (2017). As a result, a set of
historic PFT maps suitable for global vegetation models were established distinguishing global land-
cover changes for the period of 1700-2017 at 2° x 2° resolution.

2.2.3 Soil and lithology datasets

ORCHIDEE-CNP v1.2 is forced by information on soil texture, pH, bulk density and soil types (Goll et
al., 2017a). We used a global gridded map of three soil texture classes from Zobler (1986) to derive
soil-texture-specific parameters for soil water capacity, hydraulic conductivity and thermal conductivity.
We used global gridded data on bulk density from the Harmonized World Soil Database (HWSD, 30
FAO/ITASA/ISRIC/ISSCAS/JRC, 2012) and soil pH from International Geosphere-Biosphere
Programme Data Information System Soil Data (Global Soil Data Task Group, 2000). Soil pH forcing
maps are needed to simulate the dynamics of NH; and NH," in soil in ORCHIDEE (Zachle and Friend,
2010). We used a global gridded map with the dominant soil orders (following the USDA Soil
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Taxonomy) at 1°x1° resolution to derive soil order specific soil phosphorus sorption parameters (Goll et
al., 2017a).

The release of P from chemical weathering of rocks is computed dynamically following Goll et al.
(2017a) and depends on the lithology types and soil shielding (discontinuation of the active soil zone
from the bedrock) (Hartmann et al., 2014). We used the global lithological map (GLiM) of Hartmann
and Moosdorf (2012) upscaled to 1°x 1° resolution which accounts for the lithology fractional coverage
of 16 classes on a sub-grid scale. We also used a spatial explicit map of soil shielding on a 1°x 1°
resolution (Hartmann et al., 2014).

2.2.4 Atmospheric nitrogen and phosphorus deposition

Global gridded monthly atmospheric N and P deposition during 1860-2017 was derived from a
reconstruction based on the global aerosol chemistry—climate model LMDZ-INCA (Wang et al., 2017).
LMDZ-INCA was driven by emission data, which included sea salt and dust for P, primary biogenic
aerosol particles for P, oceanic emissions for N (NHj3), vegetation emissions for N (NO), agricultural
activities (including fertilizer use and livestock) for N and fuel combustion for both N (NO, and NHy)
and P. Reconstructions for the years 1850, 1960, 1970, 1980, 1990, and each year from 1997 to 2013
were linearly interpolated to derive a time series for 1850-2013. For the period before 1850, we
assumed N and P deposition rates of the year 1850. For the period after 2013, we assumed rates of the
year 2013. In ORCHIDEE-CNP, atmospheric N and P deposition are added to the respective soil
mineral N and P pools without considering interception by the canopy.

2.2.5 Nutrient management

For croplands, we used yearly gridded mineral N and P fertilizer application data from Lu and Tian
(2017) available for the period 1960 to 2017. This dataset is based on national-level data of crop-
specific fertilizer application amounts from the International Fertilizer Industry Association (IFA) and
the FAO. N and P mineral fertilization between 1900 and 1959 were linearly extrapolated assuming that
fertilizer applications for 1900 are zero, and that there were no N and P fertilizers applied before 1900.
For pasture, we used global gridded datasets of mineral N fertilizer application rates from Lu and Tian
(2017), developed by combining country-level statistics (FAO) and land use datasets (HYDE 3.2) (Xu
et al., 2019). For both cropland and pasture, N and P in mineral fertilizer was assumed to go directly
into soil mineral pools, where all mineral N fertilizer was assumed to be in the form of ammonium
nitrate, that is half of N as ammonium (NH;") and half as nitrate (NO3").

Manure applications are also included as a model forcing, given their significant input contribution to
agricultural soils. For cropland, we used gridded annual manure N application data for the period 1860—
2014 from Zhang et al. (2017) compiled and downscaled based on country-specific annual livestock
population data from FAOSTAT. For the period before 1860, we assumed N and P deposition rates of
the year 1860. For pasture, we used global gridded datasets of N manure application rates from Lu and
Tian (2017). The application of manure P in cropland and pasture was derived from manure N assuming
a manure P:N ratio of 0.2. This ratio is a weighted value by the amount of manure N applied to soil and
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derived from ruminants (14.4 Tg N yr') and monogastric animals (10.1 Tg N yr'') from FAOSTAT for
the year 2000 with P:N ratios of 0.165 in ruminant manure (mean of 0.15-0.18 from Lun et al., 2018)
and 0.26 in monogastric manure (mean of 0.24-0.28 from Lun et al. (2018)). For manure applied to
cropland and pasture, we assumed a typical slurry application with 90% of N in the liquid part of the
slurry (like urine) goes to soil NH4 " pool. For the solid part of the slurry, we assumed it goes to a litter
pool with a C:N ratio of 10:1 following Soussana and Lemaire (2014).

Mineral and manure N and P fertilizers in cropland were applied at day of year (DOY) 120 for northern
hemisphere (30°N - 90°N), at DOY 180 for tropical regions (30°N - 30°S), and at DOY 240 for southern
hemisphere (30°S - 90°S).

3 Evaluation

We evaluated the performances of ORCHIDEE-CNP v1.2 based on four major aspects (Fig. 1). Firstly,
we evaluated the global C, N and P flows and storages. In the absence of robust spatially resolved
estimates of N and P fluxes, we used the data-driven reconstruction of steady state C, N and P fluxes on
biome level from the data assimilation system Global Observation-based Land-ecosystems Utilization
Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) v1.0 (Wang et al., 2018) (Table 1).
Secondly, we evaluated plant resource use efficiencies (RUE) of light, water, C, N and P on global and
biome scales. RUEs reflect how ecosystems adjust and adapt to the availability nutrient, water, light,
and carbon resources (Fernandez-Martinez et al., 2014; Hodapp et al., 2019). For this, we used
estimates from site measurements and observation-based gridded datasets. Thirdly, we evaluated the
response of GPP to elevated CO; to assess the response of plant productivity to changing resource
availability (i.e. CO,) historical perturbation C fluxes. For this, we used observation-based estimates
(Ehlers et al., 2015; Campbell et al., 2017). Fourthly, we evaluated large scale patterns of vegetation
and soil N:P ratios as well as the N and P openness and turnover rates on ecosystem-level to assess
spatial variation in nutrient limitation and the underlying drivers. For this, we used estimates from
GOLUM-CNP, site measurements and observation-based gridded datasets (Kerkhoff et al., 2005;
McGroddy et al., 2004; Reich and Oleksyn, 2004; Tipping et al., 2016; Butler et al., 2017; Wang et al.,
2018). Finally, we showed the implications of ORCHIDEE-CNP for C cycling by evaluating the
spatiotemporal patterns of terrestrial C fluxes and pools of the two versions of ORCHIDEE. For this, we
used observation-based products of GPP and atmospheric inversions of the net land-atmosphere CO,
flux excluding fossil fuel emissions (Table 1). Each dataset is summarized in Table 1 and described in
detail in the Supplementary Information. All the gridded datasets with high spatial resolutions (Table 1)
were resampled to the 2° x 2° resolution of the model output using area-weighted mean methods.

3.1 Ecosystem productivity

Different data-driven maps of NPP and GPP based on remote sensing and climate datasets were used
(Table 1), thereby accounting for the uncertainty of each product as well as for the uncertainty from the
spread between different products. Uncertainties of each NPP and GPP product were derived according
to original publications. We used a 20% uncertainty of gridded GPP from Moderate Resolution Imaging
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Spectroradiometer (MODIS) and Breathing Earth System Simulator (BESS) (Sect. SIC in the
supplement; Turner et al., 2006; Jiang and Ryu, 2016) at 2° scale. This is a coarse extrapolation of
uncertainty reported at grid-cell scale, since none of these products reported spatial error covariance
information allowing to up-scale this uncertainty at 2° resolution. Further, for some products,
uncertainty was defined as the bias against local measurements (Turner et al., 2006) and for others by
using different climate input fields (Table 1). For Multi-Tree-Ensemble (MTE)-GPP (Table 1), we used
the spread (1-sigma standard deviation) from an ensemble of 25 members produced by different
machine learning methods (Jung et al., 2009). For MODIS-NPP (Table 1), we used a 19% uncertainty
as assessed by Turner et al. (2006). For BETHY-NPP we do not have an uncertainty (Tum et al., 2016).
For Global Inventory Modeling and Mapping Studies (GIMMS)-NPP (Table 1), we used the variance of
three sets of products (Table 1) based on different climate datasets (Smith et al., 2016).

Two statistical indices were used to summarize the performance of ORCHIDEE and ORCHIDEE-CNP

with respect to inter-annual and seasonal variability of GPP and inter-annual variability of Net biome

productivity (NBP) (Sect. 4.6): coefficient of determination (R®) and relative mean-square deviation

(rMSE). rMSE is defined as:

Z?:l(xmodel,j_xref,j)z 1
- — (1)

Z]':l(Xref,j_ Xref,j)

Xmodet and Xp.¢ are values from models (i.e. ORCHIDEE and ORCHIDEE-CNP) and referenced

datasets (i.e. MTE and BESS, Sect. S1C in supplement) respectively, )?ref, ; is the mean value across all

years (for inter-annual variability evaluation) or all months (for seasonality evaluation).

rMSE =

3.2 Resource use efficiencies

The definition of resource use efficiencies is explained in Sect. 4.2. Observation-based light use
efficiency (LUE) was calculated using MTE-GPP, downward shortwave radiation from CRUJRA, and
fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from the Global SeaWiFS Level-3
data (Gobron et al., 2006a, b). Uncertainty was derived from 25 ensemble members of MTE-GPP.
Observation-based water use efficiency (WUE) was calculated as the ratio between MTE-GPP and
MTE-ET (Table 1); its uncertainties were calculated using a Monte-Carlo resampling procedure in
which 25 different members of GPP and ET were randomly selected. Observation-based carbon use
efficiency (CUE) was calculated from the ratio of MODIS-NPP to MODIS-GPP. It should be noted that
MODIS-NPP is based on a calibrated version of the BIOME-BGC model (Turner et al., 2006) so that
CUE is not strictly an observation-based quantity. CUE uncertainties were calculated using a Monte-
Carlo method given a 20% and 19% uncertainty for MODIS GPP and NPP products at 2° resolution,
respectively.
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4. Results

4.1 Carbon, nitrogen and phosphorus flows and storages

We compared the simulated fluxes of C, N and P within natural ecosystems for the period 2001-2010 to
the data-driven estimates from GOLUM-CNP (Table 1; Sect. SIB in supplement) on the global scale
and for natural ecosystems at biome-scale. Modelled global C, N and P fluxes in ORCHIDEE-CNP are
comparable with the estimates by GOLUM-CNP (Fig. 2). One exception is that ORCHIDEE-CNP
simulates a four-fold lower P leaching from soils (3.7 9.7 mg P m™yr") than GOLUM-CNP (23 mg P
m?yr") (Fig. 2), which mainly occurs in forest ecosystems (Fig. S1). Note that GOLUM-CNP presents
the steady-state C, N and P cycles in natural biomes, omitting human perturbations which have strongly
altered the flows of C, N and P during the recent past. The impact of such perturbations on the nutrient
flows are analyzed in detail in Sect. S2 and S3 in supplement.

In terms of C and nutrient storages, ORCHIDEE-CNP simulated comparable soil C, N and P storage
(soil organic matter and litter) but higher vegetation C, N and P than GOLUM-CNP. Detailed
comparisons for spatial pattern of SOC and forest above ground C against observation-based datasets
can be found in Figs. S2 and S3.

4.2 Resource use efficiencies

We evaluate here the resource use efficiencies of GPP for light (L), water (W), C, N and P defined by:

LUE = mj%m , )
WUE =22, 3)
CUE ==, (4)
NUE = % (5)
PUE = % (6)

Where GPP is the annual gross primary productivity (g C m™ yr''), fAPAR the fraction of absorbed
photosynthetically active radiation (%), PAR is annual Photosynthetically Active Radiation (W m? yr'),
ET the annual evapotranspiration (mm m™ yr'), Fy and Fp the total N uptake (g N m™ yr'') and P
uptake by plants (g P m™ yr'), respectively. We calculated fAPAR in ORCHIDEE-CNP and
ORCHIDEE as a function of leaf area index (LAI): fAPAR=1-exp(-0.5-LAI) (Ito et al., 2004).

Compared to observed LUE (Sect. SI1E in supplement), ORCHIDEE-CNP modelled median values at
biome level are generally lower, but still within the ranges of uncertainties of observation-based datasets
(Sect. 3.2) excepted for tropical (TRF) and temperate deciduous forests (TEDF). In comparison to
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ORCHIDEE, ORCHIDEE-CNP simulated LUE which are closer to observation for 4 out of 6 biomes
(TECF, BOCF, TEG, TRG) (Fig. 3a).

Compared to observed WUE, ORCHIDEE and ORCHIDEE-CNP simulated values fall within the
uncertainty range of observations (Fig. 3b). However, the WUE values from ORCHIDEE-CNP are on
the high end of the range for temperate conifers (TECF) and BOCF and on the low end for temperate
and tropical grasslands (TEG and TRG). The highest median WUE were correctly simulated in
temperate forests by ORCHIDEE-CNP (Fig. 3b), but the lowest WUE values were simulated in
temperate instead of tropical forests.

Compared with observed CUE, ORCHIDEE-CNP simulated comparable values for TEDF and TECF
but lower values for TRF, BOCF and grasslands. Both ORCHIDEE-CNP and ORCHIDEE cannot
capture the increase of CUE from tropical to boreal forests apparent in the observation-based products
(Fig. 3c) and in measurements from forest sites (Piao et al., 2010). In comparison to ORCHIDEE,
ORCHIDEE-CNP simulated CUE which are closer to observation for 4 out of 6 biomes (TEDF, TECF,
BOCF, TEG) with respect to median and spread.

Consistent with site-observations of NUE from Gill and Finzi (2016) and GOLUM-CNP outputs,
ORCHIDEE-CNP simulated correctly the high values of TECF and the low values of tropical forests
(Fig. 4a). However, compared with site-observations of PUE from Gill and Finzi (2016) showing a PUE
decrease from tropical to boreal region, ORCHIDEE-CNP simulated a rather flat value (Fig. 4b). This
suggests a too strong P limitation in high latitude ecosystems, consistent with the fact that the model
underestimates peak northern GPP and the northern land sink (Sect. 4.6). Nevertheless, the model
simulated PUE values falls in the range of GOLUM-CNP estimates. Tropical C4 grasslands have higher
simulated NUE and PUE than temperate C3 grasslands, consistent with GOLUM-CNP (Fig. 4).

4.3 CO, fertilization effect

We compare the simulated response of plant productivity to increasing CO, during the historical period
(i.e., CO, fertilization effect Eco;) to observation-based estimates for C3 plants from historical change
of deuterium isotopomers in leaf herbarium samples (Ehlers et al., 2015) and for global (C3 and C4)
vegetation to indirect evidence from carbonyl sulfide (COS) atmospheric ice-core observations
(Campbell et al., 2017). The CO, fertilization effect is here defined by the GPP ratio (Eco,):

__ GPP396
co2 — GPPyos ’ (7)

where GPP,¢s indicates pre-industrial GPP (g C m™ yr'') under CO, concentration of 296 ppm and
GPP395 under current CO, concentration of 396 ppm. Those CO, concentrations of 296 ppm and
396ppm correspond to tropospheric mixing ratio of CO, in year ~1900 and 2013 respectively, similar to
values used for estimating the response of GPP to a ~100 ppm CO; increase in Ehlers et al. (2015) and
Campbell et al. (2017).

10



365

370

375

380

385

390

Modeled Eco, by ORCHIDEE-CNP of natural biomes ranges between 1.0 and 1.3 for most regions (Fig.
5a), slightly lower than global Eco, derived from COS of 1.26-1.36 (Campbell et al., 2017). Modeled
Eco; for C3 plants (Fig. 5c, Fig. S4) are also consistent with Eco, from herbarium samples (Ehlers et al.,
2015) equal to 1.23. When compared to ORCHIDEE without nutrient cycles, we found that
ORCHIDEE-CNP simulates smaller and more realistic values of Eco; (Fig. Sc, d), yet with lower values
in boreal regions that could not be checked against observations (Fig. S5).

4.4 Ecosystem nutrient openness and nutrient turnover

Nutrients taken up by plants are either recycled within the ecosystem or acquired from external sources
(P weathering of primary and secondary minerals, atmospheric N and P deposition, biological nitrogen
fixation (BNF), and N and P fertilizer addition to cultivated lands). Wang et al. (2018) calculated an
indicator of the openness of N and P cycling in natural ecosystems as the ratio of external inputs of N
and P into the ecosystem to the total amount of N and P that plants use for GPP. Similarly, we
diagnosed the openness for N and P (Oy and Op) from the ORCHIDEE-CNP output by:

x )

X T F+RSBy’

where I, is the annual external nutrient input (gX m™ yr''), F, the annual plant uptake of soil nutrients
(gX m™ yr'), and RSB, the flux of nutrients recycled within plants (gX m™ yr') by foliar nutrient
resorption prior to leaf shedding. External nutrient inputs include atmospheric N deposition and BNF,
and include P deposition and P release from rock weathering.

Modelled Oy in natural biomes by ORCHIDEE-CNP showed only a small variance across the globe,
whereas GOLUM-CNP predicts a higher Oy in tropical and temperate regions than in boreal regions
(Fig. 6a, b). Op values are below 15% in ORCHIDEE-CNP for most biomes, of similar order of
magnitude than in GOLUM-CNP (Fig. 6¢, d). ORCHIDEE-CNP simulates a lower Oy in tropical
natural biomes than GOLUM-CNP, which is mainly due to lower but more realistic tropical BNF in
ORCHIDEE-CNP compared to GOLUM-CNP (Sect. S4 in supplement). ORCHIDEE-CNP simulates a
higher Oy in high latitudes grassland (Fig. 6a, b) than GOLUM-CNP, which is due to overestimation of
BNF in NH in ORCHIDEE-CNP (Sect. S4 in supplement). Modelled Op in natural biomes by
ORCHIDEE-CNP compares well with GOLUM-CNP except for central Africa (Fig. 6¢, d). This is
primarily because ORCHIDEE-CNP used a lower P deposition forcing than GOLUM-CNP.

Residence time quantifies the average time it takes for a N (or P) molecule from entering to leaving the

ecosystem (7 and 7p). In this study, we adopted the approach of Carvalhais et al. (2014) for the
carbon residence time. We define the residence time of N and P as the ratio of total respective nutrient
stock in the ecosystem to their respective total input flux:

5
Zi=1 Ni+Ninorg

2 e — ©)

Ng+BNF

i5=1Pi+Pinorg (10)

T =
P Pg+Py
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where N; indicates the N mass (g N m™) in organic matter pools i (with i = plant, litter, SOM pools);
Ninorg is the sum of all inorganic N pools, N, and BNF are N deposition and biological N fixation rates
respectively (g N m™~ yr''). Similarly, P; is the P mass (g P m™) in organic matter pools, Pinorg the sum
of 2inorlganic P pools, and P; and P,, are P deposition and P weathering release rates, respectively (g P
m-yr).

Modeled median 7 of natural biomes in ORCHIDEE-CNP varies between 56-1585 years, while 7p
varies within a large range of 101 to 223870 years (Fig. 7). ORCHIDEE-CNP captured the order of

magnitude of Ty and 7p for forests found in GOLUM-CNP. Longer median 7 (1585 years) and 7p
(1223870 years) are simulated for boreal forest compared to temperate and tropical forests (251-794
years for Ty and 891-7080 years for 7p) and grassland (56-158 years for Ty and 101-468 years for 7p)
by ORCHIDEE-CNP, consistent with results from GOLUM-CNP. However, for grasslands, simulated

Ty (56-158 years) and p (101-468 years) are 5-11 folds shorter than in GOLUM-CNP (Fig. 7).
4.5 Stoichiometry
4.5.1 Foliar stoichiometry

Leaf N:P ratios for natural biomes predicted by ORCHIDEE-CNP vary between 15~25 (Fig. 8a). The
observed decline in median leaf N:P ratios with increasing latitude was not reproduced by the model
(Sect. SIE1 in supplement; Fig. 8e¢), although the modelled latitudinal distribution of leaf N:P ratios
remained within the 10~90th quantiles of the site level data (Kerkhoff et al., 2005; McGroddy et al.,
2004; Reich and Oleksyn, 2004). Further, the simulated leaf N:P ratios fall within the interquartile of
upscaled site measurements by Butler et al. (2017) for most of the globe, with the exception of regions
north of 55°N where leaf N:P are outside the observation-based range, suggesting a too strong P
constraint relative to N (Fig. 8).

4.5.2 Soil stoichiometry

We evaluate here the modelled C:N, C:P and N:P ratios of soil organic matter for different biomes
against data from the large compilation of measurements for soils (0-60cm depth) by Tipping et al.
(2016). Modelled C:N ratios fall into much more narrow ranges (7.8~11.8 for the widest interquartile
range) compared to the observations (11.1~20.5; Fig. 9a), as a result of prescribing constant C:N ratios
in ORCHIDEE-CNP (Goll et al., 2017a). SOM P content varies in ORCHIDEE-CNP as a consequence
of varying biochemical phosphorus mineralization rates (Sect S7 in supplement) and thus C:P and N:P
ratios of SOM show pronounced variation in space. ORCHIDEE-CNP simulates comparable N:P ratios
than measurements in terms of both median value and distributions for tropical forests, but
overestimates the observed N:P ratios by 108-327% in temperate forests, tropical and temperate
grasslands soils (Fig. 9b, ¢). The higher observed C:P and N:P in forest compared to grassland soils are
not captured by ORCHIDEE-CNP (Fig. 9b, c). We also compared ORCHIDEE-CNP N:P ratios to the
results of GOLUM-CNP which were based on the data from Zechmeister-Boltenstern et al. (2015),
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more limited than Tipping et al. (2016) and found an overestimation for temperate forests, tropical and
temperate grasslands.

4.6 Nutrient effects on carbon cycling

We analyze the performance of ORCHIDEE-CNP v1.2 and ORCHIDEE without nutrient cycles with
respect to the spatiotemporal patterns of GPP, NPP and net biome productivity.

Global GPP and NPP simulated by ORCHIDEE-CNP averaged over the period 2001-2010 are 119 PgC
yr' and 48 PgC yr'' respectively, both within ranges of the data-driven products listed in Table 1 (Sect.
S1C in supplement; Table S2). GPP and NPP simulated by ORCHIDEE-CNP are lower than those
simulated by ORCHIDEE (140 Pg C yr' for GPP and 60 Pg C yr' for NPP). The values from
ORCHIDEE are on the high end of the range of estimates from the data-driven products of Table 1.
ORCHIDEE-CNP simulated comparable GPP values for most parts of the globe (Fig. S6a), and
comparable NPP values for most of northern high-latitudes (Fig. S6b), which lie within the range given
by the data-driven products.

Inter-annual and seasonal variations of GPP reflect the response of ecosystems to inter-annual or
seasonal climatic variability, as well as the effects of natural (e.g. fires, wind throw, insect outbreaks,
and storms) and anthropogenic disturbances (e.g. land management and land cover change) (Anav et al.,
2015). Regarding the inter-annual anomalies of de-trended GPP (GPPjy) for the period 2001-2011,
estimations on global scale from ORCHIDEE-CNP show rather good correlation with observation-
driven model BESS-GPP (R” =0.71), but not with MTE-GPP (R* =0.11) (Fig. 10a). ORCHIDEE
performs somewhat worse on global scale than ORCHIDEE-CNP, primarily due to its low performance
in the NH. We find that inclusion of nutrients in ORCHIDEE leads to a lower model predictions error
on global scale and for all latitudinal bands irrespectively of the observation-based product (Fig. 10a).

Regarding the seasonal variation of GPP over the period 2001-2011, the predictions of ORCHIDEE-
CNP are in good agreement with observation based estimates and show no significant differences
when compared to ORCHIDEE, except for tropical regions (Fig. 10b). Here, the model errors in
seasonal variations of GPP are substantially larger for ORCHIDEE-CNP than for ORCHIDEE
(Fig .10b).

Net biome productivity (NBP) is defined as the net C exchange between the atmosphere and the
terrestrial biosphere, that is the sum of net primary productivity, heterotrophic respiration and emissions
due to disturbances; positive values denoting a land carbon sink. Compared to the three sets of
atmospheric inversions (CAMS, JENA and CTracker), ORCHIDEE(-CNP) performs slightly worse
than the mean of predictions from 16 land surface models from Trendy ensembles (v6) (Fig. 10c).
ORCHIDEE-CNP shows a worse performance in inter-annual variability of NBP than ORCHIDEE
when compared against inversion datasets at global scale and for the Northern Hemisphere. However,
ORCHIDEE-CNP improved the performance of inter-annual variability of NBP against inversion
datasets relative to ORCHIDEE for tropical region (higher R* and lower rMSE) with closer or even
better fitness against inversion datasets than the mean value of Trendy ensemble models (Fig. 10c).
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5. Discussion

We performed a detailed evaluation of ORCHIDEE-CNP in terms of four nutrient-related ecosystem
properties which control ecosystem gas exchanges and carbon storage: vegetation resource use
efficiencies, CO, fertilization effect, ecosystem N and P turnover and openness, and large-scale pattern
of ecosystem stoichiometries.

We find that the inclusion of nutrients tends to lead to improvements in simulated resource use
efficiency of plant resources (light, carbon, water) on biome scale (Sect. 5.1). In line with changes in
resource use efficiency, the sensitivity of GPP to variations in climate is improved leading to improved
inter-annual variation in GPP, in particular for the Northern Hemisphere (Sect. 5.5). In addition, the
response of GPP to increasing atmospheric CO, concentration is improved (Sect. 5.2). However, model
biases in C fluxes remained or increased, for example in the NBP of the Northern Hemisphere. The
analysis of nutrient use efficiencies (Sect. 5.1), stoichiometry (Sect. 5.4), as well as ecosystem openness
and turnover of nutrients (Sect. 5.3) reveal biases in boreal regions which might be related to issues with
too strong soil organic matter accumulation and the dependency of photosynthesis on leaf nutrients in
needle-leaf PFTs. On a seasonal scale, we found a general deterioration of the simulated seasonal cycle
of GPP due to the inclusion of nutrient cycles (Sect. 5.5).

In the following, we discuss in more detail the model performance with respect to nutrient cycles and
their effects on simulated C fluxes, and propose ways to address model biases.

5.1 Inclusion of nutrient cycling improves use efficiencies of other plant resources

Resource use efficiency (RUE) is an ecological concept that measures the proportion of supplied
resources, which support plant productivity, i.e. it relates realized to potential productivity (Hadapp et
al., 2019). It is therefore a critical ecosystem property which relates resource availability to ecosystem
productivity, as well as being affected by resource availability.

With the inclusion of additional plant resources nitrogen and phosphorus, changes in the simulated
vegetation use efficiencies of resources like water (WUE), light (LUE) and carbon (CUE) are expected.
Indeed, the annual use efficiencies on biome-scale differ between ORCHIDEE-CNP and ORCHIDEE.
In comparison to observation-based estimates, the inclusion of nutrient cycles tends to improve
simulated LUE and CUE and WUE (Fig. 3).

Both ORCHIDEE-CNP and ORCHIDEE generally underestimate annual LUE for forest biomes (Fig.
3a) which is due to a high bias in fAPAR in both models (28%-380% for ORCHIDEE, and 80%-173%
for ORCHIDEE-CNP) (Fig. S4a, b). Although the bias in LUE for TRF is higher, the bias in GPP is
largely reduced whereas the bias in fAPAR is similar in ORCHIDEE-CNP compared to ORCHIDEE
(Fig. S4a, b), indicating general issues in ORCHIDEE with respect to how light is transferred within
canopy in tropical forest. Both versions assume constant canopy light extinction coefficient of 0.5,
omitting variations among biomes due their distinctive canopy architectures (Ito et al., 2004).
Improving this part of the model requires a canopy light transfer scheme that better accounts of canopy
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structure (Naudt et al., 2015) and the inclusion of different light components including diffuse incoming,
scattered and direct light (Zhang et al. 2020).

ORCHIDEE-CNP simulated a lower WUE than ORCHIDEE with the exception of coniferous biomes
(Fig. 3b). The improvement of WUE in TRF is related to improvements in GPP and ET, while the
overestimation of WUE in coniferous dominated biomes by ORCHIDEE-CNP is related to an
overestimation of GPP (Fig. S4 c). The latter is likely a result of the application of a relationship
between photosynthetic capacity and leaf nutrient concentration which is based on measurements from
broadleaf species for all PFTs. Kattge et al. (2009) showed that coniferous PFTs have a ~40% lower
carboxylation capacity for a given leaf nitrogen concentration than other PFTs. The omission of this
could explain the bias in coniferous GPP in ORCHIDEE-CNP. Uncertainties in evaluation datasets
hamper a more detailed evaluation of the variations of WUE among biome types.

We found that the inclusion of nutrient cycles improved the spatial variability in simulated CUE, but
general biases remain (Fig. 3c), and uncertainties in observation-based estimates are large.
Improvements are mainly found in temperate biomes (TEDF, TECF and TEG), indicating the allocation
of GPP to respiration and biomass growth, which is controlled by nutrient availability, works
reasonably well. ORCHIDEE-CNP underestimates CUE for tropical biomes (TRF and TRG) more
strongly than ORCHIDEE, despite substantially reduced biases in NPP and GPP (Fig. S4 d). However,
we should be cautious in drawing conclusions considering the large uncertainty in MODIS CUE (He et
al., 2018).

NUE, PUE on biome scale compare well to estimates (Fig. 4), indicating that ORCHIDEE-CNP is able
to simulate the coupling strength between C, N and P cycles. However, ORCHIDEE-CNP
underestimates PUE in tropical forests. A sensitivity analysis by GOLUM-CNP indicated that NUE and
PUE were most sensitive to the NPP-allocation fractions (especially to woody biomass) and foliar
stoichiometry (Wang et al., 2018). Therefore, we attribute the biases in PUE to the biases in foliar
stoichiometry (Fig. 8) and to issues in plant internal P allocation in ORCHIDEE-CNP (Fig. S1).

5.2 Inclusion of nutrient cycling improves CO, fertilization effect

The effect of CO; fertilization on terrestrial ecosystem productivity is thought to be the dominant driver
behind the current land carbon sink. The strength of the fertilization effect on GPP differs strongly
between LSMs (Friedlingstein et al., 2014). We used proxies of the historical increase in GPP for an
indirect model evaluation of the CO; fertilization effect from COS and deuterium measurements of
herbarium samples (Ehlers et al., 2015; Campbell et al., 2017), and found that ORCHIDEE-CNP has
smaller and more realistic Eco, than the same model without nutrients (Fig. 5), in particular for C3
plants and in boreal regions (Fig. S5). Both ORCHIDEE-CNP and ORCHIDEE simulated a Eco, for C4
grass of ~1, as the carboxylation of C4 plants is weakly influenced by elevated CO, (Osmond et al.,
1982; Pearcy and Ehleringer, 1984; Bowes, 1993). This indicates that the inclusion of N and P
constraints on GPP leads to a more realistic CO; fertilization effect in ORCHIDEE-CNP.
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5.3 Ecosystem nutrient turnover and openness indicates model biases in boreal phosphorus availability

The capacity of ecosystems to sequester and store additional carbon depends on their ability to supply
nutrients for the built-up of organic matter. Enhanced internal nutrient recycling or the accumulation of
nutrients over time in ecosystems are theoretically possible mechanisms by which nutrients can be
supplied. Therefore, it is important for simulating changes in land carbon storage on decadal time scales
and longer that models capture the dependency of ecosystem production to external nutrient sources (i.e.
openness of N and P cycles) (Cleveland et al., 2013) as well as the residence time of nutrients within
ecosystems. Besides being related to each other, openness and residence times are also related with the
in- and outflows of- nutrients (Eq. 9 and Eq. 10) as well as turnover time of nutrients in specific
ecosystem compartments.

We find that ORCHIDEE-CNP simulates openness of nutrient cycles incl. differences among biomes
which are close to estimates from the model—data fusion framework GOLUM-CNP (Fig. 6; Sect. 4.4).
There are differences in openness of N (Op ) in tropical natural biomes and openness of P (Op ) in
central Africa which are related to lower, but more realistic, tropical BNF in ORCHIDEE-CNP (Sect.
S4 in supplement) and a difference in the prescribed P deposition compared to GOLUM-CNP.
Simulated nutrient losses due to aquatic transport are in general in good agreement with independent
estimates (Sect. S5 in supplement).

Residence times of N and P (7)y and 7p) in ORCHIDEE-CNP compare in general well to estimates
from GOLUM-CNP: ORCHIDEE-CNP simulates shorter 7,y and 7p in tropical and temperate biomes
compared to boreal ones, in line with GOLUM-CNP (Fig. 7). This indicates that ORCHIDEE-CNP is
able to reproduce large-scale patterns in the nutrient residence time of biomes, with one exception. In
boreal regions, we find that ORCHIDEE-CNP simulates higher 7, for BOCF due to the higher standing
P stocks of biomass and soil organic matter than GOLUM-CNP (Fig. S1). This indicates that
ORCHIDEE-CNP is likely underestimating P availability in boreal regions. The underlying processes of
biochemical P mineralization (Sect. S7 in supplement) and sorption of P to soil particles (Sect. S6 in
supplement) are reasonably well captured in ORCHIDEE-CNP.

5.4 Model biases in stoichiometry indicate need for refinement of process representation

Leaf and soil stoichiometry are key indexes to characterize the ecosystem relative N and P limitation
(e.g. Glisewell, 2004). Measurements show a decrease in foliar N:P ratios from low to high latitudes in
natural ecosystems (McGroddy et al., 2004; Reich and Oleksyn, 2004; Kerkhoff et al., 2005). This is
seen as evidence for tropical vegetation being in general more P- than N-limited, in contrast to extra-
tropical vegetation (Reich and Oleksyn, 2004). The observed trend of foliar N:P ratios was not
reproduced by ORCHIDEE-CNP (Fig. 8) which simulated a flat foliar N:P latitudinal profile. In
contrast to the majority of global models, where leaf N:P ratios are either prescribed (Goll et al., 2012)
or vary within a PFT-specific range (Wang et al., 2010), we assumed conservatively a globally uniform
range to let the model freely calculate leaf N:P stoichiometry. It is not trivial to pin down the failure of
the model to capture the latitudinal trend in leaf N:P ratios, which could be due to: 1) omitted variability
in leaf P resorption efficiencies, which varies among biomes between 46%~66.6% (Reed et al., 2012),
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but was set to 65% in ORCHIDEE-CNP, 2) the simplistic parameterization of nutrient investment into
different plant tissues, 3) and the omission of the diversity of nutrient acquisition pathways (e.g.
mycorrhizal association) and rooting strategies (Warren et al., 2015). Testing new formulation for plant
growth based on optimality principles (Kvaki¢ et al., 2020) and the refinement of nutrient acquisition
pathways (Sulman et al., 2017) are ways forward to improve the model.

Regarding soil stoichiometry, measurements show that tropical biomes have lower soil C:N and higher
soil C:P and soil N:P than temperate biomes (Tipping et al., 2016), echoing the pattern of leaf
stoichiometry. ORCHIDEE-CNP fails in capturing these patterns (Fig. 9). Modelled soil N:P and C:P
for tropical forests are comparable to measurements but are too low in temperate forest, tropical and
temperate grass, which is most likely related to a too strong nutrient immobilization in accumulating
soil organic matter (Figs. S1) which tends to push systems into P limitation rather than N limitation as
Oy is larger than Op (Fig. 6). In general, the spread in soil P concentration is well represented by
ORCHIDEE-CNP. The rudimentary representation of organic matter decomposition and the lack of
nutrient effects on decomposers carbon use efficiency (see Zhang et al., 2018 for possible
improvements, Sect. 5.5) are likely contributing to the biases. New developments including explicit
representation of decomposer communities and soil organic matter stabilization (Zhang et al., 2020) will
be included in the next model version.

5.5 Nutrient effects on carbon cycling

In the following we discuss the implications for the simulated carbon fluxes of changes in plant
resource use efficiencies and the sensitivity of plant productivity to increasing CO; due the inclusion of
nutrient cycles. We link biases in the simulated carbon fluxes to biases in nutrient cycling, which allows
us to prioritize follow up model development.

5.5.1 Inclusion of nutrient cycling improves the inter-annual variability of GPP

To what extent nutrient effects on vegetation affect the sensitivity of ecosystem CO, fluxes to climatic
variation is unclear (Goll et al., 2018). For instance, drought can reduce nutrient use by decreasing GPP,
but it also slows down decomposition which supplies nutrients for plant uptake. Further, N:P
stoichiometry is also strongly modified by drought and warming towards increased N:P in whole plant
biomass (Yuan and Chen, 2015). Here we found that the inclusion of N and P cycles in ORCHIDEE
affects the inter-annual variability of GPP for all vegetation types. In ORCHIDEE-CNP, the inter-
annual variation (IAV) of GPP is better correlated to that of observation-based datasets than in
ORCHIDEE globally and for the NH, but less correlated for other regions (Fig. 10a). Observation-based
GPP estimates are uncertain, as some of them ignore soil moisture induced reductions of GPP during
drought (Stocker et al., 2019), and soil thaw and snow-related effects (Jiang and Ryu, 2016). Thus, at
the moment, it is difficult to falsify one model version over another, and to constrain nutrient effects on
the variation of GPP, based on current observation-based GPP.

In order to further explore the underlying reasons of the general improvement in the IAV of GPP due to
the inclusion of nutrient cycles, we analyzed the sensitivity of GPP anomalies to anomalies of
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temperature (St), precipitation (Sp) and shortwave radiation (Sr), all with mean annual values (Sect. S11
in supplement). We found that Sp by ORCHIDEE-CNP compares well with BESS-GPP and MTE-GPP,
while it is overestimated in ORCHIDEE (Figs. S7 and S8). Thus, the difference in Sp is likely the major
reason for the differences in IAV in NH between model versions, as St and Sg show only minor
differences there. This provides confidence that the improvement of IAV of GPP in the NH is due an
improved sensitivity towards a climatic driver (i.e. Sp). For tropical regions, ORCHIDEE-CNP
simulates more realistic Sp but higher biases in Sg than in ORCHIDEE, while observation based
estimates of St disagree on the sign and model versions show only minor differences (Fig. S7).
Therefore, the deterioration of the IAV of tropical GPP by the inclusion of nutrient cycles is likely
caused by enhanced biases in Sg due to a lowering of LUE of GPP (Sect. 4.2 and 5.1).

5.5.2 Inclusion of nutrient cycling deteriorates phenology and on seasonality of GPP

The performance in reproducing seasonal variations of GPP was deteriorated by the inclusion of N and
P nutrient cycles in ORCHIDEE (Fig. 10b). We found that biases in GPP are related to biases in the
seasonality of the LAI introduced in ORCHIDEE-CNP (Figs. S9a and S10a). For NH, the delayed
increase in LAI in ORCHIDEE-CNP could be partly caused by nutrient shortage during the first half of
the growing season, as indicated by the increasing leaf nutrient concentration throughout the growing
season (Fig. S11). Several factors could lead to a too low supply of nutrients in the beginning of the
growing season: an insufficient internal plant nutrient reserve due to a too low resorption of nutrients
prior to leaf shedding or an underestimation of nutrient uptake during the dormant season, an
insufficient investment into root growth to acquire nutrients, and an overestimation of soil nutrient
losses during dormant season leaving the soil nutrient depleted at the beginning of the growing season.
Many of the related processes (e.g. root phenology, mineralization, nutrient resorption, growth
allocation) are only rudimentary represented. For tropical regions, ORCHIDEE-CNP simulates a quasi-
flat seasonal cycle of GPP, in contrast with a peak of GPP during the wet season in MTE-GPP and
BESS-GPP, which is correctly captured by ORCHIDEE (Fig. S9b, c). The reduction of seasonal GPP in
ORCHIDEE-CNP compared to ORCHIDEE is more pronounced in the dry season (~100 g C m™) than
in the wet season (Fig. S9b, c), concurrent with a larger reduction of LAI in the dry season (Fig. S10b,
c). Tropical phenology is currently only rudimentary represented in ORCHIDEE(-CNP) (Chen et al.,
2020) causing a suboptimal allocation of nutrients to leaves which could cause the biases in the seasonal
cycle of GPP and LAI. Model-data assimilation of phenology (Williams et al., 2009; MacBean et al.,
2018; Bacour et al.,, 2019) and efforts to better characterize processes related to plant resource
investment into different tissues and symbioses (Prentice et al., 2015; Warren et al., 2015; Jiang et al.,
2019) and leaf age effects during the year for evergreen forests (Chen et al., 2020) should help to reduce
tropical phenology biases in future versions of ORCHIDEE-CNP.

5.5.3 Inclusion of nutrient cycling leads to an underestimation of the land carbon sink

Current LSM unanimously conclude that CO, fertilization is the main driver of the land carbon sink and
its trend (Friedlingstein et al., 2014), but it remains unclear to what extent other drivers (i.e. climate
change, land management, nutrient deposition) contribute to the sink as well. Also, it remains unclear
how commonly omitted dynamics (climate and management induced effects on tree mortality, nutrients)
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lead to overestimation of the contribution of CO, fertilization in models (Ellsworth et al., 2017;
Fleischer et al., 2019). ORCHIDEE-CNP simulates a land carbon sink over the past decades that is
lower than other DGVM models and atmospheric inversions (Fig. S12), despite the fact that the
response of GPP to CO, in ORCHIDEE-CNP is in line with proxy data (Fig. 5; Sect. 5.2). In particular,
the NH carbon sink which persistently increased over the last 50 years (Ciais et al., 2019) is strongly
underestimated. The few Free Air Carbon Enrichment (FACE) studies that have experimentally applied
elevated CO; levels in mature stands found no increase in biomass production (Bader et al., 2013; Klein
et al., 2016; Korner et al., 2005; Sigurdsson et al., 2013; Ellsworth et al., 2017), thus an increase in GPP
does not necessarily translate into an increase in biomass production, whereas in most DGVMs where
mortality is constant and growth follows GPP, biomass production is inevitably coupled to GPP. Based
on upscaling of data from FACE experiments, Terrer et al. (2019) suggested that the effect of elevated
CO, on biomass may be severely overestimated (on average by a factor of 3.6) in LSMs which ignore
nutrients. It would be tempting to conclude from this study that ORCHIDEE-CNP is ‘right’ in its
underestimation of the carbon sink whereas other models are ‘wrong’ because they miss processes such
as forest regrowth (Pugh et al., 2019) from e.g. decreased harvesting pressure (Ciais et al., 2008) and
thus have a realistic NH land sink for the wrong reasons. We also showed that ORCHIDEE-CNP
underestimates peak GPP (Fig. S12b) and overestimates P limitations in the NH (Sect. 5.1, 5.3 and 5.4)
thus, another explanation is that the NH sink in this study is too low because of too strong P limitations
in this region. These two hypotheses explaining why we underestimate the NH sink (missing forest
regrowth vs. too strong nutrient limitations in the NH) are examined below.

The too small NH carbon sink in ORCHIDEE-CNP may be explained by a too strong immobilization of
nutrients in accumulating nutrient-rich organic matter, which leads to a reduction of plant available
nutrients, the so-called ‘progressive nutrient limitation” proposed by Luo et al. (2004) and subsequently
to a reduced biomass production. The amount of accumulated N and P immobilized into SOM in the
NH during 1850-2016 reaches up to 75.3 g N m™ and 2.4 g P m™ respectively, which is twice as much
as the accumulated respective nutrient inputs to ecosystems in this region during the same period (37.8
g Nm™and 1.6 g P m™; Figs. S13 and S14). This suggests a strong progressive nutrient limitation in the
model. The omission of nutrient controls on litter and SOM decomposition in the soil module of
ORCHIDEE-CNP could have favored the immobilization of nutrients in accumulating SOM (Zhang et
al., 2018). Microbe incubation and N fertilization experiments showed that a low availability of
nutrients can hamper the built-up of SOM as more carbon gets respired by decomposers due to an
elevated energetic requirements of processing low quality substrate (Recous et al., 1995; Janssens et al.,
2010; Allison et al., 2009) and an overall lower microbial activity (Wang et al., 2011; Knorr et al.,
2005). Uncertainties with respect to the capability of ecosystems to up-regulate P mineralization when P
becomes scarce could have contributed to the decline in plant available nutrients with increasing SOM
stocks. The inclusion of nutrient effects on decomposition and microbial dynamics in ORCHIDEE-CNP
is ongoing (Zhang et al., 2018, 2020) but the lack of a quantification of the ability of ecosystems to
enhance P recycling hampers model developments.

The too small NH carbon sink in ORCHIDEE-CNP may also be explained by the lack of representation
of effects of forest age and management on biomass turnover and biomass production efficiency (i.e.
CUE). Pugh et al. (2019) found that old-growth forests in the NH have a much smaller C sink than re-
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growing forests (<0.1 Pg C yr' compared to 0.86 Pg C yr') for the period 2001-2010. Forest
management effects on biomass production efficiency and biomass turnover is only rudimentary
represented in ORCHIDEE(-CNP). ORCHIDEE-CNP prescribes constant tree mortality rates (i.e. the
fraction of total carbon in wood lost to litter) whereas in reality tree mortality rates change with
management and climate conditions (Peng et al., 2011). Moreover, ORCHIDEE(-CNP) omits the effect
of forest age on C uptake. Compared to data-driven estimates for C storage (Sect. SIG and S1H in
supplement), ORCHIDEE-CNP simulates a higher global aboveground forest biomass (387 Pg C; 283
Pg C for GlobBiomass and 221 Pg C for GEOCARBON; Fig. S2) but lower global soil organic carbon
(801 Pg C; 4387 Pg C for Soilgrids and 1680 Pg C for GSDE; Fig. S3).

6 Concluding remarks

In this study, we evaluated the performance of ORCHIDEE-CNP and found that the model has
sufficient skills in capturing observed patterns in 1) vegetation resource use efficiencies, 2) CO;
vegetation fertilization, 3) ecosystem N and P openness and turnover and 4) leaf and soil stoichiometry.
The inclusion of nutrients improves the simulation of the sensitivity of plant productivity to increasing
CO; and to inter-annual variation in precipitation. However, the nutrient-enabled version cannot capture
the current land carbon sink in the NH. This suggests that either the land carbon sink might be less a
consequence of the CO, fertilization effect, but of other processes that are currently not well resolved in
global models (e.g. biomass turnover, land management), or that ORCHIDEE-CNP underestimates the
ability of ecosystems to circumpass nutrient constraints on biomass built up under elevated CO,. We
propose the following focus to improve ORCHIDEE in next model versions: 1) refine the canopy light
absorption processes; 2) use model-data assimilation frameworks (like ORCHIDAS) to better calibrate
root phenology, mineralization, nutrient resorption and growth allocation; 3) better represent soil
processes related to decomposition, stabilization of soil organic matter (e.g. Zhang et al., 2018, 2020)
and inorganic P transformation (e.g. Helfenstein et al., 2020); 4) refine dynamics of biomass turnover
and biomass production efficiency including effects of forest management and climate. Continued
improvements of nutrient cycle representations will further reduce uncertainties in predicting land
carbon sink under climate change and rising atmospheric CO,.

Code and data availability

The source code is  freely available online via the  following  address:
http://forge.ipsl.jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/ORCHIDEE-CN-
P _v1.2 15986 (Goll, 2020). Please contact the corresponding author if you plan an application of the
model and envisage longer-term scientific collaboration.

Primary data and scripts used in the analysis and other supplementary information that may be useful in
reproducing the author’s work can be obtained by http://dx.doi.org/10.17632/f54v9zcgbf.1

Supplement. The supplement related to this article is available online at: (a doi will be provided before
final publication).
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335 Table 1 Main information on datasets used for global evaluation of ORCHIDEE-CNP.

Dataset Variable Resolution Period Uncertainties References
Bias against
local Running et al., 2004;
measurements Zhao et al., 2005; Turner
MODIS GPP, NPP, CUE lkm 2000-2015 for GPP and et al., 2006;
NPP
25 ensemble
o trees for GPP Jung et al., 2009; Jung et
MTE GPP, WUE 0.5 1982-2011 and ET al.. 2011
respectively
Bias against o
BESS GPP 0.5° 2001-2015 local Ryuetal, 2011; Jiang
and Ryu, 2016
measurements
o Tum et al., 2016;
BETHY NPP 0.008 2000-2009 - WiBkirchen et al., 2013
GIMMS NPP 0.5° 19822015 Using different Smith et al., 2016
climate inputs
Trendy v6 NBP 0.5° 19592016 |-Sigma standard Sitch et al., 2013
deviation
JENA inversion NBP 1° 1985-2016 - Rodenbeck et al., 2003
CAMS inversion NBP 1.875°x3.75° 1979-2016 - Chevallier et al., 2005
Ctracker inversion NBP 1° 2001-2016 - van der Laan-Luijkx et
al., 2017
Peng-BNF BNF biome 2001-2009 - Peng et al., 2019
Sullivan-BNF BNF biome 1999, 2009 - Sullivian et al., 2014
Mayorga N & P leaching polygon 2000 - Mayorga et al. 2010
Helfenstein K., Soil order - - Helfenstein et al., 2018
Sun Pasae activity 10km - - Sun et al., 2020
C, N and P fluxes, N
and P openness and Wang et al., 2018
GOLUM-CNP turnover rate, PUE, 0.25° 2001-2010 )
NUE
Global SeaWiFS
Level-3 data and LUE 0.01° 1997-2006 - Gobron et al., 2006a, b
MTE-GPP
Butler Leaf N: P ratio lkm 100 estimates by Butler et al., 2017
Bayes method
Kerkhoff et al., 2005;
Site leaf . . . McGroddy et al., 2004;
measurements Leaf N:P ratio site ) ) Reich and Oleksyn, 2004
Tipping SOM C, N and P site - - Tipping et al., 2016
Site measurements
of NUE and PUE NUE and PUE site - - Gill and Finzi, 2016
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Figure 1: Schematic of C, N and P cycles considered in ORCHIDEE-CNP.
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Figure 2: Flow chart of mean flows and storages per area of C, N and P (gC/gN/gP m” yr'l) in natural biomes for GOLUM-CNP

and ORCHIDEE-CNP. GOLUM-CNP stands for Global Observation-based Land-ecosystems Utilization Model of Carbon,

Nitrogen and Phosphorus (GOLUM-CNP) v1.0, which is a data-driven model of steady-state C, N and P cycles for present day

(2001-2016) conditions. C, N and P losses via fire in ORCHIDEE-CNP are ignored. Numbers in square brackets indicate the
350 standard deviations for accounting the spatial spread of C, N and P fluxes.
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Figure 3: Comparison of annual use efficiencies of light (LUE), water (WUE) and carbon (CUE) between ORCHIDEE-CNP,
ORCHIDEE and satellite-based estimations for 6 biomes: tropical rainforest (TRF), temperate deciduous forest (TEDF),
temperate conifer forest (TECF), boreal conifer forest (BOCF), temperate grass (TEG) and tropical grass (TRG). The whiskers
indicate the interquartile (box) and 95 % confidence intervals (dashed lines). Grey boxes indicate the satellite-based estimations
(referenced). The grey shaded areas indicate the uncertainties of resource use efficiencies given by referenced estimations, which
involves uncertainties for multi-estimations and spatial variability for each estimation.
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Figure 4: Violin plots of nitrogen use efficiency (NUE; a) and phosphorus use efficiency (PUE; b) by ORCHIDEE-CNP, GOLUM-
CNP and observations (Gill and Finzi, 2018) for 6 biomes: tropical rainforest (TRF), temperate deciduous forest (TEDF),
temperate conifer forest (TECF), boreal conifer forest (BOCF), temperate grass (TEG) and tropical grass (TRG). Open circles are

medians of all grid cells within each biome, with balloons representing the probability density distribution of each value. Black
whiskers indicate the interquartile.
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Figure 5: Comparisons between pre-industrial GPP with atmospheric CO, concentration of 296 ppm (GPP,4) and current GPP
with atmospheric CO, concentration of 396 ppm (GPP;y) for all natural plants (a, b) and natural C3 plants (¢, d) by ORCHIDEE-
CNP (a, ¢) and ORCHIDEE (b, d). The color scale shows the point density. Different point density and patch size for ORCHIDEE
and ORCHIDEE-CNP are due to the different spatial resolution (2° x 2° for ORCHIDEE-CNP and 0.5° x 0.5° for ORCHIDEE).
The ratio between GPP;3;9sand GPP,y4 indicates the CO, fertilization effects (Ecp;). Green dashed areas indicate the observed Ecg,
from Campbell et al (2017)’s COS records. Pink lines indicate the observed E ¢y, from Ehlers et al (2015)’s.
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Figure 6: Global pattern of N (Oy, a-b) and P openness and (Op, c-d) simulated by ORCHIDEE-CNP (a, ¢) and GOLUM-CNP (b,
450 d). Pixels with managed lands >50% in ORCHIDEE-CNP were masked. Same area was masked from the pattern of Oy and Op for
GOLUM-CNP.

455

44



(@) (b)

3 ORCHIDEE-CNP @@ ORCHIDEE-CNP
[ GOLUM-CNP 51 [ GOLUM-CNP

w
L
[ @ |

logl0[Tau of N (years)]
logl0[Tau of P (years)]
N
I

Tl;\F TEbF TEICF BOICF TéG TFIKG TRF TEDF TECF BOCF TEG TRG

460 Figure 7: Violin plots of residence time (c, d) of N and P cycles for 6 biomes: tropical rainforest (TRF), temperate deciduous forest
(TEDF), temperate coniferous forest (TECF), boreal coniferous forest (BOCF), temperate grass (TEG) and tropical grass (TRG).
Open circles are medians of all grid cells within each biome, with balloons representing the probability density distribution of each
value. Black whiskers indicate the interquartile.
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Figure 8: Comparisons of leaf N:P ratio between ORCHIDEE-CNP, data-driven estimates and observations. (a) is the global
pattern of mean leaf N:P ratio over 2001-2016 for ORCHIDEE, (b) is for mean leaf N:P in Butler et al. (2017). (¢) and (d) are 25%
and 75% percentile of leaf N:P ratio by Butler et al. (2017), respectively. Dots in (a) indicate the area with leaf N:P ratio of
ORCHIDEE-CNP falling into 25%~75% percentiles of Butler et al., (2017)’s estimation. (d) is the latitude distributions of leaf N:P
ratio for ORCHIDEE-CNP, Butler et al (2017)’s estimation and site measurements. Red shared area indicates the uncertainty
from latitudinal spreads of leaf N:P ratio for ORCHIDEE-CNP. Grey shaded area indicates the uncertainty from both the

estimations and latitudinal spreads for Butler et al., (2017). Blue and yellow lines indicate the 10% and 90% percentiles of
measured leaf N:P ratios in each bins of 30 latitude, respectively.
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Figure 9: C:N, C:P and N:P ratios of soil organic matter by ORCHIDEE-CNP and plot-level measurements by Tipping et al.
(2016) for 4 biomes: tropical forest (TRF), temperate forest (TEF), tropical grass (TRG) and temperate grass (TEG). Soil C:N:P
ratios for ORCHIDEE-CNP are calculated for total soil pool includes soil passive, slow and active pools, while measurements by
Tipping et al. (2016) are for soils of 0-60 cm depth. Alphabet ‘a’, ‘b’ and ‘c’ indicate the significance of differences among biomes
from the analysis of variance (ANOVA).
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Figure 10: The performances of ORCHIDEE and ORCHIDEE-CNP on the inter-annual variability of de-trended anomalies of GPP during 2001-2010
(a), the seasonal variability of mean GPP across 2001-2010 (b) and the inter-annual variability of net biome productivity (NBP) (c). Two statistics were
used to represent the model performance: coefficient of determination (Rz) and relative mean-square deviation (rMSE). For (a) and (b), the evaluations
are for globe, the northern hemisphere (30°N-90°N; NH), north tropical (0°-30°N; NT), south tropical (0°-30°S; ST) and the southern hemisphere (30°S-
90°S; SH). Two sets of observation-based GPP products BESS-GPP, MTE-GPP were used for the comparison. For (c), the evaluations are for globe, the
northern hemisphere (30°N-90°N, NH), tropical (30°S-30°N), and the southern hemisphere (30°S-90°S; SH). Mean value across Trendy ensemble models
(v6) and three sets of NBP from inversion datasets were used as the reference databases for the comparison with different available periods (Trendy
Ensemble: 1959-2016; CAMS:1979-2016; JENA:1985-2016; CTracker: 2001-2016).
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