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Abstract. The availability of phosphorus (P) and nitrogen (N) constrain the ability of ecosystems to use 20 
resources such as light, water and carbon. In turn, nutrients impact the distribution of productivity, 
ecosystem carbon turnovers and their net exchange of CO2 with the atmosphere in response to variation 
of environmental conditions both in space and in time. In this study, we evaluated the performance of 
the global version of the land surface model ORCHIDEE-CNP (v1.2) which explicitly simulates N and 
P biogeochemistry in terrestrial ecosystems coupled with carbon, water and energy transfers. We used 25 
data from remote-sensing, ground-based measurement networks and ecological databases. Components 
of the N and P cycle at different levels of aggregation (from local to global) are in good agreement with 
data-driven estimates. When integrated for the period 1850 to 2017 forced with variable climate, rising 
CO2 and land use change, we show that ORCHIDEE-CNP underestimates the land carbon sink in the 
North Hemisphere (NH) during the recent decades, despite an a priori realistic GPP response to rising 30 
CO2. This result suggests either that other processes than CO2 fertilization which are omitted in 
ORCHIDEE-CNP, such as changes in biomass turnover, are predominant drivers of the northern land 
sink, and/or that the model parameterizations produce too strict emerging nutrient limitations on 
biomass growth in northern areas. In line with the latter, we identified biases in the simulated large-
scale patterns of leaf and soil stoichiometry and plant P use efficiency pointing towards a too severe P 35 
limitations towards the poles. Based on our analysis of ecosystem resource use efficiencies and nutrient 
cycling, we propose ways to address the model biases by giving priority to better representing processes 
of soil organic P mineralization and soil inorganic P transformation, followed by refining the biomass 
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production efficiency under increasing atmospheric CO2, phenology dynamics and canopy light 
absorption. 40 

1 Introduction  

Nitrogen (N) and phosphorus (P) are key macronutrients that control metabolic processes and plant 
growth and constrain ecosystem-level productivity (Elser et al., 2007; Norby et al., 2010; Cleveland et 
al., 2013). The amount and stability of soil carbon (C) stock is also affected by N and P through their 
regulating role in the mineralization of litter and soil organic matter (Gärdenäs et al., 2011; Melillo et al., 45 
2011). The availability of N and P is likely to limit future carbon storage under climate change and 
rising atmospheric CO2. Empirical stoichiometry observations were applied in the posteriori estimates 
of future carbon storage from land surface models (LSMs) lacking an explicit simulation of N and P 
biogeochemistry, which led consistently to an overestimation of future carbon storage in LSMs 
(Hungate et al., 2003; Wang and Houlton, 2009; Zaehle et al., 2015; Wieder et al., 2015). Nevertheless, 50 
this approach has large uncertainties (Penuelas et al., 2013; Sun et al., 2017) and relies on unproven 
assumptions (Brovkin and Goll, 2015).  

An alternative is to represent directly the complex interactions between N, P and carbon in a LSM. 
Several LSMs incorporated different parameterizations of N interactions (e.g. Thornton et al., 2007; 
Zaehle et al., 2014) but very few global models have included P interactions. The few models accounted 55 
for P limitation in plant growth showed that P availability limit primary productivity and carbon stocks 
on highly weathered soils of the tropics (Wang et al., 2010; Yang et al., 2014) and one study also 
suggested that P limitations could also occur in the northern hemisphere in the near future (Goll et al., 
2012).  Model representations of P interactions are highly uncertain since the critical processes are 
poorly constrained by current observational data. In particular, the desorption of P from soil minerals 60 
surface and the enhancement of P availability for plants by phosphatase enzymes secreted by plant roots 
and microbes were identified to be critical but poorly constrained (Fleischer et al., 2019). 

Previous studies (Wang et al., 2010; Goll et al., 2012; Yang et al., 2014; Thum et al., 2019) have 
suggested that the inclusion of the phosphorus cycle improves model performances with regard to 
reproducing observed C fluxes. But adding new and uncertain P-related processes does not grant an 65 
automatic improvement of a LSM in general. First, more (nutrient-related) equations with more 
uncertain parameters can result in less robust predictions. Second, models ignoring nutrients were often 
calibrated on available carbon data, so that a new model with nutrients inevitably needs a parameter 
recalibration to reach the similar performances as the same model without nutrients. Third, for 
evaluating a large-scale model resolving both nutrient and carbon biogeochemistry, one needs specific 70 
nutrient related datasets which are more scarce than classical biomass, productivity, soil carbon data 
used for benchmarking carbon only models. 

The evaluation for N and P together with carbon cycling in global LSMs remains very limited (Wang et 
al., 2010; Goll et al., 2012) but recent advances in ground-based measurements, ecological datasets and 
process understanding have made a better evaluation of C, N, P models feasible. The available nutrient 75 
datasets have allowed for meta-analyses of site-level nutrient fertilization experiments (e.g. Yuan and 
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Chen, 2015; Wright, 2019), data-driven assimilation schemes to constrain nutrient budgets (Wang et al., 
2018), new knowledge about the critical P-processes of sorption (Helfenstein et al., 2018; 2020) and 
phosphatase-mediated mineralization (Sun et al., 2020), global datasets of leaf nutrient content (Butler 
et al., 2017), and empirical constraints on the CO2 fertilization effect on land carbon storage (Terrer et 80 
al., 2019; Liu et al., 2019). In addition to direct comparison with nutrient datasets, it is also possible to 
diagnose emerging model responses in terms of ecosystem resource use efficiencies (RUE) and confront 
them to observations for identifying how ecosystems adjust and optimize nutrient, water, light, and 
carbon resource availabilities (Fernández-Martínez et al., 2014; Hodapp et al., 2019). In particular, 
modeled N and P use efficiencies can be compared to observation-based estimates at ecosystem scale 85 
(Gill and Finzi, 2016) and at biome scale (Wang et al., 2018). 

Here we evaluate the global cycles of C, N and P in the nutrient-enabled version of the LSM 
ORCHIDEE, ORCHIDEE-CNP (v1.2). The model has been previously evaluated for tropical sites (Goll 
et al., 2017a, 2018) and for coarse scale global carbon fluxes and stocks using the International Land 
Model Benchmarking system iLAMB by e.g. Friedlingstein et al., (2019). The results from this 90 
evaluation showed a slightly worse performance for ORCHIDEE-CNP (v.1.2) than the carbon-only 
version of ORCHIDEE which has been extensively calibrated (Friedlingstein et al., 2019). In this study, 
we perform a detailed evaluation of ORCHIDEE-CNP focusing on four ecosystem characteristics which 
were found to be critical for the response of land C cycling to increasing CO2 and climate change: (1) 
vegetation resource use efficiencies, (2) the response of plant productivity to increasing CO2, (3) 95 
ecosystem N and P turnover and openness, and (4) large-scale pattern of ecosystem stoichiometries. 
Point (1) and (2) control the response of vegetation carbon storage operating on timescales of years to 
decades, while point (3) and (4) control the carbon storage potential on ecosystem-level which 
determines the response on much longer timescales. Further, the implications of including nutrient 
cycles on the simulated land C cycling are discussed.  100 

2 Modelling 

2.1 Model description 

ORCHIDEE-CNP simulates the exchange of greenhouse gases (i.e. carbon dioxide, nitrous oxide), 
water and energy at the land surface and features a detailed representation of the root uptake of 
dissolved N and P, the allocation of N and P among tissues, and the N and P turnover in litter and soil 105 
organic matter (Goll et al., 2017a, 2018) (Fig. 1). In this study, we present the first global application of 
the model and an evaluation against global carbon and nutrient datasets. ORCHIDEE-CNP simulates 
the cycles of C, N and P which are described in detail elsewhere (Krinner et al., 2005; Zaehle and 
Friend 2010; Goll et al., 2014, 2017a, 2018). We here give a brief overview. P enters the ecosystem by 
release from minerals into the soil solution, whereas N is biologically fixed from an ample reservoir of 110 
dinitrogen. Dissolved nutrients are either taken up by vegetation, converted into soil organic matter or 
absorbed onto soil particles. Losses occur as leaching of dissolved nutrients, gaseous soil N emissions, 
or occlusion of P in secondary minerals. When nutrients are taken up by vegetation they are either 
stored internally or used to build new plant tissue driven by the availability of C, N and P in vegetation. 
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The nutrient concentration of plant tissue varies within a prescribed range depending on the relative 115 
availability of C, N and P. Before plant tissue is shed, depending on the tissue a fixed fraction of the 
nutrients is recycled. The nutrients contained in dead plant tissue and organic matter are mineralized 
and released back into the soil solution. The model version applied in this study is based on Goll et al. 
(2017a, 2018) and referred to as ORCHIDEE-CNP v1.2. Major modifications compared to v1.1 are 
described as follows (details can be found in the Text S1). 120 

The original formulation of photosynthetic capacity in ORCHIDEE-CNP v1.1 assumed leaf N to be the 
sole regulator of leaf photosynthetic characteristic (Kattge et al., 2009). Here, we applied a new 
empirical function that relates photosynthetic capacity to both leaf N and P concentration based on data 
from 451 species from 83 different plant families (Ellsworth et al., in prep.). A priori and narrow plant 
functional type (PFT)-specific range of leaf C:N:P ratios that were prescribed in ORCHIDEE-CNP v1.1 125 
are now given a larger range common to all PFTs (Table S1), allowing for the prediction of variation of 
leaf stoichiometry across climate and soil gradients, independently of the prescribed vegetation (PFT) 
map. 

In ORCHIDEE-CNP v1.1, an empirical function, f(Tsoil) was used to reduce biochemical mineralization 
and plant nutrient uptake at low soil temperature (Eq.5 in Goll et al., 2017a) which was adopted from 130 
the N enabled version of ORCHIDEE (Zaehle and Friend, 2010) to avoid an unrealistic accumulation of 
N within plants when temperatures are low. We found that this function was not needed when P uptake 
is accounted for and was thus removed. It should be noted that this temperature dependence is different 
from the one which describes the temperature dependence of soil organic matter (SOM) and litter 
decomposition. For grasslands and croplands, we implemented root dormancy which is triggered by 135 
drought or low temperatures. During dormancy, root maintenance respiration is reduced by 90% 
following (Shane et al., 2009) but root acquisition of soil nutrients continues as long as root biomass 
exists (Malyshev and Henry, 2012). It should be noted that total root loss can occur for extremely long 
droughts or cold periods when maintenance respiration depletes root carbon. 

Several parameters were re-calibrated, i.e.  the coefficient relating maintenance respiration to biomass 140 
and the leaf to sapwood ratio, or corrected in case of the turnover of sapwood for tropical evergreen 
broadleaf forest (TREBF) and tropical rain-green broadleaf forest (TRDBF) to achieve more realistic 
wood growth rates for those forests (not shown). We also adjusted the recycling efficiency of nutrients 
from root (!"#$%&,#((") , !"#$%&,#(("* ) and leaf (!"#$%&,+,$-) , !"#$%&,+,$-* ) according to data compilations from 
Freschet et al. (2010) and Vergutz et al. (2012). The new values of these parameters and their sources 145 
are given in Supplementary Information (Text S1). 

2.2 Simulation setup 

We performed a global simulation at 2o x 2o spatial resolution for the historical period (1700-2017) 
adapting the TRENDY version 6 protocol (Sitch et al., 2015; Le Quéré et al., 2018). The simulation was 
performed using historical climate forcing, land cover changes and management (i.e. mineral fertilizer 150 
application, crop harvest, see 3.1.6), and atmospheric CO2 concentrations (S3 type simulation). Prior to 
the historical simulation, we performed a model spin-up to equilibrate the C, N and P pools and fluxes 
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(Sect. S1A in supplement) by forcing the model with cycled climate forcing of 1901-1920 and the land 
cover map and land management corresponding to the year 1700. To disentangle the effect of 
introducing nutrient cycles into ORCHIDEE, we performed the same simulation with ORCHIDEE 155 
(revision 5375) which has no nutrient cycles and a comparable parameterization for other processes. 
ORCHIDEE was run at a higher spatial resolution (0.5ox0.5o) than ORCHIDEE-CNP. Prior to the 
analysis, the data from ORCHIDEE was remapped to the resolution of ORCHIDEE-CNP. 

2.2.1 Meteorological data 

The model was forced by CRU-JRA-55 meteorological data provided at a spatial resolution of 0.5o x 160 
0.5o and upscaled to a resolution of 2o x 2o. This data comprises global 6-hourly climate forcing data 
providing observation-based temperature, precipitation, and incoming surface radiation. It is derived 
from Climatic Research Unit (CRU) TS3.1 monthly data (Harris et al., 2014) and the Japanese 55-year 
Reanalysis (JRA-55) data (Kobayashi et al., 2015), covering the period 1901 to 2017. This climate 
dataset was provided by the TRENDY-v6 model-intercomparison project (Le Quéré et al., 2018).  165 

2.2.2 Land cover 

The historic land-cover change maps were based on the European Space Agency Climate Change 
Initiative (ESA-CCI) land-cover data (Bontemps et al., 2013). To be used by global vegetation models 
ORCHIDEE-CNP, ESA-CCI land-cover data were aggregated to 2o × 2o, and grouped into PFTs using 
the reclassification method from Poulter et al. (2011, 2015). The fraction of cropland and pasture in the 170 
PFT map was further constrained by the cropland area and the sum of pasture and rangeland area of the 
year 2010 in the History Database of the Global Environment land use data set (HYDE 3.2; Klein 
Goldewijk et al., 2017a, b) respectively, which were also aggregated to 2o × 2o. The above processes 
produced a reference ESA-CCI-based PFT map for the year 2010. The land-use changes derived from 
and Land-Use Harmonization (LUH) v2 (http://luh.umd.edu/data.shtml; an update release of Hurtt et al., 175 
2011) were aggregated to 2o × 2o and then were applied to this reference PFT map to constrain the land-
cover changes of forest, grassland, pasture and rangeland, and cropland during the period 1700-2017 
using the backward natural land cover reconstruction method of Peng et al. (2017). As a result, a set of 
historic PFT maps suitable for global vegetation models were established distinguishing global land-
cover changes for the period of 1700-2017 at 2o × 2o resolution. 180 

2.2.3 Soil and lithology datasets 

ORCHIDEE-CNP v1.2 is forced by information on soil texture, pH, bulk density and soil types (Goll et 
al., 2017a). We used a global gridded map of three soil texture classes from Zobler (1986) to derive 
soil-texture-specific parameters for soil water capacity, hydraulic conductivity and thermal conductivity. 
We used global gridded data on bulk density from the Harmonized World Soil Database (HWSD, 30 185 
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and soil pH from International Geosphere-Biosphere 
Programme Data Information System Soil Data (Global Soil Data Task Group, 2000). Soil pH forcing 
maps are needed to simulate the dynamics of NH3 and NH4

+ in soil in ORCHIDEE (Zaehle and Friend, 
2010). We used a global gridded map with the dominant soil orders (following the USDA Soil 
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Taxonomy) at 1ox1o resolution to derive soil order specific soil phosphorus sorption parameters (Goll et 190 
al., 2017a). 

The release of P from chemical weathering of rocks is computed dynamically following Goll et al. 
(2017a) and depends on the lithology types and soil shielding (discontinuation of the active soil zone 
from the bedrock) (Hartmann et al., 2014). We used the global lithological map (GLiM) of Hartmann 
and Moosdorf (2012) upscaled to 1o x 1o resolution which accounts for the lithology fractional coverage 195 
of 16 classes on a sub-grid scale. We also used a spatial explicit map of soil shielding on a 1o x 1o 
resolution (Hartmann et al., 2014). 

2.2.4 Atmospheric nitrogen and phosphorus deposition 

Global gridded monthly atmospheric N and P deposition during 1860-2017 was derived from a 
reconstruction based on the global aerosol chemistry–climate model LMDZ-INCA (Wang et al., 2017). 200 
LMDZ-INCA was driven by emission data, which included sea salt and dust for P, primary biogenic 
aerosol particles for P, oceanic emissions for N (NH3), vegetation emissions for N (NO), agricultural 
activities (including fertilizer use and livestock) for N and fuel combustion for both N (NOy and NHx) 
and P. Reconstructions for the years 1850, 1960, 1970, 1980, 1990, and each year from 1997 to 2013 
were linearly interpolated to derive a time series for 1850-2013. For the period before 1850, we 205 
assumed N and P deposition rates of the year 1850. For the period after 2013, we assumed rates of the 
year 2013. In ORCHIDEE-CNP, atmospheric N and P deposition are added to the respective soil 
mineral N and P pools without considering interception by the canopy. 

2.2.5 Nutrient management 

For croplands, we used yearly gridded mineral N and P fertilizer application data from Lu and Tian 210 
(2017) available for the period 1960 to 2017. This dataset is based on national-level data of crop-
specific fertilizer application amounts from the International Fertilizer Industry Association (IFA) and 
the FAO. N and P mineral fertilization between 1900 and 1959 were linearly extrapolated assuming that 
fertilizer applications for 1900 are zero, and that there were no N and P fertilizers applied before 1900. 
For pasture, we used global gridded datasets of mineral N fertilizer application rates from Lu and Tian 215 
(2017), developed by combining country-level statistics (FAO) and land use datasets (HYDE 3.2) (Xu 
et al., 2019). For both cropland and pasture, N and P in mineral fertilizer was assumed to go directly 
into soil mineral pools, where all mineral N fertilizer was assumed to be in the form of ammonium 
nitrate, that is half of N as ammonium (NH4

+) and half as nitrate (NO3
-).  

Manure applications are also included as a model forcing, given their significant input contribution to 220 
agricultural soils. For cropland, we used gridded annual manure N application data for the period 1860–
2014 from Zhang et al. (2017) compiled and downscaled based on country-specific annual livestock 
population data from FAOSTAT. For the period before 1860, we assumed N and P deposition rates of 
the year 1860. For pasture, we used global gridded datasets of N manure application rates from Lu and 
Tian (2017). The application of manure P in cropland and pasture was derived from manure N assuming 225 
a manure P:N ratio of 0.2. This ratio is a weighted value by the amount of manure N applied to soil and 
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derived from ruminants (14.4 Tg N yr-1) and monogastric animals (10.1 Tg N yr-1) from FAOSTAT for 
the year 2000 with P:N ratios of 0.165 in ruminant manure (mean of 0.15-0.18 from Lun et al., 2018) 
and 0.26 in monogastric manure (mean of 0.24-0.28 from Lun et al. (2018)). For manure applied to 
cropland and pasture, we assumed a typical slurry application with 90% of N in the liquid part of the 230 
slurry (like urine) goes to soil NH4+ pool. For the solid part of the slurry, we assumed it goes to a litter 
pool with a C:N ratio of 10:1 following Soussana and Lemaire (2014). 

Mineral and manure N and P fertilizers in cropland were applied at day of year (DOY) 120 for northern 
hemisphere (30oN - 90oN), at DOY 180 for tropical regions (30oN - 30oS), and at DOY 240 for southern 
hemisphere (30oS - 90oS). 235 

3 Evaluation 

We evaluated the performances of ORCHIDEE-CNP v1.2 based on four major aspects (Fig. 1). Firstly, 
we evaluated the global C, N and P flows and storages. In the absence of robust spatially resolved 
estimates of N and P fluxes, we used the data-driven reconstruction of steady state C, N and P fluxes on 
biome level from the data assimilation system Global Observation-based Land-ecosystems Utilization 240 
Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) v1.0 (Wang et al., 2018) (Table 1). 
Secondly, we evaluated plant resource use efficiencies (RUE) of light, water, C, N and P on global and 
biome scales. RUEs reflect how ecosystems adjust and adapt to the availability nutrient, water, light, 
and carbon resources (Fernández-Martínez et al., 2014; Hodapp et al., 2019). For this, we used 
estimates from site measurements and observation-based gridded datasets. Thirdly, we evaluated the 245 
response of GPP to elevated CO2 to assess the response of plant productivity to changing resource 
availability (i.e. CO2) historical perturbation C fluxes. For this, we used observation-based estimates 
(Ehlers et al., 2015; Campbell et al., 2017). Fourthly, we evaluated large scale patterns of vegetation 
and soil N:P ratios as well as the N and P openness and turnover rates on ecosystem-level to assess 
spatial variation in nutrient limitation and the underlying drivers. For this, we used estimates from 250 
GOLUM-CNP, site measurements and observation-based gridded datasets (Kerkhoff et al., 2005; 
McGroddy et al., 2004; Reich and Oleksyn, 2004; Tipping et al., 2016; Butler et al., 2017; Wang et al., 
2018). Finally, we showed the implications of ORCHIDEE-CNP for C cycling by evaluating the 
spatiotemporal patterns of terrestrial C fluxes and pools of the two versions of ORCHIDEE. For this, we 
used observation-based products of GPP and atmospheric inversions of the net land-atmosphere CO2 255 
flux excluding fossil fuel emissions (Table 1). Each dataset is summarized in Table 1 and described in 
detail in the Supplementary Information. All the gridded datasets with high spatial resolutions (Table 1) 
were resampled to the 2o x 2o resolution of the model output using area-weighted mean methods. 

3.1 Ecosystem productivity 

Different data-driven maps of NPP and GPP based on remote sensing and climate datasets were used 260 
(Table 1), thereby accounting for the uncertainty of each product as well as for the uncertainty from the 
spread between different products. Uncertainties of each NPP and GPP product were derived according 
to original publications. We used a 20% uncertainty of gridded GPP from Moderate Resolution Imaging 



8 
 

Spectroradiometer (MODIS) and Breathing Earth System Simulator (BESS) (Sect. S1C in the 
supplement; Turner et al., 2006; Jiang and Ryu, 2016) at 2° scale. This is a coarse extrapolation of 265 
uncertainty reported at grid-cell scale, since none of these products reported spatial error covariance 
information allowing to up-scale this uncertainty at 2° resolution. Further, for some products, 
uncertainty was defined as the bias against local measurements (Turner et al., 2006) and for others by 
using different climate input fields (Table 1). For Multi-Tree-Ensemble (MTE)-GPP (Table 1), we used 
the spread (1-sigma standard deviation) from an ensemble of 25 members produced by different 270 
machine learning methods (Jung et al., 2009). For MODIS-NPP (Table 1), we used a 19% uncertainty 
as assessed by Turner et al. (2006). For BETHY-NPP we do not have an uncertainty (Tum et al., 2016). 
For Global Inventory Modeling and Mapping Studies (GIMMS)-NPP (Table 1), we used the variance of 
three sets of products (Table 1) based on different climate datasets (Smith et al., 2016). 

Two statistical indices were used to summarize the performance of ORCHIDEE and ORCHIDEE-CNP 275 
with respect to inter-annual and seasonal variability of GPP and inter-annual variability of Net biome 
productivity (NBP) (Sect. 4.6): coefficient of determination (R2) and relative mean-square deviation 
(rMSE). rMSE is defined as:  

./01 =
345678,9:3;7<,9

=>
9?@

3;7<,9:	3;7<,9
=>

9?@
                                                 (1) 

BC(D,+  and B#,-  are values from models (i.e. ORCHIDEE and ORCHIDEE-CNP) and referenced 280 
datasets (i.e. MTE and BESS, Sect. S1C in supplement) respectively, B#,-,E is the mean value across all 
years (for inter-annual variability evaluation) or all months (for seasonality evaluation). 

3.2 Resource use efficiencies 

The definition of resource use efficiencies is explained in Sect. 4.2. Observation-based light use 
efficiency (LUE) was calculated using MTE-GPP, downward shortwave radiation from CRUJRA, and 285 
fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from the Global SeaWiFS Level-3 
data (Gobron et al., 2006a, b). Uncertainty was derived from 25 ensemble members of MTE-GPP. 
Observation-based water use efficiency (WUE) was calculated as the ratio between MTE-GPP and 
MTE-ET (Table 1); its uncertainties were calculated using a Monte-Carlo resampling procedure in 
which 25 different members of GPP and ET were randomly selected. Observation-based carbon use 290 
efficiency (CUE) was calculated from the ratio of MODIS-NPP to MODIS-GPP. It should be noted that 
MODIS-NPP is based on a calibrated version of the BIOME-BGC model (Turner et al., 2006) so that 
CUE is not strictly an observation-based quantity. CUE uncertainties were calculated using a Monte-
Carlo method given a 20% and 19% uncertainty for MODIS GPP and NPP products at 2° resolution, 
respectively. 295 
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4. Results 

4.1 Carbon, nitrogen and phosphorus flows and storages 

We compared the simulated fluxes of C, N and P within natural ecosystems for the period 2001-2010 to 
the data-driven estimates from GOLUM-CNP (Table 1; Sect. S1B in supplement) on the global scale 300 
and for natural ecosystems at biome-scale. Modelled global C, N and P fluxes in ORCHIDEE-CNP are 
comparable with the estimates by GOLUM-CNP (Fig. 2). One exception is that ORCHIDEE-CNP 
simulates a four-fold lower P leaching from soils (3.7 ± 9.7 mg P m-2yr-1) than GOLUM-CNP (23 mg P 
m-2yr-1) (Fig. 2), which mainly occurs in forest ecosystems (Fig. S1). Note that GOLUM-CNP presents 
the steady-state C, N and P cycles in natural biomes, omitting human perturbations which have strongly 305 
altered the flows of C, N and P during the recent past. The impact of such perturbations on the nutrient 
flows are analyzed in detail in Sect. S2 and S3 in supplement. 

In terms of C and nutrient storages, ORCHIDEE-CNP simulated comparable soil C, N and P storage 
(soil organic matter and litter) but higher vegetation C, N and P than GOLUM-CNP. Detailed 
comparisons for spatial pattern of SOC and forest above ground C against observation-based datasets 310 
can be found in Figs. S2 and S3. 

4.2 Resource use efficiencies 

We evaluate here the resource use efficiencies of GPP for light (L), water (W), C, N and P defined by:  

FG1 = H**
-I*IJ×*IJ

 ,                                                                                                                     (2) 

LG1 = H**
MN

 ,                                                                                                                               (3) 315 

OG1 = )**
H**

 ,                                                                        (4) 

PG1 = H**
QR

 ,                                       (5) 

SG1 = H**
QT

 ,                             (6) 

Where GPP is the annual gross primary productivity (g C m-2 yr-1), fAPAR the fraction of absorbed 
photosynthetically active radiation (%), PAR is annual Photosynthetically Active Radiation (W m-2 yr-1), 320 
ET the annual evapotranspiration (mm m-2 yr-1), FN and FP the total N uptake (g N m-2 yr-1) and P 
uptake by plants (g P m-2 yr-1), respectively. We calculated fAPAR in ORCHIDEE-CNP and 
ORCHIDEE as a function of leaf area index (LAI): fAPAR=1-exp(-0.5�LAI) (Ito et al., 2004). 

Compared to observed LUE (Sect. S1E in supplement), ORCHIDEE-CNP modelled median values at 
biome level are generally lower, but still within the ranges of uncertainties of observation-based datasets 325 
(Sect. 3.2) excepted for tropical (TRF) and temperate deciduous forests (TEDF). In comparison to 
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ORCHIDEE, ORCHIDEE-CNP simulated LUE which are closer to observation for 4 out of 6 biomes 
(TECF, BOCF, TEG, TRG) (Fig. 3a).  

Compared to observed WUE, ORCHIDEE and ORCHIDEE-CNP simulated values fall within the 
uncertainty range of observations (Fig. 3b). However, the WUE values from ORCHIDEE-CNP are on 330 
the high end of the range for temperate conifers (TECF) and BOCF and on the low end for temperate 
and tropical grasslands (TEG and TRG). The highest median WUE were correctly simulated in 
temperate forests by ORCHIDEE-CNP (Fig. 3b), but the lowest WUE values were simulated in 
temperate instead of tropical forests. 

Compared with observed CUE, ORCHIDEE-CNP simulated comparable values for TEDF and TECF 335 
but lower values for TRF, BOCF and grasslands. Both ORCHIDEE-CNP and ORCHIDEE cannot 
capture the increase of CUE from tropical to boreal forests apparent in the observation-based products 
(Fig. 3c) and in measurements from forest sites (Piao et al., 2010). In comparison to ORCHIDEE, 
ORCHIDEE-CNP simulated CUE which are closer to observation for 4 out of 6 biomes (TEDF, TECF, 
BOCF, TEG) with respect to median and spread. 340 

Consistent with site-observations of NUE from Gill and Finzi (2016) and GOLUM-CNP outputs, 
ORCHIDEE-CNP simulated correctly the high values of TECF and the low values of tropical forests 
(Fig. 4a). However, compared with site-observations of PUE from Gill and Finzi (2016) showing a PUE 
decrease from tropical to boreal region, ORCHIDEE-CNP simulated a rather flat value (Fig. 4b). This 
suggests a too strong P limitation in high latitude ecosystems, consistent with the fact that the model 345 
underestimates peak northern GPP and the northern land sink (Sect. 4.6). Nevertheless, the model 
simulated PUE values falls in the range of GOLUM-CNP estimates. Tropical C4 grasslands have higher 
simulated NUE and PUE than temperate C3 grasslands, consistent with GOLUM-CNP (Fig. 4).   

4.3 CO2 fertilization effect  

We compare the simulated response of plant productivity to increasing CO2 during the historical period 350 
(i.e., CO2 fertilization effect Eco2) to observation-based estimates for C3 plants from historical change 
of deuterium isotopomers in leaf herbarium samples (Ehlers et al., 2015) and for global (C3 and C4) 
vegetation to indirect evidence from carbonyl sulfide (COS) atmospheric ice-core observations 
(Campbell et al., 2017). The CO2 fertilization effect is here defined by the GPP ratio (Eco2): 

1U(V =
H**WXY
H**=XY

 ,                       (7) 355 

where GPP296 indicates pre-industrial GPP (g C m-2 yr-1) under CO2 concentration of 296 ppm and 
GPP396 under current CO2 concentration of 396 ppm. Those CO2 concentrations of 296 ppm and 
396ppm correspond to tropospheric mixing ratio of CO2 in year ~1900 and 2013 respectively, similar to 
values used for estimating the response of GPP to a ~100 ppm CO2 increase in Ehlers et al. (2015) and 
Campbell et al. (2017).   360 
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Modeled Eco2 by ORCHIDEE-CNP of natural biomes ranges between 1.0 and 1.3 for most regions (Fig. 
5a), slightly lower than global Eco2 derived from COS of 1.26-1.36 (Campbell et al., 2017). Modeled 
Eco2 for C3 plants (Fig. 5c, Fig. S4) are also consistent with Eco2 from herbarium samples (Ehlers et al., 
2015) equal to 1.23. When compared to ORCHIDEE without nutrient cycles, we found that 
ORCHIDEE-CNP simulates smaller and more realistic values of Eco2 (Fig. 5c, d), yet with lower values 365 
in boreal regions that could not be checked against observations (Fig. S5). 

4.4 Ecosystem nutrient openness and nutrient turnover 

Nutrients taken up by plants are either recycled within the ecosystem or acquired from external sources 
(P weathering of primary and secondary minerals, atmospheric N and P deposition, biological nitrogen 
fixation (BNF), and N and P fertilizer addition to cultivated lands). Wang et al. (2018) calculated an 370 
indicator of the openness of N and P cycling in natural ecosystems as the ratio of external inputs of N 
and P into the ecosystem to the total amount of N and P that plants use for GPP. Similarly, we 
diagnosed the openness for N and P (Z)  and Z*) from the ORCHIDEE-CNP output by: 

Z[ =
\]

Q]^J_`]
 ,                               (8)� 

where a[ is the annual external nutrient input (gX m-2 yr-1), b[ the annual plant uptake of soil nutrients 375 
(gX m-2 yr-1), and c0d[ the flux of nutrients recycled within plants (gX m-2 yr-1) by foliar nutrient 
resorption prior to leaf shedding. External nutrient inputs include atmospheric N deposition and BNF, 
and include P deposition and P release from rock weathering. 

Modelled Z)  in natural biomes by ORCHIDEE-CNP showed only a small variance across the globe, 
whereas GOLUM-CNP predicts a higher Z)  in tropical and temperate regions than in boreal regions 380 
(Fig. 6a, b). Z*  values are below 15% in ORCHIDEE-CNP for most biomes, of similar order of 
magnitude than in GOLUM-CNP (Fig. 6c, d). ORCHIDEE-CNP simulates a lower Z)  in tropical 
natural biomes than GOLUM-CNP, which is mainly due to lower but more realistic tropical BNF in 
ORCHIDEE-CNP compared to GOLUM-CNP (Sect. S4 in supplement). ORCHIDEE-CNP simulates a 
higher Z)   in high latitudes grassland (Fig. 6a, b) than GOLUM-CNP, which is due to overestimation of 385 
BNF in NH in ORCHIDEE-CNP (Sect. S4 in supplement). Modelled Z*  in natural biomes by 
ORCHIDEE-CNP compares well with GOLUM-CNP except for central Africa (Fig. 6c, d). This is 
primarily because ORCHIDEE-CNP used a lower P deposition forcing than GOLUM-CNP.  

Residence time quantifies the average time it takes for a N (or P) molecule from entering to leaving the 
ecosystem (e) and  e*). In this study, we adopted the approach of Carvalhais et al. (2014) for the 390 
carbon residence time. We define the residence time of N and P as the ratio of total respective nutrient 
stock in the ecosystem to their respective total input flux:  

e) =
		 )f

g
f?@ ^)f>5;h
)6^`)Q

			,                      (9) 

e* =
*f

g
f?@ ^*f>5;h
*6^*i

 ,                                  (10)� 
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where Pj indicates the N mass (g N m-2) in organic matter pools i (with i = plant, litter, SOM pools); 395 
Pj%(#k is the sum of all inorganic N pools, Nd and BNF are N deposition and biological N fixation rates 
respectively (g N m-2 yr-1). Similarly, Pi is the P mass (g P m-2) in organic matter pools, Sj%(#k the sum 
of inorganic P pools, and SD and Sl are P deposition and P weathering release rates, respectively (g P 
m-2 yr-1).  

Modeled median e) of natural biomes in ORCHIDEE-CNP varies between 56-1585 years, while e* 400 
varies within a large range of 101 to 223870 years (Fig. 7). ORCHIDEE-CNP captured the order of 
magnitude of e) and  e* for forests found in GOLUM-CNP. Longer median e) (1585 years) and  e* 
(1223870 years) are simulated for boreal forest compared to temperate and tropical forests (251-794 
years for e) and 891-7080 years for e*) and grassland (56-158 years for e) and 101-468 years for e*) 
by ORCHIDEE-CNP, consistent with results from GOLUM-CNP. However, for grasslands, simulated 405 
e) (56-158 years) and e*  (101-468 years) are 5-11 folds shorter than in GOLUM-CNP (Fig. 7). 

4.5 Stoichiometry 

4.5.1 Foliar stoichiometry� 

Leaf N:P ratios for natural biomes predicted by ORCHIDEE-CNP vary between 15~25 (Fig. 8a). The 
observed decline in median leaf N:P ratios with increasing latitude was not reproduced by the model 410 
(Sect. S1E1 in supplement; Fig. 8e), although the modelled latitudinal distribution of leaf N:P ratios 
remained within the 10~90th quantiles of the site level data (Kerkhoff et al., 2005; McGroddy et al., 
2004; Reich and Oleksyn, 2004). Further, the simulated leaf N:P ratios fall within the interquartile of 
upscaled site measurements by Butler et al. (2017) for most of the globe, with the exception of regions 
north of 55oN where leaf N:P are outside the observation-based range, suggesting a too strong P 415 
constraint relative to N (Fig. 8).  

4.5.2 Soil stoichiometry 

We evaluate here the modelled C:N, C:P and N:P ratios of soil organic matter for different biomes 
against data from the large compilation of measurements for soils (0-60cm depth) by Tipping et al. 
(2016). Modelled C:N ratios fall into much more narrow ranges (7.8~11.8 for the widest interquartile 420 
range) compared to the observations (11.1~20.5; Fig. 9a), as a result of prescribing constant C:N ratios 
in ORCHIDEE-CNP (Goll et al., 2017a). SOM P content varies in ORCHIDEE-CNP as a consequence 
of varying biochemical phosphorus mineralization rates (Sect S7 in supplement) and thus C:P and N:P 
ratios of SOM show pronounced variation in space. ORCHIDEE-CNP simulates comparable N:P ratios 
than measurements in terms of both median value and distributions for tropical forests, but 425 
overestimates the observed N:P ratios by 108-327% in temperate forests, tropical and temperate 
grasslands soils (Fig. 9b, c). The higher observed C:P and N:P in forest compared to grassland soils are 
not captured by ORCHIDEE-CNP (Fig. 9b, c). We also compared ORCHIDEE-CNP N:P ratios to the 
results of GOLUM-CNP which were based on the data from Zechmeister-Boltenstern et al. (2015), 
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more limited than Tipping et al. (2016) and found an overestimation for temperate forests, tropical and 430 
temperate grasslands. 

4.6 Nutrient effects on carbon cycling 

We analyze the performance of ORCHIDEE-CNP v1.2 and ORCHIDEE without nutrient cycles with 
respect to the spatiotemporal patterns of GPP, NPP and net biome productivity. 

Global GPP and NPP simulated by ORCHIDEE-CNP averaged over the period 2001-2010 are 119 PgC 435 
yr-1 and 48 PgC yr-1 respectively, both within ranges of the data-driven products listed in Table 1 (Sect. 
S1C in supplement; Table S2). GPP and NPP simulated by ORCHIDEE-CNP are lower than those 
simulated by ORCHIDEE (140 Pg C yr-1 for GPP and 60 Pg C yr-1 for NPP). The values from 
ORCHIDEE are on the high end of the range of estimates from the data-driven products of Table 1. 
ORCHIDEE-CNP simulated comparable GPP values for most parts of the globe (Fig. S6a), and 440 
comparable NPP values for most of northern high-latitudes (Fig. S6b), which lie within the range given 
by the data-driven products. 

Inter-annual and seasonal variations of GPP reflect the response of ecosystems to inter-annual or 
seasonal climatic variability, as well as the effects of natural (e.g. fires, wind throw, insect outbreaks, 
and storms) and anthropogenic disturbances (e.g. land management and land cover change) (Anav et al., 445 
2015). Regarding the inter-annual anomalies of de-trended GPP (GPPint) for the period 2001-2011, 
estimations on global scale from ORCHIDEE-CNP show rather good correlation with observation-
driven model BESS-GPP (R2 =0.71), but not with MTE-GPP (R2 =0.11) (Fig. 10a). ORCHIDEE 
performs somewhat worse on global scale than ORCHIDEE-CNP, primarily due to its low performance 
in the NH. We find that inclusion of nutrients in ORCHIDEE leads to a lower model predictions error 450 
on global scale and for all latitudinal bands irrespectively of the observation-based product (Fig. 10a). 

Regarding the seasonal variation of GPP over the period 2001-2011, the predictions of ORCHIDEE-
CNP are in good agreement with observation based estimates and show no   significant differences 
when compared to ORCHIDEE, except for tropical regions (Fig. 10b). Here, the model errors in 
seasonal variations of GPP are substantially larger for ORCHIDEE-CNP than for ORCHIDEE 455 
(Fig .10b). 

Net biome productivity (NBP) is defined as the net C exchange between the atmosphere and the 
terrestrial biosphere, that is the sum of net primary productivity, heterotrophic respiration and emissions 
due to disturbances; positive values denoting a land carbon sink. Compared to the three sets of 
atmospheric inversions (CAMS, JENA and CTracker), ORCHIDEE(-CNP) performs slightly worse 460 
than the mean of predictions from 16 land surface models from Trendy ensembles (v6) (Fig. 10c). 
ORCHIDEE-CNP shows a worse performance in inter-annual variability of NBP than ORCHIDEE 
when compared against inversion datasets at global scale and for the Northern Hemisphere. However, 
ORCHIDEE-CNP improved the performance of inter-annual variability of NBP against inversion 
datasets relative to ORCHIDEE for tropical region (higher R2 and lower rMSE) with closer or even 465 
better fitness against inversion datasets than the mean value of Trendy ensemble models (Fig. 10c). 
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5. Discussion  

We performed a detailed evaluation of ORCHIDEE-CNP in terms of four nutrient-related ecosystem 
properties which control ecosystem gas exchanges and carbon storage: vegetation resource use 
efficiencies, CO2 fertilization effect, ecosystem N and P turnover and openness, and large-scale pattern 470 
of ecosystem stoichiometries.  

We find that the inclusion of nutrients tends to lead to improvements in simulated resource use 
efficiency of plant resources (light, carbon, water) on biome scale (Sect. 5.1). In line with changes in 
resource use efficiency, the sensitivity of GPP to variations in climate is improved leading to improved 
inter-annual variation in GPP, in particular for the Northern Hemisphere (Sect. 5.5). In addition, the 475 
response of GPP to increasing atmospheric CO2 concentration is improved (Sect. 5.2).  However, model 
biases in C fluxes remained or increased, for example in the NBP of the Northern Hemisphere. The 
analysis of nutrient use efficiencies (Sect. 5.1), stoichiometry (Sect. 5.4), as well as ecosystem openness 
and turnover of nutrients (Sect. 5.3) reveal biases in boreal regions which might be related to issues with 
too strong soil organic matter accumulation and the dependency of photosynthesis on leaf nutrients in 480 
needle-leaf PFTs. On a seasonal scale, we found a general deterioration of the simulated seasonal cycle 
of GPP due to the inclusion of nutrient cycles (Sect. 5.5). 

In the following, we discuss in more detail the model performance with respect to nutrient cycles and 
their effects on simulated C fluxes, and propose ways to address model biases. 

5.1 Inclusion of nutrient cycling improves use efficiencies of other plant resources 485 

Resource use efficiency (RUE) is an ecological concept that measures the proportion of supplied 
resources, which support plant productivity, i.e. it relates realized to potential productivity (Hadapp et 
al., 2019). It is therefore a critical ecosystem property which relates resource availability to ecosystem 
productivity, as well as being affected by resource availability. 

With the inclusion of additional plant resources nitrogen and phosphorus, changes in the simulated 490 
vegetation use efficiencies of resources like water (WUE), light (LUE) and carbon (CUE) are expected. 
Indeed, the annual use efficiencies on biome-scale differ between ORCHIDEE-CNP and ORCHIDEE. 
In comparison to observation-based estimates, the inclusion of nutrient cycles tends to improve 
simulated LUE and CUE and WUE (Fig. 3).  

Both ORCHIDEE-CNP and ORCHIDEE generally underestimate annual LUE for forest biomes (Fig. 495 
3a) which is due to a high bias in fAPAR in both models (28%-380% for ORCHIDEE, and 80%-173% 
for ORCHIDEE-CNP) (Fig. S4a, b). Although the bias in LUE for TRF is higher, the bias in GPP is 
largely reduced whereas the bias in fAPAR is similar in ORCHIDEE-CNP compared to ORCHIDEE 
(Fig. S4a, b), indicating general issues in ORCHIDEE with respect to how light is transferred within 
canopy in tropical forest. Both versions assume constant canopy light extinction coefficient of 0.5, 500 
omitting variations among biomes due their distinctive canopy architectures (Ito et al., 2004). 
Improving this part of the model requires a canopy light transfer scheme that better accounts of canopy 



15 
 

structure (Naudt et al., 2015) and the inclusion of different light components including diffuse incoming, 
scattered and direct light (Zhang et al. 2020).  

ORCHIDEE-CNP simulated a lower WUE than ORCHIDEE with the exception of coniferous biomes 505 
(Fig. 3b). The improvement of WUE in TRF is related to improvements in GPP and ET, while the 
overestimation of WUE in coniferous dominated biomes by ORCHIDEE-CNP is related to an 
overestimation of GPP (Fig. S4 c). The latter is likely a result of the application of a relationship 
between photosynthetic capacity and leaf nutrient concentration which is based on measurements from 
broadleaf species for all PFTs. Kattge et al. (2009) showed that coniferous PFTs have a ~40% lower 510 
carboxylation capacity for a given leaf nitrogen concentration than other PFTs. The omission of this 
could explain the bias in coniferous GPP in ORCHIDEE-CNP. Uncertainties in evaluation datasets 
hamper a more detailed evaluation of the variations of WUE among biome types. 

We found that the inclusion of nutrient cycles improved the spatial variability in simulated CUE, but 
general biases remain (Fig. 3c), and uncertainties in observation-based estimates are large. 515 
Improvements are mainly found in temperate biomes (TEDF, TECF and TEG), indicating the allocation 
of GPP to respiration and biomass growth, which is controlled by nutrient availability, works 
reasonably well. ORCHIDEE-CNP underestimates CUE for tropical biomes (TRF and TRG) more 
strongly than ORCHIDEE, despite substantially reduced biases in NPP and GPP (Fig. S4 d). However, 
we should be cautious in drawing conclusions considering the large uncertainty in MODIS CUE (He et 520 
al., 2018).  

NUE, PUE on biome scale compare well to estimates (Fig. 4), indicating that ORCHIDEE-CNP is able 
to simulate the coupling strength between C, N and P cycles. However, ORCHIDEE-CNP 
underestimates PUE in tropical forests. A sensitivity analysis by GOLUM-CNP indicated that NUE and 
PUE were most sensitive to the NPP-allocation fractions (especially to woody biomass) and foliar 525 
stoichiometry (Wang et al., 2018). Therefore, we attribute the biases in PUE to the biases in foliar 
stoichiometry (Fig. 8) and to issues in plant internal P allocation in ORCHIDEE-CNP (Fig. S1).  

5.2 Inclusion of nutrient cycling improves CO2 fertilization effect 

The effect of CO2 fertilization on terrestrial ecosystem productivity is thought to be the dominant driver 
behind the current land carbon sink. The strength of the fertilization effect on GPP differs strongly 530 
between LSMs (Friedlingstein et al., 2014). We used proxies of the historical increase in GPP for an 
indirect model evaluation of the CO2 fertilization effect from COS and deuterium measurements of 
herbarium samples (Ehlers et al., 2015; Campbell et al., 2017), and found that ORCHIDEE-CNP has 
smaller and more realistic Eco2 than the same model without nutrients (Fig. 5), in particular for C3 
plants and in boreal regions (Fig. S5). Both ORCHIDEE-CNP and ORCHIDEE simulated a Eco2 for C4 535 
grass of ~1, as the carboxylation of C4 plants is weakly influenced by elevated CO2 (Osmond et al., 
1982; Pearcy and Ehleringer, 1984; Bowes, 1993). This indicates that the inclusion of N and P 
constraints on GPP leads to a more realistic CO2 fertilization effect in ORCHIDEE-CNP. 
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5.3 Ecosystem nutrient turnover and openness indicates model biases in boreal phosphorus availability 

The capacity of ecosystems to sequester and store additional carbon depends on their ability to supply 540 
nutrients for the built-up of organic matter. Enhanced internal nutrient recycling or the accumulation of 
nutrients over time in ecosystems are theoretically possible mechanisms by which nutrients can be 
supplied. Therefore, it is important for simulating changes in land carbon storage on decadal time scales 
and longer that models capture the dependency of ecosystem production to external nutrient sources (i.e. 
openness of N and P cycles) (Cleveland et al., 2013) as well as the residence time of nutrients within 545 
ecosystems. Besides being related to each other, openness and residence times are also related with the 
in- and outflows of- nutrients (Eq. 9 and Eq. 10) as well as turnover time of nutrients in specific 
ecosystem compartments. 

We find that ORCHIDEE-CNP simulates openness of nutrient cycles incl. differences among biomes 
which are close to estimates from the model–data fusion framework GOLUM-CNP (Fig. 6; Sect. 4.4). 550 
There are differences in openness of N (Z) ) in tropical natural biomes and openness of P (Z* ) in 
central Africa which are related to lower, but more realistic, tropical BNF in ORCHIDEE-CNP (Sect. 
S4 in supplement) and a difference in the prescribed P deposition compared to GOLUM-CNP. 
Simulated nutrient losses due to aquatic transport are in general in good agreement with independent 
estimates (Sect. S5 in supplement). 555 

Residence times of N and P (e) and  e*) in ORCHIDEE-CNP compare in general well to estimates 
from GOLUM-CNP: ORCHIDEE-CNP simulates shorter e) and  e* in tropical and temperate biomes 
compared to boreal ones, in line with GOLUM-CNP (Fig. 7). This indicates that ORCHIDEE-CNP is 
able to reproduce large-scale patterns in the nutrient residence time of biomes, with one exception. In 
boreal regions, we find that ORCHIDEE-CNP simulates higher e* for BOCF due to the higher standing 560 
P stocks of biomass and soil organic matter than GOLUM-CNP (Fig. S1). This indicates that 
ORCHIDEE-CNP is likely underestimating P availability in boreal regions. The underlying processes of 
biochemical P mineralization (Sect. S7 in supplement) and sorption of P to soil particles (Sect. S6 in 
supplement) are reasonably well captured in ORCHIDEE-CNP. 

5.4 Model biases in stoichiometry indicate need for refinement of process representation 565 

Leaf and soil stoichiometry are key indexes to characterize the ecosystem relative N and P limitation 
(e.g. Güsewell, 2004). Measurements show a decrease in foliar N:P ratios from low to high latitudes in 
natural ecosystems (McGroddy et al., 2004; Reich and Oleksyn, 2004; Kerkhoff et al., 2005). This is 
seen as evidence for tropical vegetation being in general more P- than N-limited, in contrast to extra-
tropical vegetation (Reich and Oleksyn, 2004). The observed trend of foliar N:P ratios was not 570 
reproduced by ORCHIDEE-CNP (Fig. 8) which simulated a flat foliar N:P latitudinal profile. In 
contrast to the majority of global models, where leaf N:P ratios are either prescribed (Goll et al., 2012) 
or vary within a PFT-specific range (Wang et al., 2010), we assumed conservatively a globally uniform 
range to let the model freely calculate leaf N:P stoichiometry. It is not trivial to pin down the failure of 
the model to capture the latitudinal trend in leaf N:P ratios, which could be due to: 1) omitted variability 575 
in leaf P resorption efficiencies, which varies among biomes between 46%~66.6% (Reed et al., 2012), 
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but was set to 65% in ORCHIDEE-CNP, 2) the simplistic parameterization of nutrient investment into 
different plant tissues, 3) and the omission of the diversity of nutrient acquisition pathways (e.g. 
mycorrhizal association) and rooting strategies (Warren et al., 2015). Testing new formulation for plant 
growth based on optimality principles (Kvakić et al., 2020) and the refinement of nutrient acquisition 580 
pathways (Sulman et al., 2017) are ways forward to improve the model. 

Regarding soil stoichiometry, measurements show that tropical biomes have lower soil C:N and higher 
soil C:P and soil N:P than temperate biomes (Tipping et al., 2016), echoing the pattern of leaf 
stoichiometry. ORCHIDEE-CNP fails in capturing these patterns (Fig. 9). Modelled soil N:P and C:P 
for tropical forests are comparable to measurements but are too low in temperate forest, tropical and 585 
temperate grass, which is most likely related to a too strong nutrient immobilization in accumulating 
soil organic matter (Figs. S1) which tends to push systems into P limitation rather than N limitation as 
Z)  is larger than Z* 	(Fig. 6). In general, the spread in soil P concentration is well represented by 
ORCHIDEE-CNP. The rudimentary representation of organic matter decomposition and the lack of 
nutrient effects on decomposers carbon use efficiency (see Zhang et al., 2018 for possible 590 
improvements, Sect. 5.5) are likely contributing to the biases. New developments including explicit 
representation of decomposer communities and soil organic matter stabilization (Zhang et al., 2020) will 
be included in the next model version. 

5.5 Nutrient effects on carbon cycling 

In the following we discuss the implications for the simulated carbon fluxes of changes in plant 595 
resource use efficiencies and the sensitivity of plant productivity to increasing CO2 due the inclusion of 
nutrient cycles. We link biases in the simulated carbon fluxes to biases in nutrient cycling, which allows 
us to prioritize follow up model development. 

5.5.1 Inclusion of nutrient cycling improves the inter-annual variability of GPP 

To what extent nutrient effects on vegetation affect the sensitivity of ecosystem CO2 fluxes to climatic 600 
variation is unclear (Goll et al., 2018). For instance, drought can reduce nutrient use by decreasing GPP, 
but it also slows down decomposition which supplies nutrients for plant uptake. Further, N:P 
stoichiometry is also strongly modified by drought and warming towards increased N:P in whole plant 
biomass (Yuan and Chen, 2015). Here we found that the inclusion of N and P cycles in ORCHIDEE 
affects the inter-annual variability of GPP for all vegetation types. In ORCHIDEE-CNP, the inter-605 
annual variation (IAV) of GPP is better correlated to that of observation-based datasets than in 
ORCHIDEE globally and for the NH, but less correlated for other regions (Fig. 10a). Observation-based 
GPP estimates are uncertain, as some of them ignore soil moisture induced reductions of GPP during 
drought (Stocker et al., 2019), and soil thaw and snow-related effects (Jiang and Ryu, 2016). Thus, at 
the moment, it is difficult to falsify one model version over another, and to constrain nutrient effects on 610 
the variation of GPP, based on current observation-based GPP. 

In order to further explore the underlying reasons of the general improvement in the IAV of GPP due to 
the inclusion of nutrient cycles, we analyzed the sensitivity of GPP anomalies to anomalies of 
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temperature (ST), precipitation (SP) and shortwave radiation (SR), all with mean annual values (Sect. S1I 
in supplement). We found that SP by ORCHIDEE-CNP compares well with BESS-GPP and MTE-GPP, 615 
while it is overestimated in ORCHIDEE (Figs. S7 and S8). Thus, the difference in SP is likely the major 
reason for the differences in IAV in NH between model versions, as ST and SR show only minor 
differences there. This provides confidence that the improvement of IAV of GPP in the NH is due an 
improved sensitivity towards a climatic driver (i.e. SP). For tropical regions, ORCHIDEE-CNP 
simulates more realistic SP but higher biases in SR than in ORCHIDEE, while observation based 620 
estimates of ST disagree on the sign and model versions show only minor differences (Fig. S7). 
Therefore, the deterioration of the IAV of tropical GPP by the inclusion of nutrient cycles is likely 
caused by enhanced biases in SR due to a lowering of LUE of GPP (Sect. 4.2 and 5.1). 

5.5.2 Inclusion of nutrient cycling deteriorates phenology and on seasonality of GPP 

The performance in reproducing seasonal variations of GPP was deteriorated by the inclusion of N and 625 
P nutrient cycles in ORCHIDEE (Fig. 10b). We found that biases in GPP are related to biases in the 
seasonality of the LAI introduced in ORCHIDEE-CNP (Figs. S9a and S10a). For NH, the delayed 
increase in LAI in ORCHIDEE-CNP could be partly caused by nutrient shortage during the first half of 
the growing season, as indicated by the increasing leaf nutrient concentration throughout the growing 
season (Fig. S11). Several factors could lead to a too low supply of nutrients in the beginning of the 630 
growing season: an insufficient internal plant nutrient reserve due to a too low resorption of nutrients 
prior to leaf shedding or an underestimation of nutrient uptake during the dormant season, an 
insufficient investment into root growth to acquire nutrients, and an overestimation of soil nutrient 
losses during dormant season leaving the soil nutrient depleted at the beginning of the growing season. 
Many of the related processes (e.g. root phenology, mineralization, nutrient resorption, growth 635 
allocation) are only rudimentary represented. For tropical regions, ORCHIDEE-CNP simulates a quasi-
flat seasonal cycle of GPP, in contrast with a peak of GPP during the wet season in MTE-GPP and 
BESS-GPP, which is correctly captured by ORCHIDEE (Fig. S9b, c). The reduction of seasonal GPP in 
ORCHIDEE-CNP compared to ORCHIDEE is more pronounced in the dry season (~100 g C m-2) than 
in the wet season (Fig. S9b, c), concurrent with a larger reduction of LAI in the dry season (Fig. S10b, 640 
c). Tropical phenology is currently only rudimentary represented in ORCHIDEE(-CNP) (Chen et al., 
2020) causing a suboptimal allocation of nutrients to leaves which could cause the biases in the seasonal 
cycle of GPP and LAI. Model-data assimilation of phenology (Williams et al., 2009; MacBean et al., 
2018; Bacour et al., 2019) and efforts to better characterize processes related to plant resource 
investment into different tissues and symbioses (Prentice et al., 2015; Warren et al., 2015; Jiang et al., 645 
2019) and leaf age effects during the year for evergreen forests (Chen et al., 2020) should help to reduce 
tropical phenology biases in future versions of ORCHIDEE-CNP.  

5.5.3 Inclusion of nutrient cycling leads to an underestimation of the land carbon sink 

Current LSM unanimously conclude that CO2 fertilization is the main driver of the land carbon sink and 
its trend (Friedlingstein et al., 2014), but it remains unclear to what extent other drivers (i.e. climate 650 
change, land management, nutrient deposition) contribute to the sink as well. Also, it remains unclear 
how commonly omitted dynamics (climate and management induced effects on tree mortality, nutrients) 
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lead to overestimation of the contribution of CO2 fertilization in models (Ellsworth et al., 2017; 
Fleischer et al., 2019). ORCHIDEE-CNP simulates a land carbon sink over the past decades that is 
lower than other DGVM models and atmospheric inversions (Fig. S12), despite the fact that the 655 
response of GPP to CO2 in ORCHIDEE-CNP is in line with proxy data (Fig. 5; Sect. 5.2). In particular, 
the NH carbon sink which persistently increased over the last 50 years (Ciais et al., 2019) is strongly 
underestimated. The few Free Air Carbon Enrichment (FACE) studies that have experimentally applied 
elevated CO2 levels in mature stands found no increase in biomass production (Bader et al., 2013; Klein 
et al., 2016; Körner et al., 2005; Sigurdsson et al., 2013; Ellsworth et al., 2017), thus an increase in GPP 660 
does not necessarily translate into an increase in biomass production, whereas in most DGVMs where 
mortality is constant and growth follows GPP, biomass production is inevitably coupled to GPP. Based 
on upscaling of data from FACE experiments, Terrer et al. (2019) suggested that the effect of elevated 
CO2 on biomass may be severely overestimated (on average by a factor of 3.6) in LSMs which ignore 
nutrients. It would be tempting to conclude from this study that ORCHIDEE-CNP is ‘right’ in its 665 
underestimation of the carbon sink whereas other models are ‘wrong’ because they miss processes such 
as forest regrowth (Pugh et al., 2019) from e.g. decreased harvesting pressure (Ciais et al., 2008) and 
thus have a realistic NH land sink for the wrong reasons. We also showed that ORCHIDEE-CNP 
underestimates peak GPP (Fig. S12b) and overestimates P limitations in the NH (Sect. 5.1, 5.3 and 5.4) 
thus, another explanation is that the NH sink in this study is too low because of too strong P limitations 670 
in this region.  These two hypotheses explaining why we underestimate the NH sink (missing forest 
regrowth vs. too strong nutrient limitations in the NH) are examined below. 

The too small NH carbon sink in ORCHIDEE-CNP may be explained by a too strong immobilization of 
nutrients in accumulating nutrient-rich organic matter, which leads to a reduction of plant available 
nutrients, the so-called ‘progressive nutrient limitation’ proposed by Luo et al. (2004) and subsequently 675 
to a reduced biomass production. The amount of accumulated N and P immobilized into SOM in the 
NH during 1850-2016 reaches up to 75.3 g N m-2 and 2.4 g P m-2 respectively, which is twice as much 
as the accumulated respective nutrient inputs to ecosystems in this region during the same period (37.8 
g N m-2 and 1.6 g P m-2; Figs. S13 and S14). This suggests a strong progressive nutrient limitation in the 
model. The omission of nutrient controls on litter and SOM decomposition in the soil module of 680 
ORCHIDEE-CNP could have favored the immobilization of nutrients in accumulating SOM (Zhang et 
al., 2018). Microbe incubation and N fertilization experiments showed that a low availability of 
nutrients can hamper the built-up of SOM as more carbon gets respired by decomposers due to an 
elevated energetic requirements of processing low quality substrate (Recous et al., 1995; Janssens et al., 
2010; Allison et al., 2009) and an overall lower microbial activity (Wang et al., 2011; Knorr et al., 685 
2005). Uncertainties with respect to the capability of ecosystems to up-regulate P mineralization when P 
becomes scarce could have contributed to the decline in plant available nutrients with increasing SOM 
stocks. The inclusion of nutrient effects on decomposition and microbial dynamics in ORCHIDEE-CNP 
is ongoing (Zhang et al., 2018, 2020) but the lack of a quantification of the ability of ecosystems to 
enhance P recycling hampers model developments. 690 

The too small NH carbon sink in ORCHIDEE-CNP may also be explained by the lack of representation 
of effects of forest age and management on biomass turnover and biomass production efficiency (i.e. 
CUE). Pugh et al. (2019) found that old-growth forests in the NH have a much smaller C sink than re-
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growing forests (<0.1 Pg C yr-1 compared to 0.86 Pg C yr-1) for the period 2001-2010. Forest 
management effects on biomass production efficiency and biomass turnover is only rudimentary 695 
represented in ORCHIDEE(-CNP). ORCHIDEE-CNP prescribes constant tree mortality rates (i.e. the 
fraction of total carbon in wood lost to litter) whereas in reality tree mortality rates change with 
management and climate conditions (Peng et al., 2011). Moreover, ORCHIDEE(-CNP) omits the effect 
of forest age on C uptake. Compared to data-driven estimates for C storage (Sect. S1G and S1H in 
supplement), ORCHIDEE-CNP simulates a higher global aboveground forest biomass (387 Pg C; 283 700 
Pg C for GlobBiomass and 221 Pg C for GEOCARBON; Fig. S2) but lower global soil organic carbon 
(801 Pg C; 4387 Pg C for Soilgrids and 1680 Pg C for GSDE; Fig. S3). 

6 Concluding remarks  

In this study, we evaluated the performance of ORCHIDEE-CNP and found that the model has 
sufficient skills in capturing observed patterns in 1) vegetation resource use efficiencies, 2) CO2 705 
vegetation fertilization, 3) ecosystem N and P openness and turnover and 4) leaf and soil stoichiometry. 
The inclusion of nutrients improves the simulation of the sensitivity of plant productivity to increasing 
CO2 and to inter-annual variation in precipitation. However, the nutrient-enabled version cannot capture 
the current land carbon sink in the NH. This suggests that either the land carbon sink might be less a 
consequence of the CO2 fertilization effect, but of other processes that are currently not well resolved in 710 
global models (e.g. biomass turnover, land management), or that ORCHIDEE-CNP underestimates the 
ability of ecosystems to circumpass nutrient constraints on biomass built up under elevated CO2. We 
propose the following focus to improve ORCHIDEE in next model versions: 1) refine the canopy light 
absorption processes; 2) use model-data assimilation frameworks (like ORCHIDAS) to better calibrate 
root phenology, mineralization, nutrient resorption and growth allocation; 3) better represent soil 715 
processes related to decomposition, stabilization of soil organic matter (e.g. Zhang et al., 2018, 2020) 
and inorganic P transformation (e.g. Helfenstein et al., 2020); 4) refine dynamics of biomass turnover 
and biomass production efficiency including effects of forest management and climate. Continued 
improvements of nutrient cycle representations will further reduce uncertainties in predicting land 
carbon sink under climate change and rising atmospheric CO2.  720 

Code and data availability 

The source code is freely available online via the following address: 
http://forge.ipsl.jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/ORCHIDEE-CN-
P_v1.2_r5986 (Goll, 2020). Please contact the corresponding author if you plan an application of the 
model and envisage longer-term scientific collaboration.  725 

Primary data and scripts used in the analysis and other supplementary information that may be useful in 
reproducing the author’s work can be obtained by http://dx.doi.org/10.17632/f54v9zcgbf.1 

Supplement. The supplement related to this article is available online at: (a doi will be provided before 
final publication). 
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Table 1 Main information on datasets used for global evaluation of ORCHIDEE-CNP. 1335 

Dataset Variable Resolution Period Uncertainties References 

 
MODIS 

 
GPP, NPP, CUE 

 
1km 

 
2000-2015 

Bias against 
local 

measurements 
for GPP and 

NPP 

Running et al., 2004; 
Zhao et al., 2005; Turner 

et al., 2006; 

MTE GPP, WUE 0.5o 1982-2011 

25 ensemble 
trees for GPP 

and ET 
respectively 

Jung et al., 2009; Jung et 
al., 2011 

BESS GPP 0.5o 2001-2015 
Bias against 

local 
measurements 

Ryu et al., 2011; Jiang 
and Ryu, 2016 

BETHY NPP 0.008o 2000-2009 - Tum et al., 2016; 
Wißkirchen et al., 2013 

GIMMS NPP 0.5o 1982-2015 Using different 
climate inputs Smith et al., 2016 

Trendy v6 NBP 0.5o 1959-2016 1-sigma standard 
deviation Sitch et al., 2013 

JENA_inversion NBP 1 o 1985-2016 - Rödenbeck et al., 2003 
CAMS inversion NBP 1.875 ox3.75 o 1979-2016 - Chevallier et al., 2005 

Ctracker inversion NBP 1 o 2001-2016 - van der Laan-Luijkx et 
al., 2017 

Peng-BNF BNF biome 2001-2009 - Peng et al., 2019 

Sullivan-BNF BNF biome 1999, 2009 - Sullivian et al., 2014 

Mayorga N & P leaching polygon 2000 - Mayorga et al. 2010 

Helfenstein Km Soil order - - Helfenstein et al., 2018 
Sun Pasae activity 10km - - Sun et al., 2020 

GOLUM-CNP 

C, N and P fluxes, N 
and P openness and 
turnover rate, PUE, 

NUE 

 
0.25 o 2001-2010 - Wang et al., 2018 

 

Global SeaWiFS 
Level-3 data and 

MTE-GPP 
LUE 0.01o 1997-2006 - Gobron et al., 2006a, b 

Butler Leaf N: P ratio 1km  100 estimates by 
Bayes method Butler et al., 2017 

 
Site leaf 

measurements 

 
Leaf N:P ratio 

 
site 

 
- 

 
- 

Kerkhoff et al., 2005; 
McGroddy et al., 2004; 

Reich and Oleksyn, 2004 
Tipping SOM C, N and P site - - Tipping et al., 2016 

Site measurements 
of NUE and PUE 

 
NUE and PUE 

 
site 

 
- 

 
- 

 
Gill and Finzi, 2016 
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Figure 1: Schematic of C, N and P cycles considered in ORCHIDEE-CNP.  
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 1345 
Figure 2: Flow chart of mean flows and storages per area of C, N and P (gC/gN/gP m-2 yr-1) in natural biomes for GOLUM-CNP 
and ORCHIDEE-CNP. GOLUM-CNP stands for Global Observation-based Land-ecosystems Utilization Model of Carbon, 
Nitrogen and Phosphorus (GOLUM-CNP) v1.0, which is a data-driven model of steady-state C, N and P cycles for present day 
(2001-2016) conditions. C, N and P losses via fire in ORCHIDEE-CNP are ignored. Numbers in square brackets indicate the 
standard deviations for accounting the spatial spread of C, N and P fluxes. 1350 
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Figure 3: Comparison of annual use efficiencies of light (LUE), water (WUE) and carbon (CUE) between ORCHIDEE-CNP, 1380 
ORCHIDEE and satellite-based estimations for 6 biomes: tropical rainforest (TRF), temperate deciduous forest (TEDF), 
temperate conifer forest (TECF), boreal conifer forest (BOCF), temperate grass (TEG) and tropical grass (TRG). The whiskers 
indicate the interquartile (box) and 95 % confidence intervals (dashed lines). Grey boxes indicate the satellite-based estimations 
(referenced). The grey shaded areas indicate the uncertainties of resource use efficiencies given by referenced estimations, which 
involves uncertainties for multi-estimations and spatial variability for each estimation. 1385 

 
 
 
 
 1390 
 
 

 



42 
 

 

 
Figure 4: Violin plots of nitrogen use efficiency (NUE; a) and phosphorus use efficiency (PUE; b) by ORCHIDEE-CNP, GOLUM-1395 
CNP and observations (Gill and Finzi, 2018) for 6 biomes: tropical rainforest (TRF), temperate deciduous forest (TEDF), 
temperate conifer forest (TECF), boreal conifer forest (BOCF), temperate grass (TEG) and tropical grass (TRG). Open circles are 
medians of all grid cells within each biome, with balloons representing the probability density distribution of each value. Black 
whiskers indicate the interquartile. 
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Figure 5: Comparisons between pre-industrial GPP with atmospheric CO2 concentration of 296 ppm (GPP296) and current GPP 
with atmospheric CO2 concentration of 396 ppm (GPP396) for all natural plants (a, b) and natural C3 plants (c, d) by ORCHIDEE-1420 
CNP (a, c) and ORCHIDEE (b, d). The color scale shows the point density. Different point density and patch size for ORCHIDEE 
and ORCHIDEE-CNP are due to the different spatial resolution (2o x 2o for ORCHIDEE-CNP and 0.5o x 0.5o for ORCHIDEE). 
The ratio between GPP396 and GPP296 indicates the CO2 fertilization effects (ECO2). Green dashed areas indicate the observed ECO2 
from Campbell et al (2017)’s COS records. Pink lines indicate the observed ECO2 from Ehlers et al (2015)’s. 
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Figure 6: Global pattern of N (ON, a-b) and P openness and (OP, c-d) simulated by ORCHIDEE-CNP (a, c) and GOLUM-CNP (b, 
d). Pixels with managed lands >50% in ORCHIDEE-CNP were masked. Same area was masked from the pattern of ON and OP for 1450 
GOLUM-CNP. 
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Figure 7: Violin plots of residence time (c, d) of N and P cycles for 6 biomes: tropical rainforest (TRF), temperate deciduous forest 1460 
(TEDF), temperate coniferous forest (TECF), boreal coniferous forest (BOCF), temperate grass (TEG) and tropical grass (TRG). 
Open circles are medians of all grid cells within each biome, with balloons representing the probability density distribution of each 
value. Black whiskers indicate the interquartile. 
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Figure 8: Comparisons of leaf N:P ratio between ORCHIDEE-CNP, data-driven estimates and observations. (a) is the global 
pattern of mean leaf N:P ratio over 2001-2016 for ORCHIDEE, (b) is for mean leaf N:P in Butler et al. (2017). (c) and (d) are 25% 
and 75% percentile of leaf N:P ratio by Butler et al. (2017), respectively. Dots in (a) indicate the area with leaf N:P ratio of 1470 
ORCHIDEE-CNP falling into 25%~75% percentiles of Butler et al., (2017)’s estimation. (d) is the latitude distributions of leaf N:P 
ratio for ORCHIDEE-CNP, Butler et al (2017)’s estimation and site measurements. Red shared area indicates the uncertainty 
from latitudinal spreads of leaf N:P ratio for ORCHIDEE-CNP. Grey shaded area indicates the uncertainty from both the 
estimations and latitudinal spreads for Butler et al., (2017). Blue and yellow lines indicate the 10% and 90% percentiles of 
measured leaf N:P ratios in each bins of 3o latitude, respectively. 1475 
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Figure 9: C:N, C:P and N:P ratios of soil organic matter by ORCHIDEE-CNP and plot-level measurements by Tipping et al. 
(2016) for 4 biomes: tropical forest (TRF), temperate forest (TEF), tropical grass (TRG) and temperate grass (TEG). Soil C:N:P 
ratios for ORCHIDEE-CNP are calculated for total soil pool includes soil passive, slow and active pools, while measurements by 
Tipping et al. (2016) are for soils of 0-60 cm depth. Alphabet ‘a’, ‘b’ and ‘c’ indicate the significance of differences among biomes 
from the analysis of variance (ANOVA). 1510 
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Figure 10: The performances of ORCHIDEE and ORCHIDEE-CNP on the inter-annual variability of de-trended anomalies of GPP during 2001-2010 
(a), the seasonal variability of mean GPP across 2001-2010 (b) and the inter-annual variability of net biome productivity (NBP) (c). Two statistics were 
used to represent the model performance: coefficient of determination (R2) and relative mean-square deviation (rMSE). For (a) and (b), the evaluations 
are for globe, the northern hemisphere (30oN-90oN; NH), north tropical (0o-30oN; NT), south tropical (0o-30oS; ST) and the southern hemisphere (30oS-1520 
90oS; SH). Two sets of observation-based GPP products BESS-GPP, MTE-GPP were used for the comparison. For (c), the evaluations are for globe, the 
northern hemisphere (30oN-90oN, NH), tropical (30oS-30oN), and the southern hemisphere (30oS-90oS; SH). Mean value across Trendy ensemble models 
(v6) and three sets of NBP from inversion datasets were used as the reference databases for the comparison with different available periods (Trendy 
Ensemble: 1959-2016; CAMS:1979-2016; JENA:1985-2016; CTracker: 2001-2016).  
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(c) Inter-annual variability of NBP


