
Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2020-91-SC1, 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “A new distributed
algorithm for routing network generation in model
coupling and its evaluation based on C-Coupler2”
by Hao Yu et al.

Li Liu

liuli-cess@tsinghua.edu.cn

Received and published: 25 April 2020

Dear Mr. Moritz Hanke,

Thanks a lot for your review. The incorrect statements in the manuscript you point out
and the references and the introduction about YAC and ESMF in the review will help
us to further improve this manuscript as well as our development of C-Coupler.

After carefully reading the review, we find that there are significant misunderstands re-
garding the contribution of this manuscript. We wish more discussions with you before
revising the manuscript.

C1

In the following, we’d like to pose discussions about some review points. Please show
us if some points in the discussions are wrong. Thanks a lot.

1. Line 167-168: “it only utilizes point-to-point communications and does not rely
on any collective communication”. The parallel sorting algorithm has a complexity of
O(log(n)) and a similar communication pattern as the MPI implementations of various
collective communication operations[5]. Therefore, you could argue that you actually
did use collective communication, which you implemented using point-to-point commu-
nication.

RESPONSE: The “collective communication” in Line 167-168 means gather and broad-
cast that have been used for routing network generation. Figure 1 and 2 in this reply
shows an example of the collective communications of gather and broadcast based
on a binary tree, respectively. Although the parallel sorting algorithm has the same
number of tree levels with these collective communications, which is around log(K)
(where K is number of processes), it is different from these collective communications
at each tree level at least in two aspects. First, all processes work at each level in
the parallel sorting algorithm (for example, Figure 2 in the manuscript), while a part
of processes are idled at most levels of these collective communications. Second, the
global data is distributed evenly among all processes at each level in the parallel sorting
algorithm, and thus the message size corresponding to each point-to-point communi-
cation is O(N/K) (where N is the global size of the grid), while the message size gen-
erally doubles following the reverse tree of the gather communication, the whole global
data is transferred at each point-to-point communication in the broadcast communica-
tion, and thus the message size corresponding to each point-to-point communication
is O(N). So, the average complexity of the parallel sorting algorithm is O(log(K)*N/K),
and is much lower than the average complexity of these collective communications,
O(log(K)*N), which has been mentioned at Line 69 of this manuscript.

In response to the misunderstanding arising from the statement Line 167-168, we will
correct it when revising the manuscript.

C2



2. Alternatively, each process could compute for all its local points the destination
rank. Using alltoall, you can exchange the number of points that need to be sent, in
order to get directly from the original to the intermediate decomposition. Afterwards,
alltoallv can redistribute the data in a single communication call. Depending on the MPI
implementation alltoall can also have a complexity of O(log(n)). However, very little data
is exchanged and it can be highly optimised within the MPI. The communication matrix
for the alltoallv is probably very sparse. Hence, it can be implemented by the user using
point-to-point communication. In my tests, this approach delivers really good results.

RESPONSE: It is true that each process can easily compute the destination rank for
all its local points, and then can easily prepare the parameters of sendcnts as well as
sdisls for using MPI alltoallv. However, each process cannot compute recvcnts from its
local points without extra communications, while recvcnts is necessary for using MPI
alltoallv. In my opinion, extra collective communications will be required for computing
recvcnts. If we are wrong, could you please show us a solution without any collective
communications? Thanks a lot.

Moreover, even though very little data is generally exchanged, the communication ma-
trix is probably very sparse, and alltoallv can be highly optimised within the MPI, we
avoid to use MPI alltoallv throughout the C-Coupler development that targets com-
monality and wide usage. This is because we have experiences that MPI alltoallv
introduced deadlocks and its performance was unstable and depended on the parallel
decompositions and MPI versions. To make C-Coupler as reliable and stable as possi-
ble especially for operational usage, such risks are not allowed for us. After viewing the
code file communicator mpi.c in YAC1.5.4 (thank you a lot for making the code publicly
available for viewing), it seems that YAC does not use MPI alltoallv currently. Could you
show us why or do you have plan to use MPI alltoallv in future YAC versions? Thanks
a lot.

3. The presented algorithm is basically a rendezvous algorithm, which uses a dis-
tributed directory. This was ïňĄrst introduced in [1]. I assume that you did not know

C3

about this paper and therefore did not reference it. This algorithm works by distributing
data among the processes in a globally known decomposition. This is called “regular
intermediate distribution” in the manuscript. Using this intermediate decomposition, ac-
cessing data without knowing the original decomposition and without gathering all data
on a single process is easily possible. The use of distributed directories in a similar
context is mentioned in the following references [2], [3], and [4].

RESPONSE: Thanks a lot for introducing the distributed directory and the related
works, which will be referenced and discussed when revising the manuscript. We
are glad to know that YAC and ESMF has already benefited from distributed directory.
After viewing the paper of YAC1.2.0 and the corresponding code files of YAC1.5.4, we
learn that YAC use a hash table as the distributed directory for developing a paral-
lel input scheme to read in the weights. This manuscript should be a new usage of
distributed directory in coupler development. We find that the routing network gener-
ation for data transfer functionality in YAC and ESMF has not benefit from distributed
directory. Specifically, the global search in YAC that may implicitly include routing net-
work generation relies on gather and broadcast, while the routing network generation
in ESFM seems to rely on the global representation of parallel decompositions (could
you please show us the details if this point is wrong. Thanks a lot). Moreover, the
"regular intermediate distribution" used in this manuscript is a specific distributed direc-
tory different from what is used in YAC, which makes accessing data without knowing
the original decomposition and without gathering all data on a single process easily
achieved by distributed sort.

4. To generate the distributed directory, the authors propose to use a parallel sort,
which uses the global indices of the cells as sorting keys. Such algorithms are com-
monly known and are no new inventions. The remainder of the presented algorithm
does not contain any signi ficant scienti ïňĄc contributions. Therefore, I do not think
that this manuscript contains a substantial contribution to modelling science.

RESPONSE: Regarding this manuscript that is a technical article about couplers, our

C4



primary goal and first contribution should be coupler improvement rather than develop-
ing a new distributed sorting algorithm. Before the code development, we have tried
several times to search an existing distributed sorting algorithm that matches our re-
quirements, in order to reduce the work for developing the distributed algorithm for
routing network generation. Although parallel sorting algorithms have been widely
studied, we finally failed and we have to develop a new sort algorithm implementa-
tion. Considering some existing couplers can benefit from this manuscript, we detailed
this distributed sorting algorithm. Since it has been stated that “Such algorithms are
commonly known and are no new inventions” in this review point, could you please
show us the detailed references of the existing algorithms that are the same with the
algorithm in this manuscript? Thanks a lot.

We note that, model development in this world includes a lot of papers and contribu-
tions that use an existing parameterization scheme S from an existing model A into an-
other existing model B. So, we do believe that the employment of distributed directory
for the parallel scheme of reading in the weights in YAC makes a substantial contribu-
tion to coupler development. As the distributed algorithm in this manuscript improves
routing network generation, we also believe that it makes a substantial contribution.

Moreover, along with finer and finer resolutions in model development, grid size be-
comes larger and larger, and thus global search used in YAC, C-Coupler, etc., will
become a significant memory bottleneck. We think that contributions relevant to dis-
tributed directory for settling this bottleneck would be welcome.

5. The manuscript describes the router network generation based on two predeïňĄned
decompositions from two component models as being a fundamental functionality of a
coupler. However, this routing table can also be a by-product, in case both components
have different grids and the coupler generates interpolation weights online.

RESPONSE: It has been stated in Valcke et al. (2012) that, “couplers used in the
geophysical community typically carry out similar functions such as managing data

C5

transfer between two or more components, interpolating the coupling data between
different grids, and coordinating the execution of the constituent models”. Following
this statement, the abstract of this manuscript states that, “it is a fundamental function-
ality of a coupler for Earth system modeling to efficiently handle data transfer between
component models. Routing network generation is a major step for initializing the data
transfer functionality”. In MCT, OASIS3-MCT and CPL6/CPL7 that employ MCT, and
C-Coupler, data transfer and data interpolation are implemented as two standalone
functionalities and there is an explicit major step of generating routing information, al-
though OASIS3-MCT and C-Coupler can generate interpolation weights online. That’s
why we can believe that some existing couplers can benefit from this manuscript.

Data transfer and data interpolation can also be implemented in an inseparable pro-
cedure, where an extra data interpolation between the same grids could be added the
model coupling corresponding to the same grid. Data transfer and data interpolation
should be side-by-side functionalities, which means that data transfer as well as the
routing table can be viewed as a by-product of data interpolation, while data interpola-
tion can also be viewed as a by-product of data transfer. No matter what the view is,
the importance of both data transfer and data interpolation should not be impacted by
the view.

6. Line 30: “there is almost no evidence of scalable initialization of a coupler” [...]
“(Craig et al., 2017; Liu et al., 2018)”. Line 56: “almost all existing couplers use the
following 4 steps for generating a routing network” RESPONSE: We will correct these
statements when revising the manuscript.

7. Paragraph 4: This paragraph does not describe how these measurements where
generated. Did you do a single run, average of multiple runs or average over multiple
executions of the algorithm within a single run? It is possible, that especially the ïňĄrst
execution of this algorithm produces for some MPI implementations a much higher run
time than the following ones.

C6



RESPONSE: We use average of multiple runs but not average of over multiple ex-
ecutions of the algorithm within a single run, which will be stated when revising the
manuscript. Although we also know that the second execution of an MPI algorithm can
be much faster than the first execution due to the “hot spots” or “memory”, we have
to use average of multiple runs, because the routine network generation for a data
transfer is conducted only one time in a run under real cases.

8. Intel MPI library (3.2.2) Why did you use such an old version? In my experiments
Intel MPI often performed very poorly. Maybe give the most recent OpenMPI a try.

RESPONSE: Thanks a lot for this concern. The correct MPI version used for the eval-
uations in the manuscript is Intel MPI library (2018 Update 2). We are sorry about the
wrong introduction of “Intel MPI library (3.2.2)”. We can use another MPI version for
further evaluation when revising the manuscript, if required.

Wish your further comments.

Many thanks again,

Li

Valcke, S., Balaji, V., Craig, A., Deluca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson,
J., Okuinghttons, R., Riley, G., Vertenstein, M: Coupling technologies for Earth System
Modelling, Geosci. Model Dev., 5, 1589-1596, 2012

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-91,
2020.

C7

Figure 1. An example of MPI_gather following the communication network of a

binary tree. The total 16000 data values are distributed evenly among the 16

processes before gathering.

Fig. 1.

C8



Figure 2. Similar to Fig.1 but for MPI_bcast

Fig. 2.

C9


