
Part 1: Responses to Hanke Moritz 

 

We thank Dr. Moritz Hanke for the comments and suggestions. We have modified the manuscript 

accordingly. In the following, we will reply them one by one. 

 

1. Additionally, I would suggest getting this paper checked by someone with very good English 

language skills, as I have the feeling that there are still some issues. 

Response: Thanks for your suggestion. A native speaker has been invited to improve this manuscript.  

 

 

2. L15: “couplers such as MCT”. I would not call MCT a coupler. 

Response: We think that both MCT and C-Coupler can be classified as coupling software. The 

corresponding statements have been modified in the revised manuscript. Please refer to P1L19 and 

P3L62.  

 

 

3. L15: “inefficient global implementation”. Depending on a number of factors like problem seize, 

number of processes, and MPI implementation being used, the global implementation may have 

good performance. Therefore, instead of generally saying that the global implementation is bad, you 

could for example point out, that your algorithm has significantly better performance characteristics 

especially for higher processor counts. 

Response: The abstract has been modified accordingly. Please refer to the abstract (P1L20). 

 

 

4. L28-29: “weights that are from an offline file or from online calculation”. What is an offline file? 

How about the following? “weights that read from a file or are calculated online”  

Response: The corresponding statement has been modified accordingly. Please refer to P2L32. 

 

 



5. L73-87: The analysis of the complexity does not take into account, that MCT allows the use of a 

compressed global index description, which can significantly reduce memory consumption and time 

required to detect common grid cells. Maybe, do the time complexity analysis only for C-Coupler 

and mention that MCT should be similar but that is also supports compressed indices (I am not 

exactly sure about the internals of MCT). L75-76: “corresponding to MCT (as well as CPL6/CPL7 

and OASIS3-MCT that employ MCT for data transfer)” Unless you are very familiar with the 

internal implementation (I am not), you should refrain from making such explicit statements. 

Response: The corresponding context has been modified accordingly. Please refer to P3L76~P3L85. 

. 

 

  



Part 2: Responses to Anonymous Referee #3 

 

We thank Anonymous Referee #3 for the comments and suggestions. We have modified the manuscript 

accordingly. In the following, we will reply them one by one. 

 

1.  I suggest making one more pass with a native English speaker to clean up some rough sections. 

Response: Thanks for your suggestion. A native speaker has been invited to improve this manuscript.  

 

 

2. It would be helpful if the DiRong lines on figure 4 were clearer. The scaling is completely obscured 

in 4a and largely obscured in 4b. If the plots cannot be improved, a table might be better. I would 

also appreciate results on greater than 1600 processor cores, especially for the larger grid sizes. For 

high resolution cases, the coupler may be run on many more processors than 1600 and it would be 

good to know whether the performance of the DiRong algorithm rolls over at some processor count 

as is shown in Figure 4b for the Global results. Results at higher processor counts in at least Figure 

4c would improve the paper significantly. 

Response: Figure 4 has been replaced by new tables 7 to 10 (P21-P25), where new results corresponding 

to a grid of 32,000,000 points or 3200 cores for each component model are added. We are sorry of that 

we can only use a maximum of 6400 cores, while we failed to find a supercomputer in China with more 

cores available after a lot of efforts in the past four weeks.  
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Abstract. It is aA fundamental functionality of model coupling a coupler in anfor Earth system modeling is to efficiently 

handle data transfer between component models. As an approach of MxN communication following a routing network has 

been used widely used in existing couplers for achieving data transfer, and routing network generation is becomes generally a 

major step for required to initializeing the data transfer functionality. Some existing couplersing software such as the Model 

Coupling Toolkit (MCT) and the Community Coupler (C-Coupler) employ an inefficient global implementation forof routing 20 

network generation that relies on gather/broadcast communications, which can be very inefficient under a case of a large 

number of processes. That’sThis is an important reason why the initialization cost of a coupler increases when using morewith 

the number of processor cores. In this paper, we propose a Distributed implementation for Routing network generation, version 

1.0 (DiRong1.0), which does not introduce any gather/broadcast communication. The eEmpirical evaluations show that 

DiRong1.0 is much more efficient than the global implementation. DiRong1.0 has already been implemented in C-Coupler2., 25 

and Wwe believe that some other couplers can also benefit from it. 

mailto:liuli-cess@tsinghua.edu.cn
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1 Introduction 

A cCoupled model regarding Earth system Mmodelsling and numerical weather forecasting models generally highly depends 

on existing couplers (Hill et al., 2004; Craig et al., 2005; Larson et al., 2005; Balaji et al., 2006; Redler et al., 2010; Craig et 

al., 2012; Valcke, 2013; Liu et al., 2014; Hanke et al., 2016; Craig et al., 2017; Liu et al., 2018)., each of whichA coupler can 30 

combines different component models into a whole system, and handles data interpolation between different model grids and 

data transfer between component models (Valcke, 2012).  

 

The functionalityprocess of data interpolation generally takes requires two major steps,: i.e., preparing remapping weights, 

that are read from an offline file or are calculated onlinefrom online calculation when initializing the coupler, and conducting 35 

parallel interpolation calculations based on the sparse matrix-vector multiplication with the remapping weights throughout the 

coupled model integration. CouplersThe functionality ofperform data transfer of couplers isby transferring scalar variables or 

fields on a model grid (hereafter called gridded fields hereafter) from one component model to another via Message Passing 

Interface (MPI) (Message Passing Interface). A cComponent models are generally has beenoften parallelized throughby 

decomposing the cells of a model grid into distinct subsets, each of which is assigned to an MPI process for cooperative 40 

concurrent computation, (e.g., the sample parallel decompositions in Fig. 1a and 1b). To efficiently transfer gridded fields in 

parallel, Jacob et al. (2005) proposed an approach of MxN communication (called the MxN approach) following a routing 

network, where each pair of processes from the two component models should have a communication connection only when 

they sharehave a common grid cells (for example, Fig. 1c). Theis MxN approach has already been used in existing couplers 

for more than ten years. As the parallel decompositions of component models generally remainkeep constant throughout the 45 

whole integration, a routing network can also keepremain constant. Thus, the MxN approach can be achievedis realized 

throughwith two major steps: generating the routing network when initializing the coupler, and transferring gridded fields 

based on the routing network throughout the coupled model integration.  

 

In responseDue to the trend in model development towards higher grid resolutions and the resulting more and moreincreased 50 

computation resulting from higher and higher resolutions in model development, the parallel efficiency of a coupled model on 

modern high-performance computers has becomes more and more critical. Any module in a coupled model, including the 

coupler, can impact the parallel efficiency of the whole coupled model. Most existing couplers achieve scalable data transfer 

and data interpolation throughout the coupled model integration, i.e., the data transfer and data interpolation generally can 

beisare generally faster when using more processor cores., However,while experiences from experiences withstudies with 55 

OASIS3-MCT and C-Coupler2 have shown that the initialization cost of a coupler can increase rapidly when using more 

processor cores (Craig et al., 2017; Liu et al., 2018). A further investigation in Fig. 2 based on MCT shows that the initialization 

of data transfer, (i.e., generating routing networks,) is an important source of the initialization cost (see Fig. 2).  
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In tThis paper s we make aexplores the first step towardsTo lowering the initialization cost of a coupler, this paper tries to 60 

make a first step bythrough focusing on the generation of routing networks, and proposess a new Distributed implementation 

for Routing network generation, version 1.0 (DiRong1.0). The evaluation based on C-Coupler2 shows that, it is much faster 

than the existing approach. The remainder of this paper is organized as follows. We investigate the existing implementations 

of routing network generation in Section 2, present and then evaluate DiRong1.0 in Sections 3 and 4, respectively, and conclude 

and discusswith a discussion of this work in Section 5.  65 

 

2 Existing implementations of routing network generation 

In some existing coupling softwareers such as MCT and C-Coupler, the global information of a parallel decomposition is 

originally distributed among all processes of a component model., This is becausewhere a process only records its local parallel 

decomposition corresponding toon the grid cells assigned to it. Thuserefore, these couplers generally use the following four4 70 

steps for generating a routing network between the parallel decompositions of a source (src) and a destination (dst) component 

model. 

1) Gathering global parallel decomposition: the src/dst root process gathers the global information of the src/dst parallel 

decomposition from all src/dst processes.  

2) Exchanging global parallel decomposition: the src/dst root process first exchanges the src/dst global parallel 75 

decomposition with the dst/src root process, and then broadcasts the dst/src global parallel decomposition to all src/dst 

processes.  

3) Detecting common grid cells: each src/dst process detects its common grid cells with each dst/src process based on its 

local parallel decomposition and the dst/src global parallel decomposition.  

4) Generating the routing network: each src/dst process generates its local routing network according to the information 80 

about common grid cells.  

 

Given that each of the src and dst component models uses K processes and the correspondingon a grid of size is N (i.e., the 

grid has N cells), the first and second steps when using C-Coupler correspond to gather/broadcast communications with athe 

time complexity of at least O(N*logK) and athe memory complexity of O(N). The average time complexity of the third step 85 

corresponding to is O(N), as C-Coupler first generates a map corresponding to the global parallel decomposition and thennext 

detects common cells based onby looking atup the map. Although this implementation tries tocan lower the time complexity, 

itbut introduces inefficient and irregular memory accesses. As the last step does not depend on any global parallel 

decomposition, its average time complexity is O(N/K).  MCT (as well as CPL6/CPL7 and OASIS3-MCT, which employ MCT 

for data transfer) has similar complexities to C-Coupler, while a compressed global index description is further used to reduce 90 
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the memory and time required to detect common grid cells corresponding to regular parallel decompositions (the compressed 

description may not work for irregular (such as round-robin) parallel decompositions).  

 

GivenDetermined by the gather/broadcast communications and the corresponding time complexity of O(N*logK), and the time 

complexity of O(N*N/K) or O(N) corresponding to common grid cells detection, such existing implementations of routing 95 

network generation are of course inefficient under the increment ofwith an increasing number of processor cores. Moreover, 

duein response to the memory complexity of O(N), more memory will beis consumed whenas the model grids becomesget 

finer.  

 

In the following context, the existing implementations relying on gather/broadcast communications arewill be called “global 100 

routing network generation”. 

 

3 Design and implementation 

 

3.1 Overall design 105 

The design and implementation of DiRong1.0 significantly benefits from the generally idea of distributed directoriesy (Pinar 

and Hendrickson, 2001),  thatwhich haves already been used in coupler development (Theurich et al., 2008,; Hanke et al., 

2016)., and d Another different kindDifferent kinds of specific distributed directories are is defined and used in DiRong1.0.  

 

Each cell of a grid can be numbered with a unique index from 1 to N (called the “global” cell index), while each grid cell 110 

assigned to the same process can also be numbered with a unique “local” cell index. Thus, the information of a given parallel 

decomposition can be recorded as a Cell Local-–Global Mapping Table (CLGMT), each element of which is a triple of global 

cell index, process ID, and local cell index. For example, Tables 1 and 2 are the CLGMTs corresponding to the parallel 

decompositions in Fig. 1a and Fig. 1b, respectively.  

 115 

Generally, the CLGMT entries of a parallel decomposition are distributed among the processes of a component model, which 

means a process only stores a part of the CLGMT. The key idea of the existing global implementations can be summarized 

asis to reconstructing the global CLGMT of the peer parallel decomposition in each process for routing network generation. 

To be an efficient solution though, DiRong1.0 should be fully based on a distributed CLGMT without reconstructing any 

global CLGMT. EThe reason why the existing global implementations have to depend on global CLGMTs is because the 120 
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distribution of the CLGMT entries is determined by a model, and thus a coupler generally has to view any distribution as 

random.  

 

Motivated by the above analysis, the key challenge into DiRong1.0 isbecomes how to achieving efficiently rearrangement of 

the original distribution of the CLGMT entries of a given parallel decomposition into a regular intermediate distribution, and 125 

how to efficiently generatinge the routing network based on the intermediate distribution. Specifically, we employ a regular 

intermediate distribution that evenly distributes the CLGMT entries among processes based on the ascending order of the 

global cell indicesex placed in ascending order. Such an intermediate distribution is not only simple, but it also enables to 

easily achieve thea straightforward rearrangement of the CLGMT entries into the intermediate distribution via a sorting 

procedure similar to distributed sort. With the above preparationsthat, DiRong1.0 is designed withtakes the following major 130 

steps tofor generateing a routing network between the src and dst component models.: 

1) The src/dst component model rearranges the original distribution of the CLGMT entries of the src/dst parallel 

decomposition into the regular intermediate distribution.  

2) The src and dst component models exchange the CLGMT entries based onin the intermediate distributions.  

3) Based on the src and dst CLGMT entries in the intermediate distributions, Eeach src/dst process generates table entries of 135 

the sharing relationship, which describesabout how each grid cell is shared between the processes of the src and dst 

component models, based on the src and dst CLGMT entries on the intermediate distributions.  

4) The src/dst component model rearranges the intermediate distribution of the entries inof the sharing relationship table 

(SRT) into the original distribution of the CLGMT entries of the src/dst parallel decomposition.  

5) Each src/dst process generates its local routing network based on the local SRT entries.  140 

 

In tThe following contextremainder of this section, we will  details the implementation of each major step, except the last one 

because it is similar to the last major step in the global implementation. 

 

3.2 Rearranging CLGMT entries withinintra a component model 145 

Such The rearrangement of CLGMT entries within a component model is achieved via a divide-and-conquer sorting 

procedure,  that is similar to a merge sort with the keyword ofusing the global cell index as the keyword. This procedure first 

sorts the CLGMT entries locally in each process, and thennext iteratively conducts a distributed sort viaby a main loop of logK 

iterations,  (where K is the number of processes of the src/dst component model). In eachan iteration, processes are divided 

into distinct pairs and the two processes in each pair swap the CLGMT entries based on a point-to-point communication. Figure 150 

3 shows an example of the distributed sort corresponding to the CLGMT entries in Table 1, and Table 3 shows the distributed 

CLGMT after rearranging the CLGMT entries in Table 2. As shown in Fig. 3, the distributed sort employed in DiRong1.0 uses 
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a similar butterfly communication pattern as to the optimized MPI implementations of various collective communication 

operations (Brooks, 1986; Thakur et al., 2005).  

 155 

3.3 Exchanging CLGMT entries between component models 

After the rearrangement of the CLGMT in a component model, the CLGMT entries are sorted into an ascending order based 

on theirof the global cell indexes and are evenly distributed among processes. The CLGMT entries reserved in each process 

therefore have a determinate and non-overlapping range of global cell indicexes, and such a range can be easily calculated 

from the grid size, the total number of total processes, and the process ID. Thus, it is straightforwardeasy to calculate the 160 

overlapping relationship of the global cell index range between a src process and a dst process. As it is only necessary to 

exchange CLGMT entries between a pair of src and dst processes with overlapping ranges, point-to-point communications 

only are enough forsuffice to handleing the exchange of the CLGMT entries.  

 

3.4 Generation of SRT 165 

After Following the previous major step, each process reserves two sequences of CLGMT entries corresponding to the src and 

dst parallel decompositions respectively. Given that the two sequences contain n1 and n2 entries, respectively, the time 

complexity of detecting the sharing relationship is O(n1+n2), because the entries in each sequence have already been ordered 

byin ascending global cell indexes, and a procedure similar to the kernel of merge sort, whichthat merges two ordered data 

sequences, can handle such a detection.  170 

 

To record the sharing relationship, an SRT entry is designed as a quintuple of global cell index, src process ID, src local cell 

index, dst process ID, and dst local cell index. Given a quintuple <q1,q2,q3,q4,q5>, the data on global cell q1  in the src component 

model, corresponding to local cell q3 in process q2, is transferred to local cell q5 in process q4 in the dst component model. it 

means that number q3 local cell in number q2 process of the src component model is number q1 global cell, and the data on it 175 

will be transferred to number q5 local cell in number q4 process of the dst component model. Table 4 shows the SRT in the src 

component model, calculated from the rearranged, distributed CLGMT entries in Fig. 3 and Table 3.   

 

It is possible that multiple src CLGMT entries correspond to the same global cell index. InUnder such a case, any src CLGMT 

entry can be used for generating the corresponding SRT entries,, because the src component model should guarantees that the 180 

data copies on the same grid cell are exactly the sameidentical. Given a dst CLGMT entry, if there is no src CLGMT entry 

with the same global cell index, no SRT entry will be generated. Given In the case that multiple dst CLGMT entries correspond 

to the same global cell index and there is at least one src CLGMT entry with the same global cell index, a SRT entry will be 

generated for everyach dst CLGMT entry. 
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 185 

3.5 Rearranging SRT entries withinintra a component model 

After the previous major step, the SRT entries are distributed among processes of a component model according to the 

intermediate distribution.  Because a process can only use only the SRT entries corresponding to its local cells for the last 

major step of local routing network generation, the SRT entries should need to be rearranged among the processes of a 

component model. We find that such a rearrangement can also be achieved via a sorting procedure similar to the a distributed 190 

sort with using the keyword of src/dst process ID as a keyword, or even via the sorting procedure implemented infor the first 

major step can be reused. Tables 5 and 6 show the SRT entries distributed in the src and dst component model, respectively, 

after the rearrangement.  

 

3.6 Time complexity and memory complexity 195 

As DiRong1.0 does not reconstruct the global CLGMT, it does not rely on any gather/broadcast communication, and its average 

memory complexity is O(N/K) foron each process. BecauseAs the implementation of its most time-consuming major steps are 

similar to a merge sort, and the time complexity of a merge sort is O(N*logN), the average time complexity of DiRong1.0 

foron each process is O(N*(logN)/K), and the average communication complexity is O(N*(logK)/K).  

 200 

To facilitate the implementation of the sorting procedure, we force the number of processes regarding in the first1st to~ fourth4th 

major steps to be the maximum power of 2 (2n) no larger than the total number of processes number of the src/dst component 

model. For a process whose ID I is not smaller than 2n, its CLGMT entries will beare merged into the process with the ID of 

I-2n before the first major step, and the SRT entries corresponding to it will beare obtained from the process with the ID of I-

2n after the fourth major step. This strategy doeswill not change the aforementionedbove time complexity and memory 205 

complexity of DiRong1.0, as 2n is larger than a half of the total number of processes number.  

 

4 Evaluation  

For evaluatingTo evaluate DiRong1.0, we implemented it in C-Coupler2, which enables us to compare it with the original 

global routing network generation in C-Coupler2. We developed a toy coupled model for the evaluation consisting of two toy 210 

component models and C-Coupler2 for the evaluation, which enableallows us to flexibly change the model settings in terms 

of grid size and number of processor cores (processes). The toy coupled model is run on a supercomputer, where each 

computing node on the supercomputer includes two Intel Xeon E5-2678 v3 CPUs (Intel(R) Xeon(R) CPU, (24 processor cores 

in total)), and all computing nodes weare connected with an InfiniBand network. The codes weare compiled by an Intel Fortran 
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and C++ compiler at the optimization level O2, using an Intel MPI library (2018 Update 2). A maximum number of 3200 6400 215 

cores are used for running the toy coupled model, and. aAll test results are from the average of multiple runs of the toy coupled 

model.  

 

In Table 7 to Table 10, Fig. 4, we evaluate the effect of varying the number of processes; We made an evaluation under the 

variation of process numbers (Fig. 4; the two component models use the same number of processor cores). For athe grid size 220 

of 500,000 (Table 7Fig. 4a), the execution time of DiRong1.0 does not significantlyreally decrease when using more processor 

cores. This result is reasonable, although it does not match the time complexity of DiRong1.0. The communication complexity 

of DiRong1.0 is O(N*(logK)/K), where logK stands for the number of point-to-point communications in each process and N/K 

stands for the average message size in each communication. The average message size corresponding to Table 7Fig. 4a is 

small (about 160 KB under with 60 cores while and about 6 KB under with 1600 cores for each toy component model), while 225 

but the execution time of point-to-point communication cannot keep does not vary linearly withto the message size and may 

be unstable when the message size is small. Different fromIn contrast to DiRong1.0, the execution time of the global 

implementation increases rapidly with the increment ofincreasing number of cores number. As a result, DiRong1.0 outperforms 

the global implementation more significantly when using more cores. When the grid size gets largerincreases (e.g., from 

4,000,000 in Table 8Fig. 4b andto 1326,000,000 in Table 10Fig. 4c), DiRong1.0 still significantly outperforms the global 230 

implementation, while withand also has better scalability. 

 

Considering that a model can use more processor cores for acceleration when its resolution becomesgets finer, we further 

evaluated the weak scalability of DiRong1.0, where we by concurrently increasinged the grid size and number of cores number 

to achieve similar numbers of grid points per process. As shown in Table 711, the execution time of DiRong1.0 increases 235 

slowly, whereasile the execution time of the global implementation increases rapidly with the increment oflarger grid sizes 

and increasing number of cores number. This demonstrates that DiRong1.0 achieves much better weak scalability than the 

global implementation.  

 

5 Conclusion and discussion 240 

In tThis paper, we have  proposesd a new distributed implementation, DiRong1.0, for routing network generation. It is much 

more efficient than the global implementation aAs it does not introduce any gather/broadcast communication and it achieves 

much lower complexity in terms of time, memory, and communication than the global implementation, it is of course much 

more efficient than the global implementation. This conclusion is demonstrated by ourThe evaluation results further 

demonstrate this conclusion. DiRong1.0 has already been implemented in C-Coupler2. Its code is publicly available in a C-245 

Coupler2 version and will be further used in future C-Coupler versions. We do believe that some existing couplers such as 
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MCT, OASIS3-MCT, and CPL6/CPL7, can also benefit from DiRong1.0, as itfor acceleratesing the routing network 

generation as well as the coupler initialization. 

 

We did not evaluate the impact of DiRong1.0 on the total time of a model simulation,, because this impact can be relative. The 250 

overhead of routing network generation as well as coupler initialization will beis trivial under for a long simulation (e.g., 

hundreds of model days or even hundreds of model years), but may be significant for a short simulation (e.g., several model 

days or even several model hours in weather forecasting (Palmer et al., 2008; Hoskins, 2013)). In a dData assimilation for 

weather forecasting, it  maycan be required to performstart a model to run just for only several model hours or even less 

timeshorter. Regarding In an operational model, there is generally a time limitation onf producing forecasting results (for 255 

example, finishing a 5five-day forecasting in two hours), and thus developers always have to carefully optimize various 

software modules, especially when the model resolution gets becomes finer. In fact, one of the primary motivations for the 

development of DiRong1.0 was we have been asked to accelerate the initialization of C-Coupler2 for an operational coupled 

model used in China.  

, and that’s a main reason why we developed DiRong1.0.  260 

 

Another main reason why we for developinged DiRong1.0 is that, routing network generation will become more important 

along with the developmentin later versions of C-Coupler. Recently, a new framework was developed for weakly coupled 

ensemble data assimilation (EDA) based on C-Coupler2, named DAFCC1 (Sun et al., 2020), was developed. DAFCC1 will 

be an important part ofin C-Coupler3, the next version of C-Coupler. Given a coupled EDA system and thatFor users wanting 265 

the atmosphere component of a coupled system to perform EDA, DAFCC1 will automatically generate an ensemble 

component corresponding to all ensemble members of the atmosphere component for calling the DA algorithm, and will 

automatically conduct routing network generation for the data transfers between the ensemble component and each ensemble 

member. Thus, routing network generation will be more frequently used in EDA with DAFCC1. For example, given that there 

are 50 ensemble members, the routing network generation with the ensemble component will be conducted at least 50 times.  270 

 

We note that, the current sequential read of a remapping weight file is another bottleneck drawback of C-Coupler2. Similar to 

Hanke et al. (2016), we will design a specific distributed directory for reading in the remapping weights in parallel, while 

which will enable to efficiently redistributeallow the remapping weights to be efficiently redistributed among processes based 

on DiRong1.0. Currently, C-Coupler2 employs a simple global representation for horizontal grids, which means that each 275 

process keeps retains all points of a horizontal grid in memory. The global representation will become a bottleneck in at least 

two aspects. First, it will consume too much memory to run a model simulation. For example, given a horizontal grid with 

16,000,000 points, the memory for keepingrequired to keep it in each process is large: will be about 1.3 GB,  (givenprovided 

that each point has four verticexes and the data type is double precision), which is a large memory requirement. Second, the 

initialization of the data interpolation functionality requires exchanging model grids to be exchanged between different 280 
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component models, which introduces global communications (e.g., broadcast) for the global grid representations. To address 

this bottleneck, we will design and develop a distributed grid representation that can be viewed as a specific distributed 

directory, and will enable to efficiently redistributean efficient redistribution of horizontal grid points among processes based 

on DiRong1.0.  

 285 

 

Code availability. The source code of DiRong1.0 can be viewed and run with C-Coupler2 and the toy coupled model via 

https://doi.org/10.5281/zenodo.3753217. 
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(a) A regular 2-D parallel decomposition 

in both X and Y directions. 

 
(b) A regular 1-D parallel decomposition 

 in only the X direction. 

 

(c) The routing network from the parallel decomposition in Fig. 1a (Source) to the parallel decomposition in Fig. 1(b) 

(Destination). 

Figure 1. Two sample parallel decompositions of an 8 ×x 8 grid under 8eight processes (Fig. 1a and 1b) and the 

routing network between them (Fig. 1c). Each colour corresponds to a process.) 

 

 345 
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Figure 2.  The total time of routing network generation (router time) and the remaining time for initializing a two-way 

MCT coupling between two toy component models. One toy component model uses a longitude–-latitude grid with 4 

million points and a regular 2-D parallel decomposition, while the other uses a cubed-sphere grid with a resolution of 350 

0.3 degreesat 0.3 degree and a round-robin  parallel decomposition. The time for reading an offline remapping weight 

file has been taken into account in the remaining time, and a regular 1-D parallel decomposition is designed for the 

data interpolation. The supercomputer as well as the corresponding software stacks described in Section 4 areis used 

for this test.  

   355 
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Figure 3. The distributed sort corresponding to the CLGMT entries in Table 1. Each iteration makes the CLGMT 

entries, with larger global cell indicexes reserved in the processes with larger IDs. For example, after the first iteration, 

the CLGMT entries with global cell indicexes between 0 and 31 are reserved in P0–-~P3, while the remaining CLGMT 360 

entries are reserved in P4-–~P7.  
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(a) . The execution time of DiRong1.0 and the global routing network generation under using different numbers of 365 

cores numbers and athe grid size of 500,000..  

 

 

(b) The execution time of DiRong1.0 and the global routing network generation usingunder different numbers of cores 

numbers and athe grid size of 4,000,000.. 370 

 

 

(c) The execution time of DiRong1.0 and the global routing network generation under using different numbers of cores 

numbers and the a grid size of 16,000,000. . 

Figure 4. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) 375 

usingunder different numbers of cores numbers and grid sizes. Two toy component models use the same number of 
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processor cores in each test case. The comparison of the two algorithms in these figureshere shows that the acceleration 

effect of DiRong1.0 is more obvious when the number of gridsgrid size and the number of processes is larger,: that isi.e., 

DiRong1.0 has higher parallel efficiency and better scalability.  
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Table 1. The Cell Local–-Global Mapping Table (CLGMT) of the parallel decomposition in Fig. 1a 380 

Process ID Cell Local-–Global Mapping Table entries 

0 <0,0,0>, <1,0,1>, <8,0,2>, <9,0,3>, <16,0,4>, <17,0,5>, <24,0,6>, <25,0,7> 

1 <2,1,0>, <3,1,1>, <10,1,2>, <11,1,3>, <18,1,4>, <19,1,5>, <26,1,6>, <27,1,7> 

2 <4,2,0>, <5,2,1>, <12,2,2>, <13,2,3>, <20,2,4>, <21,2,5>, <28,2,6>, <29,2,7> 

3 <6,3,0>, <7,3,1>, <14,3,2>, <15,3,3>, <22,3,4>, <23,3,5>, <30,3,6>, <31,3,7> 

4 <32,4,0>, <33,4,1>, <40,4,2>, <41,4,3>, <48,4,4>, <49,4,5>, <56,4,6>, <57,4,7> 

5 <34,5,0>, <35,5,1>, <42,5,2>, <43,5,3>, <50,5,4>, <51,5,5>, <58,5,6>, <59,5,7> 

6 <36,6,0>, <37,6,1>, <44,6,2>, <45,6,3>, <52,6,4>, <53,6,5>, <60,6,6>, <61,6,7> 

7 <38,7,0>, <39,7,1>, <46,7,2>, <47,7,3>, <54,7,4>, <55,7,5>, <62,7,6>, <63,7,7> 
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Table 2. The Cell Local-–Global Mapping Table (CLGMT) of the parallel decomposition in Fig. 1b 

Process ID Cell Local–-Global Mapping Table entries 

0 <0,0,0>, <8,0,1>, <16,0,2>, <24,0,3>, <32,0,4>, <40,0,5>, <48,0,6>, <56,0,7> 

1 <1,1,0>, <9,1,1>, <17,1,2>, <25,1,3>, <33,1,4>, <41,1,5>, <49,1,6>, <57,1,7> 

2 <2,2,0>, <10,2,1>, <18,2,2>, <26,2,3>, <34,2,4>, <42,2,5>, <50,2,6>, <58,2,7> 

3 <3,3,0>, <11,3,1>, <19,3,2>, <27,3,3>, <35,3,4>, <43,3,5>, <51,3,6>, <59,3,7> 

4 <4,4,0>, <12,4,1>, <20,4,2>, <28,4,3>, <36,4,4>, <44,4,5>, <52,4,6>, <60,4,7> 

5 <5,5,0>, <13,5,1>, <21,5,2>, <29,5,3>, <37,5,4>, <45,5,5>, <53,5,6>, <61,5,7> 

6 <6,6,0>, <14,6,1>, <22,6,2>, <30,6,3>, <38,6,4>, <46,6,5>, <54,6,6>, <62,6,7> 

7 <7,7,0>, <15,7,1>, <23,7,2>, <31,7,3>, <39,7,4>, <47,7,5>, <55,7,6>, <63,7,7> 
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Table 3. The distributed CLGMT after rearranging the CLGMT entries in Table 2 

Process ID CLGMT entries 

0 <0,0,0>, <1,1,0>, <2,2,0>, <3,3,0>, <4,4,0>, <5,5,0>, <6,6,0>, <7,7,0> 

1 <8,0,1>, <9,1,1>, <10,2,1>, <11,3,1>, <12,4,1>, <13,5,1>, <14,6,1>, <15,7,1> 

2 <16,0,2>, <17,1,2>, <18,2,2>, <19,3,2>, <20,4,2>, <21,5,2>, <22,6,2>, <23,7,2> 

3 <24,0,3>, <25,1,3>, <26,2,3>, <27,3,3>, <28,4,3>, <29,5,3>, <30,6,3>, <31,7,3> 

4 <32,0,4>, <33,1,4>, <34,2,4>, <35,3,4>, <36,4,4>, <37,5,4>, <38,6,4>, <39,7,4> 

5 <40,0,5>, <41,1,5>, <42,2,5>, <43,3,5>, <44,4,5>, <45,5,5>, <46,6,5>, <47,7,5> 

6 <48,0,6>, <49,1,6>, <50,2,6>, <51,3,6>, <52,4,6>, <53,5,6>, <54,6,6>, <55,7,6> 

7 <56,0,7>, <57,1,7>, <58,2,7>, <59,3,7>, <60,4,7>, <61,5,7>, <62,6,7>, <63,7,7> 
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Table 4. The Sharing Relationship Table (SRT) calculated from the rearranged distributed CLGMT entries in Fig. 3 

and Table 3. 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <1,0,1,1,0>, <2,1,0,2,0>, <3,1,1,3,0>, <4,2,0,4,0>, <5,2,1,5,0>, 

<6,3,0,6,0>, <7,3,1,7,0> 

1 
<8,0,2,0,1>, <9,0,3,1,1>, <10,1,2,2,1>, <11,1,3,3,1>, <12,2,2,4,1>, <13,2,3,5,1>, 

<14,3,2,6,1>, <15,3,3,7,1> 

2 
<16,0,4,0,2>, <17,0,5,1,2>, <18,1,4,2,2>, <19,1,5,3,2>, <20,2,4,4,2>, <21,2,5,5,2>, 

<22,3,4,6,2>, <23,3,5,7,2> 

3 
<24,0,6,0,3>, <25,0,7,1,3>, <26,1,6,2,3>, <27,1,7,3,3>, <28,2,6,4,3>, <29,2,7,5,3>, 

<30,3,6,6,3>, <31,3,7,7,3> 

4 
<32,4,0,0,4>, <33,4,1,1,4>, <34,5,0,2,4>, <35,5,1,3,4>, <36,6,0,4,4>, <37,6,1,5,4>, 

<38,7,0,6,4>, <39,7,1,7,4>  

5 
<40,4,2,0,5>, <41,4,3,1,5>, <42,5,2,2,5>, <43,5,3,3,5>, <44,6,2,4,5>, <45,6,3,5,5>, 

<46,7,2,6,5>, <47,7,3,7,5> 

6 
<48,4,4,0,6>, <49,4,5,1,6>, <50,5,4,2,6>, <51,5,5,3,6>, <52,6,4,4,6>, <53,6,5,5,6>, 

<54,7,4,6,6>, <55,7,5,7,6> 

7 
<56,4,6,0,7>, <57,4,7,1,7>, <58,5,6,2,7>, <59,5,7,3,7>, <60,6,6,4,7>, <61,6,7,5,7>, 

<62,7,6,6,7>, <63,7,7,7,7> 
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Table 5. The SRT entries distributed in the src component model after rearranging the SRT in Table 4 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <1,0,1,1,0>, <8,0,2,0,1>, <9,0,3,1,1>, <16,0,4,0,2>, <17,0,5,1,2>, 

<24,0,6,0,3>, <25,0,7,1,3> 

1 
<2,1,0,2,0>, <3,1,1,3,0>, <10,1,2,2,1>, <11,1,3,3,1>, <18,1,4,2,2>, <19,1,5,3,2>, 

<26,1,6,2,3>, <27,1,7,3,3> 

2 
<4,2,0,4,0>, <5,2,1,5,0>, <12,2,2,4,1>, <13,2,3,5,1>, <20,2,4,4,2>, <21,2,5,5,2>, 

<28,2,6,4,3>, <29,2,7,5,3> 

3 
<6,3,0,6,0>, <7,3,1,7,0>, <14,3,2,6,1>, <15,3,3,7,1>, <22,3,4,6,2>, <23,3,5,7,2>, 

<30,3,6,6,3>, <31,3,7,7,3> 

4 
<32,4,0,0,4>, <33,4,1,1,4>, <40,4,2,0,5>, <41,4,3,1,5>, <48,4,4,0,6>, <49,4,5,1,6>, 

<56,4,6,0,7>, <57,4,7,1,7> 

5 
<34,5,0,2,4>, <35,5,1,3,4>, <42,5,2,2,5>, <43,5,3,3,5>, <50,5,4,2,6>, <51,5,5,3,6>,  

<58,5,6,2,7>, <59,5,7,3,7> 

6 
<36,6,0,4,4>, <37,6,1,5,4>, <44,6,2,4,5>, <45,6,3,5,5>, <52,6,4,4,6>, <53,6,5,5,6>, 

<60,6,6,4,7>, <61,6,7,5,7> 

7 
<38,7,0,6,4>, <39,7,1,7,4>, <46,7,2,6,5>, <47,7,3,7,5>, <54,7,4,6,6>, <55,7,5,7,6>, 

<62,7,6,6,7>, <63,7,7,7,7> 
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Table 6. The SRT entries distributed in the dst component model after rearranging the SRT in Table 4 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <8,0,2,0,1>, <16,0,4,0,2>, <24,0,6,0,3>, <32,4,0,0,4>, <40,4,2,0,5>, 

<48,4,4,0,6>, <56,4,6,0,7> 

1 
<1,0,1,1,0>, <9,0,3,1,1>, <17,0,5,1,2>, <25,0,7,1,3>, <33,4,1,1,4>, <41,4,3,1,5>, 

<49,4,5,1,6>, <57,4,7,1,7> 

2 
<2,1,0,2,0>, <10,1,2,2,1>, <18,1,4,2,2>, <26,1,6,2,3>, <34,5,0,2,4>, <42,5,2,2,5>, 

<50,5,4,2,6>, <58,5,6,2,7> 

3 
<3,1,1,3,0>, <11,1,3,3,1>, <19,1,5,3,2>, <27,1,7,3,3>, <35,5,1,3,4>, <43,5,3,3,5>, 

<51,5,5,3,6>, <59,5,7,3,7> 

4 
<4,2,0,4,0>, <12,2,2,4,1>, <20,2,4,4,2>, <28,2,6,4,3>, <36,6,0,4,4>, <44,6,2,4,5>, 

<52,6,4,4,6>, <60,6,6,4,7> 

5 
<5,2,1,5,0>, <13,2,3,5,1>, <21,2,5,5,2>, <29,2,7,5,3>, <37,6,1,5,4>, <45,6,3,5,5>, 

<53,6,5,5,6>, <61,6,7,5,7> 

6 
<6,3,0,6,0>, <14,3,2,6,1>, <22,3,4,6,2>, <30,3,6,6,3>, <38,7,0,6,4>, <46,7,2,6,5>,     

<54,7,4,6,6>, <62,7,6,6,7> 

7 
<7,3,1,7,0>, <15,3,3,7,1>, <23,3,5,7,2>, <31,3,7,7,3>, <39,7,1,7,4>, <47,7,3,7,5>, 

<55,7,5,7,6>, <63,7,7,7,7> 
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Table 7. Performance of DiRong1.0 and the comparison with the original global routing network generation 

(Global) using different numbers of cores numbers and the grid size of 500,000. 

Core number of each toy  

component model 

DiRong1.0 Global 
Global/DiRong1.0 

Time (s) Speedup Time (s) Speedup 

60 0.031  1.000  0.129  1.000  4.110  

120 0.040  0.774  0.278  0.462  6.888  

240 0.047  0.671  0.243  0.530  5.205  

480 0.029  1.076  0.478  0.269  16.461  

960 0.033  0.943  1.169  0.110  35.224  

1600 0.034  0.912  1.737  0.074  50.641  

3200 0.036  0.862  2.573  0.050  70.900  

 395 
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Table 8. Performance of DiRong1.0 and the comparison with the original global routing network generation 

(Global) using different numbers of cores numbers and the grid size of 4,000,000. 

Core number of each toy  

component model 

DiRong1.0 Global 
Global/DiRong1.0 

Time (s) Speedup Time (s) Speedup 

60 0.161  1.000 0.863  1.000  5.349  

120 0.117  1.375 0.517  1.668  4.409  

240 0.081  1.990 0.437  1.974  5.391  

480 0.060  2.669 0.649  1.329  10.737  

960 0.051  3.184 1.308  0.660  25.811  

1600 0.045  3.548 1.949  0.443  42.858  

3200 0.039  4.098 2.623  0.329  66.598  
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Table 9. Performance of DiRong1.0 and the comparison with the original global routing network generation 

(Global) using different numbers of cores numbers and the grid size of 16,000,000. 

Core number of each toy  

component model 

DiRong1.0 Global 
Global/DiRong1.0 

Time (s) Speedup Time (s) Speedup 

60 0.702  1.000  3.437  1.000  4.899  

120 0.447  1.571  2.351  1.462  5.263  

240 0.276  2.547  2.363  1.455  8.575  

480 0.169  4.163  2.529  1.359  15.006  

960 0.109  6.429  3.135  1.097  28.721  

1600 0.106  6.628  3.065  1.121  28.956  

3200 0.098  7.133  3.242  1.060  32.960  
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Table 10. Performance of DiRong1.0 and the comparison with the original global routing network generation 405 

(Global) using different numbers of cores numbers and the grid size of 32,000,000. 

Core number of each toy  

component model 

DiRong1.0 Global 
Global/DiRong1.0 

Time (s) Speedup Time (s) Speedup 

60 1.438 1.000 6.878 1.000 4.782 

120 0.960 1.499  4.206 1.635 4.383 

240 0.554 2.597 4.739 1.451 8.557 

480 0.340 4.234 5.083 1.353 14.964 

960 0.199 7.222 6.098 1.128 30.616 

1600 0.176 8.182 5.758 1.195 32.756 

3200 0.165 8.704 5.500 1.251 33.286 
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Table 711. Performance of DiRong1.0 and the comparison with the original global routing network generation 

(Global) when concurrently increasing the grid size and number of cores number.  410 

Core number of each toy 

component model 

Grid size Execution time (s) of 

DiRong1.0 

Execution time (s) 

of Global 

Global/ 

DiRong1.0 

250 500,000 0.032 0.262 8.19 

450 1,000,000 0.034 0.492 14.47 

900 2,000,000 0.041 1.158 28.24 

1600 4,000,000 0.045 1.949 43.31 

3200 8,000,000 0.063 2.850 45.24 

 


