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Abstract. To take decisions on how to improve air quality, it is useful to perform a source allocation study that 6 
identifies the main sources of pollution for the area of interest. Often source allocation is performed with a Chemical 7 
Transport Model (CTM) but unfortunately, even if accurate, this technique is time consuming and complex. 8 
Comparing the results of different CTMs to assess the uncertainty on source allocation results is even more difficult. 9 
In this work, we compare the source allocation (for PM2.5 yearly averages) in 150 major cities in Europe, based on 10 
the results of two CTMs (CHIMERE and EMEP), approximated with the SHERPA (Screening for High Emission 11 
Reduction Potential on Air) approach. Although contradictory results occur in some cities, the source allocation results 12 
obtained with the two SHERPA simplified models lead to similar results in most cases, even though the two CTMs 13 
use different input data and configurations. 14 

1. Introduction 15 

Air quality models are useful tools to perform a variety of tasks like assessment (simulating concentrations fields at a 16 
given moment), forecasting (predicting future concentrations) and source allocation/planning (evaluating priorities of 17 
interventions, and the impact of potential emission reduction policies on concentrations). For assessment (Alvaro 18 
Gomez-Losada et al., 2018) and forecasting (Corani et al., 2016), it is possible to compare the model results with 19 
observations. For example, FAIRMODE1 (the Forum for air quality modelling in Europe) proposes methods as the 20 
Model Quality Indicator and Model Quality Objective (Pernigotti el al., 2013b; Viaene et al., 2016) to assess the 21 
quality of the model results for a given application. However, there is no benchmark against which to compare model 22 
results for source allocation and planning, as no measurements are available to test the impact of theoretical emission 23 
reduction scenarios on concentrations. So, even if very useful to evaluate ex-ante the impact of possible policy options, 24 
it is hard to judge the quality of these results. On the other hand, the uncertainty associated to source allocation results 25 
can be assessed by comparing them with results from other air quality models (Thunis et al., 2007; Cuvelier et al., 26 
2010; Pernigotti et al., 2013). Both the absolute and relative impacts of emission reductions can then be compared.  27 
 28 

                                                           
1 The Forum for Air quality Modeling (FAIRMODE) was launched in 2007 as a joint response initiative of the 
European Environment Agency (EEA) and the European Commission Joint Research Centre (JRC). The forum is 
currently chaired by the Joint Research Centre. Its aim is to bring together air quality modelers and users in order to 
promote and support the harmonized use of models by EU Member States, with emphasis on model application under 
the European Air Quality Directives. For more details, see https://fairmode.jrc.ec.europa.eu/. 
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As an initial phase to design an air quality plan, one is interested in identifying the main sources over a given domain 29 
that are responsible for the pollution at a given location (Isakov et al., 2017). This step is defined in literature as source 30 
allocation (Thunis et al., 2019), i.e. a technique applied to understand the key contributors to air pollution at a given 31 
location. Source allocation then serves as the corner stone to choose the target sector or geographical area when 32 
designing measures for an air quality plan. 33 
The ideal to perform source allocation would be to use directly a Chemical Transport Model (CTM) but this technique 34 
is unfortunately too time consuming to differentiate the impacts of many sources at the same time for various cities in 35 
Europe. An alternative is to simplify the CTM with a so-called source-receptor relationships (SRR) approach, that 36 
mimics the CTM relationships between emission and concentration changes. The most precise SRR would consist in 37 
an independent grid cell-to-grid cell approach. While this approach would allow a high level of flexibility in defining 38 
the zones over which emissions are spatially reduced, it involves simulating independently the effect of emissions 39 
changes in each single grid cell that has pollutant emissions in the model domain. It would require changing precursor 40 
emissions in individual grid cells one at a time and looking at the resulting change in concentrations in each receptor 41 
cell. While theoretically very simple, the resulting number of unknown parameters describing the transfers between 42 
source and receptor cells that need to be identified is very large. For example, for a domain with 50 × 50 grid cells 43 
(Ngrid=2500) and 5 precursors (Nprec = 5), the identification of a maximum of 12,500 parameters would be required 44 
(if emissions occur in, and concentration changes need to be calculated for, all grid cells in the domain) to calculate 45 
the change of concentration at a given receptor cell. Therefore 12,500 equations, each connecting concentration 46 
changes and emission changes are necessary to identify these 12,500 unknown parameters. Because each of these 47 
equations requires an independent CTM run, this independent grid cell-to-grid cell option is very costly, and 48 
simplifying assumptions that reduce the number of CTM runs are required (Clappier et al., 2015). 49 
In GAINS (“Greenhouse gas - Air pollution Interactions and Synergies”, Amann et al., 2011) the grid-cell to grid-cell 50 
relation is simplified by aggregating source cells into countries. The number of unknown parameters that need to be 51 
identified for one receptor cell equals the number of countries (Ncountry) multiplied by the number of precursors. 52 
This system can only be solved if at least “Nprec x Ncountry” equations are available, requiring a similar number of 53 
independent CTM scenarios. In GAINS, about 50 countries and 5 precursors lead to the need of 250 independent CTM 54 
scenarios to identify 250 unknowns. However, because they are derived from emission reductions at country level, 55 
these SRRs are not applicable at the urban scale.  56 
In the RIAT + tool (“Regional Integrated Assessment Tool”, Carnevale et al., 2014). Emissions are aggregated into 57 
‘quadrants’ that are defined relatively to each grid cell within the domain. The ‘quadrant’ emissions and their related 58 
grid cell concentrations are then used to feed a neural network that delivers the SRR (Carnevale et al., 2009). Although 59 
the approach requires a limited number of full CTM simulations (around 20), the set-up of the SRR remains complex 60 
due to the need of implementing sophisticated neural networks.  61 
In SHERPA (Thunis et al., 2016; Pisoni et al., 2017), a different approach is taken that reproduces the grid cell-to-62 
grid cell approach but does not require anywhere near as many CTM runs. SHERPA assumes that the unknown 63 
parameters vary on a cell-by-cell basis but are no longer independent of each other. Instead, these coefficients are 64 
assumed to be related through a bell shape function. With the SHERPA approach, the number of unknown parameters 65 
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is then equal to 2 for each precursor and receptor cell. Consequently, for the five precursors of PM2.5 (VOC, SO2, 66 
NOx, PPM and NH3), ten independent CTM simulations are needed for a given receptor cell. Provided that they deliver 67 
independent information, the same CTM scenarios can be used to identify both parameters for all cells within the 68 
domain (see details in Pisoni et al. 2017). Based on these 10 CTM simulations the SHERPA approach allows to quickly 69 
assess the impact of emission reductions for many combinations of sectors, geographical areas and precursors. It is 70 
currently the only approach that allows performing a systematic analysis for about 150 EU cities in terms of sectors 71 
and precursors.  72 
First, the SHERPA SRR approximation of the two CTMs, CHIMERE and EMEP, is built. With these two SRR models 73 
the contribution of 100 sector-area-precursor combinations to the concentration in the city centre is determined and 74 
we assess the similarities and differences between these two set of results. Obviously some of the differences are 75 
caused by the fact that the two CTM models rely on different formulations and parametrisations but also by the fact 76 
that they use different input data (emissions, meteorology…). The objective of this work is to assess the overall 77 
uncertainty (or better, variability) attached to source allocation rather than to assess the sensitivity of the results to a 78 
given parameter (e.g. emissions).  79 
The focus of this study is on PM2.5 yearly averages, because this is the pollutant with the highest impact on human 80 
health, and is therefore a key focus for policy makers in Europe. Because a large number of sources contribute to 81 
PM2.5 concentrations at one location, this is also the most challenging pollutant to manage in air quality plans. 82 
The paper is structured as follows. We briefly present the two Chemical Transport Model and their set-up in Section 83 
2. We then describe the SHERPA methodology and its assumptions in Section 3. Section 4 details the methodology 84 
followed for the source allocation, while the inter-comparison of the results is presented in Section 5. Conclusions are 85 
proposed in Section 6. 86 

2. CHIMERE and EMEP Chemical Transport Models: set-up and simulations 87 

In this work, we use two set of model simulations, performed with two of the leading chemical transport models in 88 
Europe: CHIMERE and EMEP. More details on the models can be found in Mailler et al., 2017 and Couvidat et al., 89 
2018 (for CHIMERE) and Simpson et al., 2012 (for EMEP). Because a brute force source allocation for 150 cities 90 
with these models would be too time consuming, we use two sets of SHERPA Source Receptor Relationships (SRR), 91 
each based on a training set of about 20 CHIMERE and EMEP CTM simulations . These SRR are then used to perform 92 
the source allocation. Details on the SHERPA training for CHIMERE can be found in Clappier et al., 2015, and for 93 
EMEP in Pisoni et al., 2019.  94 
The CHIMERE and EMEP modelling set-up differ in the following aspects: 95 

• Grid setting: CHIMERE uses a grid of 0.125 degrees longitude by 0.0625 degrees latitude, corresponding to 96 
rectangular cells of more or less 9 by 7 km (in the centre of the domain) whereas EMEP uses a regular grid 97 
of 0.1 by 0.1 degrees, corresponding to rectangular cells of more or less 7 by 11 km.  98 

• Emissions: The CHIMERE emission reference year is 2010 with a gridding based on the EC4MACS project 99 
proxies (Terrenoire et al., 2015) while EMEP uses a JRC set of emissions (Trombetti et al., 2017) based on 100 
2014 as reference year. 101 
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• Boundary conditions: The CHIMERE domain extends from 10.5° East to 37.5° West and between 34° and 102 
62° North while the EMEP domain extends from 30° East to 90° West and between 30° and 82° North. 103 

• Meteorology: The two models use a different reference meteorological year; 2009 for CHIMERE and 2014 104 
for EMEP; both meteorological fields are modelled through the Integrated Forecasting System (IFS) of 105 
ECMWF.  106 

• Model Parameterization: Apart from the vertical and/or horizontal resolutions, transport, deposition, 107 
chemical processes are reproduced with different levels of complexity in the two models. 108 

More details on the model simulations and settings can be found in Clappier et al., 2015 and Pisoni et al., 2019. Some 109 
of the validation results for the two model configurations (CHIMERE and EMEP) are briefly presented in the 110 
Supplementary Material, showing similar performances in terms of comparison against observations. For CHIMERE 111 
the relation between predictions and observations at background stations is best characterised by a line through the 112 
origin with slope of 1.05, indicating a slight under-prediction. The standard error is 5.7 μg/m3 and uniform over the 113 
range of concentrations. The R2 is 0.9. Concentrations at traffic and industrial stations are underestimated by roughly 114 
10%. For EMEP the relation between predictions and observations is best characterised by a power low with exponent 115 
0.66. The data show a relative standard error constant over the range of concentrations and equal to 30%. 116 
Concentrations at traffic stations are under-predicted by 9% and over-predicted at industrial sites by 7%. It is important 117 
to note that the use of different input and model set-up (as listed before) represents the usual practice when air quality 118 
models are used, at the local scale, to assess the impact of air quality plans. This is why it is important here to analyse 119 
how this choice influences the results and the subsequent design of an air quality plan; an issue that is often not tackled 120 
in the literature. Finally, differences can arise from the SRR approximations themselves, even if validation against 121 
CTM simulations show similar results for the 2 considered model set-up (see Supplementary Material). 122 
Starting from these configurations, two set of SRRs are built for yearly average PM2.5 concentrations, based 123 
respectively on CHIMERE and EMEP data.   124 
Before looking at the source allocation results, in the next section a brief description of the SHERPA methodology is 125 
proposed. 126 

3. SHERPA methodology 127 

Starting from the simulations performed with CHIMERE and EMEP, two sets of SHERPA SRR are built. Here we 128 
briefly summarise how the SHERPA methodology works; we refer to Pisoni et al., 2019 for more details.  129 
In the SHERPA approach, the PM concentration change in receptor cell “j” is computed as follows: 130 
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where Ngrid is the number of grid cells within the domain, Nprec is the number of precursors, ∆𝐸𝐸𝑖𝑖
𝑝𝑝 are the emission 131 

changes, and 𝑎𝑎𝑖𝑖𝑗𝑗
𝑝𝑝  are the unknown parameters to be identified, representing the transfer coefficients between each 132 

source cell i and receptor cell j. In SHERPA the 𝑎𝑎𝑖𝑖𝑗𝑗
𝑝𝑝  coefficients are cell-dependent, and assume a ‘bell shape function’. 133 
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This bell shape function accounts for variation in terms of distance but is directionally isotropic, and can be defined 134 
as follows:  135 

   𝑎𝑎𝑖𝑖𝑗𝑗
𝑝𝑝 = 𝛼𝛼𝑗𝑗

𝑝𝑝�1 + 𝑑𝑑𝑖𝑖𝑗𝑗�
−𝜔𝜔𝑗𝑗

𝑝𝑝

     (2) 136 

where dij is the distance between a receptor cell “j” and a source cell “i”. Thus, in SHERPA the matrix of transfer 137 
coefficients is known when the two parameters 𝛼𝛼 and 𝜔𝜔 are identified for a given receptor cell j and a given precursor 138 
p (see Equation 2).  The final formulation implemented in SHERPA is: 139 
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With the SHERPA approach, the key step is so to find the optimal 𝛼𝛼,𝜔𝜔 coefficients. As the number of unknown 140 

parameters is equal to 2 (𝛼𝛼,𝜔𝜔) for each precursor and receptor cell “j”, for the five precursors of PM2.5 (VOC – 141 
volatile organic compounds, SO2 – sulphur dioxide, NOx – nitrogen oxides, PPM – primary particulate matter and 142 
NH3 – ammonia), ten independent CTM simulations are needed for a given receptor cell. We refer to Pisoni et al. 143 
(2018) and Thunis et al. (2016)  for additional details about the SHERPA formulation and evaluation process. 144 
Given its cell-to-cell characteristics (Equation 3), the SHERPA formulation can be used to assess the impact of 145 
emission reductions over any given set of grid cells. Different geographical entities can therefore be freely defined in 146 
terms of boundaries.  147 
As mentioned earlier, the SHERPA approach is used in this work to analyse the differences in source allocation results 148 
between two CTM: CHIMERE and EMEP, referred to in this paper as S-CHIMERE and S-EMEP, respectively. The 149 
“S-“ first letter in these acronyms reminds that we compare the EMEP and CHIMERE SRR rather than the models 150 
themselves. 151 

4. Source allocation methodology 152 

The aim of this work is to compare the main contributors to urban pollution in terms of sectors, geographical areas 153 
and precursors, obtained with S-CHIMERE and S-EMEP. We focus on the PM2.5 yearly average concentrations as 154 
target indicator, because PM2.5 is responsible for most of the health related burden in the EU urban areas (EEA 2019). 155 
The approach is applied to 150 European cities, those analysed in the ‘PM2.5 Urban Atlas’ (Thunis et al., 2018).  156 
As mentioned above, the cell-to-cell characteristics of the SHERPA approach allows assessing the impact of emission 157 
reductions over any given set of grid cells (cities , regions or countries can be freely defined in terms of boundaries) 158 
and emission reductions can be freely defined in terms of precursors or sectors. The following single (or combination 159 
of) sectors, source areas and precursors are considered as sources.  160 
In terms of sectors, the source categories follow the CORINAIR SNAP nomenclature for emissions:  161 

• Combustion in energy and transformation industries (SNAP 1),  162 

• Non-industrial combustion plants (SNAP 2), 163 

• Combustion in manufacturing industry (SNAP 3),  164 
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• Production processes (SNAP 4),  165 

• Extraction and distribution of fossil fuels and geothermal energy (SNAP 5),  166 

• Solvent use and other product use (SNAP 6),  167 

• Road transport (SNAP 7),  168 

• Other mobile sources and machinery (SNAP 8),  169 

• Waste treatment and disposal (SNAP 9) and  170 

• Agriculture (SNAP 10).  171 
which have been aggregated in this work into five sectors:  172 

• industry (SNAP 1, 3 and 4),  173 

• residential (SNAP 2),  174 

• traffic (SNAP 7),  175 

• agriculture (SNAP 10), and  176 

• others (SNAP 5, 6, 8 and 9).  177 
In terms of geographical sources, four areas are considered for the analysis: 178 

• the core city,  179 
• the commuting zone,  180 
• the rest of the country and  181 
• international (what is outside the considered country). 182 

The commuting zone is defined as the area surrounding the city where at least 15% of the population commutes daily 183 
to the core city. The combination of the core city and the commuting zone is referred to as the functional urban area, 184 

or FUA2. 185 

Finally, the precursors considered are NOX, VOC, NH3, PPM and SO2.  186 
This leads to 100 (4 areas x 5 precursors x 5 sectors) runs for each SRR and city. For small cities (66 out of 150) the 187 
core city covers too few grid cells which would lead to discretization errors. In such case, the analysis is restricted to 188 
the FUA. For these cities, 75 runs (3 areas x 5 precursors x 5 sectors) per city and model were therefore performed. 189 
With 150 analysed cities for two CTM models, we note that the SHERPA approach allows for a comparison that 190 
would have implied 26700 ((66x75 + 84x100) x 2 models) independent air quality simulations with a full CTM. The 191 
same amount of runs with the SHERPA simplified model only takes few seconds per scenario. The results for S-192 
CHIMERE were published in the ‘Urban PM2.5 Atlas’ (Pisoni et al., 2018). In this paper, the same runs are done with 193 
S-EMEP, and a comparison between the 2 is provided.  194 

Each run performed with the SHERPA SRRs provides a concentration change (∆𝐶𝐶) that results from an emission 195 

reduction (∆𝐸𝐸) with an intensity α applied to a given precursor, for a given sector and within a given area. The ‘relative 196 

potential’ of a given precursor-sector-area source is expressed as ∆C αC⁄ , (Thunis and Clappier, 2014). This indicator 197 
represents the share of a particular emission source to the concentration. From a policy point of view, high ‘relative 198 
potential’ sources are the ones to be addressed first to achieve the largest improvements. In this work, the SRRs ∆𝐶𝐶 199 

                                                           
2See https://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm for details. 

https://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm
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are obtained for emission reductions of 𝛼𝛼=50%, a level that represents a threshold below which the quasi-linearity of 200 
the model responses is preserved (Thunis et al., 2015). In other words, with this approach the model response in terms 201 
of concentration change remains proportional to the emission change. It is important to stress that this threshold is 202 
only valid for PM2.5 and for yearly average concentrations, as considered here. Because of this 50% threshold, it is 203 
also worthwhile to note that the source allocation results discussed here provide information on the impact of potential 204 
emission reductions up to that level, not beyond.  205 
  206 
To compare the ‘relative potentials’ from S-CHIMERE and S-EMEP, we calculate the correlation. A high correlation 207 
means that both models agree well on the emission sources (sectoral and/or geographic) that contribute most to the 208 
concentration for a given city. The main advantage of a correlation indicator is that it ignores systematic differences. 209 
In other words, if one model systematically predicts higher concentration changes for all sources than the other, this 210 
is not detected by the correlation metric. This is a desirable characteristic because from a policy perspective, it is the 211 
‘relative ranking’ among the sources contributions that counts rather than their absolute values. 212 

5. Comparison of the results 213 

In this study, we compare the relative potentials for 150 cities, based on the two SHERPA implementations, S-214 
CHIMERE and S-EMEP. Source allocation is calculated at the city location characterised by the worst target indicator 215 
value, i.e. the most polluted cell in the considered city. We first discuss the results for a few cities, before moving to 216 
an EU wide perspective. Tables 1 to 4 show, for each emission area, sector and precursor, the ‘relative potential’ 217 
expressed in percentage of the total concentration for the 2 models (‘chimere_rp’ and ‘emep_rp’) and the resulting 218 
ranking in terms of importance (‘emep.rank’ and ‘chimere.rank’) for 4 cities: Liege, Genova, Turin and Madrid. These 219 
cities are selected as representative samples to illustrate the characteristic behaviours obtained in our comparison. In 220 
addition to this, Figures 1 to 4 show the S-CHIMERE/S-EMEP correlations obtained for various relative potentials 221 
defined in terms of geographical area, sector, or their combinations. For Liege (Belgium), the overall (all individual 222 
sectors, precursors and areas included, i.e. about 15000 relative potentials) Pearson correlation3 between the relative 223 
potentials of both SRR is the highest among the 150 cities (r=0.99, see Figure 1). Both models identify ammonia 224 
emissions from agriculture, outside Belgium, as the main contributor to local PM2.5 concentrations. Primary PM from 225 
local industry comes second and NOx from international traffic third. Although the lower ranked combinations are not 226 
identical, they are quite similar. From a policy perspective, the fact that both SRR provide similar information is a 227 
sign of robustness. It increases our confidence in the priority of interventions (which sectors-areas to act at first to 228 
achieve the maximum air quality improvement). The values for the main sector-precursor-areas relative potentials are 229 
reported in Table 1.  230 
 231 

                                                           
3 The main aim of this work is to assess the policy implications (i.e. which source to tackle first) of using a model 
rather than another. This is why we focus on the ranking of the contributions (Pearson correlation) rather than on 
their absolute values. 
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Table 1: Top 10 area-sector-precursor relative potentials to PM2.5 concentrations in Liege (B).232 

 233 

A breakdown analysis for Liege is proposed in Figure 1 where correlations are calculated for relative potentials that 234 
are aggregated in terms of sectors (5 relative potentials), area (4 relative potentials) or area/sectors (5 x 5 relative 235 
potentials). In the case of Liege, all correlations are very good. 236 
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 237 
Figure 1: Correlation between S-EMEP and S-CHIMERE relative potentials for different sector-area-precursor source 238 
aggregations in Liege (B). 239 

Unfortunately, the agreement is not always so good. For the city of Genova (Table 2 and Figure 2), both models agree 240 
that national/international ammonia emissions from agriculture are the largest contributor to local PM2.5 (see Table 241 
2). But the third position in the priority ranking is occupied by NOx from national traffic for S-EMEP while it is PPM 242 
from the national residential sector for S-CHIMERE. However, the overall correlation still reaches 89% and the two 243 
main sources are similar. The agreement between the two models is therefore still satisfactory. It is interesting to note 244 
that for  area-aggregated relative potentials, the correlation drops to 42%, highlighting possible differences in the way 245 
emission inventories are spatially distributed in the two models. 246 
 247 

 248 

 249 

 250 

 251 

 252 

 253 
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Table 2: Top 10 area-sector-precursor relative potentials to PM2.5 concentrations in Genova (IT). 254 

 255 
  256 
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 257 

 258 

Figure 2: Correlation between  S-EMEP and S-CHIMERE relative potentials for different sector-area-precursor source 259 
aggregations in Genova (I). 260 

 261 
In the case of Torino (Table 3 and Figure 3), the two models give contradicting recommendations. While S-CHIMERE 262 
points to city residential heating as main contributor to PM2.5, S-EMEP points to national agriculture ammonia 263 
emissions. The model disagreement extends to the top 5 relative potentials. As indicated, the problem is probably 264 
related to the sectoral (R2=0.78) rather than to the geographical dimension (R2=0.97). Nevertheless, the overall 265 
correlation (0.81) is not too bad, and can be explained by the fact that the contribution values are not too different 266 
from each other (although the ranking is quite different).  267 
 268 

 269 

 270 

  271 
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Table 3: Top 10 area-sector-precursor relative potentials to PM2.5 concentrations in Torino (I). 272 

 273 
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 274 
Figure 3: Correlation between S-EMEP and S-CHIMERE relative potentials for different sector-area-precursor source 275 
aggregations in Torino (I). 276 

  277 
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In our last example (Madrid - Table 4 and Figure 4), differences are extremely important in terms of relative potentials 278 
and ranking, leading to an overall correlation of 41%. All other correlations, with the exception of the spatial ones are 279 
extremely poor. Uncertainties for this city are important, and the choice among policy options is not robust. 280 
 281 
Table 4: Top 10 area-sector-precursor relative potentials to PM2.5 concentrations in Madrid (E). 282 

 283 

 284 

 285 
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 286 
Figure 4: Correlation between S-EMEP and S-CHIMERE relative potentials for different sector-area-precursor source 287 
aggregations for Madrid (E). 288 

  289 
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As seen from the city examples presented above, we can have both strong (Liege) and weak (Madrid) agreement 290 
between the two modelling set-up.  291 
 292 
The analysis presented above was done for all 150 cities, and we can here present the results in an aggregated way. 293 
We will consider here that an overall correlation is very good above 95%, good between 90 and 95%, fair between 85 294 
and 90%, poor between 70% and 85% and very poor below 70%. This is an arbitrary choice, but it is useful to start 295 
grouping and classifying the results. The histogram of the overall correlations for all 150 cities (Figure 5:) shows that 296 
the model agreement is good or very good for about half of the cities, satisfactory for another 21%, leaving 32% of 297 
doubtful/problematic cities.     298 
 299 

 300 
Figure 5: Distribution of the Pearson correlation coefficients between relative potentials, for 150 cities. 301 

  302 
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The mapping of the overall correlations (Figure 6) shows that cities with the highest variability are mostly located in 303 
Spain, Northern Italy and in the Baltic countries. For these areas, meteorological factors, emissions, and/or the impact 304 
of these input on concentrations in the air quality models, is larger than in other areas. In the Supplementary Material 305 
we show that even for the base case, results are quite different for countries like Spain. This might also have an impact 306 
on the correlation results shown in this Figure. 307 

 308 

 309 
Figure 6: Pearson overall correlation between EMEP and CHIMERE relative potentials. 310 

 311 
To the knowledge of the authors, this is one of the first attempts to systematically compare the sources and causes of 312 
pollution in European cities, using a harmonized approach. The reasons for the differences between cities highlighted 313 
above are however not easy to identify. This is because the SRRs used in this study are based on different 314 
meteorological years (2009 vs 2014), emissions (2010 vs 2014) and air quality models (CHIMERE vs EMEP). 315 
Although this analysis provides an overall estimate of the variability between policy responses and does not allow 316 
identifying the specific cause for the observed differences, it indicates where modelling improvements need to be 317 
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made. Modelling inconsistencies are indeed categorised in terms of geographical area, sectors and precursors, a useful 318 
information to trigger discussion among modelling groups and direct the investigations towards the most problematic 319 
issues.    320 
It is also worth reminding that using different input and model set-up represents the usual practice whenever air quality 321 
models are used at the local scale to assess the impact of air quality plans. Indeed, each local/regional authority 322 
generally uses its own set of data and applies its own model. Therefore, only a single meteorology, a single emission 323 
inventory for a single reference year and a specific model are used to identify the sources of pollution to target. The 324 
impact of these choices on source allocation and on the subsequent design of an air quality plan is an issue that is not 325 
often tackled.   326 
It is probably unreasonable to think that a local authority can evaluate in a comprehensive way the variability of a 327 
particular modelling pathway (too demanding in terms of sensitivity analysis). We however believe that this work can 328 
be used to develop further guidance to select the proper modelling set-up (choice of meteorological year, emission, 329 
model to use) to reduce the uncertainty attached to the results and increase their robustness.   330 
The ultimate goal of this work would be to help decision makers to properly define key sources, so that only ‘no-331 
regret’ policies are selected. As mentioned above, the present approach flags out potential issues and a possible lack 332 
of robustness (by quantifying the overall variability) but it cannot provide explanations for the observed differences. 333 
The only process to identify the causes of differences, is to perform regular inter-comparison exercises where the 334 
responses of models to emission changes are systematically tested via sensitivity analysis. While exercises of this type 335 
occurred in the past years (Colette et al., 2017, Cuvelier et al., 2007, Pernigotti et al., 2013), it is crucial that these are 336 
performed on a regular basis as models and input data continuously evolve.  337 

6. Conclusions 338 

Before applying emission reduction measures to improve air quality, it is important to evaluate the importance of the 339 
key sources contributing to pollution in a given area. The main methodology to perform this task is referred to as 340 
‘source allocation‘. 341 
Source allocation can be implemented in various ways. In this paper we use the SHERPA model, a source-receptor 342 
relationship mimicking the behaviour of a fully-fledged CTM. With SHERPA one can perform hundreds of 343 
simulations in few minutes to test the impact of various geographical, sectoral or precursor-based emission sources, 344 
on the concentration at a location of interest. The result is a complete source-allocation study for a given domain 345 
explaining the key sources of pollution at a given location. 346 
In this work, we developed two SHERPA versions, based on two modelling set-up using different meteorological 347 
reference year, emission inventories and air quality models. Even if these setting are quite different and difficult to 348 
compare, they represent what happens in the real-world when designing air quality plans. Indeed, local authorities in 349 
Europe are free to use different reference meteorological years, emissions and models. The comparison of these results 350 
therefore provide an estimate of the variability attached to source allocation results for a given area.  351 
The results can also be used to provide further guidance to define the modelling set-up and understand how this choice 352 
impact the selection of priorities when designing air quality plans. 353 
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 354 
The two SHERPA SRRs versions (based on CHIMERE and EMEP) have then been used to perform source allocation 355 
on 150 main cities in Europe, and results have been presented in terms of priorities of interventions (i.e.: which are 356 
the sector/geographical areas/pollutants that are more relevant for air quality in a given city?).  357 
The results are consistent for some cities, i.e. the modelling set-up produces the same ranking in terms of contributions, 358 
whereas for other cities (about 30%) the two SRRs deliver different results. Even if it is not possible in this work to 359 
identify the causes for these differences as additional sensitivity simulations would be needed for this, this work 360 
indicates where modelling improvements need to be made. Modelling inconsistencies are indeed categorised in terms 361 
of geographical area, sectors and precursors, a useful information to trigger discussion among modelling groups and 362 
direct the investigations towards the most problematic issues. Although differences in terms of results were expected 363 
(different assumptions deliver different results), it is comforting to see that similar policy decisions would be taken in 364 
about 75% of cities considered in this study.  365 
Thanks to the limited number of required simulations to build SHERPA, future work could envisage the 366 
implementation of ‘constrained setting’ to build SRR (i.e. keeping the same air quality model but changing emissions, 367 
or keeping the same emissions but changing the model) to be able to discriminate the role of these factors. Also, further 368 
model inter-comparison works should be fostered. 369 

Code and data availability 370 

The code and data used to perform the analysis presented in this paper is available in a Zenodo repository (Degraeuwe 371 
et al., 2020). Also the SHERPA model, providing the source-receptor relationships applied in this paper, is available 372 
in another Zenodo repository (Degraeuwe et al., 2020b). 373 
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