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To begin, we are thankful for the review comments provided by the reviewers Florian Lemarié (reviewer
#1) and Mike Bell (reviewer #2). Collectively, the reviews have highlighted areas where the manuscript was
lacking, particularly with respect to its clarity and presentation. We have revised the manuscript with this
feedback in mind, making changes to incorporate or otherwise address this feedback.

Because both reviewers were in broad agreement about the weaknesses of the paper and did not provide
conflicting feedback, a summary of changes is listed below by section. Additionally, the revised manuscript
and a “diff” of changes will be submitted after this comment is finalized.

Title and abstract

Both reviewers noted that the original title of the article was too bold, to put it bluntly. Additionally, the
executive editor pointed out the GMD requirement that papers which refer to development for a single model
must mention the model name and version number in the title. Consequently, the title is now “Development
of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1).”

Reviewer #2 additionally noted that the original abstract gave the impression that the method developed
in this article is “very similar to the SISL algorithms used in atmospheric models.” The first paragraph of the
abstract is now revised to hopefully make the distinction more clear, and the second paragraph is reworded
for simplicity.

Introduction

The introduction has been greatly expanded in response to the reviewers’ comments. In textual order:

• Reviewer #2 noted that the leading paragraphs on coupled modeling seemed to be a tangential mo-
tivation. This has the awkward characteristic of being tangential yet true – the idea of applying
semi-Lagrangian advection to the ocean model at CMC came out of realizing the computational cost
of running coupled forecast systems. This section has been revised and modestly expanded to make
the practical focus more clear.

• Both reviewers note that the discussion of why semi-Lagrangian advection might help the timestep
size in ocean models was lacking. This is now more comprehensibly discussed in new section 1.1,
which draws the suggested direct contrast between timestep-limiting factors in atmosphere and ocean
circulation models. Grid stretching is now a subsection to this discussion, which (at Reviewer #2’s
request) now also includes a brief description of the ocean flows in the gridpoint-clustered portion of
the Canadian Arctic Archipelago.

• The “existing work” subsection (now 1.2) more directly engages with the literature on conservation-
preserving semi-Lagrangian methods (noting this as not implemented but a future possibility, and
without this interpretation semi-Lagrangian advection has a finite-difference interpretation) and ALE
coordinates.

The other points raised by reviewer #1 (the “two other levels of constraints”) are generally agreed to
but addressed in the main body of the text as the issues arise.
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Time discretization

• Both reviewers note that the notation in this section was awkward. Consequently, we have entirely
revised this section to use a simpler notation of fB (“before”), fN (“now”), and fA (“after”) that
should be familiar to readers from the leapfrog context, adapting it to semi-Lagrangian advection to
add fD (“departure”). This also resulted in small changes to the notation in subsequent sections for
consistency.

• This section is also reorganized to separate the semi-Lagrangian advection (2.1) from its reconciliation
with the leapfrog algorithm (2.2) to clarify the changes in perspective.

• Reviewer #1 also expressed doubts about whether semi-Lagrangian advection as-defined was robust
to the Asselin timestepping filter. This analysis is now present in the new subsection (2.3), and the
Asselin filter does not negatively affect the stability of semi-Lagrangian advection as-implemented.

Interpolation

• Reviewer #2 remarked that the discussion of two-dimensional interpolation was cumbersome and
verbose. What was formerly the non-numbered “two-dimensional application” subsection has been
removed, with the comment briefly summarized and placed just before the slope-limiting discussion.

• Reviewer #2 also noted that the discussion of vertical advection was confusing, especially the claims
about discontinuous derivatives. Subsection 3.2 has been revised and reworded.

• We also revised the subsequent discussion of vertical slope-limiting to clarify (at reviewer #2’s note of
confusing language) why it is necessary at the bottom boundary in the presence of partial cells.

• A reference (Turkington et al., 1991) has been added for the numerical example on this section, at
reviewer #2’s request. To our knowledge this is not a standard test-case in the semi-Lagrangian
literature, but nonlinear generalizations of this approach are a standard technique for calculating the
profiles of nonlinear internal gravity waves.

• Reviewer #1 noted that the description of the advection constraint for the Eulerian/leapfrog numerical
example in this section was “fuzzy,” and so we have adopted the more precise definition. This led to no
practical difference in the calculation, since the maximum Courant number in the domain is reached
at the top and bottom boundaries where the vertical velocity is zero. (This did, however, lead to a
discovery of a small bug in the code that generated this figure, which used the wrong vertical mode
number to calculate wave-induced horizontal velocities for the purposes of evaluating the Courant
number. This has been addressed in the submitted code repository and the figure regenerated; there
is essentially no difference in results.)

Additionally, we replaced “CFL number” in the paper with “Courant number” throughout, since the
latter concept is indeed the intended use of the term.

• Reviewer #1 also inquired about the performance of the Eulerian/leapfrog method in this section with
a maximum Courant number close to 1. We investigated this over the range 0.2–0.99 and found little
difference in error compared to the exact solution; this is mentioned in-text rather than by adding
more lines to figure 3.

Trajectory calculation

• Reviewer #2 notes that the discussion about extrapolating into the boundary is confusing, and reviewer
#1 asks whether this semi-Lagrangian method faces a Lipschitz stability condition. These are the same
issue: the problem of extrapolating into the boundary arises only when a calculated trajectory would
cross that of a fluid parcel that begins and remains on the (no normal flow) boundary. Consequently,
we have revised the first part of subsection 4.1 to make this connection.
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Numerical results

• Reviewer #2 requested more clarification on the inconsistency between the semi-Lagrangian advection
and the Eulerian application of forcing. This amounts to an O(∆t) approximation in the integral form
of the semi-Lagrangian advection equation, and this is now noted in the discussion in subsection 5.1.

• Reviewer #1 notes that NEMO’s TVD scheme is really a “tracer variance dissipation” scheme. This
has been changed throughout with a citation to Lévy et al. (2001) at the first mention.

• Both reviewers remarked on the relatively short timestep used in the ORCA025 runs of section 5.2.
New footnote 8 has been added to provide more context; in brief the ice/ocean drag parameter is
increased following Roy et al. (2015), which makes the problem more apparent for the operational
forecasting configuration than for typically-presented runs. At the same time, we wanted to maintain
the same physical parameterizations between the operational configuration and the runs presented in
this paper. Addressing this problem would be ideal and is the focus of ongoing work, but the runs of
section 5.2 took long enough to complete on the shared supercomputing resources that they cannot be
practically be repeated in GMD’s peer-review timeframe even if a solution were immediately at hand.

• Reviewer #1 asked about the number of iterations taken to find trajectories and the effect of trajectory
truncation. This is now discussed further in section 5.2; the mean number of trajectory iterations per
cell for the semi-Lagrangian tracer run was 1.004, so truncated trajectories were truly exceptional. The
performance cost of trajectory iteration is also addressed in the conclusions.

• Reviewer #2 requested expanded commentary on the MOC and circumpolar current results, which
we have provided. Because these runs do report preliminary results, we want to be cautious about
reporting false confidence that semi-Lagrangian advection causes physically-relevant changes in results
that may not in fact be robust, but we agree that we erred on the terse side here.

• Reviewer #2 also requested a look at the mean global temperature profile at the start and end of the
simulation. This is the new figure 9, with brief discussion at the end of section 5.

Conclusions

• Reviewer #2 requested a longer summary of the achievements, particularly one that highlights new
algorithms. This is now added at the beginning of section 6, where we have added a list that highlights
the core algorithms of this paper.

• Both reviewers had questions about the performance of the method and its parallel implementation.
This is now dealt with in the conclusions, under the new (non-numbered) “performance and imple-
mentation” subsection.

• Reviewer #2 requested a deeper look at the application to climate simulations, and consequently
we have expanded the discussion in the commentary on the results. The temperature profile results
(specifically temperature stability in deep water) seem to be encouraging for climate applications,
but we reserve a full recommendation for a future day when either temperature/salinity drift is fully
characterized (and found to be acceptable) or conservation is explicitly added.

• Reviewer #2 also requested a brief discussion of how this algorithm might apply to the RK3 timestep-
ping algorithm used in upcoming versions of NEMO. Since this is very much “future work” for both
NEMO and semi-Lagrangian advection, we have added this discussion to the conclusions.
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Abstract. As model resolutions
✿✿

As
✿✿✿✿✿✿✿✿✿✿

resolutions
✿✿

of
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿

circulation
✿✿✿✿✿✿

models
✿

increase, the Courant-Frederichs-Lewy (CFL)

number based on advective motion becomes the limiting factor in setting the timestep of time-explicit circulation models
✿✿✿✿✿✿✿

advective

✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿

–
✿✿✿

the
✿✿✿✿

ratio
✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿

travelled
✿✿✿

by
✿

a
✿✿✿✿✿

fluid
✿✿✿✿✿

parcel
✿✿

in
✿✿✿✿

one
✿✿✿✿✿✿✿

timestep
✿✿✿✿

and
✿✿✿

the
✿✿✿✿

grid
✿✿✿

size
✿✿

–
✿✿✿✿✿✿✿✿

becomes
✿✿✿

the

✿✿✿✿

most
✿✿✿✿✿✿✿

stringent
✿✿✿✿✿

factor
✿✿✿✿✿✿✿

limiting
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

timesteps. Some atmospheric models escape
✿✿✿

have
✿✿✿✿✿✿✿

escaped this limit by using an implicit or

semi-implicit semi-Lagrangian formulation of advection. This formulation calculates ,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

calculates
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

materially-conserved5

fluid properties along parcel trajectories which follow the fluid motion and end , for each timestep, at prescribed grid-points.

✿✿✿✿✿✿✿✿✿✿✿✿

Unfortunately,
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿

in
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

contexts,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

irregular,
✿✿✿✿✿✿

interior
✿✿✿✿✿✿✿✿✿✿

boundaries
✿✿✿✿✿✿✿

imposed
✿✿✿

by

✿✿

the
✿✿✿✿✿

shore
✿✿✿✿

and
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿✿

orography
✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

incompatible
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

traditional
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿✿✿✿

calculations.

This work is the first application
✿✿✿✿✿✿✿

describes
✿✿✿

the
✿✿✿✿✿✿✿✿✿

adaptation
✿

of the semi-Lagrangian method to an
✿✿

as
✿✿

an
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

module
✿✿✿

for

✿✿

an operational ocean model. In this context, we solve the difficulty posed by
✿✿

We
✿✿✿✿✿

solve
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difficulties
✿✿

of
✿

the ocean’s irregular,10

interior
✿✿✿✿✿✿✿

internal boundaries by calculating parcel trajectories using a time-exponential formulation. This formulation ,
✿✿✿✿✿✿

which

ensures that all trajectories that are solutions to a fixed-point iteration have an origin point in the valid domain , and it does not

require any prescribed extrapolation of the fluid velocities into the invalid (land) portion of the domain. We
✿✿✿✿✿

parcel
✿✿✿✿✿✿✿✿✿✿

trajectories

✿✿✿✿✿✿

remain
✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿

despite
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿

accelerations
✿✿✿✿

near
✿✿✿

the
✿✿✿✿✿✿✿✿✿

boundary.
✿✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿

we derive this method in a way

that is compatible with the leapfrog timestepping scheme used in the NEMO-OPA (Nucleus for European Modelling of the15

Ocean, Océan Parallélisé) ocean model, and we present simulation results for a simplified test-case of flow past a model island

and for 10-year free runs of the global ocean on the quarter-degree ORCA025 grid.

Copyright statement. TEXT

1 Introduction

Recent work by Smith et al. (2018) has shown that over the medium term (up to seven days), a coupled forecasting system20

involving ocean, ice, and atmospheric models can significantly improve forecasting skill over forecasts that assume persistence

of initial conditions
✿✿✿✿✿

persist
✿✿✿✿✿✿

initial
✿✿✿✿✿

ocean
✿✿✿✿

and
✿✿✿

ice
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

over
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

period. While this is an exciting

development for the future of numerical weather prediction, it creates a combined computational problem out of models and
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forecasting systems systems that have previously been run independently.
✿✿✿✿✿✿✿

coupling
✿✿✿✿

adds
✿

a
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿

dimension
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational

✿✿✿✿

cost.
✿✿✿✿✿✿✿✿✿✿

Developing
✿

a
✿✿✿✿✿✿✿✿✿✿

deployable
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

system,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿

with
✿✿✿✿✿✿✿

regional
✿✿✿

or
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿

components,
✿✿✿✿✿✿✿

requires
✿✿✿✿✿✿✿✿✿

exploiting
✿✿✿✿✿

every25

✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿✿✿✿✿✿✿

opportunity
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

optimization.
✿✿✿✿

One
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿✿✿✿✿✿✿✿✿

optimization
✿✿

is
✿✿

to
✿✿✿✿✿✿✿✿

maximize
✿✿✿

the
✿✿✿✿✿✿✿✿✿

admissible
✿✿✿✿✿✿✿✿

timestep
✿✿

of
✿✿✿

the
✿✿✿✿✿

ocean

✿✿✿✿✿✿✿✿✿

component,
✿✿✿✿

and
✿✿✿

we
✿✿✿✿✿

intend
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿

timestep
✿✿✿✿

limit
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

implementing
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿

module
✿✿✿✿

into
✿✿✿

the

✿✿✿✿✿✿

popular
✿✿✿✿✿✿✿✿✿✿✿

NEMO-OPA
✿✿✿✿✿✿✿✿

(Nucleus
✿✿✿

for
✿✿✿✿✿✿✿✿

European
✿✿✿✿✿✿✿✿✿

Modelling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

Ocean,
✿✿✿✿✿

Océan
✿✿✿✿✿✿✿✿✿✿

Parallélisé;
✿✿✿✿✿✿✿✿✿✿✿✿

Madec (2008),
✿✿✿✿✿✿✿

version
✿✿✿✿

3.1)
✿✿✿✿✿✿

model,

✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿

system.
✿✿✿✿

This
✿✿✿✿✿✿✿

module
✿✿

is
✿✿✿✿✿✿✿

intended
✿✿

as
✿✿

a
✿✿✿✿✿✿

drop-in
✿✿✿✿✿✿✿✿✿✿

replacement
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

model’s
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

modules,
✿✿✿✿

and
✿✿

in

✿✿✿✿✿✿✿✿

particular
✿

it
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿

interfere
✿✿✿✿

with
✿✿✿✿✿✿✿✿

NEMO’s
✿✿✿✿✿✿✿✿✿✿✿

time-stepping
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿

(leapfrog).
✿

30

In particular, these coupled forecasts require close integration between the atmospheric and ocean components in order to

exchange information. For reasons of computational efficiency, we want each model to run with its largest admissible timestep

, but to support coupling we can usually only achieve this if the models have the same timestep or closely-related timesteps.

While different factors cause the most stringent timestep restrictions in atmosphereand ocean circulation models , these models

can adopt similar methods to alleviate the restriction35

1.1
✿✿✿✿✿✿✿

Timestep
✿✿✿✿✿✿✿✿✿✿

constraints
✿✿

in
✿✿✿✿

the
✿✿✿✿✿

ocean

✿

A
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿

explicit
✿✿✿✿✿✿✿✿✿✿✿✿

time-marching
✿✿✿✿✿✿

scheme
✿✿✿✿✿

must
✿✿✿✿✿✿✿

generally
✿✿✿✿✿

limit
✿✿

its
✿✿✿✿✿✿✿

timestep
✿✿

to
✿✿✿✿✿✿

satisfy
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Courant-Frederichs-Lwey

✿✿✿✿✿

(CFL)
✿✿✿✿✿✿✿✿✿

condition:
✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

must
✿✿✿

not
✿✿✿✿✿✿✿✿

propagate
✿✿✿✿✿

more
✿✿✿✿

than
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

discretization-defined
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

cells
✿✿

in
✿

a
✿✿✿✿✿✿

single
✿✿✿✿

step,

✿✿✿✿✿✿

leading
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿

stable
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number.
✿✿✿✿

For
✿✿✿✿✿✿✿✿✿

hyperbolic
✿✿✿✿✿✿✿

systems
✿✿✿✿

such
✿✿✿

as
✿✿✿

the
✿✿✿✿✿

Euler
✿✿✿✿✿✿✿✿

equations
✿✿✿✿

(for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmosphere)
✿✿✿

or

✿✿✿✿✿✿✿✿✿

hydrostatic
✿✿✿✿✿✿✿✿

equations
✿✿✿

(as
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

NEMO-OPA),
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿✿✿✿

propagation
✿✿✿✿✿

speeds
✿✿✿

are
✿✿✿✿✿✿✿✿✿

controlled
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

admissible40

✿✿✿✿

wave
✿✿✿✿✿✿

modes
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

systems,
✿✿✿✿✿✿

which
✿✿✿✿✿✿

become
✿✿✿✿✿✿✿✿✿✿✿✿

characteristic
✿✿✿✿✿✿

curves.

✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmosphere,
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

restrictive
✿✿✿✿

wave
✿✿✿✿✿

mode
✿✿

is
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿✿✿✿

sound
✿✿✿✿✿✿

waves.
✿✿✿✿✿

These
✿✿✿✿✿✿

waves
✿✿✿

are
✿✿✿

fast
✿✿✿✿✿✿✿✿✿

compared
✿✿

to

✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿

motions,
✿✿✿

and
✿✿

in
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿

generally
✿✿✿✿

treat
✿✿✿✿✿

sound
✿✿✿✿✿✿

waves
✿✿✿✿✿

either
✿✿✿✿✿✿✿✿

implicitly
✿✿

or
✿✿✿✿✿✿✿

through
✿✿✿✿✿✿✿✿✿✿

sub-cycling,

✿✿✿✿✿✿✿✿

especially
✿✿

in
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿

restrictive
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

direction.
✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿

most
✿✿✿✿✿✿✿

stringent
✿✿✿✿✿✿✿✿

restriction
✿✿✿✿✿✿

comes
✿✿✿✿

from
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿

advection
✿✿✿

by
✿✿✿✿✿

winds

✿✿

in
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿✿✿✿✿✿

atmosphere. At the Canadian Meteorological Centre, our coupled numerical weather forecast
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

atmospheric45

✿✿✿✿✿✿✿✿✿

forecasting
✿✿✿✿✿✿

system
✿✿✿✿

(and
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿

component
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿✿

forecasting
✿✿✿✿✿✿✿

system) uses the GEM (Geophysical Environmental

Multiscale; Girard et al. (2014)) modelfor its atmospheric component and the
✿

,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

addresses
✿✿✿

this
✿✿✿✿✿✿✿✿

timestep
✿✿✿✿✿✿✿✿

restriction
✿✿✿✿✿✿✿

through

✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Robert, 1982).
✿

✿✿

In
✿✿✿

the
✿✿✿✿✿✿

ocean,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

hydrostatic
✿✿✿✿✿✿✿✿✿

equations
✿✿✿✿✿✿

already
✿✿✿✿✿✿✿✿

eliminate
✿✿✿✿✿✿

sound
✿✿✿✿✿✿

waves,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿

model
✿✿

is
✿✿✿

left
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿

problem
✿✿

of
✿✿✿✿✿✿✿

surface

✿✿✿✿✿✿

gravity
✿✿✿✿✿✿

waves.
✿✿✿✿✿

Here, NEMO-OPA (Nucleus for European Modelling of
✿✿✿✿

takes
✿✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿

that
✿✿✿✿

used
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

atmospheric50

✿✿✿✿✿✿

models
✿✿✿

for
✿✿✿✿✿

sound
✿✿✿✿✿✿✿

waves,
✿✿

by
✿✿✿✿✿✿

either
✿✿✿✿✿✿

treating
✿✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿✿

gradient
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

time-implicit
✿✿✿✿✿✿✿

manner
✿✿✿✿✿

(with
✿

a
✿✿✿✿✿✿✿✿✿

linearized
✿✿✿✿

free

✿✿✿✿✿✿

surface,
✿✿✿✿✿

used
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

work),
✿✿

or
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

sub-cycling.
✿✿✿✿

The
✿✿✿✿✿

ocean
✿✿✿✿✿

lacks
✿✿✿✿

any
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

atmosphere’s
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿

upper-air

✿✿✿✿✿

winds,
✿✿✿✿

and
✿✿

so
✿✿✿✿✿✿✿✿

advection
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

velocity
✿✿✿

and
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿

gravity
✿✿✿✿

wave
✿✿✿✿✿✿

modes
✿✿✿✿✿✿✿

compete
✿✿

as
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿

most
✿✿✿✿✿✿✿

limiting
✿✿✿✿✿

factor

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿

timestep.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lemarié et al. (2015)
✿✿✿✿

finds
✿✿✿

that
✿

the Ocean, Océan Parallélisé; Madec (2008)) model for the

ocean component. The GEM model already includes several features to provide for a long model timestep, and we seek to55

adapt some of these to the widely-used NEMO-OPA model (version 3.1).
✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

advection

2



✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿

limiting
✿✿✿✿

than
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿✿✿

(baroclininc)
✿✿✿✿✿✿✿

gravity
✿✿✿✿✿

waves
✿✿

at
✿✿✿✿✿✿✿✿✿✿

resolutions
✿✿

of
✿✿✿

1
2

◦

,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number

✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

catches
✿✿

up
✿✿✿✿

with
✿✿✿✿

that
✿✿

of
✿✿✿✿✿✿

gravity
✿✿✿✿✿

waves
✿✿

at
✿✿✿✿✿✿✿✿✿

resolutions
✿✿✿

of
✿✿

1
4

◦

✿✿✿✿

and
✿✿✿✿

finer.
✿

1.2 Stretching in ocean grids

✿✿✿✿

Grid
✿✿✿✿✿✿✿✿✿

stretching60

While ocean currents are much slower than the fastest upper-atmosphere windsthat contribute to the Courant-Frederichs-Lewy

(CFL) restriction in atmospheric model1, global ocean models in particular suffer from grid stretching. The
✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

cover

✿✿

the
✿✿✿✿✿✿

entire
✿✿✿✿✿

ocean
✿✿

in
✿✿

a
✿✿✿✿✿✿

single,
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿

domain,
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿✿

NEMO-OPA
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

configurations
✿✿✿✿✿✿✿✿

typically
✿✿✿

use
✿✿✿✿✿

grids
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the

ORCA “tripolar” grid commonly used in global NEMO-OPA model configurations (Madec and Imbard, 1996; Murray, 1996)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Madec and Imbard, 1996; Murray, 1996)
✿

.
✿✿✿✿

This
✿✿✿✿

grid is defined in the northern hemisphere by an elliptical coordinate system,65

where in the northern hemisphere circles of a
✿✿

the
✿

latitude-like coordinate are
✿

is
✿

defined by ellipses with a shared pair of foci ,

and hyperbolas of a
✿✿✿

and
✿✿✿

the
✿

longitude-like coordinate are defined by
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

by
✿✿

the
✿

hyperbolas orthogonal to these ellipses;

these .
✿✿✿✿✿

These
✿

coordinates match continuously at the equator to lines of latitude and longitude on
✿

in
✿

a Mercator projection. By

placing the foci of the ellipses on land, the grid contains no singularities in the ocean domain.

Unfortunately, this placement causes an abundance of small grid cells in the north polar region, especially in the Canadian70

Arctic Archipelago. Figure 1 depicts this situation at a nominal 1
4

◦

resolution: the grid point spacing of 25-30km near the

equator falls to 3-4km in the archipelago. Currents in these narrow straits contribute ten times as strongly to a lateral CFL

timestep restriction, compared to currents in the equatorial regions
✿✿✿

The
✿✿✿✿✿

areas
✿✿

in
✿✿✿✿✿✿

figure
✿

1
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿

narrowest
✿✿✿✿

grid
✿✿✿✿✿✿✿

spacing
✿✿✿

are

✿✿✿

also
✿✿✿✿✿✿✿

shallow
✿✿✿✿✿

seas,
✿✿✿✿

with
✿✿✿✿✿✿

depths
✿✿

of
✿✿✿✿✿✿

200m
✿✿

or
✿✿✿✿

less
✿✿✿✿

and
✿✿✿✿✿✿✿✿

non-tidal
✿✿✿✿✿✿✿

currents
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

15–30cm/s.
✿✿✿✿

This
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

stretching
✿✿

is
✿✿

of
✿✿✿✿✿✿✿✿✿

particular

✿✿✿✿✿✿

concern
✿✿✿✿✿

when
✿✿✿✿✿✿✿

adapted
✿✿✿

to
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

models
✿✿✿✿

such
✿✿

as
✿✿✿✿

that
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lemieux et al. (2016),
✿✿✿✿✿✿

which
✿✿✿✿✿

refine
✿✿✿✿

this
✿✿✿✿

grid
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿

retaining
✿✿✿

its75

✿✿✿✿✿✿

tripolar
✿✿✿✿✿✿✿

structure
✿✿

to
✿✿✿✿

use
✿✿✿✿✿✿✿✿✿

conforming
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿✿

conditions.

The coordinate system is also stretched in the vertical direction. Using the z-level grid option of the NEMO-OPA model,

layers near the surface are spaced much more closely together than layers nearer the ocean bottom, in order to provide ad-

equate resolution of the mixing layer. While ocean currents tend to follow nearly horizontal paths, residual upwelling or

downwelling can still cause a vertical CFL restriction to be binding.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

stretching
✿✿✿✿✿✿✿✿

enhances
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

advection80

✿✿

on
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number,
✿✿✿✿✿

even
✿

if
✿✿✿✿✿✿✿✿✿✿✿✿✿

vertical-current
✿✿✿✿✿✿✿✿✿✿

magnitudes
✿✿✿

are
✿✿✿

low
✿✿

in
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿

terms;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lemarié et al. (2015)
✿✿✿✿

notes
✿✿✿✿

that

✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿

tighter
✿✿✿✿✿

bound
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

timestep
✿✿✿✿

than
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿✿

advection.
✿

Although the ocean models arrive at a binding CFL condition via a different route than for atmospheric models, semi-Lagrangian

advectioncan alleviate this restriction in both cases. This method traces
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿

alleviates
✿✿✿✿

both
✿✿✿✿✿✿

vertical
✿✿✿✿

and

✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿✿✿✿✿✿✿✿✿

restrictions
✿✿

by
✿✿✿✿✿✿✿

tracing fluid parcels in a Lagrangian, fluid-following coordinate system, defined85

such that at .
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿

system
✿

is
✿✿✿✿✿✿✿

defined
✿✿

so
✿✿✿✿

that the end of each timestep the fluid parcels arrive at the prescribed grid.

1Atmospheric models are also limited by the timestep associated with sound waves, but it is common to process at least vertically-propagating sound waves

implicitly to alleviate this restriction. A comparable limit in ocean models is that arising from surface gravity waves, and here NEMO-OPA uses either an

implicit or time-splitting approach for similar reasons.
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Figure 1. Grid size (defined as min(e1t,e2t)) on the ORCA025 grid. At top: in the global view, gridpoint spacing gradually decreases from

the equator towards the north and south poles. At bottom: in a detail view of the north polar region, the grid is especially high-resolution in

the southern portion of the Canadian Arctic Archipelago, with gridpoint spacing as low as 3km.

4



The
✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿

grid,
✿✿✿✿

and
✿✿✿

the properties of the fluid parcels (in the ocean setting, temperature, salinity, and

horizontal velocity) at the beginning of the time step
✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

timestep
✿✿✿

(on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿

grid) are found by interpolating

these values from their gridded locations
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

previous-step,
✿✿✿✿✿✿✿

gridded
✿✿✿✿✿

values
✿

to the origin point of the
✿✿✿

each
✿✿✿✿✿✿✿

parcel’s
✿

trajectory.

This method provides an implicit treatment of advection, allowing timesteps with CFL
✿✿✿✿✿✿✿✿

advective
✿✿✿✿✿✿✿

Courant numbers greater than90

those allowable under wholly explicitmethods
✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿

permitted
✿✿

by
✿✿✿✿✿✿✿

explicit,
✿✿✿✿✿✿✿✿✿✿✿✿

Eulerian-form
✿✿✿✿✿✿

models.

✿✿

In
✿✿✿

this
✿✿✿✿✿

work,
✿✿✿

we
✿✿✿✿✿✿✿

describe
✿✿✿✿

the
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿

routine
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

NEMO-OPA,
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Smith et al. (2018)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿

uses
✿✿

a
✿✿✿✿✿

linear
✿✿✿

free
✿✿✿✿✿✿✿

surface
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

move

✿✿

in
✿✿✿✿

time,
✿✿✿

but
✿✿✿

we
✿✿✿✿✿✿

believe
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

described
✿✿✿✿✿✿

method
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

generalized.
✿

1.2 Existing work95

This technique is standard in atmospheric models (Robert, 1982), but it is not widely applied to the ocean.

In the atmosphere,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿

is
✿

a
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

technique
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Robert, 1982)
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

implicit
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿✿✿✿✿✿

advection,

✿✿✿

but especially at large scales , the effects of topography are relatively gentle, and
✿

.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular, trajectory calculations can pro-

ceed under the assumption that the fluid parcel experiences relatively little acceleration. This assumption is more significantly

broken by the irregular bathymetry and coastline of the ocean
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿✿

experience
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

boundary-related
✿✿✿✿✿✿✿✿✿✿✿

acceleration.
✿✿

In
✿✿✿

the100

✿✿✿✿✿

ocean
✿✿✿✿✿✿

domain
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿

is
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

violated,
✿✿✿✿✿✿✿✿✿✿

particularly
✿✿

for
✿✿✿✿✿✿

z-level
✿✿✿✿✿✿✿

vertical
✿✿✿✿

grids
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

bathymetry
✿✿✿✿✿✿✿

changes
✿✿✿✿✿✿✿

abruptly

✿

at
✿✿✿✿✿✿

lateral
✿✿✿

cell
✿✿✿✿✿✿✿✿✿✿

boundaries.

Some attempts have been made previously to incorporate semi-Lagrangian advection into the ocean context. The work

of Casulli and Cheng (1992), which is used as part of the ELCOM lake and estuary model (Hodges and Dallimore, 2006),

calculates parcel trajectories via a substepping approach, where fluid parcel trajectories are integrated via an explicit Euler105

method over many short steps per model timestep. The two-dimensional, unstructured shallow water model of Walters et al.

(2007) takes a similar approach, where it also must take at least one substep per element boundary traversed by a fluid parcel.

In this work, we overcome this difficulty with an iterative trajectory calculation which reduces in the limit to an implicit

trapezoidal rule. In addition, we also derive the semi-Lagrangian advection scheme in a form which calculates effective advec-

tive tendencies, such that the advection routine can operate as a “plug-in” scheme for models which traditionally use Eulerian110

fluxes. We apply this to the NEMO-OPA model, and we believe this algorithm may be useful when applied to other ocean

models with a structured grid.

✿✿

In
✿✿✿✿✿✿✿✿

exchange,
✿✿✿✿✿✿✿✿

however,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿✿✿✿✿✿

departs
✿✿✿✿

from
✿✿✿✿✿✿✿✿

NEMO’s
✿✿✿✿✿✿✿✿✿✿✿✿

finite-volume
✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿✿

of

✿✿

its
✿✿✿✿✿

tracer
✿✿✿✿

and
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿✿

components.
✿✿

By
✿✿✿✿✿✿✿

tracing
✿✿✿✿✿✿✿✿✿✿

infinitesimal
✿✿✿✿✿

fluid
✿✿✿✿✿✿

parcels,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿

treats
✿✿✿✿✿✿✿✿

gridpoint
✿✿✿✿✿✿

values

✿✿✿✿✿✿✿✿✿✿

analogously
✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-difference
✿✿✿✿✿✿✿

method,
✿✿✿

and
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿✿✿

consequence
✿✿✿

the
✿✿✿✿✿✿✿

scheme
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿

naturally
✿✿✿✿

offer
✿✿✿✿✿✿✿✿✿✿✿

conservation
✿✿✿✿✿✿✿✿✿✿

guarantees.115

✿✿✿✿

This
✿

is
✿✿✿✿

not
✿

a
✿✿✿✿✿✿✿

primary
✿✿✿✿✿✿✿

concern
✿✿✿

for
✿✿✿

the
✿✿✿✿

short
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

medium-term
✿✿✿✿✿✿✿✿✿✿

forecasting
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿

that
✿✿✿✿✿

form
✿✿✿

the
✿✿✿✿✿

direct
✿✿✿✿✿

target
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿

work,

✿✿✿

but
✿✿✿✿✿✿✿✿

extensions
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿

scheme
✿✿

to
✿✿✿✿✿✿

ensure
✿✿✿✿✿✿✿✿✿✿

conservation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lauritzen, 2007)
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿

needed
✿✿✿✿✿✿

before
✿✿✿

the
✿✿✿✿✿✿✿✿

technique
✿✿

is

✿✿✿✿✿✿✿✿

applicable
✿✿

to
✿✿✿✿✿✿✿✿✿✿

longer-term
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿✿

simulations.

✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Leclair and Madec (2011)
✿✿✿

has
✿✿✿✿✿✿✿✿

developed
✿✿✿

an
✿✿✿✿✿✿✿✿

“arbitrary
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Lagrangian-Eulerian”
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿

scheme,
✿✿✿✿✿✿✿✿✿✿

implemented

✿✿

in
✿✿✿✿✿

recent
✿✿✿✿✿✿✿

versions
✿✿

of
✿✿✿✿✿✿✿

NEMO.
✿✿✿✿

This
✿✿✿✿✿✿

scheme
✿✿✿✿✿

splits
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

motions
✿✿✿✿

into
✿✿✿

fast
✿✿✿✿✿

(high
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

frequency)
✿✿✿

and
✿✿✿✿

slow
✿✿✿✿✿✿✿

motions,
✿✿✿✿

and
✿✿✿

the120
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✿✿✿✿✿

former
✿✿✿

are
✿✿✿✿✿✿

treated
✿✿✿

by
✿✿✿✿✿✿✿✿✿

co-moving
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿

surfaces
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿

regridding
✿✿✿✿

step.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿

system
✿✿✿✿✿✿

reduces
✿✿✿✿✿✿✿✿

spurious

✿✿✿✿✿✿✿✿

diapycnal
✿✿✿✿✿✿

mixing
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

high-frequency
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

motions,
✿✿✿

but
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿

motions
✿✿

is
✿✿✿✿✿

likely
✿✿✿

to

✿✿✿✿

allow
✿✿✿

for
✿✿

a
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

vertical.

1.3 Organization

We first introduce the time discretization of the semi-Lagrangian scheme in section 2, in order to develop a formulation that125

remains compatible with the common leapfrog scheme. In section 3, we begin to spatially discretize the semi-Lagrangian

scheme by specifying the horizontal and vertical interpolation operators, and in section 4 we complete the discretization by

defining the trajectory calculations. We present preliminary numerical examples in section 5, demonstrating the stability of the

advection scheme.

2 Time discretization130

The first requirement of a semi-Lagrangian advection scheme for the NEMO-OPA model is that it be consistent with the

model’s overall timestepping approach: the advection scheme is but one component of the full model.

In version 3 of NEMO-OPA, non-diffusive, non-damping processes such as advection are implemented via the leapfrog

scheme (Mesinger and Arakawa, 1976), where at each timestep a field f receives its new value at f t0+∆t
✿✿

fA
✿✿✿

(f
✿✿✿✿✿✿

“after”
✿✿✿

the

✿✿✿✿✿✿✿

timestep)
✿

based on its value at the previous timestep and forcing terms,
✿✿✿✿✿✿

which
✿✿

are
✿✿✿

all
✿✿✿✿✿✿✿✿

evaluated
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

grid
✿✿✿✿

xref . This135

gives a schematic of:

f t0+∆tA
✿

(xref
✿✿

) = f t0−∆tB
✿

(xref
✿✿

)+ 2∆t·RHSEfF
✿

(xref
✿✿

), (1)

where RHSEf (Eulerian right-hand side)generally stands in for both true forcing terms (such as heating or evaporation)as well

as time-tendency terms from the transport and momentum equations. For advective processes
✿✿

fA
✿✿

is
✿✿✿

the
✿✿✿✿

field
✿✿✿✿✿✿✿✿✿

calculated
✿✿

at
✿✿✿✿

time

✿✿✿✿✿✿✿

t0 +∆t,
✿✿✿

fB
✿✿

is
✿✿✿

the
✿✿✿✿

field
✿✿✿✿✿✿✿✿

evaluated
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

known
✿✿✿✿

prior
✿✿✿✿

time
✿✿✿✿✿✿✿

t0−∆t
✿✿✿✿✿✿✿✿✿

(“before”),
✿✿✿

fN
✿✿

is
✿✿✿

the
✿✿✿✿

field
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

provided
✿✿✿✿

time
✿✿

t0
✿✿✿✿✿✿✿✿

(“now”),140

✿✿✿

and
✿✿

F
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿

operator.
✿✿✿✿

The
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿✿✿

advective
✿✿✿✿✿✿✿✿

processes
✿✿

at
✿

the RHSE terms arising from tracer and

momentum flux are evaluated at the current
✿✿✿✿✿

“now” time-level, whereas RHSE terms arising from
✿✿

but
✿

diffusive, damping, and

hydrostatic pressure may
✿✿✿✿✿

terms
✿✿✿✿✿

might
✿

be evaluated at either the previous or new
✿✿✿✿✿✿✿

“before”
✿✿

or
✿✿✿✿✿✿

“after”
✿

time-levels.

This is an Eulerian approach to fluid motion, where tracer and momentum values are tracked at specific locations (namely

the grid points) over time
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿

fixed
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

grid
✿✿

at
✿✿

all
✿✿✿✿✿

times, and fluid flows through this grid.145

2.1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Semi-Lagrangian
✿✿✿✿✿✿✿✿✿

advection

In contrast, the semi-Lagrangian advection scheme considers
✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿✿

schemes
✿✿✿✿✿✿✿

consider the fluid parcel to be the

fundamental unit of discretization. In this perspective, if f is a property of a fluid parcel that is conserved along a trajectory1,

1This is true for temperature, salinity, and momentum provided the ocean is treated as an incompressible fluid. This assumption is satisfied by NEMO-OPA’s

adoption of the Boussinesq approximation.
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it satisfies the continuous equations:

D

Dt
f(x(t)) = RHSLfFL

✿✿

(x(t)), (2)150

where D
Dt = ∂t +u · ∇ is the material derivative and RHSLf

✿✿✿

FL
✿

(Lagrangian right-hand side) contains all the same forcing

terms as RHSE
✿✿

F except those arising from tracer and momentum flux, which are included inside the material derivative.

Ordinarily, (2) is discretized so that RHSLf
✿✿✿

FL is evaluated following the Lagrangian particles . One such approach is the

semi-implicit
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿

frame
✿✿✿✿✿

x(t),
✿✿✿✿✿✿✿✿

satisfying
✿✿✿

the
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿

equation:
✿

D

Dt
x(t) = u(x(t)).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)155

✿✿✿✿

From
✿✿✿

an
✿✿✿✿✿✿✿

Eulerian
✿✿✿✿

point
✿✿

of
✿✿✿✿✿

view, (3)
✿

is
✿✿

a
✿✿✿✿✿

trivial
✿✿✿✿✿✿

identity
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

definition
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

material
✿✿✿✿✿✿✿✿✿

derivative,
✿✿✿

but
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Lagrangian

✿✿✿✿

point
✿✿

of
✿✿✿✿✿

view (3)
✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿

solved
✿✿

to
✿✿✿✿✿

define
✿✿

x
✿✿✿✿

over
✿✿✿✿✿

time.

✿✿✿

One
✿✿✿✿✿✿✿✿✿

technique
✿✿✿

for
✿✿✿✿✿✿

solving
✿

(2)
✿✿✿

and
✿

(3)
✿

is
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿

time-level
✿✿✿✿✿✿

implicit
✿

semi-Lagrangian (SISL) method
✿✿✿✿✿✿✿

method,
✿

used in the

GEM atmospheric model (Girard et al., 2014) among others, where the RHSL
✿

.
✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿

FL terms are evaluated using
✿✿✿

with
✿

a

trapezoidal ruleto give:160

f t0+∆t(x(t0 +∆t)) = f t0(x(t))+
∆t

2

(

RHSLt0+∆t
f (x(t0 +∆t))+RHSLt0

f (x(t))
)

,

✿

,
✿✿✿✿✿✿✿✿✿

discretizing
✿

(2)
✿✿✿

and (3)
✿✿

as:
✿

fA(xref )
✿✿✿✿✿✿✿

= fN (xD)+
∆t

2

(

F
A
L(xref )+F

N
L (xD)

)

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4a)

xref
✿✿✿

= x
D +

∆t

2

(

u
A(xref )+u

N (xD)
)

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4b)

where x(t0 +∆t) is constrained to be coincident with the computational grid (abbreviated as the unadorned x in the subsequent)165

and x(t) is solved for iteratively
✿✿✿

The
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿

equation (4b)
✿✿✿

acts
✿✿

to
✿✿✿✿✿✿✿✿✿

implicitly
✿✿✿✿✿

define
✿✿✿

the
✿✿✿✿

paths
✿✿✿

of
✿✿

the
✿✿✿✿✿✿

traced
✿✿✿✿

fluid
✿✿✿✿✿✿

parcels,
✿✿✿✿✿✿

where

✿✿✿✿

each
✿✿✿✿✿✿✿

location
✿✿

on
✿✿✿✿✿

xref
✿✿

is
✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿✿✿✿✿

departure-point
✿✿✿✿✿✿✿

location
✿✿✿✿

x
D.

✿✿✿✿

Over
✿✿✿

the
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿

timestep,
✿✿✿✿✿

fluid
✿✿✿✿✿✿

parcels

✿✿✿✿✿

depart
✿✿✿✿

from
✿✿✿✿

x
D

✿✿✿✿✿✿

(which
✿✿

in
✿✿✿✿✿✿

general
✿✿

is
✿✿✿

not
✿✿✿✿✿✿

aligned
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

grid)
✿✿✿

and
✿✿✿✿✿

arrive
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿

grid.

The difference between and is more than just cosmetic.The forcingterms in are evaluated
✿✿✿✿

This off-grideither directly or via

interpolation, and doing so inside
✿

,
✿✿✿✿✿✿✿✿

departure
✿✿✿✿

point
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿

u
✿✿✿

and
✿✿✿

FL
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿

to
✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian170

✿✿✿✿✿✿✿

methods,
✿✿✿✿

and
✿✿✿✿✿✿✿

fN (xD)
✿✿✿✿✿✿✿✿✿

(FN
L (xD))

✿✿✿

can
✿✿

be
✿✿✿✿✿✿

written
✿✿✿✿✿

more
✿✿✿✿✿✿

simply
✿✿

as
✿✿✿

fD
✿✿✿✿

(FD
L )

✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“departure-point
✿

f
✿✿✿✿✿

(F).”
✿✿✿✿✿✿

Neither
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

time-implicit

✿✿✿✿✿✿✿✿✿

evaluations
✿✿✿✿✿✿✿✿✿

(generally)
✿✿✿

nor
✿✿✿

the
✿✿✿✿✿✿✿

off-grid
✿✿✿✿✿✿✿✿✿

evaluations
✿✿✿

(of
✿✿✿✿✿✿✿✿✿✿✿✿

non-advective
✿✿✿✿✿✿

forcing)
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

compatible
✿✿✿✿

with
✿✿

the
✿✿✿✿

core
✿✿✿✿✿✿✿✿

structure
✿✿

of NEMO-

OPAwould be incompatible with its core structure , which considers advection to be just one of many operators that influences

the RHSE term in
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿

operators
✿✿✿✿✿✿✿✿✿

influencing
✿✿✿

the
✿✿

F
✿✿✿✿

term
✿✿✿

of (1).

To reconcile these differences, the175

2.2
✿✿✿✿✿✿✿✿✿✿✿✿

Reconciliation
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✿✿✿✿✿✿✿✿✿✿✿

Implementing
✿

semi-Lagrangian method described in this work adopts
✿✿✿✿✿✿✿✿

advection
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

NEMO-OPA
✿✿✿✿✿✿✿

requires
✿✿✿✿✿✿✿

adopting
✿

as much of

the framing
✿✿✿✿✿✿✿✿✿

framework of (1) as possible, including evaluating the forcing terms strictly on-grid. To adapt
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿

changing

✿✿

the
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

non-advective
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

terms.
✿✿✿✿✿✿✿✿✿✿

Effectively,
✿

the semi-Lagrangian method to thisframework
✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

routine

✿✿✿✿

must
✿✿✿✿✿✿✿✿✿

ultimately
✿✿✿✿✿

supply
✿✿

a
✿✿✿✿✿✿✿✿✿

time-trend
✿✿✿✿

that,
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

perspective
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

leapfrog
✿✿✿✿✿✿✿✿

timestep
✿✿✿✿✿✿✿✿✿

algorithm,
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

indistinguishable
✿✿✿✿

from
✿✿

a180

✿✿✿✿✿✿✿✿✿✿

conventional
✿✿✿✿✿✿✿✿

flux-form
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿✿

operator.
✿

✿✿

To
✿✿✿✿✿

effect
✿✿✿✿

this, consider (2) without forcing terms (RHSL = 0)over the interval t0−∆t to t0 +∆t
✿✿✿✿✿✿✿

FL = 0). The function f

is preserved following the flow, so this gives :
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

simply-written:
✿

D

Dt
fA
✿✿

= 0t0+∆t((t0 +∆t)) =t0−∆t((t0−∆t))fD
✿✿

. (5)

Equating
✿✿✿

This
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿

by
✿✿✿✿✿✿

taking
✿✿✿

one
✿✿✿✿✿✿✿✿

timestep
✿✿

of
✿

(1)
✿✿✿✿

(with
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

advective
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

Fadv),
✿✿✿

but
✿✿✿✿

the
✿✿✿✿

latter
✿✿✿✿✿✿✿✿

involves185

✿✿✿✿✿✿✿✿✿

integrating
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿

interval
✿✿✿✿

from
✿✿✿✿✿✿✿

t0−∆t
✿✿

to
✿✿✿✿✿✿✿

t0 +∆t.
✿✿✿✿✿

Thus,
✿✿✿

we
✿✿✿✿✿✿

should
✿✿✿✿✿✿

identify
✿✿✿✿

fD
✿✿✿✿

(and
✿✿✿

the
✿✿✿✿✿✿✿✿

departure
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿

generally)

✿✿✿

not
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

“now”
✿✿✿✿✿✿✿✿✿

time-level
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

leapfrog
✿✿✿✿✿✿✿

scheme,
✿✿✿

but
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

“before”
✿✿✿✿✿✿✿✿✿

time-level.
✿✿✿✿✿✿

Doing
✿✿

so
✿✿✿✿

and
✿✿✿✿✿✿✿

equating (5) and , noting

that x in corresponds x(t0 +∆t) in , gives: (1)
✿✿✿✿✿

gives:

f t0+∆t((t0 +∆t))A
✿

= f t0−∆t((t0
B
✿

+∆t))+2∆t·RHSf,adv((t0 +∆t))Fadv
✿✿✿✿

= f t0−∆tB
✿

(x(t0−∆tD
✿

)), or
✿✿

(6)

RHSf,adv()Fadv
✿✿✿✿

=
1

2∆t
f t0−∆t((tfB

✿✿

−∆t))−f t0−∆tB
✿

(x(t0 +∆tD
✿

)),. (7)190

which defines the advective forcing term RHSf,adv that, in the context of the leapfrog method, emulates the behaviour of

semi-Lagrangian advection.

Equation forms the fundamental equation for this work, and the subsequent focuses on the interpolations necessary to

approximate x(t0−∆t) and f(x(t0−∆t)). Importantly, the effects of the Earth’s curvature and the curvilinear grid used

are not included in this equation, even when (7)
✿

is
✿✿✿✿✿✿✿✿✿✿✿

prescriptive,
✿✿✿

and
✿✿

it
✿✿✿✿✿

gives
✿✿✿

the
✿✿✿✿✿✿✿✿✿

necessary
✿✿✿✿

trend
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

leapfrog
✿✿✿✿✿✿✿✿✿

algorithm.195

✿✿✿✿✿✿✿✿✿

Evaluating
✿

it
✿✿✿✿✿✿✿

requires
✿

f assumes the role of the u or v components of velocity.
✿✿✿

only
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

already-known
✿✿✿✿✿✿✿

“before”
✿✿✿✿✿✿✿✿✿

time-level

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

departure
✿✿✿✿✿✿

points
✿✿✿✿

x
D.

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

calculation
✿✿

is
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿

by
✿✿✿✿✿✿

basing
✿✿✿

the
✿✿✿✿✿✿✿✿✿

departure
✿✿✿✿✿✿

points
✿✿

on
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

time-centered
✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

u
N ,

✿✿✿

and
✿✿✿

the
✿✿✿✿✿

exact
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿

more
✿✿✿✿✿

detail
✿✿

in
✿✿✿✿✿✿

section
✿✿

4.

2.3
✿✿✿✿✿

Effects
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Asselin
✿✿✿✿✿

filter

✿✿

To
✿✿✿✿✿✿✿

prevent
✿✿✿✿✿✿✿✿✿

decoupling
✿✿✿

of
✿✿✿

odd
✿✿✿✿

and
✿✿✿✿

even
✿✿✿✿✿✿✿✿

timesteps
✿✿✿✿✿✿✿✿✿

(damping
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿

mode),
✿

NEMO-OPA separately includes the200

effects of planetary vorticity andof the coordinate metric in the governing equations,
✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿✿

configured
✿✿

to
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿

Asselin

✿✿✿✿

time
✿✿✿✿

filter
✿✿✿✿✿✿✿✿✿✿✿✿

(Asselin, 1972)
✿

,
✿✿✿✿✿

which
✿✿✿✿

adds
✿✿

a
✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿✿

time-damping
✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿✿✿✿✿

∂2

∂t2 f .
✿✿✿✿✿

Using
✿✿✿

the
✿✿✿✿✿✿✿

notation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shchepetkin and McWilliams (2005)
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✿✿✿✿✿✿

adapted
✿✿

to
✿

(1)
✿

,
✿✿✿

the
✿✿✿✿

filter
✿✿✿✿✿✿

extends
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

time-marching
✿✿✿✿✿✿

scheme
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

sequence:

fA∗

✿✿✿

← fB +2∆tFN∗

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8a)

fN
✿✿

← ǫfA∗ +(1− 2ǫ)fN∗ + ǫfB
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8b)205

fN∗

✿✿✿

← fA∗

✿✿✿✿✿

(8c)

fB
✿✿

← fN
✿✿✿✿✿

(8d)

✿✿✿✿✿✿✿

Equation
✿

(8a)
✿

is
✿✿✿

the
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

of
✿

(1)
✿

,
✿✿✿✿✿✿✿

creating
✿

a
✿✿✿✿✿✿✿✿✿✿

provisional
✿✿✿✿✿✿

“after”
✿✿✿✿✿

value
✿✿✿✿

fA∗.
✿✿✿✿✿✿✿✿

Equation (8b)
✿✿✿✿✿✿

applies
✿✿✿

the
✿✿✿✿

filter
✿✿✿✿✿

(with
✿✿

a

✿✿✿✿✿✿

strength
✿✿✿✿✿✿✿✿✿

parameter
✿✿

ǫ)
✿✿✿✿

with
✿✿✿

this
✿✿✿✿✿

value
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

previous
✿✿✿✿✿

step’s
✿✿✿✿✿✿✿✿✿✿

provisional
✿✿✿✿

field
✿✿

to
✿✿✿✿✿

define
✿✿

a
✿✿✿✿

final
✿✿✿✿✿

“now”
✿✿✿✿✿

field,
✿✿✿

and
✿✿✿✿✿✿

finally
✿✿✿✿✿✿✿✿

equations

(8c) and including those pseudo-forces inside would double-count these effects(8d)
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

“bookkeeping”
✿✿✿✿✿

steps
✿✿

to
✿✿✿✿

shift
✿✿✿✿

field
✿✿✿✿✿

labels210

✿✿

to
✿✿✿✿✿✿

become
✿✿✿✿✿

ready
✿✿✿

for
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿✿

timestep.
✿✿✿

The
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

operator
✿✿✿✿

F
N∗

✿✿

is
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

provisionally-defined
✿✿✿✿✿

fields.
✿

✿✿

In
✿✿✿✿✿✿✿

applying
✿✿✿

this
✿✿✿✿✿

filter
✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿

forcing,
✿✿✿✿✿✿✿

equation
✿

(7)
✿

is
✿✿✿✿✿✿✿✿

oblivious
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿

the
✿✿✿✿

filter
✿✿

or
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference

✿✿✿✿✿✿✿

between
✿✿✿

fN
✿✿✿

and
✿✿✿✿✿

fN∗.
✿✿✿✿✿✿✿✿✿✿

Substituting (7)
✿✿✿

into
✿

(8a)
✿✿✿

and
✿✿✿✿✿✿✿

applying
✿

(8c)
✿✿✿

and
✿

(8d)
✿✿

to
✿

(8a)
✿✿✿

and
✿

(8b)
✿✿✿✿✿

gives
✿✿✿

the
✿✿✿✿✿

update
✿✿✿✿✿✿✿✿

equation:
✿





fN∗

fB



←





fB(xD)

ǫ(fB(xD)+ fB(xref ))+ (1− 2ǫ)fN∗(xref )



 .

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(9)

✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

one-dimensional
✿✿✿✿✿✿✿✿

advection
✿✿

by
✿✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿

velocity
✿✿✿

u0,
✿✿✿

the
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿✿

calculation
✿✿

is
✿✿✿✿✿

trivial
✿✿✿✿

and:
✿

215

x
D = xD = xref − 2∆tu0.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)

✿✿✿✿

Since
✿

(9)
✿

is
✿✿✿✿✿✿

linear,
✿✿

we
✿✿✿✿

can
✿✿✿

also
✿✿✿✿

take
✿✿

its
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿

in
✿✿✿✿✿

space
✿✿✿

and
✿✿✿✿✿✿✿✿

consider
✿✿✿✿

only
✿

a
✿✿✿✿✿✿

single,
✿✿✿✿✿✿✿

arbitrary
✿✿✿✿✿

wave
✿✿✿✿✿

mode,
✿✿✿✿✿✿

giving

✿✿✿✿✿✿✿✿✿✿✿✿✿

f = f̂(t)exp ikx
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿✿✿✿

time-varying
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿

f̂ .
✿✿✿✿✿✿✿✿

Applying
✿✿✿

this
✿✿

to
✿

(9)
✿✿✿✿

casts
✿✿✿

the
✿✿✿✿✿✿

update
✿✿

in
✿✿

a
✿✿✿✿✿

matrix
✿✿✿✿✿

form
✿✿

as:
✿





f̂N∗

f̂B



←





0 exp(−2iku0∆t)
1− 2ǫ ǫ(1+ exp(−2iku0∆t))









f̂N∗

f̂B



 .

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

time-stability
✿✿✿

of
✿✿✿

this
✿✿✿✿

filter
✿✿

is
✿✿✿✿

then
✿✿✿✿✿✿✿✿

governed
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿

matrix.
✿✿✿✿✿✿

Using
✿✿✿

the
✿✿✿✿✿✿✿✿

shorthand
✿✿✿✿✿✿✿✿✿✿✿✿

ω =−ku0∆t,
✿✿✿✿✿

these220

✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿✿

are:

λ1,2 =
1

2

(

ǫ(1+ exp(2iω))±
√

ǫ2(1+ exp(2iω))2 +(4− 8ǫ)exp(2iω)
)

,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(12)

✿✿✿

and
✿✿

to
✿✿✿✿✿✿

leading
✿✿✿✿✿

order
✿✿

in
✿

ǫ
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿✿

have
✿✿✿✿✿✿✿

squared
✿✿✿✿✿✿✿✿✿

magnitudes
✿✿✿

of:
✿

|λ1,2|2 = 1− 2ǫ± 2ǫcos(ω)+O(ǫ2),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(13)

✿✿✿✿✿✿✿✿

signifying
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿✿

(|λ| ≤ 1)
✿✿

for
✿✿✿

all
✿✿✿✿✿✿

values
✿✿

of
✿

ω
✿✿✿✿

and
✿✿✿✿

thus
✿✿

all
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿✿

numbers.225
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3 Interpolation

To perform the off-grid interpolations in to find f(x(t0−∆t)) (abbreviated f(xd))(7)
✿✿

to
✿✿✿

find
✿✿✿✿✿✿✿

fB(xD), this method fits a cubic

polynomial to the underlying function. If
✿✿✿

the
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿

departure
✿✿✿✿✿

point
✿

xd = (xd,yd, zd) lies within2 (xa,xa+1)× (yb,yb+1)×
(zc, zc+1) for integer values of a, b, and c coinciding with grid-point locations, the full interpolation stencil consists of the

grid-index cube i ∈ [a− 1,a+2], j ∈ [b− 1, b+2] and k ∈ [c− 1, c+2].230

This grid-cube contains up to 64 grid points where f(x) might be defined (subject to boundary conditions), and building a

complete interpolation stencil would be cumbersome and inefficient. Instead, the interpolation procedure takes advantage of

the tensor-product nature of the grid to separate interpolation along each dimension:

Algorithm 1. Three-dimensional interpolation. To find f(xd,yd, zd) for some off-grid point (xd,yd, zd):

1. Interpolate f(x) in the vertical to the location [xi,yj , zd], for i ∈ [a− 1,a+2] and j ∈ [b− 1, b+2]235

2. Interpolate along the first dimension in this two-dimensional grid to give f(xd,yj , zd), for j ∈ [b− 1, b+2].

3. Finally, interpolate along the second dimension to give f(xd,yd, zd).

To effect the one-dimensional interpolations in algorithm 1, we make use of the cubic Hermite polynomials (Hildebrand,

1974). On the interval 0≤ χ≤ 1, these polynomials are:

h00(χ) = 2χ3− 3χ2 +1,

h01(χ) =−2χ3 +3χ2,

h10(χ) = χ3− 2χ2 +χ, and

h01(χ) = χ3−χ2,

(14)240

and a function f(χ) defined on this interval is interpolated via:

f(χ)≈ f(0)h00(χ)+ f ′(0)h10(χ)+ f(1)h01(χ)+ f ′(1)h11(χ). (15)

Here, we prefer to use the cubic Hermite polynomials over simple Lagrange polynomial interpolation because the former

choice allows greater freedom (via (15)) in implementation. If f ′ is approximated by a four-point finite difference stencil,

then (15) reduces to Lagrange interpolation. However, we can also make other choices for f ′ to impose desirable properties:245

restricting f ′ to have the same sign as the discrete difference imposes a type of slope limiting, and calculating f ′ through a

three-point stencil provides for continuous derivatives. These approaches are discussed in more detail in the following sections.

Interpolation using the above algorithm involves appropriately defining the interval to be scaled to [0,1] and approximating

f ′ at the endpoints. Because of the high aspect ratio of oceanic flows and the special character of vertical motion in a stratified

ocean, these approximations differ between the horizontal and vertical interpolations.250

2If xd lies along an edge or corner of this interval, then at least one of the resulting interpolations will be trivial. In that case, the choice of which

neighbouring interval xd lies “within” is arbitrary.
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3.1 Horizontal interpolation

In the horizontal, the interpolation in (15) can be directly conducted in grid-index space. Even when the underlying grid is

mapped to the sphere, such as in the ORCA global grid (Madec, 2008, Ch. 16), the grid generally transitions smoothly and

slowly from point to point3. The physical trajectory departure location xd (and yd) can be translated into a fractional grid index

offset by dividing by the appropriate grid scale factor, available inside the NEMO-OPA source code as one of e[12][tuv].255

Achieving third-order accuracy inside (15) is possible, but doing so requires an equally-accurate estimate for f ′. Unfortu-

nately, interpolating successively in 1D
✿✿✿

one
✿✿✿✿✿✿✿✿✿

dimension
✿

using the above algorithm does not allow for precomputation of these

derivatives: after the vertical interpolation step, all of the function values need to be taken off-grid, so any precomputed deriva-

tives would themselves require interpolation. Instead, sufficiently-accurate estimates of the derivative are available by applying

a finite-difference formula to the function values themselves.260

Derivative estimates

For notational simplicity, begin with the last step of the above algorithm where we have f(xd,yj , zd) and would like to estimate

f(xd,yd, zd). If yd lies between y0 and y1, then the four-point interpolation stencil implies that we have computed f(xd,yj , zd)

for j =−1,0,1,2. To emphasize that this is now a one-dimensional interpolation problem, let g(j) = f(xd,yj , zd), such that

f(xd,yd, zd) = g(j′) for some j′ ∈ [0,1]. In this domain, g′(0) and g′(1) can be approximated by the finite differences:265

g′(0)≈−1

3
g(−1)− 1

2
g(0)+ g(1)− 1

6
g(2) and (16a)

g′(1)≈ 1

6
g(−1)− g(0)+

1

2
g(1)+

1

3
g(2), (16b)

which then substitute for the appropriate derivatives in (15).

These finite differences are exact expressions for the first derivative for polynomials up to third order in j, and their use

essentially converts (15) to interpolation via Lagrange polynomials. The Hermite polynomial form, however, allows for an270

easier imposition of boundary conditions.

Boundary conditions

On the NEMO-OPA z-level grid, the lateral boundaries coincide with u- and v-points (velocity points), which are spaced

halfway between t-points (tracer points). Tracer points that lie inside the land region are masked (tmask= 0) as are velocity

points that are at the edge of or within the masked region. This arrangement is illustrated for a sample region in figure 2.275

The physical interpretation of the boundary varies with respect to the field being interpolated. For tracers, lateral boundaries

imply no-flux conditions for the purposes of advection, which in turn implies a zero derivative at the boundary. The normal

velocity (u with respect to a boundary along the first grid dimension, v with respect to a grid boundary along the second) is

obviously constrained to zero by geometry to give a Dirichlet boundary condition, whereas the tangential velocity can be set as

3This is not necessarily the case, however, for grids that have manually-specified, non-smooth regions of enhanced resolution. In such cases a more nuanced

treatment of interpolation would be advisable.

11



61.0 60.5 60.0 59.5 59.0
Longitude

46.0

46.5

47.0

47.5

La
tit

ud
e t

t
t
t
t
t

t
t
t
t
t

t
t

t
t
t
t
t
t

t

t
t
t
t
t
t
t
t
t
t

t
t
t
t
t
t
t
t
t
t
t
t
t

t
t
t
t
t
t
t
t
t
t
t
t
t

t
t
t
t
t
t
t
t
t
t
t
t
t

t
t
t
t
t
t
t
t
t
t
t

u
u
u
u
u

u
u
u
u
u

u
u

u
u
u
u
u
u

u

u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u

v
v
v
v
v

v
v
v
v

v

v
v
v
v
v

v
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v
v
v

Grid staggering

Figure 2. Grid point locations (letters) and land region (grey region) for a sample horizontal plane in the Gulf of Saint Lawrence, between

Nova Scotia and New Brunswick. The horizontal velocities (u and v) are staggered with respect to temperature and salinity (t), and the edge

of the land area is coincident with the lines between velocity-point locations.

free-slip, no-slip, or some combination via a namelist entry. In the subsequent, we assume that velocity has a free-slip boundary280

condition, with boundary friction left for future work.

If a boundary occurs in the left portion of this interpolation stencil, there are a total of seven possible cases:

Algorithm 2. Lateral boundary conditions

To find g(j′) for 0≤ j′ ≤ 1 in the vicinity of a lateral boundary:

1. If g(−1) corresponds to a point at the boundary and the boundary is of the Dirichlet-type, then g(−1) = 0 and (16a)285

and (15) apply normally.

2. If g(−1) is inside the boundary, g(0) is inside the fluid domain (that is, the boundary is between these two points), and

the boundary is of the Neumann-type, then g(−1) is taken to be equal to g(0), essentially making it a ghost point.
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3. If g(−1) is inside the boundary, g(0) is inside the fluid domain, and the boundary is of the Dirichlet-type, then g(−1) is

taken to be −g(0).290

4. If g(0) is at the boundary and the boundary is of the Dirichlet-type, then g(0) = 0 and g(−1) =−g(1).

5. If g(0) is inside the boundary and j′ < 0.5, then the interpolated point is itself inside the boundary and should be masked.

6. If g(0) is inside the boundary, j′ > 0.5, and the boundary is of the Neumann-type, then g(0) = g(1) and g(−1) = g(2).

7. If g(0) is inside the boundary, j′ > 0.5, and the boundary is of the Dirichlet-type, then g(0) =−g(1) and g(−1) =
−g(2).295

For boundaries that occur in the right portion of the interpolation stencil, the values taken for ghost points are given sym-

metrically.

The combination of “the grid point is at the boundary” and “the boundary is of Neumann-type” is missing from algorithm

2. This construction is forbidden by the grid structure of NEMO-OPA, where tangential velocity is located one half-cell away

from a boundary.300

✿✿✿

For
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

dimensional
✿✿✿✿✿✿✿✿✿✿✿

interpolation,
✿✿✿✿✿✿✿✿

algorithm
✿✿

2
✿✿✿✿✿✿

applies
✿✿✿✿✿✿✿✿✿✿✿✿

independently
✿✿

to
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

dimension.
✿✿✿✿✿✿

When
✿✿✿✿✿✿✿✿✿✿

interpolating
✿✿✿✿✿

along
✿✿✿

x,
✿✿✿

the

✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿✿✿

f(xd,yj , zd)
✿✿✿

will
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿

individually
✿✿

be
✿✿✿✿✿

either
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿✿✿

domain
✿✿✿✿

and
✿✿✿✿

valid
✿✿✿

or
✿✿

in
✿✿✿

the
✿✿✿✿

land
✿✿✿✿✿✿✿

domain
✿✿✿

and
✿✿✿✿✿✿✿

masked,
✿✿✿✿✿✿

which

✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿

necessary
✿✿

to
✿✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿✿✿✿✿✿

f(xd,yd, zd).
✿✿✿✿

This
✿✿✿✿✿✿✿

off-grid
✿✿✿✿✿

point
✿✿✿✿✿

itself
✿✿✿✿

must
✿✿✿

lie
✿✿

in
✿✿✿✿✿✿

water,
✿✿✿✿✿

which
✿✿✿✿✿✿✿

imposes
✿✿

a
✿✿✿✿✿✿

strong

✿✿✿✿✿✿✿✿✿✿

requirement
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿

section
✿✿

4.
✿

Slope limiting305

As a final step, once values for the function and its derivative at the interval endpoints are specified, the derivative values are

limited to help prevent new maxima in the interpolated function. In particular, if g(0) is a local minimum (maximum) among

itself, g(−1), and g(1), then g′(0) is set to zero if the above procedure finds that it would be negative (positive). A similar

procedure applies symmetrically for g′(1) if g(1) is a relative extremum.

This limiting is milder than methods derived from Bermejo and Staniforth (1992), which would strictly preserve positivity310

for any j′, but it effectively limits excursions when j′ is close to 0 or 1. Without such limiting, numerical testing showed

that semi-Lagrangian advection of temperature and salinity could cause weak instabilities near the coastline, where a locally

extreme temperature or salinity could become “trapped” near the coast and slowly amplified.

Two-dimensional application

With the one-dimensional algorithm completely specified above, the interplay between steps 2 and 3 of Algorithm 1 is now315

clear. After step 2, interpolation along the first dimension, we have now specified f(xd,yj , zd) such that each point contains

either an interpolated value or is found (by step 3 of Algorithm 1) to be inside the land region and hence masked. That provides

the requisite four gridded function values to compute f(xd,yd, zd).
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Generally, this value should not be inside land, as by this is the value that forms the advective trend of a presumably

inside-water grid point. This imposes an obligation for the trajectory calculations in section 4 to return only valid departure320

points, and this requirement will be discussed in more length there.

3.2 Vertical interpolation

Vertical motion in the NEMO-OPA model differs from horizontal motion in a number of respects:

– Vertical gradients of temperature and density are much stronger than typical horizontal gradients, especially near the

surface.325

– Typical vertical grids used with NEMO-OPA are strongly stretched, with a higher resolution near the surface and a lower

resolution in the deep ocean.

– Vertical flow is often oscillatory, where vertical motion is driven by barotropic and baroclinic waves.

Although the
✿✿✿

The
✿

horizontal interpolation described in section 3.1 is third-order accurate, it is ill-suited for interpolation

in the vertical. The worst characteristic of the horizontal interpolation is that it is
✿

;
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

provided
✿✿✿✿✿✿✿✿✿

one-sided
✿✿✿✿✿✿✿✿

formulas330

✿✿

for
✿✿✿✿✿✿✿✿✿✿

calculating
✿✿✿

the
✿✿✿✿✿✿✿✿

endpoint
✿✿✿✿✿✿✿✿✿

derivatives
✿✿

it
✿✿✿✿✿✿✿

reduces
✿✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

four-point
✿✿✿✿✿✿✿

(cubic)
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿

process.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿

the

✿✿✿✿✿✿

smooth
✿✿✿✿

field
✿✿✿✿✿✿✿

implied
✿✿✿

by
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿

process
✿✿

is
✿

only C0 continuous, where the interpolating function generally has a

discontinuous derivative at the gridpoints. This is reasonable for horizontal flow that does not often change direction, but with

the more-oscillatory verticalflow C0 continuity causes
✿

:
✿✿✿✿✿✿✿✿

f(xj − ǫ)
✿✿✿✿✿✿

“sees”
✿✿

f ′j✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

from
✿✿✿✿✿✿✿

f(xj−2)
✿✿✿

to
✿✿✿✿✿✿✿

f(xj+1),
✿✿✿✿✿✿✿✿

whereas

✿✿✿✿✿✿✿✿

f(xj + ǫ)
✿✿✿✿

sees
✿✿

f ′j✿✿✿✿

from
✿✿✿✿✿✿✿✿

f(xj−1)
✿✿

to
✿✿✿✿✿✿✿

f(xj+2).
✿

335

✿✿✿

We
✿✿

do
✿✿✿

not
✿✿✿✿

find
✿✿✿

this
✿✿

to
✿✿✿

be
✿

a
✿✿✿✿✿✿✿

practical
✿✿✿✿✿✿✿

concern
✿✿✿

for
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿✿✿✿

interpolation,
✿✿✿✿✿

since
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

currents
✿✿

in
✿✿✿✿✿

most
✿✿

of
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿

tend

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

dominated
✿✿✿

by
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿

steady
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

quasi-geostrophic
✿✿✿✿✿✿✿✿

motions.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

vertical,
✿✿✿✿✿✿✿✿

however,
✿✿✿

we
✿✿✿✿✿✿

found
✿✿✿

that
✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿✿✿✿

low-amplitude

✿✿✿✿✿✿✿✿✿

oscillations
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

high-frequency
✿✿✿✿✿✿

gravity
✿✿✿✿✿✿

waves
✿✿✿✿✿✿

would
✿✿✿✿✿

cause
✿

the temperature and salinity fields to drift. In particular,

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

mechanism
✿✿

is
✿✿✿

that
✿

a fluid parcel that is displaced upwards by ǫ in one timestep and downwards by ǫ on the next would

see a net change of temperature and salinity proportional to ǫ times
✿✿

in
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿✿

timestep
✿✿✿✿✿

would
✿✿✿✿

see
✿✿

an
✿✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿✿✿

diffusion340

✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿

the jump between the upward and downward-directed derivatives. This drift does not just remain localized; it

causes larger-scale impacts through the generation of baroclinic waves.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

downward-looking
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

derivatives.

Maintaining global accuracyrequires that the interpolation be
✿✿

To
✿✿✿✿✿✿✿✿

maintain
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

accuracy,
✿✿✿

we
✿✿✿✿✿✿✿

impose
✿

C1 continuous

✿✿✿✿✿✿✿✿

continuity
✿

in the vertical . Fortunately, the Hermite polynomial interpolation form is already equipped to handle this scenario.

For the purposes of the first step of algorithm 1, the relevant coordinate system is physical depth , with z = 0 at the surface and345

z = zmax at the local ocean bottom.
✿✿✿✿✿✿✿

direction
✿✿✿✿✿✿✿

through
✿✿

an
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

derivative.
✿✿✿✿✿✿✿

Instead
✿✿

of
✿✿✿✿✿✿✿✿

applying

✿✿✿✿✿✿✿✿

equations (16)
✿

,
✿✿✿

we
✿✿✿✿

treat
✿✿✿

the
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

depth
✿✿✿✿✿✿

(rather
✿✿✿✿

than
✿✿✿

grid
✿✿✿✿✿✿

index)
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿

and
✿✿✿✿✿✿✿✿

construct
✿

a
✿✿✿✿✿✿✿✿

centered
✿✿✿✿✿✿✿

estimate

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

derivative.
✿

Unlike for horizontal interpolation, where derivatives at the interval endpoints are defined in grid-coordinate space, vertical

derivatives at the gridpoints are defined in the physical space using a three-point stencil that reduces to the classic centered350
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difference when the grid spacing is uniform. For a function f(zn) defined at the zn levels, define ∆f+ = f(zn+1)− f(zn),
∆f− = f(zn)−f(zn−1), ∆z

+ = zn+1−zn, and ∆z− = zn−zn−1. These differences combine to give an estimate for the
✿✿✿

the

✿✿✿✿✿✿✿✿

estimated derivative:

fz(zn)≈
1

∆z− +∆z+

(

∆z−

∆z+
∆f+ +

∆z+

∆z−
∆f−

)

, (17)

which is accurate to O(∆z2) for the derivative and accurately reproduces quadratic functions of z.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

limiting
✿✿✿✿

case
✿✿

of
✿✿

a355

✿✿✿✿✿✿✿

constant
✿✿✿

∆z
✿✿✿✿✿✿✿✿✿✿

(equispaced
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

levels),
✿✿✿

this
✿✿✿✿✿✿✿

formula
✿✿✿✿✿✿

reduces
✿✿✿

to
✿✿

the
✿✿✿✿✿✿

classic
✿✿✿✿✿✿✿✿

centered
✿✿✿✿✿✿✿✿✿

difference.

Because vertical interpolation comes first in algorithm 1, (17) need be evaluated only at grid points, and in fact it may be

precomputed for the entire grid for a given function and timestep. This is a key advantage of placing vertical interpolation first

in the interpolation sequence, and it avoids duplication of work.

Whereas interpolation near the horizontal boundaries is complicated by the many combinations of grid staggering and360

physical boundary conditions, interpolation near the vertical boundaries is much simpler. On the NEMO grid, tracers and

horizontal velocities lie along the same vertical level, and these levels are staggered one half-cell away from the boundaries.

Likewise, the natural vertical boundary condition for both tracer and horizontal velocity fields is a no-flux boundary condition;

NEMO-OPA models boundary-layer friction in another module. Interpolation near the boundaries then proceeds in two steps.

The first step is to define fz at the top and bottom points in the water column, for which the central difference formula of (17)365

is not directly valid. Here, we approximate the physical no-flux condition through a fictitious ghost point such that ∆f− = 0

at the top boundary and ∆f+ = 0 at the bottom boundary, with the respective ∆z matching the layer thickness (e3t).

The second step is to define how (15) applies to the interval between the grid level and the physical boundary. Here, the

no-flux boundary conditions reduce to even symmetry, and the derivative at the ghost points is the negative of the vertical

derivative calculated for the in-boundary point. Near the free surface, if the interpolation point is above the level of the free370

surface (above z = 0) then it is clamped to the surface itself. Near the ocean bottom, if the interpolation point is below the

level of the ocean bottom (below z = zmax) then the point is masked and is treated as an “inside the boundary” point for the

purposes of horizontal interpolation above.

Treatment of partial cells

Over most of the domain, this interpolation works well. Although there is no guarantee of positivity in the derivative formulation375

of (17), overshoots and the consequent generation of spurious maxima are limited. For the tests presented in section 5, there

was no need for slope-limiting for vertical interpolation over most of the domain.

One exception to this rule is at the bottom boundary. Here, vertical levels are spaced far apart, but to better-represent

the ocean bottom the z-level grid of NEMO-OPA uses a partial cell configuration (Madec, 2008, sec. 5.9). For water columns

where the bottommost
✿✿✿✿✿✿✿✿✿✿

bottom-most
✿

cell is much deeper than its neighbours, a local (small) upwelling can cause an overshoot of380

temperature or salinity that spuriously increases the local density but does not diminish the upwelling. Over time, the maxima-

increasing trend can accumulate and cause some points at the bottom boundary to reach implausibly cold temperatures (below

−10◦C, for example) or high salinities. In the absence of explicit horizontal diffusion (which would mix this maximum into

15



more dynamically-active regions), these spurious maxima do not generally corrupt the flow, although they obviously would

corrupt whole-ocean (or whole-level) statistics such as average or extreme temperatures.385

Near these boundary cells, vertical limiting is implemented in the simplest possible way: the interpolation of (15) is replaced

with a constant, such that f(z) = f(zk) over the whole interval from zk downwards to the physical boundary.

Implementing this limiting over the whole bottom level is possible, but that is far stronger than necessary and leads to erro-

neous diffusion along gentle slopes. Imagine a horizontally nondivergent flow, such that the vertical velocityw = 0 everywhere,

with salinity and temperature being given by a function of z alone such that the underlying stratification isstable. Here,390

horizontal advection should nowhere result in a trend in salinity or temperature, and effecting this (even approximately) in

the framework of semi-Lagrangian advection requires extrapolating tracer values downwards towards the boundary.
✿✿✿✿✿

When
✿✿✿

the

✿✿✿✿✿✿

bottom
✿✿✿✿

layer
✿✿

is
✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿✿✿✿✿✿

partial
✿✿✿✿✿

cells
✿✿

of
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿✿

thickness,
✿✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿

along
✿

a
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿

plane
✿✿✿✿

(that
✿✿✿

is,
✿✿✿✿✿✿✿

without

✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿

depth)
✿✿✿✿✿✿✿

requires
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿

in
✿✿✿✿

grid
✿✿✿✿✿

space
✿✿

to
✿✿✿

find
✿✿✿✿

that
✿✿✿✿✿✿✿

constant
✿✿✿✿

level
✿✿

in
✿✿✿✿✿✿✿✿

adjoining
✿✿✿✿✿✿✿✿

columns.
✿✿✿✿✿✿✿✿

Imposing

✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

limiting
✿✿✿✿✿

along
✿✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿

bottom
✿✿✿✿

level
✿✿✿✿✿✿

effects
✿✿✿✿✿✿✿✿✿

undesired
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿

diffusion,
✿✿✿✿✿

even
✿✿✿✿✿✿

though
✿✿✿

the
✿✿✿✿✿✿✿✿

problem
✿✿✿✿✿✿

solved
✿✿✿

by395

✿✿✿✿✿✿

limiting
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

adjoining
✿✿✿✿

cells
✿✿✿✿

have
✿✿✿✿✿

large
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿

thickness
✿✿✿✿✿✿✿✿✿

variations.

As a compromise , for this work we only limit vertical interpolation as described for cells that are
✿✿✿✿✿✿✿

between
✿✿✿✿✿

these
✿✿✿

two
✿✿✿✿✿✿

errors,

✿✿

we
✿✿✿✿

only
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿✿

described
✿✿✿✿✿✿✿

limiting
✿✿

to
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿

for
✿✿✿✿

cells
✿

at the bottom boundary and
✿✿✿✿✿

which have a layer thickness

greater than 1.75 times that of the neighbouring cell with the smallest local layer thickness
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

“thinnest”
✿✿✿✿✿✿✿✿

neighbour.

This exact threshold is empirical, and other grids might require a re-tuning of this parameter. Ideally, the grid generation400

itself would avoid abrupt transitions in cell-layer thicknesses, but adding such a restriction would make this advection scheme

useless as a drop-in replacement for the standard advection routines of NEMO-OPA.

3.3 A numerical example

As a simple numerical example, consider the case of a tracer being advected in a rectangular, two-dimensional domain by an

internal wave and a background current. This tracer satisfies the advection equation:405

∂σ

∂t
−u(x,z, t)∂σ

∂x
−w(x,z, t)∂σ

∂z
= 0, (18)

for some prescribed velocity field (u,w).

If this tracer field σ(x,z, t) would be a function of z alone (σ̄(z)) if not for the wave motion, then its motion is analytically

given by:

σ(x,z, t) = σ̄
(

z− η(x− (c+u0)t,z)
)

, (19)410

where η(x,z) is the isopycnal displacement, u0 is the x-directed background current (uniform in z), and c is the phase speed

of the wave. A
✿✿✿✿✿✿✿✿

Following
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Turkington et al. (1991),
✿✿

a streamfunction defined as:

ψ(x,z, t) = cη(x,z, t)−u0z (20)
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gives velocities:

u=−ψz (21a)415

w = ψx, (21b)

which are exact solutions of (18) for σ(x,z, t).

To give an internal wave that respects no-flux conditions at the top and bottom of the domain, we set:

η(x,z, t) =Acos
(

k(x− (c+u0)t)
)

sin(mz) (22)

where k and m are horizontal and vertical wavenumbers respectively and A is the wave amplitude. For a domain of size Lx in420

the horizontal (periodic) and Lz in the vertical, k = 2π/Lx and m= π/Lz give the lowest internal wave mode, used here.

In dimensional units, we take the model domain to be a channel Lx = 1km long and Lz = 100m deep with a background

current of u0 = 1ms−1, and we set c=N/
√
k2 +m2 based on a mean buoyancy frequency ofN = .03s−1, which corresponds

to a 1% density change from the surface to the bottom of the channel. With a wave amplitude ofA= 10m, the maximum wave-

induced current is about 10% of u0, and the phase speed is c≈ 0.94ms−1.425

In order to represent the pycnocline found in many ocean waters, we choose4 σ̄(z) = tanh
(

1
2 − 1

10zL
−1
y

)

.

The domain is discretized by Nx×Ny points, defined as:

xi =−
Lx

2
+Lx

i− 0.5

Nx
, and (23a)

zj =
Lz

2

(

1+
αj +α3

j

2

)

, (23b)

where i= 1,2, · · · ,Nx, j = 1,2, · · · ,Nz , and:430

αj = 2
j− 0.5

Nz
− 1. (23c)

This implements a stretched vertical coordinate that increases the vertical resolution in the vicinity of the pycnocline.

Semi-Lagrangian advection

In integrating this system with semi-Lagrangian advection, the leapfrog method reduces to an Euler method of twice the

timestep because there is no external forcing. The time-discrete equation is:435

σ(xi, zj , t+2∆t) = σ(xd(ij), zd(ij), t), (24)

where (xd(ij), zd(ij)) is the departure point of the trajectory that arrives at the gridpoint (xi, zj), and the off-grid evaluation of

σ proceeds via the interpolation processes described earlier without slope-limiting.

4Since this section tests advection alone, the scaling of σ is not dynamically relevant. In fact, the wave structure of (22) corresponds to an exact internal

mode of the incompressible Navier-Stokes equations for a linear stratification.
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The departure points are given by the trapezoidal rule5 with a time-centered evaluation of velocity:

xi−xd(ij) =∆t
(

u
(

xi, zj , t+∆t
)

+u
(

xd(ij), zd(ij), t+∆t
))

(25a)440

zj − zd(ij) =∆t
(

w
(

xi, zj , t+∆t
)

+w
(

xd(ij), zd(ij), t+∆t
))

, (25b)

where the velocities are evaluated exactly via (21). The overall system (25) is solved via simple iteration, with an initial guess

given by setting (x,z)d(ij) = (x,z)ij .

This algorithm is stable for large timesteps, so we tested this system for timesteps corresponding to CFL
✿✿✿✿✿✿

Courant
✿

numbers

of 0.2 and 2.1, with spatial grid resolutions between 40× 4 and 2560× 256. The final integration time was chosen to be445

tfin = 5Lx/u0, which allowed the wave to propagate through the domain several times. Since the exact solution is analytically

known, we recorded the maximum error experienced over the integration, and error convergence rates are shown in figure 3.

Flux-form advection

As a control, we also integrate this system in flux form (σt−∇ · (uσ) = 0) via centered differences, with σ evaluated at the

midpoints between grid cells via a simple average, matching the central difference tracer advection scheme in NEMO-OPA.450

The velocity field given by (20) is divergence free, so this form of the equation is pointwise equivalent to (18). However,

this no longer holds after discretization. In order to eliminate the divergence error, the velocity field is defined by creating the

streamfunction at the staggered points (xi+1/2, zj+1/2) and defining discrete velocities u and w via the discrete equivalents to

(21). With this modification, the discrete flux-form operator is equivalent to a discrete advection equation.

After leapfrog discretization in time, the discretized equation is:455

σ(xi, zj , t+∆t) = σ(xi, zj , t−∆t)+ 2
∆t

∆x∆zj

(∆zj
2

(

u(xi−1/2, zj , t)(σ(xi−1, zj , t)+σ(xi, zj , t))−

u(xi+1/2, zj , t)(σ(xi, zj , t)+σ(xi+1, zj , t))
)

+

∆x

2

(

w(xi, zj−1/2, t)(σ(xi, zj−1, t)+σ(xi, zj , t))−

w(xi, zj+1/2, t)(σ(xi, zj , t)+σ(xi, zj+1, t))
)

)

,

(26)

where ∆zj = zj+1/2−zj−1/2 =
1
2 (zj+1−zj−1). For the first timestep, a single Euler step is taken of size ∆twith time-centered

velocities (t=∆t/2).

As usual, this leapfrog timestepping algorithm is only stable to a CFL number of ∆tmax(u)/∆x < 1, so we tested
✿✿✿✿✿✿✿✿

maximum

✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿

of
✿✿

1.
✿✿✿✿✿

With
✿✿✿

this
✿✿✿✿✿✿✿✿

staggered
✿✿✿✿

grid
✿✿✿

and
✿✿✿✿✿✿✿

vertical
✿✿✿

grid
✿✿✿✿✿✿✿✿✿

stretching,
✿✿✿

the
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

defined
✿✿✿

by:460

Cij =∆t
(max(ui+1/2,j ,0)−min(ui−1/2,j ,0)

∆x
+

max(wi,j+1/2,0)−min(wi,j−1/2,0)

∆zj

)

.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(27)

✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿

mode-one
✿✿✿✿✿✿✿

internal
✿✿✿✿

wave
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

current
✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

section,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿

number
✿✿

is
✿✿✿✿✿✿✿

reached
✿✿

at
✿✿✿

the

✿✿✿

top
✿✿✿

and
✿✿✿✿✿✿

bottom
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿

(where
✿✿✿✿✿✿

w = 0),
✿✿✿

so
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

max(C) = max(u)/∆x.
✿

5The trajectory calculation scheme of section 4 could be used instead, but since the overall trajectory lengths are small compared to the length scales of the

velocity field (Lx and Lz), that method would give equivalent results to the trapezoidal rule.
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Figure 3. Top: Maximum L2 error ((
∫
(σ−σex)

2dA/(LxLz))
1/2) over the integration period for the test case of section 3.3 versus resolution

for flux-form Eulerian advection with a CFL
✿✿✿✿✿✿

Courant
✿

number of 0.2 (blue, solid), semi-Lagrangian advection with a CFL
✿✿✿✿✿✿

Courant number of

2.1 (red, dashed), and semi-Lagrangian advection with a CFL
✿✿✿✿✿✿

Courant number of 0.2 (green, dot-dashed), showing second-order convergence

(line). Bottom: L2 error over time for these algorithms, on the 2560× 256 grid.

✿✿✿

We
✿✿✿✿✿✿

present
✿✿✿✿✿✿

results
✿✿✿

for (26) only at a CFL
✿

at
✿

a
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿

Courant
✿

number of 0.2,
✿✿✿✿✿✿

chosen
✿✿✿

to
✿✿✿

give
✿✿

a
✿✿✿✿✿✿

“small
✿✿✿✿✿✿✿✿

timestep”
✿✿✿

for
✿✿✿✿

later

✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿

results.
✿✿✿

The
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿✿✿✿

insensitive
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

timestep
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

stable
✿✿✿✿✿

range,
✿✿✿✿

with
✿✿✿✿

less
✿✿✿✿

than
✿✿✿

5%465

✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

maximum-norm
✿✿✿✿✿

error
✿✿✿✿

over
✿✿✿

the
✿✿✿✿

range
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

0.2≤max(C)≤ 0.99.

Results

The error over time of this test case is shown in figure 3. As expected, each method achieves second-order convergence. For the

Eulerian advection control case, this is governed by its two-point central difference scheme. For the semi-Lagrangian cases, the

dominant contribution to the error field comes from the lower-order vertical interpolation. While the semi-Lagrangian method470

has a higher order of accuracy for horizontal motion, here the problem is constructed such that horizontal and vertical motions

are of equal importance.

As is often observed with semi-Lagrangian methods, the overall error of the scheme is somewhat lower for the high-CFL case

than for the low-CFL case. The interpolation used to evaluate σ off the grid necessarily introduces error with each interpolation,
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and the overall contribution of this error necessarily scales in proportion to the number of interpolations , and hence
✿✿✿

and475

inversely with the timestep
✿✿✿

size.

Overall, this simplified test case supports the conclusion that the semi-Lagrangian treatment of advection is a viable re-

placement for flux-form advection. The semi-Lagrangian method achieves similar (for low-CFL flows) or better (for high-CFL

flows) error, and it remains stable for CFL values substantially larger than unity.

4 Trajectory calculation480

With the mechanism for evaluating the f t0−∆t(x(t0−∆t)) term in
✿✿✿✿✿✿✿

fB(xD)
✿✿✿✿

term
✿✿

in
✿

(7) established in section 3, the remaining

half of the semi-Lagrangian advection algorithm is the estimation of the x(t0−∆t) departure points(again abbreviated xd)
✿✿✿

x
D

✿✿✿✿✿✿✿✿

departure
✿✿✿✿✿

points. This corresponds to the positions at the “before” timestep
✿✿✿✿✿✿✿✿

time-level
✿

(t0−∆t) of those fluid parcels that will

arrive at the grid points at
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

grid
✿✿✿✿

xref
✿

the “after” timestep
✿✿✿✿✿✿✿✿

time-level (t0 +∆t). One such upstream location

exists for each valid grid location, so in general xd needs to be estimated for each t, u, and v point on the NEMO-OPA grid to485

provide for (respectively) the tracer and velocity advective forcings.

In general, calculation of the departure points is an implicit and nonlinear problem, requiring knowledge of the flow velocity

at every sub-grid place and time between the “before” and “after” time-levels, before the flow at the latter has been computed.

To make this problem tractable, we make a series of simplifying assumptions.

The first such assumption is to freeze the flow, such that trajectories are computed based on strictly the “now” velocities490

(that is, u, v, and w at the intermediate time-level). This is consistent with the underlying leapfrog timestepping algorithm

and the other advection schemes in NEMO-OPA, where most fluxes are computed instantaneously with respect to the same

“now” velocities. In physical terms, this constrains fluid parcels to follow paths based on estimated, instantaneous streamlines.

In exchange, this decouples the trajectory computation from the “after” velocities and makes the process time-explicit, which

eliminates what would otherwise be a need to iterate the entire timestepping process.495

4.1 Exponential integration

Ordinarily, the next assumption in the trajectory calculation is to approximate the particle paths, either by a straight line or by

a low-degree polynomial. In this case, the Lagrangian equation:

dx

dt
= v(x) (28)

is integrated with an approximate quadrature. Using the trapezoidal rule gives the approximation:500

xa−xd =∆t(v(xd)+v(xa)), (29)

where xa = x(t0 +∆t) is the on-grid “arrival” point of the fluid parcel. This approximation is second-order in time, and it

results in an iterative method where v(xd) is interpolated, leading to a revised estimate of xd.

Unfortunately, this approximation is not suitable for trajectory calculations in the general ocean because it does not ap-

propriately handle flow near a solid boundary. Consider the case of two-dimensional flow in the positive half-plane, where505
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fluid velocities are prescribed as (u,v) = (x,−y), and examine the departure point corresponding to a .
✿✿✿✿

This
✿✿✿✿✿✿

forms
✿✿

an
✿✿✿✿✿✿✿

analytic

✿✿✿✿✿✿✿✿✿✿

continuation
✿✿

of
✿✿✿✿

flow
✿✿✿✿

near
✿✿

a
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿

line
✿✿✿✿✿✿

x= 0.

✿✿✿✿

Now,
✿✿✿✿✿

apply
✿✿✿✿✿✿✿✿

equation (29)
✿✿

to
✿✿✿

the fluid parcel that arrives at xa = (1,0). Here, the y-directed velocity along the streamlineis

zero by inspection (and so yd is also zero), so reduces to a one-dimensional equation with
✿✿✿✿✿

Along
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

streamline,
✿✿✿✿✿

v = 0
✿✿✿

by

✿✿✿✿✿✿✿✿

inspection
✿✿

so
✿✿✿✿

this
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿

reduces
✿✿

to
✿✿✿

one
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿✿

and
✿✿✿

has
✿✿✿

the solution:510

xd =
1−∆t

1+∆t
. (30)

For small values of ∆t, this solution is very reasonable. Unfortunately, as ∆t becomes large, gives unphysical results with

respect to the boundary. Once
✿✿✿✿✿✿✿✿✿

reasonable.
✿✿✿

For
✿

∆t > 1, the solved-for departure point
✿✿✿✿✿✿✿✿

however,
✿✿✿

this
✿✿✿✿✿✿✿

solution
✿✿✿✿

leads
✿✿✿

an
✿✿✿✿✿✿✿✿✿

unphysical

✿✿✿✿✿✿✿✿

trajectory,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

departure
✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿

found
✿✿

to
✿✿

lie
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

left-half
✿✿✿✿✿

plane
✿✿✿✿

(and
✿✿✿✿

thus lies inside the boundary, where in reality

there is no fluid to advect!
✿✿

).515

The exact form of depends on the modeling of the boundary, but there is ultimately no universally-valid answer. If the

departure point is to lie within the physical domain, then
✿✿✿✿✿

failure
✿✿✿✿

here
✿✿

is
✿✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿

example
✿✿

of
✿

(29) either must depend only

on physically-realized velocities (independent of any particular extension into the boundary) or the departure point cannot

be an equilibrium solution.
✿✿✿✿✿✿

failing
✿✿✿

the
✿✿✿✿✿✿✿✿

Lipschitz
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

trajectory-crossing
✿✿✿✿✿✿✿✿

criterion
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Smolarkiewicz and Pudykiewicz, 1992),
✿✿✿✿✿✿

which

✿✿✿✿✿✿

requires
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ux∆t < C ≈ 1.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿

implied
✿✿✿

by
✿

(30)
✿✿✿✿✿✿

crosses
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

trajectories
✿✿

of
✿✿✿✿

fluid
✿✿✿✿✿✿✿

parcels
✿✿✿

that
✿✿✿✿✿

arrive
✿✿✿

at
✿✿✿✿✿✿✿✿✿✿✿✿✿

xa = (1± ǫ,0),520

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿

loses
✿✿

its
✿✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿

meaning.

A
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

trajectory-crossing
✿✿✿✿✿✿✿

criterion
✿✿

is
✿✿

a
✿✿✿✿✿✿✿

physical
✿✿✿✿

limit
✿✿✿

for
✿✿✿✿✿✿✿✿

solutions
✿✿✿✿✿

which
✿✿✿✿✿✿✿

develop
✿✿✿✿✿✿✿✿✿✿✿✿

discontinuous
✿✿✿✿✿✿

shocks,
✿✿✿✿

such
✿✿

as
✿✿✿✿✿

those
✿✿✿✿

that

✿✿✿

can
✿✿✿✿

arise
✿✿

in
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-dispersive,
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿

shallow
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿

equations.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

these
✿✿✿✿✿✿

shocks
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿

typical
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional
✿✿✿✿✿✿✿✿✿✿

hydrostatic
✿✿✿✿✿

flows
✿✿

in
✿✿✿✿

the
✿✿✿✿✿

ocean,
✿✿✿✿

and
✿✿✿✿

they
✿✿✿

are
✿✿✿✿✿✿✿✿

certainly
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿

universally
✿✿✿✿

seen
✿✿

at
✿✿✿✿✿

solid
✿✿✿✿✿✿✿✿✿✿

boundaries.
✿✿✿✿

The
✿✿✿✿

true

✿✿✿✿✿✿✿✿✿

trajectories
✿✿

of
✿✿✿✿✿

fluid
✿✿✿✿✿✿

parcels,
✿✿

if
✿✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿✿✿

exactly,
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

cross
✿✿✿✿

(and
✿✿✿

do
✿✿✿

not
✿✿✿✿✿

have
✿✿✿✿✿✿

origins
✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿✿

land
✿✿✿✿✿✿✿

domain),
✿✿✿

so
✿

a
✿

better525

approach is to directly integrate (28)
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿✿✿

approximating
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

derivative. Here, this one-dimensional system reduces to

the ordinary differential equation:

xt = x (31)

with the boundary condition x(t0 +∆t) = xa = 1. The solution to this equation is obviously of the form x(t) = C exp(t)

for some constant C, and applying the boundary condition gives x(t) = exp(t− (t0 +∆t)) and a departure point of xd =530

exp(−2∆t).
This solution is very well-behaved, lying exclusively in the right half-plane and asymptotically approaching the wall at x= 0

as ∆t→∞. This approach works when that of (29) fails because the direct integration properly captures the exponential-in-

time path of the fluid parcel.

A generalization of this approach forms the basis for trajectory calculation in this work. Since the solution of (28) is not535

analytically possible with an arbitrary velocity field, we exactly solve (28) based on an approximate, linearly-varying velocity

field. This is similar to an approach discussed by Walters et al. (2007), where within a single, two-dimensional finite-element

cell the linear velocity form is exactly-given by the underlying discretization rather than an approximation.
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Assume that an arbitrary fluid parcel arrives at xa, and that we know the velocity there (va) and at another point v(xc) = vc.

We know that the fluid parcel must arrive at xa travelling in the direction of v̂a = va/αa, with αa = ‖va‖. Then vc can be540

written in terms of this direction as vc = αcv̂a +βcn̂a, for scalar αc and βc and some n̂a normal to v̂a.

This forms a two-dimensional system spanned by vectors v̂a and n̂a. If we additionally make the assumption that v(x)

varies linearly in this plane, we can construct a simplified, two-dimensional coordinate system to solve (28). Here, the origin

of the coordinate system corresponds to xa, and the rotated coordinates x̂ and ŷ align with v̂a and n̂a respectively. This implies

that xc projects onto the point (xc · v̂a,xc · n̂a) = (xc,yc). The linearly-interpolated velocities lie strictly in this plane, so the545

equations of motion for a fluid parcel are:

xt = αa +(αc−αa)
x

xc
, and (32a)

yt = βc
x

xc
, (32b)

subject to the boundary condition that x(t0 +∆t) = y(t0 +∆t) = 0. (32a) can be solved first, and applying the boundary

condition x(t0 +∆t) = 0 gives:550

x(t) =
αaxc
αc−αa

(

exp
(αc−αa

xc
(t− (t0 +∆t))

)

− 1
)

. (33a)

Applying this to (32b) along with its boundary condition y(t0 +∆t) = 0 gives:

y(t) =
βcαa

αc−αa

( xc
αc−αa

(

exp
(αc−αa

xc
(t− (t0 +∆t))

)

− 1
)

− (t− (t0 +∆t))
)

. (33b)

When the along-trajectory acceleration is small (|(αc−αa)∆t/xc| ≪ 1), (33) reduces to a trapezoidal rule with second-order

accuracy in time.555

Trajectory iteration

Evaluating (33) at t= t0−∆t and re-projecting the coordinates to the grid forms the basis of an iterative algorithm for trajec-

tories:

Algorithm 3. Trajectory iteration overview

At each grid point:560

1. Begin with a candidate departure point xc = xa− 2∆tva

2. Interpolate the “now” velocities off-grid to this point

3. Evaluate (33) at t= t0−∆t to give a revised candidate departure point x′

c

4. Set xc← x
′

c

5. Repeat from step 2 until the change is smaller than a tolerance of 10−3 grid cells565

22



This algorithm is ideally suited to cases that look like flow away from a stagnation point, where a fluid parcel is accelerating

as it reaches the grid point at t0 +∆t. In those cases, the (αc−αa)/xc terms will be positive, and the exponential terms will

limit the size of the trajectory for finite ∆t. In the opposite case, however, the exponential terms will tend to lengthen the

trajectory. For large ∆t or large deceleration, this effectively demands that (32)–(33) extrapolate beyond the velocity sample at

xc, a potential source of instability.570

To remedy this, a limiter is added to step 3 of algorithm 3, whereby x(t0− 2∆t) is constrained to the greater6 of that from

(33a) and −2∆tmax(αa,αc). When limiting is necessary it effectively reduces the timestep used for the trajectory iteration,

so for consistency a revised ∆t′ is computed by inverting (33a) with the limited x′c, which is then used to evaluate (33b).

4.2 Underrelaxation and land boundaries

While the construction of algorithm 3 guarantees that trajectories cannot converge to an out-of-boundary point, there are no575

guarantees that the algorithm remains in-boundary during the iteration process or that the iteration converges. The problem of a

divergent or oscillatory iteration is more likely when the underlying velocity field does not resemble the linearly-approximated

velocity field integrated by (32), as then each iteration might result in very different approximations.

Addressing the latter point first, this work heuristically applies underrelaxation when algorithm 3 is slow to converge. After

10 local iterations, step 3 is replaced by xc← 1
2 (xc +x

′

c), after 20 iterations the right-hand side becomes 1
4 (3xc +x

′

c), and580

after 30 iterations the right-hand side becomes 1
8 (7xc+x

′

c). At 40 iterations, the trajectory is truncated by ending the iteration

with the first in-domain point returned from the process; this ensures some sort of advection even if the iterative process enters

a limit cycle.

This underrelaxation also addresses the possibility that xc might lie outside of the ocean domain. If xc is masked, then there

is no valid velocity to provide via off-grid interpolation, so instead of evaluating (33) x′

c is set to xa in step 3 of algorithm 3.585

This combines with the underrelaxation after 10 iterations to reduce the trajectory length until an in-boundary point is found,

whereupon iteration resumes normally.

These values for iteration counts and underrelaxation parameters are conservatively specified. In the numerical tests dis-

cussed in this work, the vast majority of trajectories converge after one or two iterations, without needing to resort to underre-

laxation or trajectory truncation.590

4.3 Velocity interpolation

The trajectory algorithm requires the off-grid interpolation of velocities at each iteration. In principle, these velocities can be

interpolated using the interpolation process of section 3. Doing so would be ideal for ultimate consistency with the final off-grid

interpolation, but this process is also computationally expensive. In practice, it is more efficient to evaluate the off-grid velocity

field in step 2 of algorithm 3 using trilinear interpolation; doing so causes little change in the numerical test cases in this work.595

Trilinear interpolation proceeds with the same order of operations as algorithm (1): velocities are first interpolated in depth to

the (x,y) corners of the grid-box at the off-grid level, then along the x-direction, and finally along the y-direction. Each individ-

6Since the rotated x-axis is aligned with the fluid velocity at xa, xc is generally negative in the rotated frame.
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Figure 4. Illustration of modified linear interpolation near corners. At top, linear interpolation results in an interpolated velocity field that

does not respect the boundary conditions along 0< y < 0.5 and a discontinuous interpolated field at 0.5< y < 1. At bottom, modifying the

linear interpolation with a corner solution results in a field that respects the boundary condition.

ual interpolation respects the relevant boundary condition, so for example the u-velocity is considered to reflect symmetrically

around a boundary in y and z but is constrained to zero at a boundary in x.

One complication of linear interpolation, however, is that the velocity points are staggered by half a cell with respect to the600

physical boundary. In two dimensions, if the tracer point T (0,0) (to use grid-cell coordinates for the tracer grid denoted T )

is a land point but T (0,1), T (1,0), and T (1,1) are all ocean points, then u-velocity point U(0,0) (denoting the u-velocity

grid as U ), halfway between T (0,0) and T (1,0), lies along the boundary. The boundary continues to U(0,0.5), whereupon

U(0,0.5)–U(0,1) lies inside the ocean. This violates a basic assumption of linear interpolation, that the velocity should vary

smoothly (and approximately linearly) within the u-cell.605

This causes two problems for trajectory computation. The first problem is that after repeated one-dimensional interpolation,

the boundary condition is no longer necessarily respected by the interpolated velocity, which can result in a trajectory iteration

that “pushes” the departure point into the wall, causing non-convergence. The second problem is that while the interpolation

process guarantees continuity of the interpolated field at the cell corners, the boundary conditions can cause large discontinuities

along the cell edges, again resulting in a convergence failure. In the above example, the interpolated velocity at U(+ǫ,0.6)610
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would be influenced by both U(0,1) and the zero velocity at the physical boundary of U(0,0), but the interpolated velocity at

U(−ǫ,0.6) would be influenced by U(0,1) and its reflection at a ghost point. These problems are illustrated in the top panel of

figure 4.

The solution to both of these problems is to blend the linearly-interpolated function with a corner singularity solution. A

bilinear function is a solution to Laplace’s equation (∇2f = 0), so it is reasonable to consider corner solutions that are also615

solutions to Laplace’s equation.

Without loss of generality, consider a grid cell defined by (x,y) ∈ [0,1]2, such that there is a solid boundary along (x= 0,y <

0.5) as depicted in figure 4. Treating the boundary as an infinite half-plane, with f(0,y) = 0 for y < 0.5 and f(0,y) = f(0,1)

for y > 0.5, the “corner” solution to Laplace’s equation is:

fcorner(x,y) =
f(0,1)

2

(

1+ cos
(

tan−1
(y− 0.5

x

)))

, (34)620

while bilinear interpolation would give:

fbilinear(x,y) = (1−x)yf(1,0)+x(1− y)f(0,1)+xyf(1,1). (35)

These two solutions are blended together, with (34) taking precedence along the solid boundary (x= 0 and 0≤ y ≤ 0.5) and

(35) taking precedence along the x= 1 and y = 1 boundaries of the cell. This gives:

fblend(x,y) = σ(x,y)fbilinear(x,y)+ (1−σ(x,y))fcorner(x,y), (36)625

where σ =max(1−x,2(y− 0.5)).

The blended function exactly respects the solid boundary condition, and the discontinuity at the cell edges is significantly

reduced. Blended functions for other configurations of the solid wall are given by applying the appropriate reflections and

rotations to (36).

5 Results630

5.1 Flow past an island

To demonstrate the impacts of semi-Lagrangian advection on a simple test case with a lengthened timestep, we first present the

quasi-two dimensional test case of isothermal flow past an interposed island.

This test case consists of a 280× 70× 3 point grid, with grid resolution ∆x=∆y = 5m and ∆z = 10m. A 50m× 50m

region (10× 10 points) is masked as land in the middle of the domain. The inflow boundary condition is set to u= 0.03m/s,635

v = 0; this was also imposed throughout the domain as an initial condition. The reference frame was also irrotational, with a

Coriolis parameter of 0.

Relevant namelist parameters are given in table 1, with parameters that differ between the control and semi-Lagrangian runs

highlighted. The control run used flux-form velocity advection7 via the QUICKEST scheme (Leonard, 1979, 1991), whereas

7This choice of velocity advection provided the best results for the control run, of the advection models supported in NEMO version 3.1.
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Parameter Value Comments

rdt Varies Varied from 5s – 160s

nitend Varies Set so that rdt ∗ nitend= 8000s

ln_zps .TRUE. Enables the z-level coordinate; no partial steps were necessary

atfp 0.1 Asselin time filter parameter

ln_dynvor_een .FALSE. Flux-form advection

ln_dynvol_qck .TRUE. QUICKEST velocity advection (for control run)

ahm0 0 Horizontal eddy viscosity for momentum

avm0 1.2e-4 Vertical eddy viscosity

ln_zdfevd .TRUE. Enhanced vertical diffusion

avevd 100 Vertical coefficient of enhanced diffusion

n_evdm 1 Apply enhanced vertical diffusion to momentum

nn_botfr 3 Free slip bottom boundary condition

Table 1. Selected namelist parameters for the test case of section 5.1.

the semi-Lagrangian run used semi-Lagrangian advection of momentum in flux form as described in sections 3 and 4. To640

emphasize the dynamical differences between the advection schemes, both test cases were run with no explicit horizontal

diffusion of momentum. Vertical mixing terms, largely irrelevant for this quasi-two dimensional case, were set consistently

with the ORCA025 simulations in section 5.2.

Both series of runs used the implicit free surface formulation (enabled with the compile-time key key_dynspg_flt),

which damped the large initial surface gravity waves caused by the imposition of the blocking island on the steady-state flow.645

After the initial gravity-wave adjustment, this test case quickly develops a set of recirculating vortices in the lee of the island.

Over time these vortices grow in extent and would begin detaching to form a vortex street, but this does not happen before the

8000s end of the simulation. Although there is no explicit horizontal diffusion of momentum in these runs, the flow regime is

much more laminar than would be implied by the physical Reynolds number of 1.5 · 106, based on the free-stream velocity,

edge-length of the island, and molecular viscosity of water.650

In moving around the box, the flow locally accelerates to a maximum steady velocity of about 0.05ms−1, and this maximum

velocity is reached in the vicinity of the leading-edge corners of the box. The exact value of this maximum depends on both the

simulation time and the timestep, but our expected pattern holds: the control simulation is stable with a timestep of 64 seconds,

which corresponded to a maximum steady CFL number
✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(max(usteady)/∆x)
✿

above 0.6 (and a maximum

transient CFL of 0.95), but it is unstable with a timestep of 80 seconds.655

Semi-Lagrangian advection maintains stability for much longer timesteps. Figure 5 shows the free surface height and flow

streamlines for ∆t between 5 and 160 seconds, and only the semi-Lagrangian method remains stable for 80 and 160-second

timesteps. For both advection schemes, the longer timestep is associated with a more diffuse flow pattern, with lengthening

(and less intense) recirculating vortices in the lee of the island.

This effect is stronger with semi-Lagrangian advection than with Eulerian advection. We attribute this to the nature of the660

flow at the leading edge of the island. Here, the dominant flow balance is cyclostrophic, where the pressure gradient at these

corners balances the local vorticity. The operator splitting method used here treats the advective terms in a frame following the
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flow, but it can only apply the pressure force at the destination cell; there is
✿

.
✿✿✿✿

This
✿✿✿✿✿✿

results
✿✿

in an inconsistency that grows with

∆t. This is
✿

,
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿

forces
✿✿

in
✿✿✿✿✿✿✿✿

equation (2)
✿✿✿✿✿

being
✿✿✿✿✿✿✿

available
✿✿✿✿

only
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

endpoint
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Lagrangian
✿✿✿✿✿✿✿✿

trajectory
✿

–
✿✿✿

an
✿✿✿✿✿✿

O(∆t)

✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

integral.665

✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

inconsistency
✿✿

is
✿✿✿✿✿

most evident in the 160-second timestep case (bottom right panel of figure 5), where the maximum

steady CFL
✿✿✿✿✿✿

Courant
✿

number of 1.6 implies that fluid parcels are advected by about three grid cells over the 2∆t leapfrog step.

There, the lowest pressure region at the leading edge of the flow has moved slightly further downstream.

In the full ocean, the geostrophic effect predominates, with a leading-order balance between the pressure gradient and the

Coriolis force (planetary vorticity), so we expect this issue to be less pronounced.670

5.2 Global forced runs

To evaluate semi-Lagrangian advection in a more realistic forecasting setting, we conducted a preliminary series of free runs

of the NEMO-OPA model. The runs consisted of:

– A control run, based on the configuration of Environment and Climate Change Canada’s 1/4◦ nominal-resolution Global

Ice/Ocean Prediction System (GIOPS) (Smith et al., 2016) with a 10-minute model timestep8. Tracers were advected675

with the model’s total variation diminishing (TVD) scheme
✿✿✿✿

tracer
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿✿

dissipation
✿✿✿✿✿✿

scheme
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Lévy et al., 2001), and

momentums were advected in vector form with the model’s energy and enstrophy conserving scheme9 (Arakawa and

Lamb, 1981),

– A “semi-Lagrangian tracer” run, where momentum was advected as in the control scheme and the semi-Lagrangian

advection described in this work was used for advection of salinity and temperature. Additionally, this run disabled680

horizontal diffusion of salinity and temperature, and

– A “semi-Lagrangian momentum and tracer” run, where momentum as well is advected with the semi-Lagrangian

scheme. The configuration was otherwise the same as the semi-Lagrangian tracer run, save for a 15-minute model

timestep.

The runs were all initialized at October 1, 2001 on the ORCA025 grid. The ocean was at rest, and temperature and salinity685

were given by the 2011 World Ocean Atlas climatology (Locarnini et al., 2013; Zweng et al., 2013). Atmospheric forcing

was provided at one-hour intervals from Environment and Climate Change Canada’s 1/4◦ global atmospheric reforecast, and

sea ice was modeled via coupling with version 4.0 of the CICE model (Hunke and Dukowicz, 1997), with dynamically active

(moving) ice. Selected namelist parameters are provided in table 2.

8
✿✿✿

This
✿✿✿✿✿✿

timestep
✿

is
✿✿✿✿✿

shorter
✿✿✿

than
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿

commonly-used
✿✿✿✿✿✿✿✿

ORCA025
✿✿✿✿✿✿✿✿✿✿

configurations,
✿✿✿

such
✿✿

as
✿

in
✿✿✿

the
✿✿✿✿

ocean
✿✿✿✿✿✿✿

reanalysis
✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

Ferry et al. (2016)
✿

.
✿✿✿

This
✿✿✿✿✿

shorter
✿✿✿✿✿✿

timestep

✿

is
✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿✿✿

stabilize
✿✿

the
✿✿✿✿✿✿✿

coupling
✿✿

of
✿✿✿✿✿✿

ocean/ice
✿✿✿✿✿

stress
✿✿✿

with
✿✿✿

the
✿✿✿✿

CICE
✿✿✿✿✿

model,
✿✿✿✿✿

where
✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿

Roy et al. (2015)
✿✿

the
✿✿✿✿✿✿✿

ice/ocean
✿✿✿

drag
✿✿✿✿✿✿✿✿

coefficient
✿

is
✿✿✿✿✿

larger

✿✿✿

than
✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿

considered.
✿✿

We
✿✿✿✿✿

chose
✿

to
✿✿✿✿✿✿

maintain
✿✿✿

this
✿✿✿✿✿✿✿✿✿

configuration
✿✿✿

and
✿✿✿✿✿✿

coupling
✿✿✿✿✿✿✿

approach
✿

to
✿✿✿✿✿✿

provide
✿✿

for
✿✿✿

the
✿✿✿✿✿

cleanest
✿✿✿✿✿✿✿✿✿

like-for-like
✿✿✿✿✿✿✿✿

comparisons
✿✿✿✿✿

against
✿✿✿

the

✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿

configuration
9For compatibility with the operational model, as run in this work the scheme did not include the “fix” for the Hollingsworth instability(Hollingsworth

et al., 1983)
✿✿✿✿✿✿

reported
✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ducousso et al. (2017). This instability is more prominent at higher resolutions, and we do not believe it meaningfully impacted the

results as presented in this section.
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Figure 5. Free surface height and streamlines for the test case of section 5.1, after 8000s for ∆t= 5, 10, 20, 40, 64, and 160 seconds (top

to bottom, with the approximate CFL
✿✿✿✿✿✿

Courant
✿

number listed). Results for the Eulerian advection scheme are at left, and results for the semi-

Lagrangian advection of momentum are at right. As the timestep increases both advection schemes show more diffuse behaviour, however

the semi-Lagrangian advection scheme remains stable to ∆t= 160s whereas the Eulerian scheme becomes unstable after ∆t= 64s.
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As with section 5.1, the test cases used NEMO-OPA’s linear free surface with a time-implicit solver, and tidal forcing was690

not present in these configurations.
✿✿

In
✿

a
✿✿✿✿✿✿

typical
✿✿✿✿✿✿✿✿

timestep,
✿✿✿

the
✿✿✿✿

vast
✿✿✿✿✿✿✿

majority
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿✿

trajectories
✿✿✿✿✿✿✿✿✿

converged
✿✿

in
✿✿✿✿

one

✿✿✿✿✿✿✿

iteration
✿✿✿✿✿

(mean
✿✿✿✿✿

1.004
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“semi-Lagrangian
✿✿✿✿✿✿

tracer”
✿✿✿✿✿

run).
✿✿

A
✿✿✿✿

very
✿✿✿✿✿

small
✿✿✿✿✿✿✿

minority
✿✿

of
✿✿✿✿

cells
✿✿✿✿✿✿✿✿

required
✿✿

an
✿✿✿✿✿✿✿✿

extended
✿✿✿✿✿✿✿

number
✿✿

of

✿✿✿✿✿✿✿

iterations
✿✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿

underrelaxation
✿✿

as
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿✿✿✿

section
✿✿✿

4.2,
✿✿✿

but
✿✿✿✿

this
✿✿✿

did
✿✿✿

not
✿✿✿✿✿

affect
✿✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

trajectory-calculation
✿✿✿✿✿✿✿✿✿✿✿

performance

✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

was
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿

(and
✿✿✿✿✿✿✿✿

iterations
✿✿✿✿✿✿

limited)
✿✿✿

on
✿

a
✿✿✿✿✿✿✿

per-cell
✿✿✿✿✿

basis.

Each run continued through late 2009. For reasons of space efficiency, we recorded the two-dimensional sea surface height,695

temperature, and salinity fields for each model day, and we preserved every fifth daily-mean, three-dimensional output of

temperature, salinity, and horizontal ocean velocity.

For short and medium-term forecasts, the operational coupled forecasting systems at CMC are constrained by observations

and periodic re-initialization. With a focus on this forecasting horizon the objective with these long free-runs was:

– To provide a test of model stability with semi-Lagrangian advection, in terms of both avoiding crashes and providing700

plausible ocean fields;

– To check for any large-scale conservation errors, which might be difficult to correct given the sparsity of observation

data for the deep ocean, and

– To note any qualitative improvement or deterioration in the effective resolution of the model.

This first goal of model stability was met in part by the successful completion of these runs. Use of semi-Lagrangian705

advection for both tracers and momentum allowed us to increase the effective timestep from 10 minutes (with typical maximum

CFL number
✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿

number10 of 0.2, found in the vertical direction) to 15 minutes (CFL
✿✿✿✿✿✿✿

Courant number 0.3). Further

increases led to instability and model crashes not from the advection component, but from the ice model. In this version of the

model, the ocean/ice stress is coupled in a time-explicit way between the water and ice components. Concurrent work towards

a time-implicit coupling has given encouraging preliminary results on further timestep increases.710

The use of semi-Lagrangian advection also gives global flows qualitatively similar to the control run, and average transports

in the Atlantic overturning circulation and Circumpolar current are comparable between the control and semi-Lagrangian

runs (figure 6). However, the use of
✿✿✿

The
✿

semi-Lagrangian
✿✿✿

runs
✿✿✿✿✿✿

appear
✿✿✿

to
✿✿✿✿✿

result
✿✿

in
✿

a
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿

weaker
✿✿✿✿✿✿✿✿✿✿

overturning
✿✿✿✿✿✿✿✿✿

circulation

✿✿✿

and
✿✿

a
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿

stronger
✿✿✿✿✿✿✿✿✿✿

circumpolar
✿✿✿✿✿✿✿

current
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

control
✿✿✿✿

run,
✿✿✿✿

but
✿✿✿✿✿

these
✿✿✿✿✿✿

results
✿✿✿✿

may
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿

robust
✿✿

to
✿✿✿✿✿✿✿

re-tuned
✿✿✿✿✿✿✿✿

physical

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

paramterizations.
✿✿✿✿✿

Using
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian advection for the velocity components results in a significant decrease to overall715

ocean kinetic energy (figure 7), both during and after the spin-up period.

The cause of this energy disparity is under investigation, but we believe the most likely cause is the application of slope-

limiting to the u and v fields independently. Future work will focus on taking a more nuanced approach to filtering, but this

effect may not be very significant in a shorter-term forecast setting with frequent re-initializations from an analysis.

The second goal of global conservation was met. Although semi-Lagrangian advection does not guarantee conservation720

of tracers, the impact on the global balance of temperature and salinity was small. Figure 8 shows the evolution of ocean-

10
✿✿✿✿✿

Defining
✿✿✿

the
✿✿✿✿✿

Courant
✿✿✿✿✿✿

numbers
✿✿

in
✿✿✿

each
✿✿✿✿✿✿

direction
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

max(|u|)/e1u,
✿✿✿✿✿✿✿✿✿✿✿

max(|v|)/e2v,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

max(|w|)/e3w
✿✿✿✿✿✿✿✿✿

respectively.
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Parameter Value Comments

Parameters common to all runs

atfp 0.1 Asselin time filter parameter

ln_zps .TRUE. Z-level vertical coordinate with partial (cut) cells

e3zps_min 25 Absolute minimum thickness of a cut cell

e3zps_rat 0.2 Relative minimum thickness of a cut cell

shlat 0 Free-slip lateral momentum boundary condition

nn_botfr 2 Nonlinear bottom friction

nn_bfro2 1e-3 Nonlinear bottom friction coefficient

nn_bfeb2 2.5e-3 Background turbulent kinetic energy coefficient

ngeo_flux 0 No bottom temperature geothermal heat flux

ln_dynhpg_imp .TRUE. Semi-implicit computation of the hydrostatic pressure gradient

ln_dynldf_bilap .TRUE. Bi-Laplacian hyperdiffusion of momentum

ln_dynldf_hor .TRUE. . . . acting in the horizontal direction

ahm0 -3e11 Momentum hyperviscosity coefficients

nsolv 2 Use the successive over-relaxation (SOR) free-surface solver

nsol_arp 0 . . . with an absolute-tolerance stopping condition

nn_sstr 0 No sea surface temperature damping

nn_sssr 0 No sea surface salinity damping

ndmp 0 No temperature or salinity damping in the water column

Parameters for the control run

rdt 600 Model timestep

ln_traadv_tvd .TRUE. Total variation diminishing
✿✿✿✿✿

Tracer
✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿

dissipation (TVD) tracer advection scheme

ln_traldf_lap .TRUE. Laplacian diffusion for the tracer

ln_traldf_iso .TRUE. . . . acting in the iso-neutral direction

aht0 300 Horizontal tracer diffusion coefficient

ln_dynadv_vec .TRUE. Vector form of the momentum advection operator

ln_dynvor_een .TRUE. . . . using the energy and enstropy conserving scheme

resmax 1e-10 Absolute residual tolerance for the SOR free-surface solver

Parameters for the semi-Lagrangian tracer run

rdt 600 Model timestep

ln_traldf_lap .FALSE. No explicit horizontal tracer diffusion

ln_dynadv_vec .TRUE. Vector form of the momentum advection operator

ln_dynvor_een .TRUE. . . . using the energy and enstropy conserving scheme

resmax 1e-11 Absolute residual tolerance for the SOR free-surface solver

Parameters for the semi-Lagrangian momentum and tracer run

rdt 900 Model timestep

ln_traldf_lap .FALSE. No explicit horizontal tracer diffusion

ln_dynadv_vec .FALSE. Flux form of the momentum advection operator

resmax 1e-11 Absolute residual tolerance for the SOR free-surface solver

Table 2. Selected dynamical and numerical namelist parameters for the test cases of section 5.2.
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Figure 6. 61-day mean transports for the Atlantic overturning circulation (top; net northward flux above 1000m depth at 27.25◦ north latitude

in the Atlantic Ocean) and Antarctic circumpolar current (bottom; net eastward flux at 67.75◦ west longitude in the Drake Passage) over time

for the test cases of section 5.2

average temperature and salinity over time in these runs, and the effect of non-conservation attributable to the semi-Lagrangian

advection of tracers is comparable to the mangitude
✿✿✿✿✿✿✿✿✿

magnitude
✿

of uncertainty in the global balance of atmospheric forcing –

the imbalance seen in the control run.

Each case saw an overall temperature drift of about 0.04 K over the simulated period, with the semi-Lagrangian cases having725

a slight warming trend against the control run’s slight cooling trend, and all three runs showed a very small increase in ocean

average salinity, by about 0.01 PSU.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

change
✿✿✿✿✿✿

versus
✿✿✿✿✿

depth
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

period
✿✿

is
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

figure
✿✿

9.
✿✿✿✿

Both
✿✿✿

the
✿✿✿✿✿✿

control
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian

✿✿✿

runs
✿✿✿✿✿✿✿

showed
✿✿

a
✿✿✿✿✿✿✿

warming
✿✿✿✿✿

trend
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

layers,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿

runs
✿✿✿✿✿✿✿

showed
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

stability
✿✿

in
✿✿✿✿

fluid
✿✿✿✿✿✿

layers

✿✿✿✿✿

below
✿✿✿✿

1000
✿✿✿✿✿✿

meters
✿✿✿✿✿

depth
✿✿✿✿✿✿✿

whereas
✿✿✿

the
✿✿✿✿✿✿

control
✿✿✿

run
✿✿✿✿✿✿✿

showed
✿

a
✿✿✿✿✿✿✿

cooling
✿✿✿✿

trend
✿✿✿

in
✿✿✿✿

these
✿✿✿✿✿✿

waters.
✿

730

Despite the energy shortfall with semi-Lagrangian advection of momentum, we see tentative signs that the method increases

the model’s effective resolution. Figure 10 shows one particular sea surface temperature realization, from the 31 December 2005
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Figure 7. Total ocean horizontal kinetic energy (EJ) over time for the test cases of section 5.2. All of the test cases generally reproduce

the monthly to yearly variability of kinetic energy, but the use of semi-Lagrangian momentum advection results in significantly lower total

kinetic energy.

of each test case, along with the magnitude of the temperature gradient. The large-scale flows are similar between the control

and semi-Lagrangian runs (and most similar between the control and semi-Lagrangian tracer run), but the semi-Lagrangian

runs have noticeably stronger gradients in the sea surface temperature, in patterns that resemble smaller-scale eddies.735

6 Conclusions and further work

This work has derived a semi-Lagrangian advection scheme for the NEMO-OPA model. After advecting a tracer or momentum

field along estimated fluid parcel trajectories, it calculates a time-trend to provide to the remainder of the model; in this way

the semi-Lagrangian scheme serves as a drop-in replacement for other tracer and (flux-form) momentum schemes.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿✿

module
✿✿✿✿✿

relied
✿✿✿

on
✿✿✿✿✿✿

several
✿✿✿

new
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿

newly-applied
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿

that
✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿

relevant
✿✿

to
✿✿✿✿✿

other740

✿✿✿✿✿

ocean
✿✿✿✿✿✿

models
✿✿

or
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

domains:

–
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

“semi-Lagrangian
✿✿✿✿✿✿

trend”
✿✿✿✿

form
✿✿

of
✿✿✿✿✿✿✿

equation
✿

(7)
✿✿✿✿

might
✿✿✿

be
✿✿✿✿✿

useful
✿✿

in
✿✿✿✿✿

other
✿✿✿✿✿✿

models
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

researchers
✿✿✿✿✿

wish
✿✿

to
✿✿✿✿✿✿✿✿✿

implement

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿

after
✿✿✿

the
✿✿✿✿

fact,
✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿

disrupting
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿✿✿

other
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

terms.
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Figure 8. Ocean average temperature (top, ◦C) and salinity (bottom, PSU) over time for the test cases of section 5.2. Although conservation

is not guaranteed by semi-Lagrangian advection, long-term trends are similar between the semi-Lagrangian runs and the control run.

–
✿✿✿

The
✿✿✿✿✿✿✿✿

Hermite
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿

form
✿✿✿

in
✿✿✿✿✿✿

section
✿✿✿

3,
✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

C1-continuous
✿✿✿✿✿✿✿

estimate
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

vertical

✿✿✿✿✿✿✿✿

derivative
✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

3.2
✿✿✿✿✿

might
✿✿✿✿

find
✿✿✿✿✿✿✿✿✿

application
✿✿

in
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

domains
✿✿✿✿✿✿

where,
✿✿

as
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

ocean,
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿

(the
✿✿✿✿✿✿✿✿

vertical)745

✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

oscillatory
✿✿✿✿

than
✿✿✿✿✿✿

others.

–
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

exponential
✿✿✿✿✿✿✿✿✿

integration
✿✿✿

of
✿✿✿✿✿✿✿✿✿

trajectories
✿✿

in
✿

(4)
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿

useful
✿✿

in
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿

that
✿✿✿✿✿✿

feature
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿

accelerations

✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

trajectories.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿

it
✿✿✿✿✿✿

forbids
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

trajectory-crossing
✿✿

in
✿✿✿

one
✿✿✿✿✿✿✿✿✿✿✿

dimensional
✿✿✿✿✿

flows,
✿✿✿

and
✿✿✿✿

here
✿✿✿✿

that
✿✿✿✿✿✿✿

property
✿✿✿✿✿✿

ensures
✿✿✿✿

that

✿✿✿✿✿✿✿✿✿

trajectories
✿✿✿✿✿✿

remain
✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

domain.
✿

–
✿✿✿

The
✿✿✿✿✿✿✿

“corner
✿✿✿✿✿✿✿✿

solution”
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿✿✿✿✿

velocity
✿✿✿

for
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿✿✿

near
✿✿✿✿✿✿✿

corners
✿✿✿✿✿

might
✿✿✿

find
✿✿✿✿

use
✿✿

in
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿

applications750

✿✿✿✿

with
✿✿✿✿✿✿✿✿

staggered
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿

components.
✿

Overall, we find that the semi-Lagrangian method is effective at extending the realizable timestep in the NEMO-OPA model.

In the simple domain of section 5.1, this method resulted in a stable simulation with advective CFL
✿✿✿✿✿✿✿

Courant numbers in excess

of 1. Although we only extended the timestep from 10 to 15 minutes for the semi-Lagrangian momentum run in section 5.2,
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Figure 9.
✿✿✿✿

Initial
✿✿✿✿✿✿✿✿✿✿✿

ocean-average
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

profile
✿✿✿✿

(left,
✿✿✿

◦C)
✿✿✿✿✿

versus
✿✿✿✿✿

depth
✿✿✿

and
✿✿✿✿✿✿

change
✿✿

at
✿✿

the
✿✿✿

end
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿

period
✿✿✿✿✿

(right,
✿

4
✿✿✿✿✿✿✿

October

✿✿✿✿

2009)
✿✿✿

for
✿✿

the
✿✿✿

test
✿✿✿✿

cases
✿✿

of
✿✿✿✿✿✿

section
✿✿✿

5.2.
✿✿✿✿

Both
✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿

runs
✿✿✿✿

show
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

stability
✿✿

in
✿✿✿✿✿

deeper
✿✿✿✿✿✿

waters,
✿✿✿✿✿✿

whereas
✿✿✿

the
✿✿✿✿✿

control
✿✿✿

run
✿✿✿✿✿

shows

✿

a
✿✿✿✿

small
✿✿✿✿✿✿

cooling.

this limitation was imposed by the ice model. Disabling ice dynamics allowed us to increase the timestep to 30 minutes, but this755

would have made the results incomparable with those of the control and semi-Lagrangian tracer runs. Preliminary work with

the CICE sea model and implicit coupling of the ice-ocean stress seems to allow us to relax the ice-related timestep restriction.

✿✿✿✿✿✿✿✿✿✿✿

Performance
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation

In spite of this increased timestep, the semi-Lagrangian method by itself does not yet improve overall computational perfor-

mance. The semi-Lagrangian momentum and tracer run of section 5.2 took approximately one hour of computational time760

per five days of simulated time, using 128 Intel Xeon E5530 processors at 2.4GHz. With a 10-minute timestep, the semi-

Lagrangian tracer run took approximately 50 minutes for the same five days of simulated time, whereas the control run took

just 30 minutes. We expect these results to improve with further numerical optimization work. In particular, we did not take

great care to ensure that loops were vectorized where possible, and it is much more difficult for compilers to automatically

vectorize the point-by-point semi-Lagrangian computations compared to volume flux calculations in the traditional advection765

schemes.

✿✿✿✿✿

About
✿✿✿✿✿✿✿✿

one-third
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿

cost
✿✿✿✿✿✿

comes
✿✿✿✿

from
✿✿✿✿✿✿✿✿

trajectory
✿✿✿✿✿✿✿✿✿

iterations,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

remainder
✿✿✿✿✿✿

comes
✿✿✿✿✿

from
✿✿✿

the

✿✿✿✿

cubic
✿✿✿✿✿✿✿✿✿✿✿✿

interpolation.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

suggests
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿

cost
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿

advection
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿

presented
✿✿✿✿

here
✿✿

if
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Figure 10. Sea surface temperature (left) and the magnitude of its gradient (right) for the control (top), semi-Lagrangian tracer (middle),

and semi-Lagrangian momentum and tracer (bottom) test cases of section 5.2, for 31 December 2005 in the Labrador Sea. Although the

large-scale flows are similar, the runs with semi-Lagrangian advection of tracers have noticeably more fine-scale variability.
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✿✿✿✿✿✿✿✿✿

trajectories
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

reused
✿✿✿

for
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

tracer
✿✿✿✿✿✿✿

species
✿✿✿✿✿

(such
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

biogeochemical
✿✿✿✿✿✿✿✿✿✿✿

constituents).
✿✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿

it
✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿

a

✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿✿

optimization
✿✿✿✿

may
✿✿✿

be
✿✿

to
✿✿✿✿✿✿

re-use
✿✿✿✿✿

tracer
✿✿✿✿✿✿✿✿✿

trajectories
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

momentum
✿✿✿✿✿✿✿✿✿

advection,
✿✿

at
✿✿✿✿

least
✿✿✿✿✿

away
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

boundaries
✿✿✿✿✿✿

where770

✿✿✿✿✿✿✿✿✿✿

interpolating
✿✿✿✿✿✿✿✿✿✿✿

(staggering)
✿✿✿✿✿✿✿✿✿

trajectories
✿✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿✿✿✿

reasonable.
✿✿

It
✿✿✿✿✿

seems
✿✿✿✿✿✿✿✿

unlikely
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

optimization
✿✿✿✿

will
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

per-timestep

✿✿✿✿✿✿

penalty
✿✿

to
✿✿✿

the
✿✿✿✿✿

20%
✿✿✿✿✿

value
✿✿✿✿

seen
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ritchie et al. (1995)
✿✿

for
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿

–
✿✿✿✿✿✿

model
✿✿✿✿✿✿

owing
✿✿

to
✿✿✿

the
✿✿✿✿

lack
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional

✿✿✿✿✿✿

implicit
✿✿✿✿✿✿✿✿

equations
✿✿✿✿

and
✿✿✿✿✿✿✿✿

expensive
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterizations
✿✿✿✿✿✿✿✿✿

elsewhere
✿✿

in
✿✿✿✿✿✿✿✿✿✿

NEMO-0PA
✿

–
✿✿✿

but
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿

hopeful
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian

✿✿✿✿✿✿✿✿

advection
✿✿✿

will
✿✿✿✿✿✿✿✿✿✿

nonetheless
✿✿✿✿✿✿✿

improve
✿✿✿✿✿✿

overall
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿✿

performance.
✿

✿✿✿

The
✿✿✿✿✿✿✿

parallel
✿✿✿✿✿

(MPI)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

implmenetation
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward.
✿✿✿✿✿

With
✿✿✿

the
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿

modest
✿✿✿✿✿✿✿

increase
✿✿✿

in
✿✿✿✿✿✿✿

Courant775

✿✿✿✿✿✿

number
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

cases
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

work,
✿✿✿

we
✿✿✿✿✿✿✿

simply
✿✿✿✿✿✿

needed
✿✿

to
✿✿✿✿✿✿✿

increase
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

inter-processor
✿✿✿✿✿✿

lateral
✿✿✿✿

halo
✿✿✿✿✿✿✿✿✿✿

(parameters
✿✿✿✿✿✿✿✿

jpreci
✿✿✿

and

✿✿✿✿✿✿✿

jprecj
✿

)
✿✿

to
✿✿✿✿

three
✿✿✿✿✿✿

points,
✿✿✿✿✿

which
✿✿✿✿

was
✿✿✿✿✿✿✿✿

sufficient
✿✿

to
✿✿✿✿

allow
✿✿

a
✿✿✿✿

fluid
✿✿✿✿✿

parcel
✿✿✿✿✿✿✿

arriving
✿

at
✿✿

a
✿✿✿✿✿✿✿✿✿

processor’s
✿✿✿✿

edge
✿✿

to
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿✿✿✿✿✿

interpolating

✿✿✿✿✿

stencil
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿✿

numbers
✿✿✿✿✿✿✿

reached
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿✿

This
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

halo
✿✿✿✿

size
✿✿✿✿

was
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿

compared
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿✿✿

processor
✿✿✿

tile
✿✿✿✿

size
✿✿

of
✿✿✿✿✿

about
✿✿✿✿✿✿✿✿

50× 260
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿✿

for
✿✿✿✿

the
✿✿✿✿

runs
✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿

5.2.
✿✿✿✿✿✿✿✿✿

Extending
✿✿✿

this
✿✿

to
✿✿✿✿✿✿✿

support
✿✿✿✿

very
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

horizontal

✿✿✿✿✿✿

Courant
✿✿✿✿✿✿✿✿

numbers,
✿✿✿✿✿✿✿✿

however
✿✿

(if
✿✿✿✿✿✿

another
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿

found
✿✿

to
✿✿✿✿✿✿✿

stabilize
✿✿✿✿✿✿✿✿

baroclinic
✿✿✿✿✿✿

waves)
✿✿✿✿✿✿

would
✿✿✿✿✿✿

require
✿✿✿✿✿

either
✿✿✿✿✿✿✿✿✿✿✿

prohibitively780

✿✿✿✿

large
✿✿✿✿

halo
✿✿✿✿

sizes
✿✿

or
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿✿✿

interprocessor
✿✿✿✿✿✿✿✿✿✿✿✿✿

communication
✿✿

to
✿✿✿✿

track
✿✿✿✿

fluid
✿✿✿✿✿✿✿

parcels
✿✿✿

that
✿✿✿✿✿

cross
✿✿✿✿

MPI
✿✿✿✿✿✿✿✿✿✿

boundaries.

✿✿✿✿✿✿✿✿✿✿

Qualitative
✿✿✿✿✿✿✿✿✿

comments
✿✿

on
✿✿✿✿✿✿

results

Although the semi-Lagrangian method does not guarantee tracer conservation, we see no evidence that its implementation here

leads to a degradation relevant in a weekly to seasonal forecast setting. However, even small perturbations may
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,

✿✿

the
✿✿✿✿✿✿✿✿✿✿

deep-water
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

figure
✿

9
✿✿

is
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

encouraging
✿✿✿✿

sign
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿✿

advection
✿✿✿

will
✿✿✿✿✿✿✿✿

preserve785

✿✿

the
✿✿✿✿✿✿✿✿✿✿

deep-water
✿✿✿✿✿✿✿

structure
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿

weakly
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿

by
✿✿✿✿

data.
✿✿✿✿✿

Even
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

imbalances,
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿

might become significant over

decadal to century-long climate simulations, so further
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

decade-to-century
✿✿✿✿✿✿✿✿✿

timescales
✿✿

of
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿✿✿

simulations.
✿✿✿✿✿✿

Further
✿

work

will be necessary
✿✿

to
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿✿

this
✿✿✿✿✿✿

method
✿

before we can safely recommend the use of semi-Lagrangian advection in such

settings.

For the test cases in section 5.2, semi-Lagrangian advection of tracers appears to slightly increase the effective resolution790

of the model. However, this effect is much more mixed when momentum is also advected with the semi-Lagrangian method,

in part because the underlying currents differ. Both of these differences will be the subject of future study, with the specific

intention of assessing these effects in the setting of shorter-term forecasts. We speculate that the overall loss of kinetic energy

with semi-Lagrangian advection of momentum is attributable to the use of the slope limiter: limiting each component of

velocity separately may be causing unrealistic diffusion of smaller-scale structures in the presence of background vorticity. We795

hope to address this issue with more selective limiting.

✿✿✿✿✿✿

Future
✿✿✿✿✿✿✿✿✿✿✿

development

Finally, the development in this paper implicitly assumes that the coordinate system is static with time. This is not the case

in NEMO-OPA when using its nonlinear free surface option, which necessarily implies time-varying vertical levels. Adapting

the semi-Lagrangian method to this more general coordinate system will be a focus of future work, which will be required to800

apply this advection scheme to higher-resolution domains that require tide-permitting simulations.
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✿✿✿✿✿✿✿✿✿✿

Additionally,
✿✿✿✿✿✿

future
✿✿✿✿✿✿✿

versions
✿✿

of
✿✿✿✿✿✿

NEMO
✿✿✿✿✿

intend
✿✿

to
✿✿✿✿✿

move
✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

third-order
✿✿✿✿✿✿✿✿✿✿✿

Runge-Kutta
✿✿✿✿✿✿✿✿✿✿✿

time-stepping
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Shu and Osher, 1997)

✿

,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

constructs
✿✿

a
✿✿✿

full
✿✿✿✿✿✿✿

timestep
✿✿

as
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿

combination
✿✿

of
✿✿✿✿✿✿

forward
✿✿✿✿✿

Euler
✿✿✿✿✿

steps.
✿✿✿

We
✿✿✿✿✿✿

expect
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-Lagrangian
✿✿✿✿✿✿✿✿✿

“advective

✿✿✿✿✿

trend”
✿✿

of
✿

(7)
✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

adapted
✿✿

to
✿✿✿

this
✿✿✿✿✿✿✿✿✿

framework
✿✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿✿✿✿✿✿

manner
✿✿✿

by
✿✿✿✿✿✿

basing
✿✿✿

the
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

trend
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

current-step

✿✿✿✿✿

values
✿✿

of
✿✿✿✿✿✿

tracers
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

velocities,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿✿✿

adaptation
✿✿✿✿✿

may
✿✿✿✿✿✿

require
✿✿✿✿

care
✿✿

to
✿✿✿✿✿✿✿✿

preserve
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

accuracy
✿✿✿

of
✿✿✿

the805

✿✿✿✿✿

overall
✿✿✿✿✿✿✿

scheme.
✿
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