
A N-dimensional Fortran Interpolation Program (NterGeo.v2020a)
for Geophysics Sciences - Application to a back-trajectory program
(BACKPLUMES.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet1,2, Laurent Menut1, and Maxime Beauchamp3

1LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Université, Sorbonne Université, CNRS, 91128
Palaiseau, France
2Citepa, Technical Reference Center for Air Pollution and Climate Change, 42, rue de Paradis 75010 Paris, France
3IMT Atlantique, Lab-STICC UMR CNRS, 655 Avenue du Technopôle, 29280 Plouzané, France

Correspondence: Bertrand BESSAGNET (bertrand.bessagnet@lmd.polytechnique.fr)

Abstract. An interpolation program coded in Fortran for irregular N-dimensional cases is presented and freely available.

Needs of interpolation procedure over irregular meshes or matrixes with interdependent input data dimensions is frequent in

geophysical models. Also, these models often embed look-up tables of physics/chemistry modules. Fortran is a powerful and

fast language, highly portable and easy to interface with other existing Fortran models. Our program does not need any libraries

and can be compiled with any Fortran compiler. The program is fast and competitive compared to current Python libraries. A5

novel optional parameter (normalisation option) is provided when considering different types of units on each dimension. For

the general program, the inverse distance is used for the weight calculation with a distance defined as a p-distance. Some tests

and examples are provided and available in the code package. Moreover, a real case of geophysics application embedding this

interpolation program is provided and discussed, it consists in determining back-trajectories using atmospheric dispersion or

mesoscale meteorological model outputs, respectively from the widely used models CHIMERE and WRF.10

1 Introduction

Interpolation is commonly used in geophysical sciences for post-treatment operations to evaluate model performances at point

observations. The NCO library (Zender, 2008) is commonly used in its recent version V4.9.2 to propose horizontal and vertical

interpolations to manage climate models outputs. The most frequent need is to interpolate in 3D spatial dimension and time

therefore in 4 dimensions. Fortran is used extensively for weather and climate-related software (Sun and Grimmond (2019), e.g.15

WRF - Skamarock et al. (2008); GFDL AM3 - Donner et al. (2011)). Geophysical models can use look-up tables of complex

modules instead of a full coupling strategy which is the case of the CHIMERE model (Mailler et al., 2017) with the embedded

ISORROPIA (Nenes et al., 1998, 1999) module dealing with chemistry and thermodynamics.

In this case the look-up table can easily exceed 5 dimensions to approximate the model. In parallel, Artificial Intelligence

methods are developed and can explore the behaviour of complex model outputs that requires fast interpolation methods. While20

more recent modern languages like Python are used in the scientific community, Fortran remains widely in the geophysics /

engineering community and is known as one of the faster language in time execution, very good on array handling, parallelisa-

1

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

tion and above all portability. Some benchmarks are available on web site to evaluate the performances of languages on simple

to complex operations (Kouatchou, 2018).

In some studies, the parameterization techniques proposed to manage aerosol/droplet microphysical schemes (Rap et al.,25

2009) employ either the modified Shepard interpolation method (Shepard, 1968) or the Hardy multiquadrics interpolation

method (Hardy, 1971, 1990), and the numerical results obtained show that both methods provide realistic results for a wide

range of aerosol mass loadings. For the climate community, comparison of six methods for the interpolation of daily European

climate data are proposed by (Hofstra et al., 2008), some of these methods use kriging like methods with the capability to use

co-predictors like the topography.30

A python procedure called scipy.interpolate.griddata is freely available (Scipy, 2014), unfortunately this program is too

general handling fully unstructured datasets and then not enough optimized for our objective. The goal of this paper is to present

a program to interpolate in a grid or a matrix which can be irregular (varying intervals) but structured with the possibility to

have interdependent dimensions (e.g. a longitude interval edges which depend on longitude, latitude, altitude and time). We

think this type of program can be easily implemented within models or to manage model outputs for post-treatment issues.35

Atmospheric models (physics and/or chemistry) are commonly used in the Geophysics community. Among all existing

models, HYSPLIT (Stein et al., 2015), STILT (Lin et al., 2003) and its WRF coupled version, (Nehrkorn et al., 2010) and

Flexpart (Pisso et al., 2019) are widely used. These models have different levels of complexity and are able to transport

backward in time air masses by accounting for atmospheric motions, chemistry and deposition processes.

A new back-trajectory plume has been developed taking advantage of this new interpolation program used to perform a 3D40

spatial interpolation at each time step. Compared to the other codes some additional characteristics are implemented, the code

is very light and does not required a lot of computer resources and libraries. This code is also very fast and enables to calculate

numerous trajectories in a few minutes. Finally, and probably the most important point, the code is dedicated to run on the

models outputs already calculated: trajectories are thus estimated over exactly the same grid than the one used for the direct

Eulerian simulation. This model is thus particularly suitable for users already having an Eulerian simulation and who want45

supplementary information about their studied case.

This paper describes (i) the methodology and the content of the interpolation program package NterGeo, and (ii) an appli-

cation of this program embedded in the new "back-trajectory" program BACKPLUMES. These two codes are freely available

(see code availability section).

2 Development of the interpolation program50

The program supports the exploration of irregular but structured grids or look-up tables defined by a size in each dimension

which can be of course different. The space intervals can vary along a dimension and the grid interval edges in each dimension

can depend on other dimensions. Two versions have been developed, (i) a version for a "regular" arrays with independent

dimensions and, (ii) a "general" version for possible inter-dependent dimensions, e.g. to handle 3D meshes which have time

varying spatial coordinates. The code does not need any libraries and can be easily compiled with any Fortran compiler. Our55

2

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

interpolation code was tested with gfortran (GNU Fortran project) and ifort (Intel). As it includes not specific options or

function, version of a compiler, there is no reason to have limitations or errors with other compilers. The top shell calling script

in the package provide two sets of options for “production” and “debugging” modes. Assuming the X array, the result of the

function f transforming X to Y array in R can be expressed as:

Y = f(X(x1, . . . ,xN)) (1)60

N is the dimension of the array, xi is the coordinates at dimension i ∈ [1,N] of the point X we want to interpolate.

2.1 The program for regular grids

A program interpolation_regular.F90 for regular grids (i.e. with independent dimensions) is available. To handle this type

of grids a classical bilinear interpolation is performed. Figure 1 shows the variables for N = 3 defined hereafter in the section.

Figure 1. Description of variables for N=3 with a regular grid case

3

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

For the particular case of a regular grid with independent dimensions the result Ỹ of the bilinear interpolation of the 2N65

identified neighbours can be expressed as:

Ỹ =w0
N . . .w

0
i . . .w

0
1 ×Y0(0 . . .0 . . .0)

+w0
N . . .w

0
i . . .w

1
1 ×Y1(0 . . .0 . . .1)

+ . . .

+wδN

N . . .wδi
i . . .w

δ1
1 ×Yk(δN . . . δi . . . δ1)

+ . . .

+w1
N . . .w

1
i . . .w

1
1 ×Y2N−1(1 . . .1 . . .1)

(2)

with δi the binary digit equal to 0 or 1, and the weights wδi
i for i ∈ [1,N] defined as:

w0
i =

θ1i −xi
θ1i − θ0i

w1
i = 1−w0

i (3)

Θi is the list of interval edges on each dimension i and does not depend on other dimensions. θδi
i is the bottom (δi = 0) and70

top (δi = 1) edges on each dimension i ∈ [1 . . .N] so that xi ∈]θ0i ,θ
1
i]. Yk is a 1-dimensional array with 2N elements storing

the value Y of the function at the identified neighbours Ψ on each dimension:

Yk(δN . . . δi . . . δ1) = f(Ψ(θδN

N , . . . ,θδi
i , . . . ,θ

δ1
1)) (4)

with k ∈ [0,2N − 1]

The tuple (δN . . . δi . . . δ1) is the binary transformation of integer k defined as
∑N−1
i=0 (δi×2i). The coefficients Γk = wδN

N . . .wδi
i . . .w

δ1
175

as a product of weighting factors on each direction can be seen as a binary suite that is convenient to handle in a compacted

and optimized Fortran programming strategy for the regular grid version of the code (Appendix B).

2.2 The general program

Considering the general program called interpolation_general.F90, the coordinates of edge points are stored in a 1-dimension

array of n=
∏N
i=1 Ii elements with Ii the number of edges on each dimension i. The tuple of coordinates (j1, . . . , jN) of an80

interval edge θik, with ji the indexed coordinate on dimension i, is transformed in a 1-dimension array indexed on k ∈ [1,n]

by:

k =
N∑

k=1

(
(ij − 1)

j−1∏

l=0

Il

)
+ 1 (5)

4

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

with I0 = 1 for initialisation.

Once the nearest neighbour is found, the result Ỹ of the interpolation is a weighting procedure of the 2N closest neighbours85

using a Shepard interpolation (Shepard, 1968) based on the inverse distance calculations:

Ỹ =
2N−1∑

k=0

(Γk ×Yk) (6)

with Yk = f(Υk) the value of the function f at neighbour Υk of coordinates (θ1k, . . . ,θ
N
k), and:

Γk =
1/dk∑2N−1

k=0 (1/dk)
(7)

The distance dk between the point of interest of coordinates (x1, . . . ,xN) to the neighbour k ∈ [1,n] is calculated as:90

dk =

(
N∑

i=1

| xi− θik |p
) 1

p

(8)

The previous formula are valid for dk 6= 0, in the case of dk = 0 the procedure stops and exit returning the exact value of the

corresponding data of the nearest neighbour. For distorted meshed or matrix, or dimensions with different units (e.g mixing

time with length), an hard coded option norm= .true. or .false. is also available to normalize the intervals with an average

interval ∆i value for the calculation of distances so that:95

dk =

(
N∑

i=1

(| xi− θik |
|∆i |

)p) 1
p

(9)

3 Computation strategy for the general program

The list of input/output arguments is provided in Appendix C. In the main program calling the subroutine the key point is

to transform first the N-dimension matrix in a 1D array. An example of main program is provided in the code package. The

computation strategy in the subroutine can be broken down into the sequential steps as follows:100

(I) Find the nearest neighbour of the input data by minimizing a distance with a simple incremental method stepping every

±1 coordinates on each dimension (detailed later in this section).

(II) Scan the surroundings of the nearest point within the matrix on ±1 step on each dimension and store the corresponding

block of input data to be tested. The size of the block is therefore (1 + 2× 1)N but can be extended to (1 + 2× 2)N if

we increase the scanning process to ±2 on each dimension (hard coded option iconf=1 or 2 in the declaration block).105

(III) Calculate the distance to the previously selected input data. A p-distance concept is adopted (hard coded option pnum

in the declaration block). The pnum value p should be superior or equal to 1 to verify the Minkowski inequality and be

considered as a metric.

5

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

(IV) Sort the previous block of data in ascending order and stop the sorting process when the first 2N point are selected. The

code offers the possibility to use only the first N + 1 neighbours (hard coded option neighb in the declaration block)110

that is sufficient and faster in most cases.

(V) Calculate the weights and then the final result.

The first step consisting in finding the first neighbour is the trickiest and is broken down into several steps. Figure 2 displays

an example in 2D of the step by step procedure to find the nearest neighbour.

(i) The procedure initializes the process starting from the first point of the input data grid or taken from the last closest point115

if given in argument as a non-null value.

(ii) A delta of coordinates is applied based on an average delta on each dimension to improve the initialisation. This compu-

tation step of delta is externalized as it can be time comsuming and should be done once for all taget points at which we

want to interpolate.

(iii) A test between the target value and the input data grid points coordinates determines the ±1 steps to add on each dimen-120

sion (see Figure 2 for an example in 2D).

(iv) If the grid point falls on the edges or outside the borders the closest coordinates within the matrix is selected.

(v) A test on the p-distance computation between the running point and the target is performed so that if the distance calcu-

lated at Iteration Nit is equal to distance at Iteration Nit− 2 the closest point is found.

(vi) If the distance is too high compared to the characteristic distance of the cell, the point is considered to be outside the125

borders of the input grid data. Therefore, the code allows a slight extrapolation if the target point is not too far from the

borders.

(vii) At this stage, the procedure can stop if the distance to the closest neighbour is 0 returning to the main program with the

exact value of the input data grid.

4 Visual example in 2D for a regular grid130

As an example to visualize the capacity of the general program, the 2D function used in Scipy (2014) is used to test our

procedure. The function is:

Y = f(X) = x1× (1−x1)× cos(4πx1)× sin(4πx2
2)2 (10)

with x1,x2 ∈ [0,1].

Our input grid data is a regular grid with regular intervals of 0.02 from 0 to 1 for x1 and x2 with therefore 51 points on135

6

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

I2

1

2

3

4

5

6

7

Input grid data

Closest neighbour searching steps

I1

I2

1

2

3

4

5

Start from point n°1 Start from point n°11 (first guess based
on average interval)

1

1 1

1

Target point Nit=5Nit=7

Figure 2. Real example in 2D of the step by step procedure to find the nearest neighbour of a target point for an irregular but structured

5× 5 grid. Left panel when starting the process from the 1st point of the grid on the lowest left corner, Right panel when starting with a first

guess based on an average delta computed for each dimension.

each dimension. We propose to interpolate on a finer regular grid with n=100×100, 200×200 and 300×300 points on each

dimension. For these three interpolations cases a normalized root mean square error (NMSE) of the result Ỹj for the full grid

point number j can be calculated against the true value Yj of the function as:

NMSE =

1
n

n∑
j=1

(
Ỹj −Yj

)2

1
n−1

n∑
j=1

(
Yj − Ȳj

)2 (11)

with Ȳj the mean value Yj as 1
n

∑n
j=1Yj .140

For the three cases the CPU time for the interpolation is evaluated and displayed in Table 1 for Machine 1 (Appendix E). The

time consuming is somehow proportional to the number of points in which to interpolate. Figure 3 displays the evolution of

the NMSE with the parameter p of the p-distance definition. There is a discontinuity of the NMSE from p= 1 to p= 1+ with

a slight increase with p in an asymptotic way. The NMSE decreases with the number of points but a slight increase is observed

from 200×200 from 300×300.145

7

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Figure 3. Interpolation results for the three cases. Figures generated with the Generic Mapping Tools (Wessel et al., 2019)

Table 1. Performance for each case with p = 1

Case 100×100 200×200 300×300

NMSE (%) 0.324 0.319 0.319

CPU time (s) 0.45 1.84 4.1

8

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

0 1 2 3 4 5 6
P

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N
M

S
E

 (
%

)

100x100 grid

200x200 grid

300x300 grid

Figure 4. Evolution of performances based on the NMSE for the three cases as a function of the parameter p of the p-distance computation

5 Example in 5D for a regular grid

Still using the general program, an example in 5D (N = 5) is proposed using the function :

Y = f(X) =x1× (1−x1)× cos(4πx1)× sin(4πx2)

× cos(4πx3)× sin(4πx4)× cos(4πx5)
(12)

with x1,x2,x3,x4,x5 ∈ [0,1]. The input data grid is a regular grid of Ii = 35 interval edges on each dimension i ∈ [1,5] then

355 = 52 521 875 grid points. The goal is to find the results on a coarse grid of 9 elements on each dimension then 95 = 59 049150

grid points. This case is an opportunity to test the influence of the number of neighbours to calculate the result. In our case,

the parameter p of the p-distance is set to p= 2. The interpolation seems to provide a better performance on the NMSE for our

function with less neighbours (case N + 1) and obviously with a lower CPU time. This could certainly depends on the type of

function to interpolate.

Table 2. Performance for the 5D (N=5) case with p = 2

Number of neigh-

bours

2N N +1

NMSE (%) 1.570 0.870

CPU time (s) 17.32 6.00

9

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Another test with the 5D case is performed to test the influence of the normalisation as defined in Equation 9 (flag norm)155

by defining an irregular grid with still 355 = 52 521 875 input data points but with (i) random intervals values, and (ii) one

dimension depending on another. The definition of the input grid is defined in Appendix D and provided in the code package.

With a similar order of magnitude of consumed CPU time the normalisation norm= .T rue. produce a NMSE = 0.499%

compared to NMSE = 0.822% for norm= .False.. There is then and added value of using such a normalisation with

comparable CPU time consuming (rising from 2.68 to 3.44 s for our case).160

6 Comparison with Python for a regular grid

The code has been tested against the Python procedure scipy.interpolate.griddata freely available by (Scipy, 2014), for the

following function:

Y = f(X) =x1× (1−x1)× cos(4πx1)

× sin(4πx2)× cos(4πx3)
(13)

with x1,x2,x3 ∈ [0,1]. The input data grid is a regular grid of Ii = 35 interval edges on each dimension i ∈ [1,5] then 353 =165

42875 grid points. The goal is to find the results on a coarse grid of 9 elements on each dimension then 93 = 729 grid points. A

case in 3D has been used for this test because the Python library was not able to work with very large datasets (overflow error)

while our program could make it. scipy.interpolate.griddata is used with the bilinear interpolation option while our method

is configured with p= 2.

Table 3 clearly shows how the Fortran code is faster compared to the Python library. However the bilinear interpolation170

method seems to provide a higher accuracy than the inverse distance one embedded in our method. Nevertheless, the error

produced by our method looks acceptable.

Table 3. Comparison of performances between our method for a 3D case with the gridata Python library. The Machine 2 is used (Appendix F).

Our code with N +1

neighbours

Our code with 2N

neighbours

Python

NMSE (%) 0.627 1.03 0.326

CPU time (s) 0.04 0.04 19.49

7 Geophysics application

7.1 Methodology

The back-trajectory module called BACKPLUMES detailed in this section can use output files from CHIMERE (Mailler et al.,175

2017) or WRF (Skamarock et al., 2008). This kind of model has mainly one calculation to do several times i.e. interpolate the

10

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

position of a point in a gridded 3D-times domain. It is why the implementation of a robust and precise interpolation scheme

as the one presented in this study is a key point. The first advantage of BACKPLUMES is to use the results of a simulation

already performed. The second advantage is to be homogeneous with the "direct" simulation by using the same wind field and

the same grid. BACKPLUMES is different than other back-trajectories models, such as Hysplit or Flexpart. Its goal is not to180

estimate the most likely trajectory as an enveloppe of numerous possible trajectories. Since it is difficult to calculate correct

probabilities back in time, the choice was made to randomly launch numerous trajectories and try to cover all possible origins.

The model is easy to use and light because a small set of meteorological parameters is required. These meteorological

parameters are described in Table 4 for WRF and CHIMERE. The BACKPLUMES model is an open-source code and is

available on the CHIMERE model web site.185

Parameter Model variable name

WRF model

Longitude, latitude XLONG, XLAT

Parameters for altitude P_TOP, ZNU, ZNW, P, PB

PH, PHB, PSFC

Wind components U, V, W

Q0 HFX

h PBLH

CHIMERE model

Longitude, latitude lon, lat

Altitude hlay

Wind winz, winm, winw

Q0 sshf

h hght

Table 4. List of parameters read by the BACKPLUMES program to calculate trajectories.

Parameters are the three-dimensional wind components, the boundary layer height h, the surface sensible heat flux Q0 and

the altitude of each model layer. The wind components are used for the horizontal and vertical transport. The boundary layer

height is used to define the vertical extent of the possible mixing and the surface sensible heat flux is used to know if the current

modelled hour corresponds to a stable or unstable surface layer (for when the particle is close to the surface).

The first step of the calculation is to choose a starting point. The user has to select a date, longitude, latitude and altitude,190

obviously included in the modelled domain and during the modelled period. From this starting point, the model will calculate

trajectories back in time. The number of trajectories is a up to the user and may be from one to several hundred of tracers.

In general, regional atmospheric models produce hourly outputs. But for some applications, an hourly time-step is not

adapted. When the model mesh is very fine, the back-trajectories have no sense if they are calculated on an hourly basis. The air

masses may cross several grid cells in 1 hour and a smaller integration time-step is required to preserve the trajectory continuity.195

11

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

This is the problem to respect the Courant Freidrich Levy (CFL) number as in forward transport mode. In this program, the user

can specify a sub-hourly step: the meteorological variables are then linearly interpolated between the two consecutive hours

using a classical 1D linear interpolation. The altitude is not provided in the WRF output files. It is thus necessary to diagnose

it. For all back-trajectories, note that all altitudes are Above Ground Level (AGL). The altitude is computed as follows:

p∗ = psurf − ptop (14)200

where psurf (PSFC) is the surface pressure and ptop is the top pressure of the model domain. If ptop is constant over the whole

domain, psurf and thus p∗ are dependent on the horizontal grid cell.

z0 =
Φ(1) + Φ′(1)

g
(15)

where Φ is the geopotential (PHB) and Φ′ (PH) its perturbation at vertical level k. g is the acceleration of gravity, g=9.81 m

s−2. For each vertical level k, the layer thickness ∆z and the cell top altitude zk is estimated as:205

dm = log

(
p∗ηM − ptop
p∗ηM + ptop

)

du = log

(
p∗ηM − ptop
p∗ηF + ptop

)

z1 =
Φ(k) + Φ′(k)

g

z2 =
Φ(k+ 1) + Φ′(k+ 1)

g

∆z = (z2− z1)
du
dm

z(k) = z1 + ∆z− z0

(16)

where ηM is eta values on full (w) levels (ZNW) and ηF is eta values on half (mass) levels (ZNU). The layer thicknesses

varying in space but also in time, this calculation is done for all trajectories and all time-step. At each time-step and for each

trajectory, the position of the air mass is estimated by subtracting its pathway travelled as ∆λ and ∆φ to the current position

in longitude (λ) and latitude (φ). To do so, all necessary variables are interpolated in 3D or 2D with our general interpolation210

program described in the previous section.

12

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

φrad = φ
π

180

∆x= u
3600
∆t

∆y = v
3600
∆t

∆λ=
∆x

Rcos(φrad)
180
π

∆φ=
∆y
R

180
π

(17)

with the wind speed is provided in m s−1 on an hourly basis, R is the Earth radius as R=6371 km. The new position for one

tracer is thus:

λt−1 = λt−∆λ

φt−1 = φt−∆φ
(18)215

The key point of this program is the choice made for the vertical mixing (Figure 5). Depending on the vertical position of

the tracer, several hypotheses are made. Two parameters are checked for each tracer and each time-step: (i) the boundary layer

height enables to know if the particle is in the boundary layer or above in the free troposphere, (ii) the surface sensible heat

fluxes enables to know if the atmosphere is stable or unstable.

h

z

t

Figure 5. Methodology for the vertical distribution as a function of the diurnal cycle of the boundary layer height.

When the tracer is diagnosed to be in the boundary layer, there are two cases: the boundary layer is stable or unstable. If the220

boundary layer is stable, Q0 < 0, the particle stays in the boundary layer at the same altitude. The new vertical position of the

tracer is:

zt−1 = zt (19)

13

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

If the boundary layer is unstable, Q0 > 0, the particle is considered in the convective boundary layer and may be located

at every level in this boundary layer the time before. Therefore a random function is applied to reproduce a potential vertical225

mixing.

zt−1 =Rand×h (20)

It is considered that 15 mn is representative of a well-mixed convective layer. If the time step is larger than 15 mn, the random

function is applied. But if the time step is lesser than 15 mn, the vertical mixing is reduced to the vicinity of the current position

of the tracer. In this case, we have:230

zt−1 =Rand×∆z× [zt] (21)

where ∆z = 1
2 (zk−1

t + zk+1
t) and k is the vertical model level corresponding to zt. In the free troposphere, the evolution of

the particle is considered to be influenced by the vertical wind component. A random function is applied to estimate its possible

vertical motion with values between 0 and w/2 m s−1. The vertical variability of the tracer’s position in the free troposphere is

calculated by diagnosing the vertical velocity as:235

zt−1 = zt− (0.5 +Rand)w
3600
∆t

(22)

where Rand is a random value, between 0 and 1, and different for each tracer and each time.

7.2 Examples of back-trajectories computations

An example is presented for the same case and the WRF and CHIMERE models. The difference between the two models is

the number of vertical levels. The online modelling system WRF-CHIMERE is used, meaning that the horizontal grid is the240

same (a large domain including Europe and Africa and with ∆x=∆y=60km). The wind field is also the same, WRF sending

this information to CHIMERE. The boundary layer height is different between the two models, WRF using the (Hong et al.,

2006) schemes and CHIMERE using the (Troen and Mahrt, 1986) scheme. The surface sensible heat flux is the same between

the two models, CHIMERE using the flux calculated by WRF. WRF has more vertical model levels than CHIMERE, thus

meteorological fields are interpolated from WRF to CHIMERE. It impacts the horizontal and vertical wind fields.245

Figure 6 presents the results of back-trajectories launched the 10 August 2013 at 12:00 UTC. The location is at longitude

+10oE and latitude +25oN, altitude=0 m AGL. This location has no scientific interest but is in the middle of the domain, to

have the longer as possible trajectories. The complete duration of trajectories represent 10 days back in time. A total of 120

trajectories are launched at the same position and time. They are randomly mixed when they are in the boundary layer to

represent the mixing and the diffusion.250

14

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

with WRF

with CHIMERE

Figure 6. Backplumes calculated using CHIMERE modelled meteorological fields. The starting point is at longitude +10oE and latitude

+25oN, altitude=0 m AGL and for the day 10 August 2013 at 12:00 UTC. It corresponds to a case studied during the CHARMEX campaign

(Menut et al., 2015).

The most important part of the plume comes from the North of the starting point. For this main plumes, the calculation

is similar between the two models. Another large part of backplumes is modelled at the East of the starting point. However,

this fraction is mainly modelled with WRF but not with CHIMERE where only a few trajectories are diagnosed. One possible

explanation may be found by analyzing the vertical transport of the trajectories.

15

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Figure 7. Projection of all back-trajectories on a single time-altitude axis.

Figure 7 presents all plumes displayed in the previous figure but projected along the same time-altitude axis. The differences255

between the two backplumes are mainly due at the calculation of the boundary layer height. When WRF diagnosed an altitude

of ≈ 3000m, CHIMERE diagnoses ≈ 2000m, leading to different direction and wind speed, then to a split of the plumes with

WRF but not with CHIMERE. This illustrates the sensitivity of the result to the forcing model. But, in both cases, the answer in

our case is clearly that the main contribution of the air masses located at the starting point are mainly coming from the North.

8 Conclusions260

A new interpolation program written in Fortran has been developed to interpolate on N-dimensional matrices. It has been

evaluated for several dimension cases up to N=5. The code is fast compared to similar Python routines and highly portable in

existing geophysical codes. The interpolation program works for any dimension N above 2 and designed to work with irregular

but structured grids (characterized by a size for each dimension) or lookp-up tables. Already used in its "regular" version in

CHIMERE, the "general" program has been tested on a new real application which calculates air mass back-trajectories from265

two widely used atmospheric models: CHIMERE and WRF. This interpolation program can be used for any application in

Geophysics and Engineering Sciences but also to explore large structured matrices for Machine Learning applications.

Code availability. The current version of the models are freely available. The exact version of the model used to produce the results used in

this paper is archived (i) on Zenodo for NterGeo at https://doi.org/10.5281/zenodo.3733278 under the GNU General Public License v3.0 or

later, as are input data and scripts to run the model and produce the plots for all the simulations presented in this paper. The BACKPLUMES270

model is an open-source code and is available on the CHIMERE model web site https://www.lmd.polytechnique.fr/~menut/backplumes.php.

16

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix A: List of frequently used abbreviations

AGL Above Ground Level

CFL Courant Freidrich Levy

CHIMERE National French CTM

CTM Chemistry-transport model

CPU Central Processing Unit

NMSE Normalized Root Mean Square Error

PBL Planetary Boundary Layer

PSFC Surface Pressure

WRF Weather Research and Forecasting model

Appendix B: Binary strategy

This piece of code shows the strategy to optimize the computation of weights for the "regular case". The idea is to minimize275

the number of operation to benefit from the calculation at each dimension. A non-optimized loop would require 2N − 1 multi-

plications while the optimized loop requires only 2N+1− 4 multiplications for the weight calculations. Then, for large values

of N � 2, the ratio of required operations between the non-optimized and the optimized loop is ≈ (N − 1)/2.

! . . .

nn =2** ndim ! ndim i s t h e d i m e n s i o n o f t h e case s t u d y280

pn =2**(ndim−1) !

! Loop t o c o n v e r t k i n b i n a r y

do k =0 , nn−1

do j =0 , ndim−1

i f (b t e s t (k , j)) then285

i b i n (j , k) =1

e l s e

i b i n (j , k) =0

e n d i f

enddo290

enddo

. . .

! Main o p t i m i z e d loop (2 l o o p s s e q u e n c e) t o c a l c u l a t e t h e w e i g h t i n g f a c t o r s b e n e f i t i n g from

! t h e p r e v i o u s i t e r a t i o n on t h e main d i m e n s i o n i

do i =1 , ndim ! Loop 1295

n i =2** i

p i = n i / 2

do k =0 , ni−1 ! Loop 2

d e l t a = i b i n (i −1,k)

i f (i . ne . 1) then300

17

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

i f (d e l t a . eq . 0) then

ws (k) = we ig h t (k)

we ig h t (k) = w e ig h t (k) *w(i , d e l t a) ! where w i s t h e w e i g h t on each d i m e n s i o n

e l s e

we ig h t (k) =ws (k−p i) *w(i , d e l t a)305

e n d i f

e l s e

we ig h t (k) =w(i , d e l t a)

e n d i f

enddo310

enddo

Appendix C: Code design

Note that avedelta and maxdelta arrays have been externalized to optimize the calculations. In the code package an independent

program is available to calculate these arrays to be implemented in your main program. The program is written in Fortran double

precision ingesting the following arguments:315

s u b r o u t i n e i n t e r p o l a t i o n _ g e n e r a l (&

ndim , &! I n p u t : I n t

maxdim , &! I n p u t : I n t

kdim , &! I n p u t : Array 1D, I n t

vec t , &! I n p u t : Array 2D, Real320

v t a b l e , &! I n p u t : Array 1D, Real

t a b l e , &! I n p u t : Array 1D, Real

a v e d e l t a , &! I n p u t : Array 1D, Real

maxdel ta , &! I n p u t : Array 1D, Real

t a b l e , &! I n p u t : Array 1D, Real325

r e su , &! Outpu t : Real

i n e i , &! Outpu t : I n t e g e r

n e i g h b o u r s ,& ! Outpu t / I n p u t : Array 2D, I n t

weigh t s , &! Outpu t : Array 1D, Real

found &! Outpu t : L o g i c a l330

)

Some hard coded variables can be tested by the user to improve the results. They have been tested and some results are

described in this paper. A recompilation is necessary if you change these values.

l o g i c a l , parameter : : norm = . f a l s e . ! Norma l i z e or n o t by t h e average d e l t a on each

d i m e n s i o n335

l o g i c a l , parameter : : v e r b o s e = . f a l s e . ! L e v e l o f message w r i t i n g (. t r u e . f o r debug)

l o g i c a l , parameter : : n e ig hb = . t rue . ! . t r u e . o n l y f i n d up t o ndim+1 c l o s e s t n e i g h b o u r s t o

be f a s t e r

! . f a l s e . f i n d up t o 2 \ ^NDIM c l o s e s t n e i g h b o u r s

18

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Table C1. Description of subroutine arguments

Variable Type Description Array dimension

ndim Integer Dimension N > 1 nd

maxdim Integer Total number of elements of the input table n =
∏N

i=1 Ii with Ii the

number of elements in each dimension i

nd

kdim Integer 1D Array Array of number of elements Ii on each dimension i (0 : N)

vect Real 2D Array Array storing in a 1 dimensional array the list of edges on each

dimension

(1 : N,1 : n)

vtable Real 1D Array Coordinate values of the point at which to interpolate data (1 : N)

table Real 1D Array Values for the list of known points vect (input grid data) (1 : n)

avedelta Real 1D Array Inverse of average intervals on each dimension N (N)

maxdelta Real 1D Array Maximum intervals on each dimension N (N)

resu Real Result of interpolation for vtable nd

inei Integer Number of neighbours nd

neighbours Real 2D Array Array of neighbours coordinates (1 : 2N ,1 : n)

weights Real 1D Array Weight for each neighbour (1 : 2N)

found Logical Returns true or false if respectively the result is found or not

found if the point is outside the bounds

nd

i n t e g e r , parameter : : i c o n f =1 ! Number o f c e l l t o a c c o u n t f o r b e f o r e and a f t e r340

! t h e c l o s e s t p o i n t , i c o n f =2 can be t e s t e d n o t more

r e a l (kind= i p r e c) , parameter : : pnum =2.0 d+00 ! p−d i s t a n c e parame te r

19

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix D: Irregular structured grid example in 5D

Herebelow is an example of a 5D array input gridata with irregular intervals with the last dimension (5) depending on dimension

(1).345

! D e f i n i t i o n o f main d i m e n s i o n s

i s i z e =9 ! O u t p u t g r i d s i z e

n p o i n t s =35 ! I n p u t g r i d s i z e

ndim=5 ! Dimension o f t h e example

a l l o c a t e (kdim (0 : ndim)) ! Number o f e l e m e n t per d i m e n s i o n a r r a y350

kdim (0) =1 ! Fake d i m e n s i o n f o r c o m p u t a t i o n i s s u e s

kdim (1) = n p o i n t s

kdim (2) = n p o i n t s

kdim (3) = n p o i n t s

kdim (4) = n p o i n t s355

kdim (5) = n p o i n t s

! Main a r r a y a l l o c a t i o n

a l l o c a t e (d e l t a (ndim))

a l l o c a t e (d s t a r t (ndim))

a l l o c a t e (v e c t (ndim , kdim (1) , kdim (2) , kdim (3) , kdim (4) , kdim (5)))360

a l l o c a t e (r ando (ndim , 1 : n p o i n t s −1)) ! Random v a r i a b l e

maxdim=kdim (1) *kdim (2) *kdim (3) *kdim (4) *kdim (5)

!

! D e f i n i t i o n o f t h e i n p u t g r i d " v e c t " w i t h d e l t a , d s t a r t as :

do j =1 , ndim365

d e l t a (j) =1 . d +00/ d f l o a t (n p o i n t s −1) / (d f l o a t (j) **3)

d s t a r t (j) =1 . d +00/ d f l o a t (n p o i n t s −1) / 2 . d + 0 0 / (d f l o a t (j) **3)

enddo

do j =1 , ndim

do i =1 , n p o i n t s−1370

r ando (j , i) = d f l o a t (i n t (d log (r and () * 1 0 . d +00+1. d +00)) +2) ! Random i n t e r v a l on each d i m e n s i o n

enddo

r ando (j , :) = d f l o a t (n p o i n t s −1)* rando (j , :) / sum (r ando (j , :)) ! N o r m a l i s a t i o n o f random i n t e r v a l s

enddo

v e c t =0 .0 d+00 ! I n i t i a l i s a t i o n375

! " v e c t " c o m p u t a t i o n

do i =2 , kdim (1)

v e c t (1 , i , : , : , : , :) = v e c t (1 , i − 1 , : , : , : , :) + rando (1 , i −1)* d e l t a (1)

enddo

do j =2 , kdim (2)380

v e c t (2 , : , j , : , : , :) = v e c t (2 , : , j − 1 , : , : , :) + rando (2 , j −1)* d e l t a (2)

enddo

do k =2 , kdim (3)

v e c t (3 , : , : , k , : , :) = v e c t (3 , : , : , k−1 , : , :) + rando (3 , k−1)* d e l t a (3)

20

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

enddo385

do l =2 , kdim (4)

v e c t (4 , : , : , : , l , :) = v e c t (4 , : , : , : , l −1 , :) + rando (4 , l −1)* d e l t a (4)

enddo

do m=2 , kdim (5)

do i =1 , kdim (1)390

v e c t (5 , i , : , : , : , m) = v e c t (5 , i , : , : , : , m−1)+ rando (5 ,m−1)* d e l t a (5)+&

&d e l t a (5) * d f l o a t (i −1) / d f l o a t (kdim (1)−1) ! Dim 5 depends on Dim . 1

enddo

enddo

!395

21

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix E: Characteristics of Machine 1

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit

– Byte Order: Little Endian

– CPU(s): 64400

– On-line CPU(s) list: 0-63

– Thread(s) per core: 2

– Core(s) per socket: 8

– Socket(s): 4

– NUMA node(s): 8405

– Vendor ID: AuthenticAMD

– CPU family: 21

– Model: 1

– Model name: AMD Opteron(TM) Processor 6276

– Stepping: 2410

– CPU MHz: 2300.000

– CPU max MHz: 2300.0000

– CPU min MHz: 1400.0000

– BogoMIPS: 4599.83

– Virtualization: AMD-V415

– L1d cache: 16K

– L1i cache: 64K

– L2 cache: 2048K

– L3 cache: 6144K

22

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

– Memory block size: 128M420

– Total online memory: 128G

– Total offline memory: 0B

– Linux version 3.10.0-1062.12.1.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red

Hat 4.8.5-39)

Appendix F: Characteristics of Machine 2425

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit

– Byte Order: Little Endian

– CPU(s): 96

– On-line CPU(s) list: 0-47430

– Off-line CPU(s) list: 48-95

– Thread(s) per core: 1

– Core(s) per socket: 24

– Socket(s): 2

– NUMA node(s): 2435

– Vendor ID: GenuineIntel

– CPU family: 6

– Model: 85

– Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

– Stepping: 4440

– CPU MHz: 2701.000

– CPU max MHz: 2701.0000

– CPU min MHz: 1200.0000

23

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

– BogoMIPS: 5400.00

– Virtualization: VT-x445

– L1d cache: 32K

– L1i cache: 32K

– L2 cache: 1024K

– L3 cache: 33792K

– NUMA node0 CPU(s): 0-23450

– NUMA node1 CPU(s): 24-47

– Memory block size: 128M

– Total online memory: 190.8G

– Linux version 3.10.0-957.41.1.el7.x86_64 (mockbuild@x86-vm-26.build.eng.bos.redhat.com) (gcc version 4.8.5 20150623

(Red Hat 4.8.5-36)455

Author contributions. Bertrand Bessagnet has developed the code. Laurent Menut and Bertrand Bessagnet has co-developed and imple-

mented the code in the BACKPLUMES.v2020r1 model. Maxime Beauchamp has supported Bertrand Bessagnet for the developments.

Competing interests. The author declares that there is no conflict of interest.

Acknowledgements. This research was funded by the DGA (French Directorate General of Armaments) grant number 2018 60 0074 in the

frame of the project NETDESA.460

24

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

References

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D.,

Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein,

S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus,

R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M.,465

Wittenberg, A. T., and Zeng, F.: The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric

Component AM3 of the GFDL Global Coupled Model CM3, Journal of Climate, 24, 3484–3519, https://doi.org/10.1175/2011JCLI3955.1,

https://doi.org/10.1175/2011JCLI3955.1, 2011.

Hardy, R.: Multivariate equations of topography and other irregular surfaces, Journal of Geophysical Research, 71, 1905–1915, 1971.

Hardy, R.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988, Computers and Mathematics470

with Applications, 19, 163 – 208, https://doi.org/https://doi.org/10.1016/0898-1221(90)90272-L, http://www.sciencedirect.com/science/

article/pii/089812219090272L, 1990.

Hofstra, N., Haylock, M., New, M., Jones, P., and Frei, C.: Comparison of six methods for the interpolation of daily, European climate data,

Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2008JD010100, https://agupubs.onlinelibrary.wiley.com/doi/

abs/10.1029/2008JD010100, 2008.475

Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon Weather

Rev, 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.

Kouatchou, J.: NASA Modeling Guru: Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition), available at:

https://modelingguru.nasa.gov/docs/DOC-2676 (last access: 11 March 2020), 2018.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the up-480

stream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, Journal of Geophysical

Research: Atmospheres, 108, n/a–n/a, https://doi.org/10.1029/2002JD003161, http://dx.doi.org/10.1029/2002JD003161, 4493, 2003.

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., Briant, R., Tuccella, P., Bessagnet, B., Colette,

A., Létinois, L., Markakis, K., and Meleux, F.: CHIMERE-2017: from urban to hemispheric chemistry-transport modeling, Geoscientific

Model Development, 10, 2397–2423, 2017.485

Menut, L., Rea, G., Mailler, S., Khvorostyanov, D., and Turquety, S.: Aerosol forecast over the Mediterranean area during July 2013

(ADRIMED/CHARMEX), Atmospheric Chemistry and Physics, 15, 7897–7911, https://doi.org/10.5194/acp-15-7897-2015, http://www.

atmos-chem-phys.net/15/7897/2015/, 2015.

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S., Lin, J., Gerbig, C., Longo, M., and Freitas, S.: Coupled weather research and

forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model, Meteorology and Atmospheric Physics, 107, 51–64,490

https://doi.org/10.1007/s00703-010-0068-x, 2010.

Nenes, A., Pilinis, C., and Pandis, S.: ISORROPIA: A new thermodynamic model for inorganic multicomponent atmospheric aerosols,

Aquatic Geochem., 4, 123–152, 1998.

Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional

air quality models, Atmos Environ, 33, 1553–1560, 1999.495

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink,

C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A.,

25

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geoscientific Model Development, 12,

4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://www.geosci-model-dev.net/12/4955/2019/, 2019.

Rap, A., Ghosh, S., and Smith, M. H.: Shepard and Hardy Multiquadric Interpolation Methods for Multicomponent Aerosol–Cloud500

Parameterization, Journal of the Atmospheric Sciences, 66, 105–115, https://doi.org/10.1175/2008JAS2626.1, https://doi.org/10.1175/

2008JAS2626.1, 2009.

Scipy, C.: Interpolate unstructured D-dimensional data: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.griddata.html,

2014.

Shepard, D.: A Two-Dimensional Interpolation Function for Irregularly-Spaced Data, in: Proceedings of the 1968 23rd ACM National505

Conference, ACM ’68, p. 517–524, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/800186.810616,

https://doi.org/10.1145/800186.810616, 1968.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X., Wang, W., and Powers, J. G.: A description of

the Advanced Research WRF Version 3, NCAR Tech. Note, pp. 1 – 125, 2008.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and510

Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-

00110.1, 2015.

Sun, T. and Grimmond, S.: A Python-enhanced urban land surface model SuPy (SUEWS in Python, v2019.2): development, deploy-

ment and demonstration, Geoscientific Model Development, 12, 2781–2795, https://doi.org/10.5194/gmd-12-2781-2019, https://www.

geosci-model-dev.net/12/2781/2019/, 2019.515

Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Boundary-Layer Meteorology,

37, 129–148, 1986.

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem-

istry, Geophysics, Geosystems, 20, 5556–5564, https://doi.org/10.1029/2019GC008515, https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2019GC008515, 2019.520

Zender, C. S.: Analysis of self-describing gridded geoscience data with netCDF Operators (NCO), Environmental Modelling & Soft-

ware, 23, 1338 – 1342, https://doi.org/https://doi.org/10.1016/j.envsoft.2008.03.004, http://www.sciencedirect.com/science/article/pii/

S1364815208000431, 2008.

26

https://doi.org/10.5194/gmd-2020-88
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

