
A N-dimensional Fortran Interpolation Program (NterGeo.v2020a)
for Geophysics Sciences - Application to a back trajectory program
(Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet1,2, Laurent Menut1, and Maxime Beauchamp3

1LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Université, Sorbonne Université, CNRS, 91128
Palaiseau, France
2Citepa, Technical Reference Center for Air Pollution and Climate Change, 42, rue de Paradis 75010 Paris, France
3IMT Atlantique, Lab-STICC UMR CNRS, 655 Avenue du Technopôle, 29280 Plouzané, France

Correspondence: Bertrand BESSAGNET (bertrand.bessagnet@lmd.polytechnique.fr)

Abstract. An interpolation program coded in Fortran for irregular N-dimensional cases is presented and freely available.

Needs of interpolation procedures over irregular meshes or matrixes with interdependent input data dimensions is frequent

in geophysical models. Also, these models often embed look-up tables of physics/chemistry modules. Fortran is a fast and

powerful language highly portable. It is easy to interface models written in Fortran with each other. Our program does not

need any libraries, it is written in standard Fortran and tested with two usual compilers. The program is fast and competitive5

compared to current Python libraries. A normalisation option parameter is provided when considering different types of units on

each dimension. Some tests and examples are provided and available in the code package. Moreover, a geophysical application

embedding this interpolation program is provided and discussed, it consists in determining back trajectories using chemistry

transport or mesoscale meteorological model outputs, respectively from the widely used models CHIMERE and WRF.

1 Introduction10

Interpolation is commonly used in geophysical sciences for post-treatment processing to evaluate model performances against

ground station observations. The NCO library (Zender, 2008) is commonly used in its recent version V4.9.2 for horizontal and

vertical interpolations to manage climate models outputs. The most frequent need is to interpolate in 3D spatial dimension and

time therefore in 4 dimensions. Fortran is extensively used for atmosphere modelling softwares (Sun and Grimmond (2019),

e.g. WRF - Skamarock et al. (2008); GFDL AM3 - Donner et al. (2011)). More generally, geophysical models can use look-15

up tables of complex modules instead of a full coupling strategy between these modules which is the case of the CHIMERE

model (Mailler et al., 2017) with the embedded ISORROPIA module dealing with chemistry and thermodynamics (Nenes et al.,

1998, 1999). In such case, the look-up table can easily exceed 5 dimensions to approximate the model. In parallel, Artificial

Intelligence methods are developed and can explore the behaviour of complex model outputs that requires fast interpolation

methods. While more recent modern languages like Python are used in the scientific community, Fortran remains widely in20

the geophysics / engineering community and is known as one of the faster language in time execution, very good on array

1



handling, parallelisation and above all portability. Some benchmarks are available on web site to evaluate the performances of

languages on simple to complex operations (Kouatchou, 2018).

The parameterization techniques proposed to manage aerosol/droplet microphysical schemes (Rap et al., 2009) can employ

either the modified Shepard interpolation method (Shepard, 1968) or the Hardy multiquadrics interpolation method (Hardy,25

1971, 1990), and the numerical results obtained show that both methods provide realistic results for a wide range of aerosol

mass loadings. For the climate community, a comparison of six methods for the interpolation of daily European climate data

are proposed by (Hofstra et al., 2008), some of these methods use kriging-like methods with the capability to use co-predictors

like the topography.

A python procedure called scipy.interpolate.griddata is freely available (Scipy, 2014). Unfortunately this program is not30

really adapted to our problem, it could be not enough optimized for our objective as it can manage fully unstructured datasets.

The goal of this paper is to present a program to interpolate in a grid or a matrix which can be irregular (varying intervals) but

structured with the possibility to have interdependent dimensions (e.g. a longitude interval edges which depend on longitude,

latitude, altitude and time). We think this type of program can be easily implemented within models or to manage model outputs

for post-treatment issues. In short, the novelty of this program is to fill the gap of interpolation issues between the treatment of35

very complex unstructured meshes and simple regular grids for a general dimension N.

In order to quantify the impact of such a new interpolation program and show examples of its use, it is implemented in the

back-tajectory model Backplumes, developed in the same team than the CHIMERE model, Mailler et al. (2017). This host

model is well fit for this implementation, because the most important part of its calculation is an interpolation of a point in a

model grid box. This paper describes (i) the methodology and the content of the interpolation program package NterGeo, and40

(ii) an application of this program embedded in the new back trajectories program Backplumes. These two codes are freely

available (see code availability section).

2 Development of the interpolation program

The program NterGeo is fit for exploring irregular but structured grids or look-up tables defined by a unique size for each

dimension which can be of course different from one to another dimension. The space intervals can vary along a dimension45

and the grid interval edges in each dimension can depend on other dimensions. Two versions have been developed, (i) a version

for "regular" arrays with independent dimensions and, (ii) a "general" version for possible inter-dependent dimensions, e.g. to

handle 3D meshes which have time varying spatial coordinates. The code does not need any libraries and is written in standard

Fortran. Our interpolation code was tested with gfortran (GNU Fortran project) and ifort (Intel). As it includes not

specific options or function, version of a compiler, there is no reason to have limitations or errors with other compilers. The50

top shell calling script in the package provides two sets of options for “production” and “debugging” modes. Assuming the X

array, the result of the function f transforming X to Y array in R can be expressed as:

Y (x1, . . . ,xN ) = f(X(x1, . . . ,xN )) (1)

N is the dimension of the array, xi is the coordinates at dimension i ∈ [1,N ] of the point X we want to interpolate.

2



2.1 The program for regular grids55

A program interpolation_regular.F90 for regular grids (i.e. with independent dimensions) is available. To handle

this type of grids a classical multilinear interpolation is performed. Figure 1 shows the variables for N = 3 defined hereafter in

the section.

Figure 1. Description of variables for N=3 with a regular grid case

For the particular case of a regular grid with independent dimensions the result Ỹ of the multilinear interpolation of the 2N

identified neighbours can be expressed as:60

Ỹ =w0
N . . .w

0
i . . .w

0
1 ×Y0(0 . . .0 . . .0)

+w0
N . . .w

0
i . . .w

1
1 ×Y1(0 . . .0 . . .1)

+ . . .

+wδNN . . .wδii . . .w
δ1
1 ×Yk(δN . . . δi . . . δ1)

+ . . .

+w1
N . . .w

1
i . . .w

1
1 ×Y2N−1(1 . . .1 . . .1)

(2)

3



with δi the binary digit equal to 0 or 1, and the weights wδii for i ∈ [1,N ] defined as:

w0
i =

θ1i −xi
θ1i − θ0i

w1
i = 1−w0

i (3)

Variable Θi is the list of interval edges on each dimension i and does not depend on other dimensions. θδii is the bottom

(δi = 0) and top (δi = 1) edges on each dimension i ∈ [1 . . .N ] so that xi ∈]θ0i ,θ
1
i ]. Yk is a 1-dimensional array with 2N65

elements storing the value Y of the function at the identified neighbours Ψ on each dimension:

Yk(δN . . . δi . . . δ1) = f(Ψ(θδNN , . . . ,θδii , . . . ,θ
δ1
1 )) (4)

with k ∈ [0,2N − 1]

The tuple (δN . . . δi . . . δ1) is the binary transformation of integer k defined as
∑N−1
i=0 (δi×2i). The coefficients Γk = wδNN . . .wδii . . .w

δ1
1

as a product of weighting factors on each direction can be seen as a binary suite that is convenient to handle in a compacted70

and optimized Fortran programming strategy for the regular grid version of the code (Appendix B).

2.2 The general program

Considering the general program called interpolation_general.F90, the coordinates of edge points are stored in

a 1-dimensional array of n=
∏N
i=1 Ii elements with Ii the number of edges on each dimension i. The tuple of coordinates

(j1, . . . , jN ) of an interval edge θik, with ji the indexed coordinate on dimension i, is transformed in a 1-dimensional array75

indexed on k ∈ [1,n] by:

k =

N∑
j=1

(
(ij − 1)

j−1∏
l=0

Il

)
+ 1 (5)

with I0 = 1 for initialisation.

Once the nearest neighbour is found, the result Ỹ of the interpolation is a weighting procedure of the 2N closest vertice using

a Shepard interpolation (Shepard, 1968) based on the inverse distance calculations:80

Ỹ =

2N−1∑
k=0

(Γk ×Yk) (6)

with Yk = f(Υk) the value of the function f at neighbour Υk of coordinates (θ1k, . . . ,θ
N
k ), and:

Γk =
1/dk∑2N−1

k=0 (1/dk)
(7)

The distance dk between the point of interest of coordinates (x1, . . . ,xN ) to the neighbour k ∈ [1,n] is calculated as:

dk =

(
N∑
i=1

| xi− θik |p
) 1

p

(8)85

4



The previous formula are valid for dk 6= 0, in the case of dk = 0 the procedure stops and exit returning the exact value of the

corresponding data of the nearest neighbour. For distorted meshed or matrix, or dimensions with different units (e.g mixing

time with length), a hard coded option norm= .true. or .false. is also available to normalize the intervals with an average

interval ∆i value for the calculation of distances so that:

dk =

(
N∑
i=1

(
| xi− θik |
|∆i |

)p) 1
p

(9)90

3 Computation strategy for the general program

The list of input/output arguments is provided in Appendix C. In the main program calling the subroutine the key point is to

transform first the N-dimension matrix into a 1D array. An example of a main program calling the subroutine is provided in

the code package. The computation strategy in the subroutine can be broken down into the sequential steps as follows:

(I) Find the nearest neighbour of the input data by minimizing a distance with a simple incremental method stepping every95

±1 coordinates on each dimension (detailed later in this section).

(II) Scan the surroundings of the nearest point within the matrix on ±1 step on each dimension and store the corresponding

block of input data to be tested. The size of the block is therefore (1 + 2× 1)N but can be extended to (1 + 2× 2)N if

we increase the scanning process to ±2 on each dimension (hard coded option iconf=1 or 2 in the declaration block).

(III) Calculate the distance to the previously selected input data. A p-distance concept is adopted (hard coded option pnum100

in the declaration block). The pnum value p should be superior or equal to 1 to verify the Minkowski inequality and be

considered as a metric.

(IV) Sort the previous block of data in ascending order and stop the sorting process when the first 2N point are selected. The

code offers the possibility to use only the first N + 1 neighbours (hard coded option neighb in the declaration block)

that is sufficient and faster in most cases.105

(V) Calculate the weights, and then the final result.

The first step consisting in finding the first neighbour is the trickiest and is broken down into several steps. Figure 2 displays

an example in 2D of the step by step procedure to find the nearest neighbour.

(i) The procedure initializes the process starting from the first point of the input data grid or taken from the last closest point

if given in argument as a non-null value.110

(ii) A delta of coordinates is applied based on an average delta on each dimension to improve the initialisation. This compu-

tation step of delta is externalized as it can be time comsuming and should be done once for all taget points at which we

want to interpolate.

5



(iii) A test between the target value and the input data grid points coordinates determines the ±1 steps to add on each dimen-

sion (see Figure 2 for an example in 2D).115

(iv) If the grid point falls on the edges or outside the borders the closest coordinates within the matrix is selected.

(v) A test on the p-distance computation between the running point and the target is performed so that if the distance calcu-

lated at Iteration Nit is equal to distance at Iteration Nit− 2 the closest point is found.

(vi) If the distance is larger than the characteristic distance of the cell, the point is considered to be outside the borders of the

input grid data. Therefore, the code allows a slight extrapolation if the target point is not too far from the borders.120

(vii) At this stage, the procedure can stop if the distance to the closest vertice is 0 returning to the main program with the exact

value of the input data grid.

I2

1

2

3

4

5

6

7

Input grid data

Closest neighbour searching steps

I1

I2

1

2

3

4

5

Start from point n°1 Start from point n°11 (first guess based
on average interval)

1

1 1

1

Target point Nit=5Nit=7

Figure 2. Real example in 2D of the step by step procedure to find the nearest neighbour of a target point for an irregular but structured

5× 5 grid. Left panel when starting the process from the 1st point of the grid on the lowest left corner, Right panel when starting with a first

guess based on an average delta computed for each dimension.

6



4 Visual example in 2D for a regular grid

As an example to visualize the capacity of the general program, the 2D function used in Scipy (2014) is used to test our

procedure. The function is:125

Y = f(X) = x1× (1−x1)× cos(4πx1)× sin(4πx22)2 (10)

with x1,x2 ∈ [0,1].

Our input grid data is a regular grid with regular intervals of 0.02 from 0 to 1 for x1 and x2 with therefore 51 points on

each dimension. We propose to interpolate on a finer regular grid with n=100×100, 200×200 and 300×300 points on each

dimension. For these three interpolations cases a normalized root mean square error (NMSE) of the result Ỹj for the full grid130

point number j can be calculated against the true value Yj of the function as:

NMSE =

1
n

n∑
j=1

(
Ỹj −Yj

)2
1

n−1

n∑
j=1

(
Yj − Ȳj

)2 (11)

with Ȳj the mean value Yj as 1
n

∑n
j=1Yj .

For the three cases the CPU time for the interpolation is evaluated and displayed in Table 1 for Machine 1 (Appendix E). As

expected, the time consuming is obviously proportional to the number of points in which to interpolate. Figure 3 displays the135

evolution of the NMSE with the parameter p of the p-distance definition. There is a discontinuity of the NMSE from p= 1 to

p= 1+ with a slight increase with p in an asymptotic way. The NMSE decreases with the number of points but a slight increase

is observed from 200×200 from 300×300.

Table 1. Performance for each case with p= 1

Case 100×100 200×200 300×300

NMSE (%) 0.324 0.319 0.319

CPU time (s) 0.45 1.84 4.1

5 Example in 5D for a regular grid

Still using the general program, an example in 5D (N = 5) is proposed using the function :140

Y = f(X) =x1× (1−x1)× cos(4πx1)× sin(4πx2)

× cos(4πx3)× sin(4πx4)× cos(4πx5)
(12)

with x1,x2,x3,x4,x5 ∈ [0,1]. The input data grid is a regular grid of Ii = 35 interval edges on each dimension i ∈ [1,5] then

355 = 52 521 875 grid points. The goal is to find the results on a coarse grid of 9 elements on each dimension then 95 = 59 049

7



Figure 3. Interpolation results for the three cases. Figures generated with the Generic Mapping Tools (Wessel et al., 2019)

grid points. This case is an opportunity to test the influence of the number of neighbours to calculate the result. In our case,

the parameter p of the p-distance is set to p= 2. The interpolation seems to provide a better performance on the NMSE for our145

function with less neighbours (case N + 1) and obviously with a lower CPU time. This could certainly depend on the type of

function to interpolate.

Another test with the 5D case is performed to test the influence of the normalisation as defined in Equation 9 (flag norm)

by defining an irregular grid with still 355 = 52 521 875 input data points but with (i) random intervals values, and (ii) one

dimension depending on another. The definition of the input grid is defined in Appendix D and provided in the code package.150

8



0 1 2 3 4 5 6
P

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N
M

S
E

 (
%

)

100x100 grid

200x200 grid

300x300 grid

Figure 4. Evolution of performances based on the NMSE for the three cases as a function of the parameter p of the p-distance computation

Table 2. Performance for the 5D (N=5) case with p= 2

Number of neigh-

bours

2N N +1

NMSE (%) 1.570 0.870

CPU time (s) 17.32 6.00

With a similar order of magnitude of consumed CPU time the normalisation norm= .T rue. produce a NMSE = 0.499%

compared to NMSE = 0.822% for norm= .False.. There is then and added value of using such a normalisation with

comparable CPU time consuming (rising from 2.68 to 3.44 s for our case).

6 Comparison with Python for a regular grid

The code has been tested against the Python procedure scipy.interpolate.griddata freely available by (Scipy, 2014), for the155

following function:

Y = f(X) =x1× (1−x1)× cos(4πx1)

× sin(4πx2)× cos(4πx3)
(13)

9



with x1,x2,x3 ∈ [0,1]. The input data grid is a regular grid of Ii = 35 interval edges on each dimension i ∈ [1,5] then 353 =

42875 grid points. The goal is to find the results on a coarse grid of 9 elements on each dimension then 93 = 729 grid points. A

case in 3D has been used for this test because the Python library was not able to work with very large datasets (overflow error)160

while our program could make perfectly work. scipy.interpolate.griddata is used with the bilinear interpolation

option while our method is configured with p= 2.

Table 3 clearly shows how the Fortran code is faster compared to the Python library. However, the bilinear interpolation

method seems to provide a higher accuracy than the inverse distance method embedded in our program. Nevertheless, the error

produced by our method looks acceptable.165

Table 3. Comparison of performances between our code for a 3D case with the gridata Python library. The Machine 2 is used (Appendix F).

Our code with N +1

neighbours

Our code with 2N

neighbours

Python

NMSE (%) 0.627 1.03 0.326

CPU time (s) 0.04 0.04 19.49

7 Geophysics application

7.1 The Backplumes model

In order to test this new interpolation program, it is implemented in a back trajectories model called "Backplumes". This

model was already used in some studies such as (Mailler et al., 2016) and (Flamant et al., 2018) for example. Backplumes is

open source and is available on the CHIMERE web site. Backplumes calculates back trajectories from a starting point and a170

starting date. It is different from other back trajectories models, such as HYSPLIT (Stein et al., 2015), STILT (Lin et al., 2003),

(Nehrkorn et al., 2010) and Flexpart (Pisso et al., 2019), because it launches hundreds of particles and plot all trajectories as

outputs. Thus, the answer is complementary compared to the other models: the output results is all possible trajectories, and

not only the most likely.

An advantage of Backplumes for the WRF and CHIMERE users is that the code is dedicated to directly read output results175

of these models. Being developed by the CHIMERE developers teams, the code is completely homogeneous with CHIMERE

in term of numerical libraries. Another advantage is that the code is very fast and calculates hundreds of trajectories in a few

minutes. Using the wind fields of WRF or CHIMERE, and running on the same grid, the results of back trajectories are fully

consistent with the simulations done by the models.

Backplumes is dedicated to calculate transport but not chemistry: only passive air particles (or tracers) are released. But a180

distinction could be made between gaseous or particulate tracers: for the latter one, a settling velocity is calculated to have a

more realistic trajectory. The model is easy to use and light because a small set of meteorological parameters is required. These

meteorological parameters are described in Table G1 for WRF and CHIMERE.

10



The first step of the calculation is to choose a target location as a starting point. The user must select a date, longitude,

latitude and altitude, obviously included in the modelled domain and during the modelled period. From this starting point, the185

model will calculate trajectories back in time. The number of trajectories is up to the user and may be from one to several

hundred of tracers.

At each time-step and for each trajectory, the position of the air mass is estimated by subtracting its pathway travelled as

longitude ∆λ, latitude ∆φ and altitude ∆z to the current position. To do so, all necessary variables are interpolated with the

interpolation program NterGeo.v2020a described in the previous section. The calculation is described in Appendix G.190

In order to respect the Courant Friedrich Levy (CFL) number, a sub-time step may be calculated. If the input data are hourly

provided (as in many regional models), the meteorological variables are interpolated between the two consecutive hours to

obtain refined input data.

The goal of backplumes is to estimate all possible back trajectories. Then, starting from one unique point, it is necessary to

add a pseudo-turbulence in the calculation of the altitude. Depending on the vertical position of the tracer, several hypotheses195

are made. Two parameters are checked for each tracer and each time-step: (i) the boundary layer height enables to know if

the tracer is in the boundary layer or above in the free troposphere, (ii) the surface sensible heat fluxes enables to know if the

atmosphere is stable or unstable.

When the tracer is diagnosed in the boundary layer, there are two cases: the boundary layer is stable or unstable. If the

boundary layer is stable, Q0 < 0, the tracer stays in the boundary layer at the same altitude. The new vertical position of the200

tracer is:

zt−1 = zt (14)

If the boundary layer is unstable, Q0 > 0, the tracer is considered in the convective boundary layer and may be located at

every level in this boundary layer the time before. Therefore, a random function is applied to reproduce a potential vertical

mixing.205

zt−1 =Rand×h (15)

The random function ’Rand’ calculates a coefficient, between 0 and 1 to represent a stochastic vertical transport of the tracer.

It is considered that 15 mn is representative of a well-mixed convective layer, Stull (1988). If the time step is larger than 15

mn, the random function is applied. But if the time step is less than 15 mn, the vertical mixing is reduced to the vicinity of the

current position of the tracer. In this case, we have:210

zt−1 =Rand×∆z× [zt] (16)

where ∆z = 1
2 (zk−1t + zk+1

t ) and k is the vertical model level corresponding to zt.

11



In the free troposphere, the evolution of the tracer is considered to be influenced by the vertical wind component. A random

function is applied to estimate its possible vertical motion with values between 0 and w/2 m s−1, representative of all possible

values of vertical wind speed in the troposphere, Stull (1988). The vertical variability of the tracer’s position in the free215

troposphere is calculated by diagnosing the vertical velocity as:

zt−1 = zt− (0.5 +Rand)w
3600

∆t
(17)

7.2 Examples of back trajectories computations

An example is presented for the same case and the WRF and CHIMERE models. The difference between the two models is

the number of vertical levels (35 for WRF and 20 for CHIMERE, for the surface to 200 hPa). The online modelling system220

WRF-CHIMERE is used, meaning that the horizontal grid is the same (a large domain including Europe and Africa and with

∆x=∆y=60km). The wind field is the same for both models: CHIMERE using directly the wind field calculated by WRF. The

boundary layer height is different between the two models, WRF using the Hong et al. (2006) schemes and CHIMERE using

the Troen and Mahrt (1986) scheme. The surface sensible heat flux is the same between the two models, CHIMERE using the

flux calculated by WRF. WRF has more vertical model levels than CHIMERE, thus meteorological fields are interpolated from225

WRF to CHIMERE. It impacts the horizontal and vertical wind fields.

Figure 5 presents the results of back trajectories launched the 10 August 2013 at 12:00 UTC. The location is at longitude

+10◦E and latitude +25◦N, altitude=0 m AGL. This location has no scientific interest but is in the middle of the domain, to

have the longer trajectories as possible. The complete duration of trajectories represent 10 days back in time. A total of 120

trajectories are launched at the same position and time. They are randomly mixed when they are in the boundary layer to230

represent the mixing and the diffusion.

The most important part of the plume comes from the North of the starting point. For this main plumes, the calculation

is similar between the two models. Another large part of backplumes is modelled at the East of the starting point. However,

this fraction is mainly modelled with WRF but not with CHIMERE where only a few trajectories are diagnosed. One possible

explanation may be found by analyzing the vertical transport of the trajectories.235

Figure 6 presents all plumes displayed in the previous figure but projected along the same time-altitude axis. The differences

between the two backplumes results are mainly due to the calculation of the boundary layer height. When WRF diagnosed

an altitude of ≈ 3000m, CHIMERE diagnoses ≈ 2000m, leading to different direction and wind speed. Then, this implies a

split of the plumes with WRF but not with CHIMERE. This illustrates the sensitivity of the result to the driver model. But, in

both cases, the answer in our case is clearly that the main contribution of the air masses located at the starting point are mainly240

coming from the North-East, crossing Tunisia, then the Mediterranean sea and Europe. The main difference between the two

calculations is the eastern part of the plume, more intense with WRF than CHIMERE.

12



Figure 5. Back trajectories calculated using CHIMERE and WRF modelled meteorological fields. The starting point is at longitude +10◦E

and latitude +25◦N, altitude=0 m AGL and for the day 10 August 2013 at 12:00 UTC. It corresponds to a case studied during the CHARMEX

campaign (Menut et al., 2015).

8 Conclusions

A new interpolation program written in Fortran has been developed to interpolate on N-dimensional matrices. It has been

evaluated for several dimension cases up to N=5. The code is fast compared to similar Python routines and highly portable in245

existing geophysical codes. The interpolation program works for any dimension N above 2 and designed to work with irregular

but structured grids (characterized by a size for each dimension) or lookp-up tables. Already used in its ’regular’ version in

13



0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

A
lt

it
u
d
e
 A

G
L

 (
m

)

WRF

0 100 200 300 400 500 600
Hours

0

2000

4000

6000

8000

10000

A
lt

it
u
d
e
 A

G
L

 (
m

)

CHIMERE

Figure 6. Projection of all back trajectories on a single time-altitude axis.

CHIMERE, the ’general’ program has been tested on a new real application which calculates air mass back trajectories from

two widely used atmospheric models: CHIMERE and WRF. This interpolation program can be used for any application in

Geophysics and Engineering Sciences but also to explore large structured matrices.250

Code availability. The current version of the models are freely available. The exact version of the model used to produce the results used

in this paper is archived (i) on Zenodo for NterGeo at https://doi.org/10.5281/zenodo.3733278 under the GNU General Public License v3.0

or later, as are input data and scripts to run the model and produce the plots for all the simulations presented in this paper. The Backplumes

model is an open-source code and is available on the CHIMERE model web site https://www.lmd.polytechnique.fr/~menut/backplumes.php.

Appendix A: List of frequently used abbreviations255

AGL Above Ground Level

CFL Courant Freidrich Levy

CHIMERE National French CTM

CTM Chemistry-transport model

CPU Central Processing Unit

NMSE Normalized Root Mean Square Error

PBL Planetary Boundary Layer

PSFC Surface Pressure

WRF Weather Research and Forecasting model

14

https://doi.org/10.5281/zenodo.3733278
https://www.lmd.polytechnique.fr/~menut/backplumes.php


Appendix B: Binary strategy

This piece of code shows the strategy to optimize the computation of weights for the "regular case". The idea is to minimize

the number of operation to benefit from the calculation at each dimension. A non-optimized loop would require 2N − 1 multi-

plications while the optimized loop requires only 2N+1− 4 multiplications for the weight calculations. Then, for large values260

of N � 2, the ratio of required operations between the non-optimized and the optimized loop is ≈ (N − 1)/2.

! . . .

nn =2** ndim ! ndim i s t h e d i m e n s i o n o f t h e case s t u d y

pn =2**( ndim−1) !

! Loop t o c o n v e r t k i n b i n a r y265

do k =0 , nn−1

do j =0 , ndim−1

i f ( b t e s t ( k , j ) ) then

i b i n ( j , k ) =1

e l s e270

i b i n ( j , k ) =0

e n d i f

enddo

enddo

. . .275

! Main o p t i m i z e d loop (2 l o o p s s e q u e n c e ) t o c a l c u l a t e t h e w e i g h t i n g f a c t o r s b e n e f i t i n g from

! t h e p r e v i o u s i t e r a t i o n on t h e main d i m e n s i o n i

do i =1 , ndim ! Loop 1

n i =2** i

p i = n i / 2280

do k =0 , ni−1 ! Loop 2

d e l t a = i b i n ( i −1,k )

i f ( i . ne . 1 ) then

i f ( d e l t a . eq . 0 ) then

ws ( k ) = we ig h t ( k )285

we ig h t ( k ) = w e ig h t ( k ) *w( i , d e l t a ) ! where w i s t h e w e i g h t on each d i m e n s i o n

e l s e

we ig h t ( k ) =ws ( k−p i ) *w( i , d e l t a )

e n d i f

e l s e290

we ig h t ( k ) =w( i , d e l t a )

e n d i f

enddo

enddo

15



Appendix C: Code design295

Note that avedelta and maxdelta arrays have been externalized to optimize the calculations. In the code package an independent

program is available to calculate these arrays to be implemented in your main program. The program is written in Fortran double

precision ingesting the following arguments:

s u b r o u t i n e i n t e r p o l a t i o n _ g e n e r a l (&

ndim , &! I n p u t : I n t300

maxdim , &! I n p u t : I n t

kdim , &! I n p u t : Array 1D, I n t

vec t , &! I n p u t : Array 2D, Real

v t a b l e , &! I n p u t : Array 1D, Real

t a b l e , &! I n p u t : Array 1D, Real305

a v e d e l t a , &! I n p u t : Array 1D, Real

maxdel ta , &! I n p u t : Array 1D, Real

t a b l e , &! I n p u t : Array 1D, Real

r e su , &! Outpu t : Real

i n e i , &! Outpu t : I n t e g e r310

n e i g h b o u r s ,& ! Outpu t / I n p u t : Array 2D, I n t

weigh t s , &! Outpu t : Array 1D, Real

found &! Outpu t : L o g i c a l

)

Some hard coded variables can be tested by the user to improve the results. They have been tested and some results are315

described in this paper. A recompilation is necessary if you change these values.

l o g i c a l , parameter : : norm = . f a l s e . ! Norma l i z e or n o t by t h e average d e l t a on each

d i m e n s i o n

l o g i c a l , parameter : : v e r b o s e = . f a l s e . ! L e v e l o f message w r i t i n g ( . t r u e . f o r debug )

l o g i c a l , parameter : : n e ig hb = . t rue . ! . t r u e . o n l y f i n d up t o ndim+1 c l o s e s t n e i g h b o u r s t o320

be f a s t e r

! . f a l s e . f i n d up t o 2 \ ^NDIM c l o s e s t n e i g h b o u r s

i n t e g e r , parameter : : i c o n f =1 ! Number o f c e l l t o a c c o u n t f o r b e f o r e and a f t e r

! t h e c l o s e s t p o i n t , i c o n f =2 can be t e s t e d n o t more

r e a l ( kind= i p r e c ) , parameter : : pnum =2.0 d+00 ! p−d i s t a n c e parame te r325

16



Table C1. Description of subroutine arguments

Variable Type Description Array dimension

ndim Integer Dimension N > 1 nd

maxdim Integer Total number of elements of the input table n=
∏N

i=1 Ii with Ii the

number of elements in each dimension i

nd

kdim Integer 1D Array Array of number of elements Ii on each dimension i (0 :N)

vect Real 2D Array Array storing in a 1 dimensional array the list of edges on each

dimension

(1 :N,1 : n)

vtable Real 1D Array Coordinate values of the point at which to interpolate data (1 :N)

table Real 1D Array Values for the list of known points vect (input grid data) (1 : n)

avedelta Real 1D Array Inverse of average intervals on each dimension N (N)

maxdelta Real 1D Array Maximum intervals on each dimension N (N)

resu Real Result of interpolation for vtable nd

inei Integer Number of neighbours nd

neighbours Real 2D Array Array of neighbours coordinates (1 : 2N ,1 : n)

weights Real 1D Array Weight for each neighbour (1 : 2N )

found Logical Returns true or false if respectively the result is found or not

found if the point is outside the bounds

nd

17



Appendix D: Irregular structured grid example in 5D

Herebelow is an example of a 5D array input gridata with irregular intervals with the last dimension (5) depending on dimension

(1).

! D e f i n i t i o n o f main d i m e n s i o n s

i s i z e =9 ! O u t p u t g r i d s i z e330

n p o i n t s =35 ! I n p u t g r i d s i z e

ndim=5 ! Dimension o f t h e example

a l l o c a t e ( kdim ( 0 : ndim ) ) ! Number o f e l e m e n t per d i m e n s i o n a r r a y

kdim ( 0 ) =1 ! Fake d i m e n s i o n f o r c o m p u t a t i o n i s s u e s

kdim ( 1 ) = n p o i n t s335

kdim ( 2 ) = n p o i n t s

kdim ( 3 ) = n p o i n t s

kdim ( 4 ) = n p o i n t s

kdim ( 5 ) = n p o i n t s

! Main a r r a y a l l o c a t i o n340

a l l o c a t e ( d e l t a ( ndim ) )

a l l o c a t e ( d s t a r t ( ndim ) )

a l l o c a t e ( v e c t ( ndim , kdim ( 1 ) , kdim ( 2 ) , kdim ( 3 ) , kdim ( 4 ) , kdim ( 5 ) ) )

a l l o c a t e ( r ando ( ndim , 1 : n p o i n t s −1) ) ! Random v a r i a b l e

maxdim=kdim ( 1 ) *kdim ( 2 ) *kdim ( 3 ) *kdim ( 4 ) *kdim ( 5 )345

!

! D e f i n i t i o n o f t h e i n p u t g r i d " v e c t " w i t h d e l t a , d s t a r t as :

do j =1 , ndim

d e l t a ( j ) =1 . d +00/ d f l o a t ( n p o i n t s −1) / ( d f l o a t ( j ) **3)

d s t a r t ( j ) =1 . d +00/ d f l o a t ( n p o i n t s −1) / 2 . d + 0 0 / ( d f l o a t ( j ) **3)350

enddo

do j =1 , ndim

do i =1 , n p o i n t s −1

rando ( j , i ) = d f l o a t ( i n t ( d log ( r and ( ) * 1 0 . d +00+1. d +00) ) +2) ! Random i n t e r v a l on each d i m e n s i o n

enddo355

r ando ( j , : ) = d f l o a t ( n p o i n t s −1)* rando ( j , : ) / sum ( r ando ( j , : ) ) ! N o r m a l i s a t i o n o f random i n t e r v a l s

enddo

v e c t =0 .0 d+00 ! I n i t i a l i s a t i o n

! " v e c t " c o m p u t a t i o n

do i =2 , kdim ( 1 )360

v e c t ( 1 , i , : , : , : , : ) = v e c t ( 1 , i − 1 , : , : , : , : ) + rando ( 1 , i −1)* d e l t a ( 1 )

enddo

do j =2 , kdim ( 2 )

v e c t ( 2 , : , j , : , : , : ) = v e c t ( 2 , : , j − 1 , : , : , : ) + rando ( 2 , j −1)* d e l t a ( 2 )

enddo365

do k =2 , kdim ( 3 )

v e c t ( 3 , : , : , k , : , : ) = v e c t ( 3 , : , : , k −1 , : , : ) + rando ( 3 , k−1)* d e l t a ( 3 )

18



enddo

do l =2 , kdim ( 4 )

v e c t ( 4 , : , : , : , l , : ) = v e c t ( 4 , : , : , : , l −1 , : ) + rando ( 4 , l −1)* d e l t a ( 4 )370

enddo

do m=2 , kdim ( 5 )

do i =1 , kdim ( 1 )

v e c t ( 5 , i , : , : , : , m) = v e c t ( 5 , i , : , : , : , m−1)+ rando ( 5 ,m−1)* d e l t a ( 5 )+&

&d e l t a ( 5 ) * d f l o a t ( i −1) / d f l o a t ( kdim ( 1 ) −1) ! Dim 5 depends on Dim . 1375

enddo

enddo

! . . . .

19



Appendix E: Characteristics of Machine 1

– Architecture: x86_64380

– CPU op-mode(s): 32-bit, 64-bit

– Byte Order: Little Endian

– CPU(s): 64

– On-line CPU(s) list: 0-63

– Thread(s) per core: 2385

– Core(s) per socket: 8

– Socket(s): 4

– NUMA node(s): 8

– Vendor ID: AuthenticAMD

– CPU family: 21390

– Model: 1

– Model name: AMD Opteron(TM) Processor 6276

– Stepping: 2

– CPU MHz: 2300.000

– CPU max MHz: 2300.0000395

– CPU min MHz: 1400.0000

– BogoMIPS: 4599.83

– Virtualization: AMD-V

– L1d cache: 16K

– L1i cache: 64K400

– L2 cache: 2048K

– L3 cache: 6144K

20



– Memory block size: 128M

– Total online memory: 128G

– Total offline memory: 0B405

– Linux version 3.10.0-1062.12.1.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red

Hat 4.8.5-39)

Appendix F: Characteristics of Machine 2

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit410

– Byte Order: Little Endian

– CPU(s): 96

– On-line CPU(s) list: 0-47

– Off-line CPU(s) list: 48-95

– Thread(s) per core: 1415

– Core(s) per socket: 24

– Socket(s): 2

– NUMA node(s): 2

– Vendor ID: GenuineIntel

– CPU family: 6420

– Model: 85

– Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

– Stepping: 4

– CPU MHz: 2701.000

– CPU max MHz: 2701.0000425

– CPU min MHz: 1200.0000

21



– BogoMIPS: 5400.00

– Virtualization: VT-x

– L1d cache: 32K

– L1i cache: 32K430

– L2 cache: 1024K

– L3 cache: 33792K

– NUMA node0 CPU(s): 0-23

– NUMA node1 CPU(s): 24-47

– Memory block size: 128M435

– Total online memory: 190.8G

– Linux version 3.10.0-957.41.1.el7.x86_64 (mockbuild@x86-vm-26.build.eng.bos.redhat.com) (gcc version 4.8.5 20150623

(Red Hat 4.8.5-36)

Appendix G: The WRF and CHIMERE model parameters used

Parameters are the three-dimensional wind components, the boundary layer height h, the surface sensible heat flux Q0 and440

the altitude of each model layer. The wind components are used for the horizontal and vertical transport. The boundary layer

height is used to define the vertical extent of the possible mixing and the surface sensible heat flux is used to know if the current

modelled hour corresponds to a stable or unstable surface layer (for when the tracer is close to the surface).

Backplumes calculates the back trajectories using longitude, latitude and altitude in meters. In case of input data with vertical

levels in pressure coordinates, the altitude is calculated from pressure levels, R.A. (1984). It is the case of the WRF model and445

the calculation is done as:

The altitude is computed as follows:

p∗ = psurf − ptop (G1)

where psurf (PSFC) is the surface pressure and ptop is the top pressure of the model domain. If ptop is constant over the whole

domain, psurf and thus p∗ are dependent on the first level grid.450

z0 =
Φ(1) + Φ′(1)

g
(G2)

22



Parameter Model variable name

WRF model

Longitude, latitude XLONG, XLAT

Parameters for altitude P_TOP, ZNU, ZNW, P, PB

PH, PHB, PSFC

Wind components U, V, W

Q0 HFX

h PBLH

CHIMERE model

Longitude, latitude lon, lat

Altitude hlay

Wind winz, winm, winw

Q0 sshf

h hght

Table G1. List of parameters read by the Backplumes program to calculate trajectories.

where Φ is the geopotential (PHB) and Φ′ (PH) its perturbation at vertical level k. g is the acceleration of gravity, g=9.81 m

s−2. For each vertical level k, the layer thickness ∆z and the cell top altitude zk is estimated as:

dm = log

(
p∗ηM − ptop
p∗ηM + ptop

)
du = log

(
p∗ηM − ptop
p∗ηF + ptop

)
z1 =

Φ(k) + Φ′(k)

g

z2 =
Φ(k+ 1) + Φ′(k+ 1)

g

∆z = (z2− z1)
du
dm

z(k) = z1 + ∆z− z0

(G3)

where ηM is its value on full (w) levels (ZNW) and ηF is the eta value on half (mass) levels (ZNU). The layer thicknesses is455

space and time dependent, this calculation is performed for all trajectories and all time-step.

The new position of a tracer back in time is calculated as follow:

23



φrad = φ
π

180

∆x= u
3600

∆t

∆y = v
3600

∆t

∆λ=
∆x

Rcos(φrad)

180

π

∆φ=
∆y

R

180

π

(G4)

with the wind speed is provided in m s−1 on an hourly basis, R is the Earth radius as R=6371 km. The new position for one

tracer is thus:460

λt−1 = λt−∆λ

φt−1 = φt−∆φ
(G5)

Author contributions. Bertrand Bessagnet has developed the code. Laurent Menut and Bertrand Bessagnet has co-developed and imple-

mented the code in the Backplumes.v2020r1 model. Maxime Beauchamp has supported Bertrand Bessagnet for the developments.

Competing interests. The author declares that there is no conflict of interest.

Acknowledgements. This research was funded by the DGA (French Directorate General of Armaments) grant number 2018 60 0074 in the465

frame of the project NETDESA.

24



References

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D.,

Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein,

S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus,470

R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M.,

Wittenberg, A. T., and Zeng, F.: The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric

Component AM3 of the GFDL Global Coupled Model CM3, Journal of Climate, 24, 3484–3519, https://doi.org/10.1175/2011JCLI3955.1,

https://doi.org/10.1175/2011JCLI3955.1, 2011.

Flamant, C., Deroubaix, A., Chazette, P., Brito, J., Gaetani, M., Knippertz, P., Fink, A. H., de Coetlogon, G., Menut, L., Colomb, A., Denjean,475

C., Meynadier, R., Rosenberg, P., Dupuy, R., Dominutti, P., Duplissy, J., Bourrianne, T., Schwarzenboeck, A., Ramonet, M., and Totems,

J.: Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow

circulations, Atmospheric Chemistry and Physics, 18, 12 363–12 389, https://doi.org/10.5194/acp-18-12363-2018, 2018.

Hardy, R.: Multivariate equations of topography and other irregular surfaces, Journal of Geophysical Research, 71, 1905–1915, 1971.

Hardy, R.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988, Computers and Mathematics480

with Applications, 19, 163 – 208, https://doi.org/https://doi.org/10.1016/0898-1221(90)90272-L, http://www.sciencedirect.com/science/

article/pii/089812219090272L, 1990.

Hofstra, N., Haylock, M., New, M., Jones, P., and Frei, C.: Comparison of six methods for the interpolation of daily, European climate data,

Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2008JD010100, https://agupubs.onlinelibrary.wiley.com/doi/

abs/10.1029/2008JD010100, 2008.485

Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon Weather

Rev, 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.

Kouatchou, J.: NASA Modeling Guru: Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition), available at:

https://modelingguru.nasa.gov/docs/DOC-2676 (last access: 11 March 2020), 2018.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the up-490

stream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, Journal of Geophysical

Research: Atmospheres, 108, n/a–n/a, https://doi.org/10.1029/2002JD003161, http://dx.doi.org/10.1029/2002JD003161, 4493, 2003.

Mailler, S., Menut, L., di Sarra, A. G., Becagli, S., Di Iorio, T., Bessagnet, B., Briant, R., Formenti, P., Doussin, J.-F., Gómez-Amo, J. L.,

Mallet, M., Rea, G., Siour, G., Sferlazzo, D. M., Traversi, R., Udisti, R., and Turquety, S.: On the radiative impact of aerosols on photolysis

rates: comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign, Atmospheric495

Chemistry and Physics, 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, 2016.

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., Briant, R., Tuccella, P., Bessagnet, B., Colette,

A., Létinois, L., Markakis, K., and Meleux, F.: CHIMERE-2017: from urban to hemispheric chemistry-transport modeling, Geoscientific

Model Development, 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017, 2017.

Menut, L., Rea, G., Mailler, S., Khvorostyanov, D., and Turquety, S.: Aerosol forecast over the Mediterranean area during July 2013500

(ADRIMED/CHARMEX), Atmospheric Chemistry and Physics, 15, 7897–7911, https://doi.org/10.5194/acp-15-7897-2015, 2015.

25

https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.5194/acp-18-12363-2018
https://doi.org/https://doi.org/10.1016/0898-1221(90)90272-L
http://www.sciencedirect.com/science/article/pii/089812219090272L
http://www.sciencedirect.com/science/article/pii/089812219090272L
http://www.sciencedirect.com/science/article/pii/089812219090272L
https://doi.org/10.1029/2008JD010100
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010100
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010100
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010100
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1029/2002JD003161
http://dx.doi.org/10.1029/2002JD003161
https://doi.org/10.5194/acp-16-1219-2016
https://doi.org/10.5194/gmd-10-2397-2017
https://doi.org/10.5194/acp-15-7897-2015


Nehrkorn, T., Eluszkiewicz, J., Wofsy, S., Lin, J., Gerbig, C., Longo, M., and Freitas, S.: Coupled weather research and

forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model, Meteorology and Atmospheric Physics, 107, 51–64,

https://doi.org/10.1007/s00703-010-0068-x, 2010.

Nenes, A., Pilinis, C., and Pandis, S.: ISORROPIA: A new thermodynamic model for inorganic multicomponent atmospheric aerosols,505

Aquatic Geochem., 4, 123–152, 1998.

Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional

air quality models, Atmos Environ, 33, 1553–1560, 1999.

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink,

C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A.,510

Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geoscientific Model Development, 12,

4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://www.geosci-model-dev.net/12/4955/2019/, 2019.

R.A., P.: Mesoscale Meteorological Modeling, Academic Press, 1984.

Rap, A., Ghosh, S., and Smith, M. H.: Shepard and Hardy Multiquadric Interpolation Methods for Multicomponent Aerosol–Cloud

Parameterization, Journal of the Atmospheric Sciences, 66, 105–115, https://doi.org/10.1175/2008JAS2626.1, https://doi.org/10.1175/515

2008JAS2626.1, 2009.

Scipy, C.: Interpolate unstructured D-dimensional data: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.griddata.html,

2014.

Shepard, D.: A Two-Dimensional Interpolation Function for Irregularly-Spaced Data, in: Proceedings of the 1968 23rd ACM National

Conference, ACM ’68, p. 517–524, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/800186.810616,520

https://doi.org/10.1145/800186.810616, 1968.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X., Wang, W., and Powers, J. G.: A description of

the Advanced Research WRF Version 3, NCAR Tech. Note, pp. 1 – 125, 2008.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and

Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-525

00110.1, 2015.

Stull, R.: an introduction to boundary layer meteorology, Kluwer Academic Publishers Group, 1988.

Sun, T. and Grimmond, S.: A Python-enhanced urban land surface model SuPy (SUEWS in Python, v2019.2): development, deploy-

ment and demonstration, Geoscientific Model Development, 12, 2781–2795, https://doi.org/10.5194/gmd-12-2781-2019, https://www.

geosci-model-dev.net/12/2781/2019/, 2019.530

Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Boundary-Layer Meteorology,

37, 129–148, 1986.

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem-

istry, Geophysics, Geosystems, 20, 5556–5564, https://doi.org/10.1029/2019GC008515, https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2019GC008515, 2019.535

Zender, C. S.: Analysis of self-describing gridded geoscience data with netCDF Operators (NCO), Environmental Modelling & Soft-

ware, 23, 1338 – 1342, https://doi.org/https://doi.org/10.1016/j.envsoft.2008.03.004, http://www.sciencedirect.com/science/article/pii/

S1364815208000431, 2008.

26

https://doi.org/10.1007/s00703-010-0068-x
https://doi.org/10.5194/gmd-12-4955-2019
https://www.geosci-model-dev.net/12/4955/2019/
https://doi.org/10.1175/2008JAS2626.1
https://doi.org/10.1175/2008JAS2626.1
https://doi.org/10.1175/2008JAS2626.1
https://doi.org/10.1175/2008JAS2626.1
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.5194/gmd-12-2781-2019
https://www.geosci-model-dev.net/12/2781/2019/
https://www.geosci-model-dev.net/12/2781/2019/
https://www.geosci-model-dev.net/12/2781/2019/
https://doi.org/10.1029/2019GC008515
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008515
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008515
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008515
https://doi.org/https://doi.org/10.1016/j.envsoft.2008.03.004
http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://www.sciencedirect.com/science/article/pii/S1364815208000431
http://www.sciencedirect.com/science/article/pii/S1364815208000431

