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Abstract. The understanding of water quality and its underlying processes is important for the protection of aquatic 

environments. Here an explainable AI (XAI) based multivariate time series analytical framework is applied on high-

frequency water quality measurements including nitrate and electrical conductivity and twelve other environmental 

parameters. The relationships between water quality and the environmental parameters are investigated by a cluster 10 

analysis which does not depend on prior knowledge about data structure. The cluster analysis is designed to find similar 

days within a cluster and dissimilar days between clusters. This allows for the data-driven choice of a distance measure. 

Using a swarm based AI system, the resulting cluster define three states of water bodies, which can be visualized by a 

topographic map of high-dimensional structures. These structures are explained by rules extracted from decision trees. 

The rules generated by the XAI system improve the understanding of aquatic environments. The model description 15 

presented here allows to extract meaningful, useful, and new knowledge from multivariate time series. 

 

Keywords: Data-driven Knowledge Acquisition; Cluster Analysis; Swarm Intelligence; Machine Learning System; 

High-Dimensional Data Visualization 

1 Introduction 20 

Human activities modify the global nitrogen cycle, particularly through agriculture. These practices have unintended 

consequences; for example, terrestrial nitrate losses to streams and estuaries can impact aquatic life (Durand et al., 

2011). A greater understanding of the variability in water quality and its underlying processes can improve the 

evaluation of the state of water bodies and lead to better recommendations for appropriate and efficient management 

practices (Cirmo and McDonnell, 1997). 25 

Accordingly, the objective here is to describe the water quality in terms of nitrate (NO3) and electrical conductivity 

(EC) in the Schwingbach catchment (Germany) using environmental variables typically related to chemical water 

quality. Electrical conductivity is a measure that reflects water quality as a whole because it indicates the number of 

ions dissolved in the water. NO3 in water bodies is partially responsible for the phenomenon of eutrophication (Diaz, 

2001). Eutrophication occurs when an excess of nutrients (including NO3) leads to the uncontrollable growth of aquatic 30 

plant life, followed by the depletion of the dissolved oxygen (Diaz, 2001; Howarth et al., 1996). For decades, water 

quality has mainly been measured through manual grab sampling of water samples and subsequent chemical analysis 

in the laboratory. Due to limited resources, high-resolution measurements on the order of days, hours or even minutes 

were not available for a long time. With the advancement of deployable, in situ measuring techniques, such as UV 
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spectrometry, a new era of field monitoring has been established (Rode et al., 2016). However, we are still lacking 35 

methodological approaches with which to analyze the resulting large datasets (Aubert and Breuer, 2016; Aubert et al., 

2016). 

Typically, time series clustering is raw-data based, feature based or model based (Liao, 2005). Often, either the 

Euclidean metric or Kullback-Leibler dissimilarity are selected, and cluster analysis is performed via medoid or 

agglomerative methods of conventional clustering algorithms (Liao, 2005). Adapting conventional clustering 40 

algorithms results in a sensitivity to outliers and noise (Ferreira and Zhao, 2016; Ma et al., 2019). Such approaches also 

imply that the relevant cluster structures are spherical or of other specific structures because a global optimization 

function has to be used (Thrun, 2018). Then, evaluation is commonly performed on the basis of within-cluster variance 

(Liao, 2005). Other common approaches to the evaluation of time series are shape based, meaning that the shapes of 

two time series are matched according to specific dissimilarity measures (Aghabozorgi et al., 2015). The approaches 45 

have in common that they optimize a global objective function which defines the cluster structures, and do not 

investigate if cluster structures exist. Contrary to these approaches this work applies an alternative approach to the 

optimization of a global objective function in the task of clustering called Databionic swarm (DBS) (Thrun and Ultsch, 

2020a). In contrast to most other clustering algorithms, the topographic map visualization of DBS identifies if the 

clustering of the data is meaningless in the sense that the data contains no clusters (Thrun and Ultsch, 2020a). Outliers 50 

can be interactively marked in the visualization after the automated clustering process in the case that they are not 

recognized sufficiently in the automatic clustering process (Thrun and Ultsch, 2020a).  

The main contribution of this paper is the proposition of a machine learning system that reveals cluster structures in 

time series with a solely data-driven approach. In this context, data-driven means that the authors aim to refrain from 

making explicit or implicit assumptions about the data, existence and type of cluster structures. The found cluster 55 

structures are verified with independent approaches. Furthermore, knowledge acquisition is applied to describe the 

clusters, leading to the discovery of new knowledge. The procedure is introduced using a dataset from the Schwingbach 

catchment published earlier by Aubert et al. (Aubert et al., 2016). However, Aubert et al. used a temporal high-

frequency analysis. In comparison, this work focuses on the average daily measures for each variable, resulting in a 

low-frequency analysis. 60 

Overall, this work shows how to search for days with similar behavior by using a swarm-based clustering approach. 

The goal is to explain similar environmental, and in particular water quality, situations by human understandable rules 

because NO3  stream concentrations “integrate” many processes varying in space and in time (Pellerin et al., 2009). 

Finally, we use these rules to describe the clusters to predict future NO3 and EC values. 

2 Material and Methods 65 

The analytical procedure for the explainable AI for knowledge acquisition is presented in Fig. 1. The methods sections 

are organized in six steps as illustrated in the titles of Fig. 1. 
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2.1 Step I: Data Preprocessing 

The dataset contains 32,196 data points for 14 different variables. In table 1, a detailed description of the variables is 

provided. Technical information on the analytical procedures and experimental design of the field work are outlined by 70 

(Aubert et al., 2016). 

All data were recorded at high frequency (15-min intervals) and span a total of 2 years of measurements, focusing on 

the summer period between April and October. Four percent of the data are missing. For each day, the measurements 

were aggregated by the mean of all available measurements for that day. Then, missing values (i.e., days) were 

interpolated using the seven-nearest-neighbors approach. The variables q13 and q18 were log transformed. All 75 

variables, with the exception of rainfall, were normalized to values between zero and one through a robust normalization 

procedure (Milligan and Cooper, 1988) improved by (Thrun, 2018). The discharges correlated linearly with each other 

(r=0.95, p(S=347,270, N=351) <0.001), and q13 was therefore excluded from the analysis. The air temperatures Wt13 

and Wt18 also correlated linearly (r=0.99, p(S=18,386, N=351) <0.001); hence, Wt13 was removed as well. 

The outliers in the rainfall variable were detected via ABC analysis (Ultsch and Lötsch, 2015). ABC analysis is a 80 

method used to compute precise limits to acquire subsets in skewed distributions by exploiting the mathematical 

properties pertaining to the distribution. The data containing positive values are divided into three disjoint subsets, A, 

B and C, with subset A comprising very profitable values, i.e., largest data values ("the important few"), subset B 

comprising values where the yield equals the effort required to obtain it, and subset C comprising non profitable values, 

i.e., the smallest datasets ("the trivial many"). The R package is available on CRAN (https://CRAN.R-85 

project.org/package=ABCanalysis). Then, rain was normalized with respect to the minimum value in group A. All 

other points in group A were capped by defining the upper bound for rainfall. In supplementary Information A (SI A), 

the probability density distributions of the 12 finally selected and transformed variables are visualized with mirrored-

density plots (Thrun et al., 2020). The mirrored-density plots (MD-plots) show that the range of a variable is 

approximately between zero and one (SI. A, Fig. 10) because the normalization approach uses 1 and 99% quantiles 90 

instead of maxima and minima and thus allows outliers to lie below zero or above one. 

2.2 Step II: Distance Selection 

The Hellinger distance measure is selected and the DBS method (Thrun, 2018; Thrun and Ultsch, 2020a) is applied in 

three modules for cluster analysis. DBS is available in the R package ‘DatabionicSwarm’ on CRAN (https://CRAN.R-

project.org/package=DatabionicSwarm). This specific metric is chosen because clear multimodality is visible in the 95 

probability density distribution. Several metrics were investigated using the R package ‘parallelDist’ (Eckert, 2018) on 

CRAN (https://CRAN.R-project.org/package=parallelDist) and the MD-plot function (Thrun et al., 2020) in the R 

package ‘DataVisualizations’ on CRAN (https://CRAN.R-project.org/package=DataVisualizations). The probability 

density distribution is modeled with a Gaussian mixture model and verified visually and statistically as described in 

(Ultsch et al., 2015) with the R package ‘AdaptGauss’ on CRAN (https://CRAN.R-project.org/package=AdaptGauss). 100 
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2.3 Step III: Clsuter Analysis 

In the first step of the DBS method, the high-dimensional dataset is projected on the two-dimensional plane with a 

swarm-based projection method called Pswarm (Thrun, 2018; Thrun and Ultsch, 2020a). By exploiting concepts of 

self-organization and emergence, swarm intelligence and game theory, this projection method is parameter free and 105 

nonlinear (Thrun, 2018; Thrun and Ultsch, 2020a). The swarm first adapts to global structures, and as time progresses, 

structure preservation shifts from global optimization to the preservation of local neighborhoods. Projections of this 

type are called focusing and usually require parameters to be set (c.f. (Ultsch, 1999; Van der Maaten and Hinton, 2008)) 

because this phase, which is also called the learning phase, requires an annealing scheme. The intelligent agents of 

Pswarm, called DataBots (Ultsch, 2000), operate on a toroid grid, where positions are coded into polar coordinates to 110 

allow for the precise definition of their movement, neighborhood function and annealing scheme. The size of the grid 

and, in contrast to other focusing projection methods (e.g., (Demartines and Hérault, 1995; Ultsch et al., 2016; Van der 

Maaten and Hinton, 2008)), the annealing scheme are data driven. Therefore, this method does not require any 

parameters. During learning, each agent moves across the grid or stays in its current position in the search for the most 

potent scent. Hence, agents search for other agents carrying data with the most similar features to themselves with a 115 

data-driven decreasing search radius (Thrun and Ultsch, 2020a). The movement of every agent is modeled using a 

game-theory approach, and the radius decreases only if a Nash equilibrium is found (Nash, 1950, 1951). 

In the second step, the generalized U-matrix (Thrun, 2018; Ultsch and Thrun, 2017) is calculated on this projection 

using emergence through an unsupervised artificial neural network called a simplified (because parameter free) 

emergent self-organizing map. The generalized U-matrix generates the visualization of a topographic map with 120 

hypsometric tints, which can be vividly described as a virtual 3D landscape with a specific color scale chosen with an 

algorithm defining the contour lines (Thrun et al., 2016). The topographic map addresses the central problem in 

clustering, i.e., the correct estimation of the number of clusters. It allows the assessment of the number of clusters by 

inspecting the 3D landscape.  

The topographic maps correspond to high-dimensional distance and density structures. Hypsometric tints are surface 125 

colors that represent ranges of elevation. The contour lines are combined with a specific color scale. The specific colour 

scale is chosen to display various valleys, ridges, and basins: blue colours indicate small distances (sea level), green 

and brown colours indicate middle distances (low hills), and shades of white colours indicate vast distances (high 

mountains covered with snow and ice). Valleys and basins represent clusters, and the watersheds of hills and mountains 

represent the borders between clusters. In this 3D landscape, the borders of the visualisation are cyclically connected 130 

with a periodicity (L,C). 

Finally, in step 3, semi automated clustering of the visualization is applied by calculating the shortest paths (Dijkstra, 

1959)) of the Delaunay graph between all projected points weighted with high-dimensional Hellinger distances. This 

is possible because it was shown that the U-matrix is an approximation of the abstract U-matrix(Lötsch and Ultsch, 

2014), which is based on Voronoi cells. Voronoi cells define a Delaunay graph where the edges between every projected 135 

point are weighted by the high-dimensional distances of the corresponding data points. 

The clustering approach itself involves two choices. For this dataset, the compact approach is used, where the two 

clusters with the minimal variance (S) are merged together until the number of clusters defined by the topographic map 
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is reached. The other approach for connected structures and a general discussed of cluster structures can be found in 

(Thrun and Ultsch, 2020b). In praxis, the choice of this parameter can be evaluated in step IV (Fig. 1). 140 

Let 𝑐𝑟 ⊂ 𝐼 and 𝑐𝑞 ⊂ 𝐼 be two clusters such that 𝑟, 𝑞 ∈ {1, … , 𝑘} and 𝑐𝑟  ∩ 𝑐𝑞 = { } for 𝑟 ≠ 𝑞 and 

Δ𝑄(𝑗, 𝑙) =
𝑘 ∗ 𝑝

𝑘 + 𝑝
∗ 𝐷∗(𝑗, 𝑙) (1) 

where  

(𝑙, 𝑗) the data points in the clusters be denoted by 𝑗𝑖 ∈ 𝑐𝑞  and 𝑙𝑖 ∈ 𝑐𝑟; 

𝑘 the cardinality |𝑐𝑞| of the first set; 

𝑝 the cardinality |𝑐𝑟| of the second set; 

𝐷∗ 

 

Δ𝑄 

the high-dimensional distance based on weighted shortest paths in the 

Delaunay graph; 

the merging cost between two the clusters 𝑐𝑟 , 𝑐𝑞 ⊂ 𝐼  

Then, the variance (S) between two clusters (cr and ck) is defined as 

𝑆(𝑐𝑟 , 𝑐𝑘) = ∑ Δ𝑄(𝑗, 𝑙)
𝑘,𝑝

𝑖=1,𝑗=!,𝑗≠𝑖
(2) 

  

The ultrametric portion of the distance ((Murtagh, 2004)) can be visualized by a dendrogram allowing the alternative 145 

selection of the number of clusters: Large changes in the fusion levels of the ultrametric portion of the distance indicate 

the best cut.  

The three modules, of the algorithm (projection, topographic map of structures, clustering) are called the Databionic 

swarm (Thrun, 2018) and are available in R language on CRAN in the package ‘DatabionicSwarm’ 

2.4 Step IV Validation of Clustering  150 

The clustering is valid if mountains do not partition clusters indicated by colored points of the same color and colored 

regions of points. Further, the clustering is verified by the heatmap of distances which are ordered by the clustering 

(Wilkinson and Friendly, 2012) because this work searches for days with similar behavior.. A heatmap visualizes the 

homogeneity of clusters and the heterogeneity of intercluster distances if the clustering is appropriate. The R package 

‘DataVisualizations’ on CRAN is used (Thrun and Ultsch, 2018). 155 

Ockham’s razor states that if two models are applicable, the less complex one should be used (Sober, 1991). Therefore, 

the authors try simpler models in order to evaluate if the complexity of DBS is necessary to derive the true cluster 

structures of the data. A simpler projection approach assuming linear cluster structures and a simpler clustering 

approach assuming ellipsoidal cluster structures is applied to the data. Moreover, spherical cluster structures are tested 

with the Silhouette plot using the R package “DataVisualizations” on CRAN.  160 

2.5 Step V: Knowledge Acquisition 

Decision trees are supervised methods like the classification and regression tree (CART) (Breiman et al., 1984) or 

globally optimal classification and regression trees (Grubinger et al., 2014). For that purpose, R package “rpart” on 

CRAN (Therneau et al., 2018) and the package “evtree” (Grubinger et al., 2014) are applied. In this work, decision 
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trees are computed using DBS clustering and back-transformed data. The standardization had to be back transformed 165 

to provide SI units of measurement. Decision tree algorithms do not aim at understandable and meaningful explanations 

(Mörchen and Ultsch, 2007; Mörchen et al., 2005). Therefore a transformation into human-understandable rules is 

necessary (Mörchen and Ultsch, 2007; Mörchen et al., 2005). Here, rules are extracted from the decision tree by 

following each path from root to leaf and, if necessary, simplifying the rules manually. 

2.6 Step VI: Knowledge Discovery (KD) 170 

In KD context here, the question is whether the found cluster structures describe different states of NO3 and EC. The 

hypothesis is that if the topographic map of the hydrochemical data reveals meaningful high-dimensional structures for 

similar days, then the classes should contain samples of different environmental states and be based on different 

processes. To verify this hypothesis, the mirrored-density plots (Thrun et al., 2020) of each class are used to show the 

dependence of the clusters on NO3 and EC concentrations. 175 

The Mirrored-Density plot (MD-plot) introduced in (Thrun et al., 2020) visualizes a density estimation in a similar way 

to the violin plot (Hintze and Nelson). The MD-plot uses for density estimation the Pareto density estimation (PDE) 

approach (Ultsch, 2005). It can be shown that comparable methods have difficulties in visualizing the probability 

density function in case of uniform, multimodal, skewed, and clipped data if density estimation parameters remain in a 

default setting (Thrun et al., 2020). In contrast, the MD plot is particularly designed to discover interesting structures 180 

in continuous features and can outperform conventional methods (Thrun et al., 2020). The MD plot does not require 

any adjustments of parameters of density estimation, which makes the usage compelling for non-experts. The MD-plot 

is available in the R package ‘DataVisualizations’ on CRAN (Thrun and Ultsch, 2018).  

3 Results 

An overview of the analysis is provided in Fig. 1. For clarity the rest of this chapter is subdivided into five sections: 185 

the first section consists of the selection of an appropriate distance metric and extracting the first hypothesis from the 

distribution of distances (3.1). The second section presents the Databionic swarm cluster analysis method (3.2). The 

next section validates the clustering (3.3). The fourth section is knowledge acquisition (3.4), and the last section is 

knowledge discovery (3.5).  

3.1 Step II: Distance Selection 190 

The Hellinger distance (Rao, 1995) in the R package ‘parallelDist’ on CRAN was chosen for cluster analysis because 

the distribution of distances is statistically not unimodal according to Hartigan’s dip test (Hartigan and Hartigan, 1985) 

(with p(D = 0.006385, N= 61425)<0.001). The distance distribution can be modeled through  Gaussian mixture model 

(GMM) using the expectation maximization (EM) algorithm (Dempster et al., 1977). The distance distribution and 

model isvisualized in Fig. 2. The QQ-plot verifies the GMM in Fig. 3. This serves as an indication of the existence of 195 

high intercluster distances (distances between different clusters) and outlier distances as well as small intracluster 

distances (distances within each cluster), meaning that a distance-based cluster structure can be found. 
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3.2 Step III: Cluster Analysis 

Next, the topographic map with hypsometric tints generated with the R package ‘DatabionicSwarm’ from CRAN is 

toroidal, meaning that the borders of the grid are cyclically connected with a periodicity defined by the size of the grid 200 

of the projection of Pswarm. In Fig. 4, a cutout island of the topographic map is shown. Every point symbolizes a day. 

The high-dimensional distances of the low-dimensional projected points are visualized. The topographic map shows 

three valleys and basins indicating clusters and watersheds of hills and mountains shown by borderlines between 

clusters. Thus, the number of clusters is equal to the number of valleys. The labels of the clusters are hereafter visualized 

as the colors of the projected points in Fig. 4. In addition to the two main clusters (magenta and yellow points) and one 205 

outlier cluster (black points), seven outliers can be identified as volcanoes or within the valleys which is indicated by 

red arrows in Fig. 4. 

3.3 Step IV: Validation of Cluster Analysis 

, First, the authors created a heatmap in order to verify the DBS visualization and clustering. The heatmap shows intra- 

versus intercluster distances ordered by each cluster (Fig. 5). Blue colors symbolize small distances, and yellow and 210 

red colors represent large distances. The median intra-cluster distances of clusters 1, 2 and 3 are 0.24, 0.36 and 0.31, 

respectively and are below the Bayes boundary of the GMM in Fig. 1 of 0.39. The average intercluster distance is 0.48 

and above the Bayes boundary of 0.39. These results indicate that the intracluster distances are smaller than the 

intercluster distances. This means that days within each cluster are evidently more similar to one another than days 

between clusters. 215 

To check fora possibility of a simpler model, a linear projection by the method projection pursuit (Hofmeyr and 

Pavlidis, 2015) using a clusterability index of variance and ratio (c.f. (Steinley et al., 2012)) is applied on the dataset. 

The linear projection does not reveal clear structures, even if the generalized U-matrix is applied to visualize high-

dimensional distance structures in the two-dimensional space. Therefore, it can be assumed that the structures cannot 

be separated linearly, motivating the usage of more complex and elaborate methods. The clustering can be reproduced 220 

with an accuracy of 86% using hierarchical clustering as described by Ward (Ward Jr, 1963) if the seven outliers are 

disregarded because the Ward method is sensitive to outliers (Everitt et al., 2011). Silhouette plots (SI D, Fig. 11) 

indicate inappropriate values for this clustering procedure if a spherical cluster structure is assumed. Statistical testing 

indicates that the classes differ significantly from each other in the NO3 and EC distributions (SI C), except for class 2 

versus class 3 in NO3. However, class 2 and class 3 also differ significantly from each other in the variables of rain and 225 

Wt18 (water temperature) in SI E, Fig. 12. 

3.4 Step V: Knowledge Acquisition 

The cluster structures are explained by applying the evtree (Grubinger et al., 2014) and  CART algorithm (Breiman et 

al., 1984; Therneau et al., 2018). The evtree decision tree is shown in Fig 7a and the CART decision tree for the data 

is visualized in Fig. 7b. Both decision tree agree on the same features sets and relations for each cluster except for 230 

cluster three for which Rain <0.2 is not required to differentiate from cluster one and two in evtree although that makes 

cluster 3 less meaningful. The boundaries vary slightly between CART and evtree.  None of the outliers could be 

explained by either evtree or CART. CART has a lower error and improves the meaningfulness of cluster three. 
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Therefore, the rules are extracted from the CART tree instead of the evtree. The rules are used to describe the clusters 

and could predict future NO3 and EC values (Table 2). The description of class 2 gains more detail if maximum 235 

likelihood plots of rain and water temperature (Wt18) are used (SI E, Fig. 11). 3.5 Step VI: Knowledge Discovery 

Next, we investigate the NO3 and EC probability density distributions per class. In the last section, the clusters were 

explained by rules to define classes. The class-dependent MD-plots of Fig. 8 and Fig. 9 shown that the classes depend 

on normal or high NO3 levels (Fig. 8) as well as on low, intermediate or high conductivity levels (Fig. 9) because the 

distributions of classes differ significantly from one another, with the exception of NO3 classes 2 and 3. This is 240 

confirmed by Kolmogorov–Smirnov tests (Supplementary C). 

4 Discussion 

Selecting a suitable distance measure enabled to apply the process of clustering of the above described dataset. The 

hypothesis in this cluster analysis was that intracluster distances are smaller (more similar to each other) than the 

intercluster distances. As a parameter free clustering algorithm the DBS was chosen. It enables the evaluation of the 245 

clustering with a topographic map in addition to the conventional heatmap. DBS is a flexible and robust clustering 

framework that has the ability to separate complex distance-based structures [Thrun, 2018]. DBS consists of three 

interchangeable modules that are parameter free in projection and visualization (see Fig. 1). The second module is a 

human-understandable visualization technique (topographic map) that verifies the clustering/absence of clusters 

(Thrun, 2018). Moreover, the number of clusters can be estimated prior to the clustering by the visualization of high-250 

dimensional cluster structures. Such clusters structures were identified by low intracluster distances and high 

intercluster distances because the heatmap (Fig. 5) and topographic map (Fig. 4) showed clear cluster structures. 

The heatmap and topographic map showed a valid clustering. However, simpler linear model (Fig. 6) or spherical 

cluster structure were inappropriate and models that assume an ellipsoidal structure would be insufficient (SI D, Fig.10, 

SI B, Table 3). It follows, that most conventional approaches listed in (Aghabozorgi et al., 2015) would be not 255 

appropriate to detect data structures in the way we do here.. 

Statistical testing indicates that the distributions of relevant variables differ between classes (SI C and E). Further results 

imply that the clustering was meaningful because knowledge was extracted from the clustering by applying a 

classification and regression tree (CART) (Breiman et al., 1984) and using maximum likelihood plots. Overall, it can 

be deduced that this dataset contains linearly non separable distance-based on non-spherical cluster structures. The 260 

acquired rules (Tab. 2) can be explained as follows: 

While water temperature governs the biological turnover of nitrogen compounds in the stream water, hydrological 

variables such a groundwater level determine how and whether terrestrial NO3 pools are connected to the stream system 

by activating flow pathways. Furthermore, the rainfall-runoff generation processes either concentrate or dilute the 

stream NO3 concentration, according to the difference in NO3 concentration in the stream and in the “new water” added 265 

to the stream system. 

In the search for days with similar behavior, days with normal and high NO3 were identified. In 321 out of 343 days, 

the NO3 concentrations were normal (in the average range of [1, 3.5] mg/L). On such days, the concentrations of electric 

conductivity (EC) were either high (in the average range of [0.034, 0.055] mS/m) or intermediate to low (in the average 

range of [0.25, 0.045] mS/m). Normal NO3 and higher EC occurred on dry days with increased stream water 270 
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temperature and higher groundwater levels. From a data-driven perspective, these days were highly similar to one 

another (c.f. cluster 1 in Fig. 4 and Fig. 4). The explanation for normal NO3 with low to normal EC concentrations is 

more complex and described by “duality”: they likely had an intermediate stream water temperature 

(6.1°C<WT18<12.5°C) with either dry days (average rain < 0.15 mm) and low groundwater levels (<1.28 m) or rainy 

days with high groundwater levels (see SI E). 275 

Simultaneously, high NO3 concentrations (in the average range of [3, 5.5] mg/L) and very low EC concentrations (in 

the average range of [0.025, 0.028] mS/m) occurred only if the stream water temperature was low on dry days. In 

particular, stream water temperature influences the activities of living organisms. The groundwater level (or head, in 

m) is the primary factor driving discharge in the Schwingbach catchment, while rainfall intensity triggers discharge 

and affects the leaching of nutrients (Orlowski et al., 2014). 280 

5 Conclusion 

No prior knowledge usable for a cluster analysis was available. Therefore a machine learned AI system, the Databionic 

swarm (DBS) method, was used for projection and clustering of environmental and water quality data.  Rules extraction 

from a decision tree were applied on the clustering in order to explain the content of the clusters in a human 

understandable way. The explanations suggest that the stream water quality data regarding NO3 and EC can be 285 

described by a combination of one variable related to biological processes (water temperature) and two variables related 

to hydrological processes (rain and groundwater level). The understanding of these cluster structures and the application 

of the rules showed clear ranges of values and could enable future prediction of stream water quality. 

The method presented here allows for unbiased detection of meaningful data structures in high dimensionality datasets. 

Such datasets become more and more available, not only in hydrochemistry, but also in other environmental disciplines 290 

due to the technical innovation in monitoring equipment. Explainable AIs provide unique possibilities to search for 

unknown structures, but only if they do not rely on prior knowledge about data structure. 

Supplementary Information A: Features after Preprocessing 

Variables were preprocessed such that metric distances can be used because the range of every feature is approximately 

between zero and one. The distribution of the features is shown by the MD-plot (Thrun et al., 2020) in Fig. 10 of the 295 

12 variables used for DBS projection, visualization and clustering (Thrun, 2018). The complete aggregated dataset 

consisted of 343 days. In Fig. 8, the distribution of distances is visualized using the R package ‘DataVisualizations’ on 

CRAN (Thrun and Ultsch). 

Supplementary Information B: Comparison to Ward clustering approach 

The clustering can be reproduced with an accuracy of 86% using the Ward algorithm (Ward Jr, 1963) if the outliers are 300 

disregarded. The contingency table is presented below (Table 3). 

Supplementary Information C: Kolmogorov-Smirnov tests of clusters 

Table 4 and 5 compare the clustering achieved for conductivity and NO3. The clusters should contain samples of 

different natures and based on different processes. Given this assumption, it is valid to statistically test whether the NO3 
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and EC distributions significantly differ between clusters. The Kolmogorov-Smirnov test (KS test) is a nonparametric 305 

two-sample test of the null hypothesis that two variables are drawn from the same continuous distribution (Conover, 

1971). For the first three clusters, the NO3 and EC distributions significantly differ among clusters. 

Supplementary Information D: Silhouette Plot 

The Silhouette plot of DBC clustering is presented in Fig.11 and demonstrates an inappropriate clustering w.r.t. 

spherical cluster structures. 310 

Supplementary Information E: Distinction of Classes 1 and 2 in Regard to Rain and Water Temperature 

Using the Kolmogorov-Smirnov test (KS test), which is a nonparametric two-sample test of the null hypothesis that 

two variables are drawn from the same continuous distribution (Conover, 1971), Class 1 significantly differs from Class 

2 in the variable Wt18 (water temperature) with p<(162,159, D= 0.31982)<0.001 and in the variable rain with 

p<(162,159, D= 0.70498)<0.001. This is visualized in the class wise maximum-likelihood plots of Fig. 12. Moreover, 315 

Fig. 12 (right) shows that the water temperature in Class 2 is more likely to be lower than that in Class 1 and less likely 

to be lower than that in Class 3. 

Code availability 

Every function used in this Manuscript is available in R packages on CRAN and is referenced throughout the text. The 

specific application of these functions to the analyzed data is available in 320 

https://github.com/Mthrun/ExplainableAI4KnowledgeAcquisitionStreamTS2020/08AnalyseProgramme/. If not stated 

otherwise, no setting of parameters or changing of default parameters is necessary to reproduce the results above with 

the limitation that stochastic algorithms like most clustering and projection methods have a variance of results 

depending on the trial (c.f. discussion in (Thrun and Ultsch, 2020a)). The exact version of the model used to produce 

the results used in this paper is archived on Zenodo: DOI: 10.5281/zenodo.3734892 under GPL license. 325 

Data availability 

The raw data is available on GitHub: 

https://github.com/Mthrun/ExplainableAI4KnowledgeAcquisitionStreamTS2020/90RawData/. Aggregated data is  

available in https://github.com/Mthrun/ExplainableAI4KnowledgeAcquisitionStreamTS2020/09Originale/. The exact 

version of the model used to produce the results used in this paper is archived on Zenodo: DOI: 330 

10.5281/zenodo.3734892 under GPL license. 
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Figure 1: Explainable AI for knowledge acquisition in stream time series without implicit assumptions about data structures 465 
(data-driven). Databionic Swarm clustering consists of three modules: the projection, inspection of cluster structures by the 

topographic map and the clustering. 

 

Table 1: Measured environmental variables with abbreviations and units. The probability density distributions of the 

distributions of the transformed dataset are visualized in the supplementary section. 470 

Variable Abbreviation SI Unit 

Soil temperature St24 °C 

Groundwater level GWl3 

GWl25 

GWl32 

m 

Soil moisture Smoist24 m³/m³ 

Rainfall rain mm/d 

Discharge q13 

q18 

L/s 

Electric conductivity (EC) Con47 mS/m 

Solar radiation Sol71 W/m2 

Air temperature At47 °C 

Streamwater temperature Wt18 

Wt13 

°C 

Nitrate (NO3) nnit13 mg/L 
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Figure 2: Distribution analysis of the distances using a Gaussian mixture model (GMM) using the R package ‘AdaptGauss‘ 

available on CRAN (Ultsch et al., 2015). The first mode represents the intracluster distances, the second mode represents the 475 
intercluster distances, and the third mode indicates large outliers. PDE Pareto Density Estimation (Ultsch, 2005). 

 

Figure 3: Quantile-Quantile plot (QQ plot) visualizes a good match between the distance and the GMM through a straight 

line. Plot is generated using the R package ‘AdaptGauss’ available on CRAN (Ultsch et al., 2015). 

https://doi.org/10.5194/gmd-2020-87
Preprint. Discussion started: 7 May 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

 480 

Figure 4: The topographic map of high-dimensional structures shows two main clusters (magenta and yellow points), an 

outlier cluster (black points), and seven single outliers (marked by red arrows) in the hydrology dataset using the DBS 

method. Every point symbolizes a day, and the color of a point labels the cluster. Visualization of high-dimensional data 

structures is generated using the R package ‘DatabionicSwarm’ available on CRAN (Thrun, 2018). 

 485 

Figure 5: The four clusters have distinctive distances, as shown by the heatmap. There are small distances within each cluster 

and large distances between the clusters. The outliers are summarized in Cls4. The heatmap was generated with the R 

package ‘DataVisualizations’ available on CRAN (Thrun and Ultsch, 2018). 
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Figure 6: Toroidal topographic map of a projection pursuit approach by (Hofmeyr and Pavlidis, 2015) of the hydrology 490 
dataset. The linear projection does not reveal a linear structure, even if the generalized U-matrix is used to visualize high-

dimensional distances of the two-dimensional projection (Ultsch and Thrun, 2017). 

 

 

Figure 7a:  Globally optimal classification and regression trees (evtree) analysis rules for the dataset with the three 495 
clusters identified by the DBS method. The error of class 1 is 15%, class2 is 6.4% and class 3 is 8.3%. Outliers are summarized 

in class 4. The rules are quite similar to Fig 7B but have a higher error.  
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Rule No.    R1        R2,        R3       R4        R5 

Figure 7b:  Classification and regression tree (CART) analysis rules for the dataset with the three clusters identified 500 
by the DBS method. Applying the rules to the clustering in combination with the dataset results in 12 misclassified points 

(3.5% of daily observations). 8 outlier points are in class 4 for which nodes can be derived. This error is lower than in Fig7a. 

For units of measurements and abbreviations, please see table 1. 

 

Table 2:  The CART rules based on Fig. 7. Abbreviations: rainfall intensity (rain), soil temperature (St24), soil moisture 505 
(Smoist24), and water level at point 3 (GWl3). All values are expressed as percentages. For units of measurement, please see 

table 1. Class 2 R5 is extended by SI E, Fig. 11. 

Rule  

No. 

DBS  

Cluster 

No. 

No. of 

 Days 
Rule 

Short Abbreviation for 

Subsequent Plots 

R1 1 162 

rain < 0.15 and GWl25≥1.28 and Wt18 ≥6.86  

=> Dry days, increased stream water temperature and 

groundwater levels 

DryDaysWarmWater 

R3 & R5, 

Fig. 11 
2 159 

rain < 0.15 and GWl25 < 1.28 and Wt18 ≥6.11 or 

rain >= 0.15 and Wt18 ≥6.11 

=> Intermediate stream water temperature with either dry 

days and low groundwater levels or rainy days with a high 

level of water 

 Duality 

R2 & R4 3 22 

rain < 0.15 and GWl25 ≥ 1.28 and Wt18 < 6.86 or 

 rain < 0.15 and GWl25 < 1.28 and Wt18 < 6.11 or 

=> Dry days with colder stream water and variable 

groundwater levels 

DryDaysColdWater 

- 
Unclas

sified 
7 excluded because cannot be explained with CART 

Outliers 
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Figure 8:  Class wise mirrored-density plot (MD-plot) of the three classes with regard to NO3 and the outliers. There 

are two low to intermediate classes of N concentrations and one class of high N concentrations. Classes are colored similar 510 
to the clusters in Fig. 4. The MD-plot was generated using the R package ‘DataVisualizations’ available on CRAN (Thrun et 

al., 2020). 

 

Figure 9:  Class wise mirrored-density plots (MD-plot) of the four classes with regard to electrical conductivity C. 

There is a class of high concentration, a class of low to intermediate concentration and a class of very low C concentrations. 515 
Classes are colored similar to the clusters in Fig. 4. The MD plot was generated using the R package ‘DataVisualizations’ 

available on CRAN (Thrun et al., 2020). 
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Figure 10: The distribution of variables after preprocessing is visualized using mirrored-density plots of the hydrology 

dataset. The magenta overlay marks features that are statistically not skewed or multimodal. The mirrored-density plot 520 
(MD-plot) was generated using the R package ‘DataVisualizations’ available on CRAN (Thrun and Ultsch, 2018). 

 

 

Table 3: Contingency table of DBS versus Ward. 

DBS/Ward 1 2 3 RowSum RowPercentage 

1 157 5 0 162 47.23 

2 42 116 1 159 46.36 

3 0 0 22 22 6.41 

ColumnSum 199 121 23 343 0 

ColPercentage 58.02 35.28 6.71 0 100 

 525 

Table 4:  KS test with test statistic (D) and p-value (p) for conductivity for the first three clusters. 

Cluster No.  

(Sample Size) 

C2 (159) C3 (22) 

C1 (162) D=0.13429, 

p=0.11 

D=0.74074, 

p<0.001 

C2 (159)  D=0.84906, 

p<0.001 
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Table 5:  KS test with test statistic (D) and p-value (p) for NO3 for the first three clusters. 

Cluster No.  

(Sample Size) 

C2 (159) C3 (22) 

C1 (162) D=0.50769, 

p<0.001 

D=0.98765, 

p<0.001 

C2 (159)  D=0.83019, 

p<0.001 
 

 

 530 

Figure 11: Silhouette plot of DBC clustering shows low values for the three main clusters, indicating inappropriate clustering 

with regard to expected spherical structures. The silhouette plot was generated using the R package ‘DataVisualizations’ 

available on CRAN (Thrun and Ultsch, 2018). 

 

 535 

Figure 12: Class wise estimation of the probability density function using PDE allows for a more precise definition of Class 

2, “Duality”, because the plot shows that in Class 2, there are also rainy days with colder water than in Class 3. The red and 

dashed line in the right plot marks a temperature of 12.5°C. Classes are colored similarly to the clusters in Fig. 4. 
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