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Abstract. In the present work, the quality and reliability of a general-purpose second-order-accurate Finite-Volume-based (FV)

solver are assessed in wall-modeled large-eddy simulations of a neutrally-stratified Atmospheric-Boundary-Layer (ABL) flow

with no Coriolis effects. The sensitivity of the solution to parameters such as grid resolution and aspect ratio is analyzed, and

results are contrasted against those from a well-proven mixed Pseudo-Spectral and Finite-Difference (PSFD) code. Considered

flow statistics include mean streamwise velocity, resolved Reynolds stress, turbulence intensities, skewness, kurtosis, spectra5

and spatial autocorrelations. It is found that first- and second-order velocity statistics are sensitive to the grid resolution and

to the details of the near-wall numerical treatment, and a general improvement is observed with horizontal grid refinement.

Higher-order statistics, spectra and autocorrelations of the streamwise velocity, on the contrary, are consistently mispredicted,

regardless of the grid resolution. Skewness and kurtosis of the streamwise velocity, for instance, are overpredicted in the surface

layer, whereas one-dimensional spectra feature a strong sensitivity to the grid resolution in the production range and a rapid10

decay of energy density at higher wavenumber. In addition, the typical signatures of Large-Scale Motions (LSMs) are absent

in the premultiplied streamwise velocity spectra, the spatial autocorrelation functions rapidly decay along both the streamwise

and spanwise coordinate directions, and instantaneous snapshots of the velocity field are populated by relatively short and thin

streaks, confirming that the flow lacks LSMs. Further, the dominant mechanism supporting the tangential Reynolds stress in

ABL flow – spanwise-paired sweeps and ejections– is much weaker than what commonly observed in ABL flows, ejections15

are severely underpredicted, and sweeps account for most of the tangential Reynolds stress in the surface layer, which is at

odds with available measurements and with corresponing results from the PSFD-based solver. The inability of the solver to

correctly capture the spatially-localized and relatively strong ejection events, in the authors’ opinion, is the root-canse of many

of the observed mismatches and sensitivity of flow statistics to grid resolution. The present findings show that truncation errors

have an overwhelming impact on the predictive capabilities of second-order-accurate FV-based solvers, introducing a degree20

of uncertainty in model results that may be difficult to quantify across applications involving boundary-layer flows. Although 

mean flow and second-order statistics become acceptable provided sufficient grid resolution, the use of said solvers might prove 

problematic for studies requiring accurate higher-order statistics, velocity spectra and turbulence topology.
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1 Introduction25

An accurate prediction of Atmospheric-Boundary-Layer (ABL) flows is of paramount importance across a wide range of

fields and applications, including weather forecasting, complex-terrain meteorology, agriculture, air quality modeling and

wind energy (Fernando, 2010; Whiteman, 2000; Oke et al., 2017; Calaf et al., 2010a; Shaw et al., 2019). There is indeed a

rapidly growing interest in these applications, motivated by the increasing need for high-resolution information on turbulence

and turbulent transport across scales, for the prediction of severe-weather events (hurricanes, heat waves) and for the design of30

mitigation strategies against climate change.

Since the early work of Deardorff (1970), the Large-Eddy-Simulation (LES) technique has spurred considerable insight on

the dynamics of ABL flows. In LESs, only the motions at large scales are directly resolved on the given grid, often dictated

by the available computational resources, whereas contributions from Sub-Grid-Scale (SGS) motions to momentum and mass

transport and energy dissipation are parameterized as functions of resolved-scale quantities. In the last few decades, the in-35

creased availability and power of high-performance-computing facilities (national supercomputers, cloud-based services, etc.)

have led to a proliferation of LES studies of ABL processes. These studies include fundamental analysis of the ABL flow over

rough surfaces (Bou-Zeid et al., 2009; Anderson and Meneveau, 2010; Salesky et al., 2017; Momen et al., 2018), over and

within plant canopies (Yue et al., 2007b; Chester et al., 2007b; Pan et al., 2014; Chamecki, 2013; Bailey and Stoll, 2013) and

urban canopies (Tseng et al., 2006; Bou-Zeid et al., 2009; Cheng and Porté-Agel, 2013; Li et al., 2016b; Giometto et al., 2017;40

Nazarian et al., 2018; Li and Bou-Zeid, 2019), and the investigation of the ABL flow for wind energy applications (Calaf et al.,

2010b; Sharma et al., 2016; Abkar and Porté-Agel, 2013; Stevens and Meneveau, 2017), amongst others.

When it comes to the simulation of ABL flows, fully- or partially-dealiased mixed Pseudo-Spectral- and Finite-Difference-

(PSFD-) based solvers have been the go-to approach since the studies of Moin et al. (1978) and Moeng (1984). Such solvers

combine the accuracy and efficiency of the Fourier partial-sum representation in the horizontal coordinate directions with the45

more flexible Finite-Difference approach in the vertical (non-periodic) one. Nowadays, most LESs of ABL flows still rely on

PSFD-based solvers (see e.g., Sullivan et al., 1994; Albertson and Parlange, 1999). These solvers are known to yield accurate

flow fields up to the LES cut-off frequency and to produce good results when used in conjunction with dynamic SGS models

(Germano et al., 1991; Lilly, 1992), even when relying on a low-order Finite-Difference discretization in the vertical coordinate

direction. However, single-domain PSFD-based solvers are limited to regular domains and, in general, are not suitable for50

accurately representing sharp variations in the flow field, such as shocks or gas-solid interfaces. In addition, problematics may

arise when parallel computing is attempted (Canuto et al., 2006; Margairaz et al., 2018). With the increasing need to account for

complex geometries and multi-physics, several efforts have been devoted to the mitigation of the aforementioned limitations.

For example, Fang et al. (2011) and Li et al. (2016a) devised strategies to alleviate the Gibbs oscillations that arise when using

Pseudo-Spectral expansions in multiply-connected domains, whereas in Chester et al. (2007a) a fringe-forcing technique was55

proposed to simulate non-periodic flows within a Fourier-based Pseudo-Spectral solver. A shortcoming of these formulations

is that they are often ad-hoc or validated only for specific applications, thus introducing a degree of uncertainty in model results

and conservation properties of the numerical scheme that might be hard to quantify and generalize.
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There is hence a growing interest in using computational-fluid-dynamics solvers for LES based on compact spatial schemes

(Orlandi, 2000; Ferziger and Peric, 2002). The Parallelized Large-Eddy Simulation model (Raasch and Schröter, 2001; Maronga60

et al., 2015) and the Weather Research and Forecasting model (Skamarock et al., 2008; Chen et al., 2011) are prominent ex-

amples of said efforts. Both the approaches are based on a high-order Finite-Difference discretization, whereby a system of

dynamical solvers is combined to simulate a range of meteorological phenomena. The resulting solvers are relatively versatile,

suitable for complex geometries via structured and unstructured meshes, able to support local grid refinement and relatively

straightforward to parallelize, given the compact nature of the spatial discretization. Nonlinear terms are typically approx-65

imated by using high-order upwind-biased differencing schemes, which are suitable for LES in complex geometries with

arbitrary grid stretching factors and outflow boundary conditions (Beaudan and Moin, 1994; Mittal and Moin, 1997). Such

schemes, however, are known to be overly dissipative and do not conserve energy. In addition, while satisfactory first- and

second-order flow statistics can be obtained in complex geometries at moderate Reynolds numbers (Mittal and Moin, 1997),

the excessive damping of resolved-scale energy at high wavenumber is likely to compromise their predictive capabilities for70

high-Reynolds ABL-flow applications. On the other hand, if central schemes are used instead for the evaluation of nonlinear

terms, no numerical dissipation is introduced, but truncation errors can have an overwhelming impact on the computed flow

field (Ghosal, 1996; Kravchenko and Moin, 1997), especially in simulations where the grid is just fine enough to resolve the

large-scale flow structures. These limitations typically result in a strong sensitivity of the solution to properties of the spatial

discretization and of the numerical scheme (Vuorinen et al., 2014; Rezaeiravesh and Liefvendahl, 2018; Breuer, 1998; Mon-75

tecchia et al., 2019). Further, truncation errors corrupt the high-wavenumber range of the solution, also complicating the use

of dynamic LES closure models whereby the information from the small scales of motion is leveraged to evaluate the SGS

diffusion (Germano et al., 1991). Notwithstanding these limitations, such schemes have been heavily employed in the past in

both the geophysical and engineering flow communities, and are the de-facto standard in the wind engineering one, where most

of the numerical simulations are carried out using second-order-accurate Finite-Volume- (FV-) based solvers (Nilsson et al.,80

2008; Stovall et al., 2010; Churchfield et al., 2010; Balogh et al., 2012; Churchfield et al., 2013; Shi and Yeo, 2016, 2017;

García-Sánchez et al., 2017, 2018). Note that the studies conducted with FV-based solvers are mainly focused on first- and

second-order flow statistics, which are themselves not sufficient to fully characterize turbulence– and related transport– in the

ABL.

The present study aims at bridging this knowledge gap by analyzing quality and reliability of a second-order-accurate FV85

solver for the LES of ABL flow, with a lens on higher-order statistics, energy spectra, spatial autocorrelations and turbulence

topology. The analysis is carried out leveraging the OpenFOAM® framework (Weller et al., 1998; De Villiers, 2006; Jasak

et al., 2007). A suite of simulations is carried out whereby physical and numerical parameters are varied. The predictions from

the solver are contrasted against the results from the Albertson and Parlange (1999) PSFD code.

The work is organized as follows. Section 2 briefly summarizes the governing equations, the numerical methods and the90

set-up of the problem, along with a description of the simulated cases and of the post-processing procedure. The results

are proposed in §3. The conclusions are drawn in §4. In the Appendix, the sensitivity of the solution to model constants,

interpolation schemes and numerical solvers is reported.
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2 Methodology

2.1 Governing equations and numerical schemes95

In the following, vector and index notations are used interchangeably, according to needs, in a Cartesian reference system. The

spatially-filtered Navier-Stokes equations are considered,

∇ ·u = 0 , (1)

∂u
∂t

+∇u ·u =−1
ρ
∇p̃+∇ · τ −∇ · τSGS,dev − 1

ρ
∇P , (2)

where u = (u1,u2,u3) is the spatially-filtered velocity field along the streamwise (x1), vertical (x2) and spanwise (x3)100

coordinate directions, t is the time, ρ is the (constant) fluid density, p̃≡ p+ 1
3τ

SGS
kk is the pressure term with an additional

contribution from the Sub-Grid kinetic energy ( 1
2τ

SGS
kk ), τ is the filtered viscous-stress tensor, τSGS,dev is the deviatoric part

of the SGS-stress tensor. In addition, the term− 1
ρ∇P is a constant pressure gradient, here assumed to be constant and uniform,

responsible for driving the flow. The filtered viscous tensor is τ =−2νS, where ν = const is the kinematic viscosity of the

Newtonian fluid and S is the resolved (in the LES sense) rate-of-strain tensor. For the SGS-stress tensor, the static Smagorinsky105

model is used,

τSGS,dev =−2νSGSS =−2(CS∆)2|S|S , (3)

where νSGS is the SGS eddy viscosity, CS is the Smagorinsky coefficient (Smagorinsky, 1963), ∆ = (∆x1∆x2∆x3)1/3

is a local length-scale based on the volume of the computational cell (Scotti et al., 1993), and |S|=
√

2S : S quantifies the

magnitude of the rate of strain. In the present work, CS = 0.1, unless otherwise specified. The authors would like to point out110

that dynamic Smagorinsky models are in general preferred to the static one for the LES of ABL flows (Germano et al., 1991;

Lilly, 1992; Meneveau et al., 1996; Porté-Agel, 2004; Bou-Zeid et al., 2005). Dynamic models evaluate SGS stresses via first-

principles-based constraints, feature improved dissipation properties when compared to the static Smagorinsky one (especially

in the vicinity of solid boundaries) and, foremost, are parameter-free. The choice made in the present study is motivated by

problematics encountered when using the available dynamic Lagrangian model in preliminary tests. Note that, however, while115

SGS dissipation plays a crucial role in PSFD solvers, truncation errors typically overshadow SGS stress contributions in the

second-order FV-based ones (Kravchenko and Moin, 1997). The static Smagorinsky SGS model used herein might hence

perform similarly to dynamic SGS models for the considered flow set-up. This observation is supported by the results of

Majander and Siikonen (2002).

The large-scale separation between near-surface and outer-layer energy-containing ABL motions poses stringent resolution120

requirements to numerical modelers if all of the energy-containing motions necessitate to be resolved. To reduce the compu-

tational cost of such simulations, the near-surface region is typically bypassed, and a phenomenological wall-layer model is

leveraged instead to account for the impact of near-wall (inner-layer) dynamics on the outer-layer flow (Mason, 1994; Piomelli
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and Balaras, 2002; Piomelli, 2008; Bose and Park, 2018). This approach is referred to as Wall-Modeled Large-Eddy Simula-

tion (WMLES), and is used herein. ABL flows are typically in fully-rough aerodynamic regime with the underlying surface125

(Stull, 1988), hence a rough-wall wall-layer model is required to close the equations at the surface. Such a procedure is stan-

dard practice in WMLES of ABL flows (see e.g., Albertson and Parlange, 1999). In the present work, an algebraic wall-layer

equilibrium model for surfaces in fully-rough aerodynamic regime has been implemented, based on the logarithmic law of the

wall,

|u|= uτ
κ

ln
( x2

x2,0

)
, (4)130

where |u| ≡
√
u2

1 +u2
3 is the norm of the velocity at a certain distance from the ground level, uτ is the friction velocity (see

Sub-Section 2.2 for details), κ is the von Kármán constant, x2 is the distance from the ground level and x2,0 is the so-called

aerodynamic roughness length, which quantifies the drag of the underlying surface. Here, κ= 0.41 and x2,0 = 0.1 m. Specifi-

cally, the kinematic wall shear stress is assumed to be proportional to the local velocity gradient (Boussinesq approximation),

τα2,w = (ν+ νt)
∂uα
∂x2

∣∣∣
w

= (ν+ νt)
uα
x2
, α= 1,3 , (5)135

with νt being the total eddy viscosity at the wall. From the log-law (Eq. 4) evaluated at the first cell-center, one can write uτ =

(κ|u|)/(ln(x2/x2,0). Using the definition of friction velocity uτ =
√
τα2,w|u|/uα for α= 1,3 (no summation over repeated

indices) along with Eq. 5 and rearranging, the total eddy viscosity reads

νt =

(
κ|u|

ln
( x2

x2,0

)
)2

x2

|u| − ν , (6)

which is the formulation implemented herein. Note that ν+ νt ≈ νt in boundary-layer flows in fully-rough aerodynamic140

regime, so that ν could be neglected without loss of accuracy.

In the OpenFOAM® framework, considered in the present work, the FV method is used on a co-located grid. The integral

version of the filtered Navier-Stokes equations is solved on every control volume, leveraging the Gauss divergence theorem to

relate volume integrals to surface integrals. Unknowns are evaluated at face-centers and are assumed to be constant on each

face, yielding an overall second-order spatial accuracy (Churchfield et al., 2010). A range of interpolation schemes is available,145

spanning from first-order upwind to higher-order ones. The linear interpolation scheme is considered herein, unless otherwise

stated. Simulations are carried out using the PISO fractional step method to solve the system of equations (Issa, 1985), and an

implicit Adams-Moulton time-stepping scheme is chosen for time integration (Ferziger and Peric, 2002).

2.2 Problem set-up

An extensive series of WMLESs of ABL flow (open-channel-flow set-up) is performed. Tests are carried out in the domain150

[0,L1]× [0,L2]× [0,L3] with L1 = 2πh, L2 = h, L3 = 4
3πh, where h= 1000 m denotes the width of the open channel. The
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Table 1. Tabulated list of cases.

label C-2π B-4π B-2π B-π F-2π R-2π

grid resolution 32× 32× 32 32× 64× 32 64× 64× 64 128× 64× 128 128× 128× 128 64× 64× 64

aspect ratio 2π 4π 2π π 2π 2π

symbol dashed line dash-dotted line circles dotted line solid line full circles

symmetric boundary condition is imposed on the top of the computational domain, no-slip applies at the lower surface, and

periodic boundary conditions are enforced along each side. A pressure gradient term − 1
ρ∂P/∂x1 = 1 m/s2 drives the flow

along the x1 coordinate direction, yielding uτ = 1 m/s. The kinematic viscosity is set to 10−7 m2/s in the bulk of the flow,

resulting in Reτ = 107.155

Five cases are run, spanning different grid resolutions and aspect ratios. The mesh is Cartesian, with a uniform stencil along

each direction. In the following, Ni denotes the number of cell-centers along the i-th direction. The baseline calculation B-2π

is performed over 643 control volumes. Two cases with the same aspect ratio ∆x1/∆x2 = 2π are run– the simulation C-2π

over a coarser grid (323 control volumes) and the simulation F-2π over a finer grid (1283 control volumes). Two additional

cases are considered, with the same number of grid points along the vertical direction as in B-2π and different aspect ratios–160

the simulation B-4π, with aspect ratio ∆x1/∆x2 = 4π (N1×N2×N3 = 32× 64× 32), and the simulation B-π, with aspect

ratio ∆x1/∆x2 = π (N1×N2×N3 = 128× 64× 128). Note that the grid-aspect-ratio sensitivity analysis is carried out by

refining the grid only along the horizontal directions, in line with the approach of Park and Moin (2016). Preliminary tests

indeed showed that, for the given resolution, ABL flow statistics are more sensitive to variations in the horizontal grid stencil

and aspect ratio than in the vertical ones. The chosen grid resolutions are in line with those typically used in studies of ABL165

flows (see, e.g., Salesky et al., 2017). All the calculations satisfy the Courant-Friedrichs-Lewy (CFL) condition Co. 0.1,

where Co is the Courant number. Runs are initialized from a fully-developed open-channel-flow simulation at equilibrium, and

time integration is carried out for 100 eddy turnover times, where the eddy turnover time is defined as h/uτ . Flow statistics are

the result of an averaging procedure in the horizontal plane of statistical homogeneity of turbulence (x1x3) and in time over the

last 60 eddy turnover times. The procedure yields well converged statistics throughout the considered cases. In the following,170

the space/time averaging operation is denoted by 〈·〉.
Results in the present study are contrasted against corresponding ones from the Albertson and Parlange (1999) mixed PSFD

code. Said code is based on an explicit second-order-accurate Adams-Bashforth scheme for time integration and on a fractional-

step method for solving the system of equations. A single run, the reference simulation R-2π, was carried out with the PSFD

solver at a resolution of 643 co-location nodes, using a static Smagorinsky SGS model with Cs = 0.1, a rough wall-layer model175

with x2,0 = 0.1 m, Co. 0.1, and the same initialization and averaging procedure as the one considered for the FV runs. A

summary of the simulated cases is given in Tab. 1.
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3 Results

This Section is devoted to the analysis of velocity statistics, spectra and autocorrelations from the second-order FV-based

solver, along with detailed considerations on turbulence topology and momentum transfer mechanisms. Mean streamwise180

velocity, resolved Reynolds stresses and higher-order statistics are discussed in §3.1. Sub-Section 3.2 focuses on velocity

spectra and spatial autocorrelations, and a discussion on the turbulence topology based on conditionally-averaged flow field

and quadrant analysis can be found in §3.3.

3.1 Mean profiles

In Fig. 1, the vertical structure of the normalized mean streamwise velocity (〈u1〉+) and resolved shear Reynolds stress185

(−〈u′1u′2〉+) is shown for all of the considered cases. The mean streamwise velocity at the first two cell-centers off the wall is

consistently underpredicted, whereas a positive Log-Layer Mismatch (LLM) is observed in the bulk of the flow (Kawai and

Larsson, 2012). This behavior could have been anticipated, as the wall shear stress is evaluated using the instantaneous hori-

zontal velocity at the first cell-center off the wall. A number of procedures has been proposed to alleviate the LLM, including

modifying the SGS-stress model in the near-wall region (Sullivan et al., 1994; Porté-Agel et al., 2000; Chow et al., 2005;190

Wu and Meyers, 2013), shifting the matching location further away from the wall (Kawai and Larsson, 2012), and carrying

out a local horizontal/temporal filtering operation (Bou-Zeid et al., 2005; Xiang et al., 2017). In preliminary runs, the authors

applied the same approach as in Kawai and Larsson (2012) to mitigate the LLM, but observed an enhanced sensitivity of

mean velocity profiles to grid resolution and matching location that suggested that alternative procedures might work better

for the considered solver. The results herein proposed are hence representative of the OpenFOAM® solver with the standard195

wall-layer treatment— the set-up that is most commonly adopted when using this code (see, for instance, Churchfield et al.

(2010); Shi and Yeo (2017)). Note that a positive LLM is observed even when using the PSFD solver, in spite of a spatial

low-pass filtering operation that is carried out on the horizontal velocity before the evaluation of the surface shear stress (Bou-

Zeid et al., 2005). The one in Fig. 1(a) is indeed the expected mean velocity profile for PSFD solvers coupled with the static

Smagorinsky model (see Meneveau et al., 1996; Bou-Zeid et al., 2005) and advocates for the use of alternative strategies to200

overcome the LLM therein as well. In Fig. 1(b), resolved Reynolds stresses are compared to the theoretical profile of the total

stress τ tot12 = (−〈u′1u′2〉+τSGS12 +τ12) = u2
τ (1−x2/h). The profiles from the FV-based solver feature a strong sensitivity to grid

resolution and aspect ratio, and start off relatively slow from the wall when compared to those from the PSFD one, throughout

all the considered cases. For instance, at x2/h≈ 0.01, the resolved Reynolds stresses from the R-2π case account for 21%

of the total shear stress, whereas they account for only 2% in the corresponding B-2π case, 6% in the B-π case, and 8% in205

the F-2π one. This behavior is likely due to truncation errors that damp the energy of high-wavenumber momentum-carrying

modes in the near-surface region (see discussion in §3.2), which controls in large part the overall solution (Van Driest, 1956;

Kawai and Larsson, 2012). The present results suggest that the impact of the SGS model on the global solution might be larger

for FV-based solvers than for PSFD-based ones via SGS near-wall effects. This conclusion, however, is at odds with some of

the numerical experiments that were conducted, where the solution was found to be poorly sensitive– when compared to the210
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Figure 1. Vertical structure of mean streamwise velocity 〈u1〉+ = 〈u1〉/uτ (a) and resolved stress 〈u′1u′2〉+ = 〈u′1u′2〉/u2
τ (b). Red lines

denote the phenomenological logarithmic-layer profile (a) and the theoretical profile for the total Reynolds stress (b). The other lines and

symbols are defined in Table 1.

one from the PSFD-based-solver– to details of the near-wall numerical procedure (e.g., using or not a wall-damping function).

Truncation errors might again be responsible for said behavior.

Turbulence intensities are shown in Fig. 2, where (·)′ denotes the Root Mean Square (RMS) of the fluctuations and (·)′+ ≡
(·)′/uτ . The profiles are extremely sensitive to the grid resolution in the horizontal coordinate directions and start off relatively

slow at the wall when compared to the R-2π case and to the reference profile from Hultmark et al. (2013). As a result,215

the velocity fluctuations are consistently underpredicted in the very near-wall region (x2/h≤ 0.025). On the contrary, the

u′+1 -peak values are overpredicted, whereas the u′+2 - and u′+3 - peak values are underpredicted, except for the finest horizontal-

grid-resolution runs (cases B-π and F-2π). The overshoot in the peak of u′+1 and the underestimation of u′+2 and u′+3 in

the surface-layer region are a well-known problem of FV-based WMLES (Bae et al., 2018). Lack of energy redistribution

via pressure fluctuation from shear-generated u′+1 to u′+2 and u′+3 is the root cause of said behavior, and possible mitigation220

strategies include allowing for wall transpiration (Bose and Moin, 2014; Bae et al., 2018). Grid refinement in the horizontal

directions leads to an improved matching between the FV and the PSFD solver, both in terms of shape and magnitude.

Skewness and kurtosis of the streamwise velocity (S1 and K1, respectively) are shown in Fig. 3, along with the transfer

efficiency coefficient, r12 =−〈u′1u′2〉/(u′1u′2). Average values of said flow statistics in the surface layer are shown in Tab.

2, where spurious near-wall effects are neglected by constraining the averaging to the interval 0.2≤ x2/h≤ 0.4. Recall that225

the constancy of S1 ≈−0.3, K1 ≈ 3, and r12 ≈ 0.3 in the surface layer of the ABL is a manifestation of the self-similar

nature of ABL turbulence therein (Del Álamo et al., 2006). Both the PSFD- and FV-based solvers predict a spurious maximum

S1 ≈ 1 at the first node off the wall, followed by a monotonic decrease in the x2/h/ 0.2 range. The observed near-surface

maximum may be originated from wall-blocking effects (Perot and Moin, 1995; Bae et al., 2018) such as splats, local regions

of stagnation flow resulting from fluid impinging on a wall, investigated in Perot and Moin (1995). Note that near-wall effects230
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Figure 2. Vertical structure of streamwise velocity RMS (a), vertical velocity RMS (b) and spanwise velocity RMS (c). Lines and symbols

are defined in Table 1. The red line denotes the reference profile from Hultmark et al. (2013).

Table 2. Average values of skewness, kurtosis and transfer efficiency coefficient in the interval 0.2≤ x2/h≤ 0.4.

simulation C-2π B-4π B-2π B-π F-2π R-2π

〈S1〉surface layer −0.0660 −0.1566 −0.0013 0.1092 0.1509 −0.3572

〈K1〉surface layer 3.1362 3.3078 3.2864 3.1223 3.2434 2.7480

〈r12〉surface layer 0.4422 0.4169 0.4964 0.4867 0.5157 0.4331

extend deeper within the boundary layer for the FV-based runs and, further, the profiles remain positive throughout, except for

the two coarse-resolution cases (C-2π and B-4π). Grid refinement in the horizontal directions improves the matching between

the FV-based and the PSFD-based solvers in the near-wall region, and accelerates the convergence of the profiles to the constant

surface-layer values. K1 profiles also feature a spurious maximum at the wall, and approximately constant values are reached

above x2/h≈ 0.2 for the B-2π, B-π, and F-2π cases, as well as for the R-2π case. On the contrary, no constant-K1 layers235

are observed for the C-2π and B-4π cases. The constant-K1 value is consistently overpredicted, signaling a flow field that is

populated by a number of rare events larger than the one in real-world neutrally-stratified ABLs. From the transfer efficiency

profiles shown in Fig. 3(c) it is also apparent that both PSFD- and FV-based solvers predict a flow field populated by coherent

structures that are more efficient in transferring momentum than those in measured ABLs (Bradshaw, 1967). The profiles from

the FV-based solver reach an approximately constant r12 value further aloft (x2/h≈ 0.2) when compared to the reference240

simulation R-2π.
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Figure 3. Vertical structure of skewness of streamwise velocity (a), kurtosis of streamwise velocity (b) and transfer efficiency coefficient (c).

Lines and symbols are defined in Table 1.

3.2 Spectra and autocorrelations

In this Sub-Section, spectra and spatial autocorrelations of the streamwise velocity fluctuations are analyzed, to quantify the

distribution of energy density across scales and the spatial coherence of the simulated ABLs.

The one-dimensional spectrum of the streamwise velocity fluctuations (E11) is featured in Fig. 4(a) for all of the considered245

cases. The profiles are contrasted against the phenomenological production-range and inertial-sub-range power-law profiles

(k−1 and k−5/3, respectively). In the production range, the spectra are sensitive to the horizontal grid resolution, with an

apparent decrease in the power-law exponent as the resolution is increased. The profiles from the simulations C-2π and B-4π

and those from the simulations B-π and F-2π are similar, highlighting once again that the solution is more sensitive to the

horizontal grid resolution than to the vertical one, and that the aspect ratio does not play an important role herein. In the high-250

wavenumber range, the profiles feature a rapid decay of energy density, regardless of the resolution or the aspect ratio, and the

decay is shifted towards higher wavenumber as the horizontal grid resolution is increased. Cases C-2π and B-4π also display

an unphysical pile-up of energy near the cut-off frequency. It is evident that inertial-range turbulence dynamics may not be

well captured in the simulated cases, and this fact might complicate the use of dynamic procedures based on the Germano

et al. (1991) identity. The results suggest that, for the considered resolutions, neither grid refinement nor the reduction of the255

aspect ratio help circumvent this limitation (no trend is observed). Note, however, that the contribution of the inertial-sub-

range portion of the spectrum to the overall energy is modest, ranging from 10% to 15% for all the simulated cases (see Tab.

3). On the contrary, predictions from the PSFD-based solver are not sensitive to grid resolution (not shown), and feature a

very good agreement with the phenomenological −5/3 power-law profile in the inertial sub-range. A further characterization

of the energy dynamics is given in Fig. 4(b), where the premultiplied spectrum k1hE11/u
2
τ is considered at selected heights260

for the cases F-2π and R-2π. Premultiplied spectra profiles provide information on the coherence of the flow and in particular
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Figure 4. (a) Normalized one-dimensional spectrum of streamwise velocity at height x2/h≈ 0.1. Lines and symbols: solid red line,

(k1x2)−1 in the production range and (k1x2)−5/3 in the inertial sub-range; for all the other lines and symbols please refer to Table 1.

(b) Premultiplied one-dimensional spectrum of streamwise velocity from the simulations R-2π (full circles) and F-2π (solid lines). Dark to

light gray lines correspond to heights from x2/h≈ 0.1 to x2/h≈ 0.5.

on the so-called Large- and Very-Large- Scale Motions (LSMs and VSLMs, respectively). LSMs consist of single hairpin

packets whose legs form counter-rotating rolls generating a low-velocity streamwise-elongated streak, also inducing high-

momentum bulges on the sides of said streak. Velocity correlation analyses have shown that LSMs typically extend up to 3h in

the streamwise direction and h in the spanwise direction. VLSMs arise due to clustering of such structures in the streamwise265

direction, and can reach streamwise extents of over 20h in boundary-layer flows. These structures are responsible for carrying

more than half of the kinetic energy and Reynolds shear stress and are a persistent feature of the surface and outer layers of

both aerodynamically smooth and rough walls (Hutchins and Marusic, 2007a; Fang and Porté-Agel, 2015). Numerous works

have recently been devoted to the identification and characterization of LSMs and VLSMs in wall-bounded flows, both from a

numerical and experimental perspective (Kim and Adrian, 1999; Balakumar and Adrian, 2007; Monty et al., 2007; Hutchins270

and Marusic, 2007b; Fang and Porté-Agel, 2015). The current domain, of modest dimensions, can accommodate only LSMs

(Lozano-Durán and Jiménez, 2014), commonly identified in premultiplied spectra by a local maximum at the streamwise

wavenumber k1/h≈ 1. As apparent from Fig. 4(b), the premultiplied spectrum from the FV-based solver underpredicts the

streamwise extent of LSMs, with a maximum located at k1/h≈ 3. The PSFD-based solver, on the contrary, succeeds in

capturing LSMs, despite the modest extent of the computational domain.275

To gain insight on the spatial coherence of the flow field, contour lines of the two-dimensional autocorrelation of the stream-

wise velocity (R2D
11 ) in the x1x3 plane are shown in Fig. 5. Contours from the F-2π case (Fig. 5(b)) are representative of a flow

field less correlated along both streamwise and spanwise directions than the one from the R-2π case (Fig. 5(a)), and also more

isotropic (note that the scales in Fig. 5(b) differ from those in Fig. 5(a)). For example, the ellipse-shaped contour line at level

0.3 from the R-2π simulation is characterized by eccentricity e≈ 0.9965, while the corresponding value for the F-2π simula-280
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Table 3. Ratio of inertial sub-range energy (Einertial) to total energy (Etotal) at x2/h≈ 0.1. The the total energy is computed as the integral

of the normalized spectrum across the whole available wavenumber range, whereas the inertial-range energy is obtained by integration in the

wavenumber region with slope −5/3 or steeper.

simulation C-2π B-4π B-2π B-π F-2π R-2π

Einertial/Etotal 0.1380 0.0951 0.1338 0.0947 0.1564 0.1188
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Figure 5. Contours of two-dimensional spatial autocorrelation of streamwise velocity at height x2/h≈ 0.1, from the simulation R-2π (a)

and from the simulation F-2π (b). Dark to light gray lines correspond to contour levels from 0.1 to 0.9 with increments of 0.1.

tion is e≈ 0.9473. Note that the quality of the computed flow statistics is not impacted by the fact that the current domain size

prevents some of the contour lines in the R-2π case from closing (Lozano-Durán and Jiménez, 2014).

The one-dimensional autocorrelation function (R11), shown in Fig. 6 along the streamwise and spanwise coordinate direc-

tions for all of the considered cases, further supports the above statements. From the profiles from the R-2π simulation it is

clear that the extension of the selected domain is not suffiecient to capture all the dynamics, as R11 remains finite in the avail-285

able r1/h range. Along the spanwise direction, R11 features the expected negative lobes, which highlight the presence of high-

and low-momentum streamwise-elongated streaks flanking each others in the streamwise direction, in line with findings from

previous studies focused on the coherence of wall-bounded turbulence. Throughout the considered FV-based solver cases, R11

decays very rapidly along the streamwise and spanwise directions, more so as the grid is refined. Further, the negative lobes in

the spanwise autocorrelation weaken in the B-π and F-2π cases, and spread over a much larger separation distance. A quantita-290

tive measure of the coherence length of the flow is provided in Tab. 4, where the integral lengths Λr1,u1 and Λr3,u1 are reported,

in a comparison with corresponding values from direct numerical simulations of the channel flow at Reτ = 2000 from Sillero

et al. (2014). The integral length Λri,u1 is obtained by integration of the R11 function along the i-th direction, from ri = 0 to

the first zero (if any) or to the closest intersection with R11 = 0.05, in line with the procedure outlined in Sillero et al. (2014).
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Figure 6. One-dimensional spatial autocorrelation of streamwise velocity at height x2/h≈ 0.1, along the streamwise direction (a) and along

the spanwise direction (b). Lines and symbols are defined in Table 1.

Table 4. Integral lengths at height x2/h≈ 0.15.

simulation C-2π B-4π B-2π B-π F-2π R-2π Sillero et al. (2014)

Λr1,u1/h 0.5455 0.6496 0.2320 0.2637 0.1203 1.2810 2.1440

Λr3,u1/h 0.0709 0.0708 0.0379 0.0415 0.0293 0.1436 0.2021

While Λr1,u1 might be not meaningful for the R-2π case, owing to the lack of a zero crossing of the autocorrelation function,295

it is apparent that the values of the coherence lengths from the FV-based solver are much smaller than expected, and that the

grid refinement procedure leads to a further reduction of both Λr1,u1 and Λr3,u1 . These findings highlight a flow field that is

less correlated than realistic ABL flows, thus suggesting that the FV-based solver may not be capable of representing coherent

structures– and associated momentum-transfer mechanisms– of ABL turbulence.

3.3 Instantaneous horizontal contours300

To further substantiate the lack of coherence in the FV flow fields, horizontal instantaneous snapshots of normalized streamwise

velocity fluctuations are shown in Fig. 7 for the simulations R-2π and F-2π. The normalized velocity fluctuation is defined as

(u1−〈u1〉x1x3)/u′′1 , where averages are carried out in space over the selected horizontal plane. Streamwise-elongated bulges of

uniform high and low momentum are apparent in the R-2π flow field (Fig. 7(a)). These are the typical flow patterns encountered

in boundary-layer flows and have been the object of significant studies in both geophysics and engineering (Balakumar and305

Adrian, 2007; Hutchins and Marusic, 2007a; Fang and Porté-Agel, 2015). The streamwise velocity field from the FV-based

solver (Fig. 7(b)) exhibits a less coherent flow field when compared to the one from the PSFD-based solver. Differences

are particularly stark in the spanwise direction, where thin structures populate the boundary layer and LSMs are not clearly
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Figure 7. Instantaneous snapshots of normalized streamwise velocity fluctuations at x2/h≈ 0.1 from simulations R-2π (a), F-2π (b), R-2π

filtered (c) and F-2π filtered (d). The normalized velocity fluctuation is defined as (u1−〈u1〉x1x3)/u′′1 , where averages (and fluctuations

therefrom) are evaluated in space over the selected horizontal plane. A low-pass spatial filtering operation was carried out to obtain the flow

field in panels (c) and (d), using a sharp-spectral-cut-off kernel with support `1/h× `3/h= 3x2/h×x2/h– approximately the extent of

LSMs in the ABL.

detectable. To gain further insight on the problem, in the spirit of LES, the instantaneous velocity snapshots have been spatially

low-pass filtered using a sharp-spectral-cut-off kernel with support `1/h× `3/h= 3x2/h×x2/h– approximately the extent of310

LSMs across the ABL (see Fig. 7(c) and (d)). From the filtered flow field it is indeed apparent that larger-scale patterns are

present in the OpenFOAM® solution, but these are less coherent than the corresponding ones from the PSFD-based solver, and

energetically weaker, thus not bringing significant contributions to autocorrelation maps.

To elucidate the mechanisms responsible the for momentum transport in the flow, the conditionally-averaged flow field

is analyzed, following the approach of Fang and Porté-Agel (2015). In Fig. 8, a visualization of the conditionally-averaged315

flow field is provided– the conditional event being a positive streamwise velocity fluctuation u′′1/uτ at r1/h= 0, x2/h= 0.5,

r3/h= 0. The flow structure in the equilibrium surface layer is expected to exhibit rolls in the vertical-spanwise plane, each

roll flanked by a low- and a high-momentum streamwise-elongated streaks. The roll leads to sweep and ejection pairs, which

occur in correspondence of the high- and low-momentum streak respectively, and are the dominant mechanism responsible for

14

https://doi.org/10.5194/gmd-2020-84
Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 8. Conditionally-averaged flow field from the simulation R-2π ((a) and (c)) and from the simulation F-2π ((b) and (d)). The

conditional event is a positive streamwise velocity fluctuation u′′1/uτ at r1/h= 0, x2/h= 0.5, r3/h= 0. Top: red iso-surfaces show

u′′1/uτ > 0.68 (a) and u′′1/uτ > 0.09 (b); blue iso-surfaces show u′′1/uτ <−0.54 (a) and u′′1/uτ <−0.04 (b); vector fields in the spanwise-

vertical planes are visualized at r1/h=−L1/(4h),0,L1/(4h). Bottom: vector field in the spanwise-vertical plane at r1/h= 0.

tangential Reynolds stress (Ganapathisubramani et al., 2003; Lozano-Durán et al., 694). The results from the simulation R-2π320

clearly capture said mechanism, with sweeps and ejections of the same order of magnitude. A qualitatively similar pattern can

be obtained from the F-2π case, but streaks are significantly weaker when compared to those in the R-2π case (see details in

caption of Fig. 8). When the threshold is fixed to be the same as for the simulation R-2π, only positive-fluctuation patterns

can be visualized, and the opposite occurs if the conditional event is a negative streamwise velocity fluctuation, signaling a

flow field where a strong sweep (ejection) contributing to the tangential Reynolds stress does not have a corresponding ejection325

(sweep) pattern.

To gain further insight on relative contributions of sweeps and ejection to the overall Reynolds stress, a quadrant-hole anal-

ysis is proposed hereafter (Lu and Willmarth, 1973). This technique is based on the decomposition of the velocity fluctuations

into four quadrants: the first and third quadrants, “outward interactions" (u′ > 0, v′ > 0) and “inward interactions" (u′ < 0,

v′ < 0) respectively, are negative contributions to the momentum flux, whereas the second and fourth quadrants, a.k.a. “ejec-330

tions" (u′ < 0, v′ > 0) and “sweeps" (u′ > 0, v′ < 0), represent positive contributions. The notation is the same as in Yue et al.

(2007a), where H is the hole size, Si,H is the Reynolds shear stress contribution to the i-th quadrant at hole size H , and Sfi,H
is the correspondent quadrant fraction.
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Figure 9. Vertical structure of event ratios: (a) ratio of negative to positive contributions to the momentum flux; (b) ratio of sweeps to

ejections. Lines and symbols are defined in Table 1.

Figure 9(a) shows the exuberance ratio, defined as the ratio of negative to positive contributions to the momentum flux,

(S1,0 +S3,0)/(S2,0 +S4,0) (Shaw et al., 1983). The magnitude of the profile from the R-2π simulation is larger than those335

from the FV runs, highlighting that outward and inward interactions have a relative contribution to the resolved Reynolds stress

that is more significant for the PSFD-based solver, whereas the FV results are characterized by relatively stronger ejections

and sweeps. More interestingly, from Fig. 9(b) it is apparent that the FV solver tends to favor sweeps over ejection as the

mechanisms for momentum transfer in the surface layer, which is at odds with the R-2π predictions and with findings from

measurements of surface-layer flow over rough surfaces, whereby ejections are identified as the dominant momentum transport340

mechanism (Raupach et al., 1991). Grid refinement over the considered resolutions does not mitigate this shortcoming.

Consistently with these findings, the joint probability density function of the streamwise and vertical velocity fluctuations

for the simulation F-2π exhibits a narrower range of inner-outer interactions, as displayed in Fig. 10(b). It is also apparent that

the PSFD-based solver features a larger variance, highlighting that stronger sweeps and ejections are favored when compared

to those from the FV-based solver.345

These observations are further supported by Fig. 11, where stress fractions are reported for values of the hole size H ranging

from 0 to 8. Note that larger hole sizes corresponds to contributions from more extreme events to the resolved Reynolds shear

stress. Clearly, the FV-based solver severely underpredicts ejections, outward interactions and inward interactions (Fig. 11(a),

(b) and (c), respectively), and slightly overpredicts extreme sweeps (Fig. 11(d) at sufficiently large hole sizeH). This mismatch

is particularly apparent for the low grid-resolution cases, with a general improvement as the grid is refined. Ejections in the350

ABL are known to be relatively violent events, concentrated over a very thin region in the spanwise direction (Fang and Porté-

Agel, 2015). The findings from Fig. 11 suggest that, at the considered grid resolutions, the FV solver is not able to correctly

capture said strong local events, leading to a less coherent flow field and, possibly, to many of the observed discrepancies with

the R-2π case and with canonical ABL flow statistics.
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Figure 10. Joint probability density function of the streamwise and vertical velocity fluctuations, normalized by the resolved Reynolds shear

stress, at x2/h≈ 0.1. Results from the simulation R-2π(a) and from the simulation F-2π (b).

4 Conclusion355

The objective of the present study was to determine whether second-order-accurate FV-based solvers are suitable for WMLESs

of ABL flows. A suite of simulations has been carried out using a general-purpose co-located FV solver based on second-order

centered schemes within the OpenFOAM® framework, varying parameters such as grid resolution and aspect ratio. Results

have been contrasted against those from a validated PSFD-based solver.

Mean velocity and resolved Reynolds stresses are found to be particularly sensitive to variations in the surface-parallel grid360

resolution, and a relatively good convergence to corresponding profiles from the PSFD-based solver has been observed as the

grid is refined. On the contrary, higher-order velocity statistics, spectra and spatial autocorrelations are severely mispredicted

across grid resolutions. Skewness, kurtosis, and transfer efficiency coefficient are not constant in the surface layer (i.e., the

flow is not self-similar) and are consistently overpredicted therein. Streamwise velocity spectra exhibit no phenomenological

production range, are very sensitive to variations in the grid resolution and aspect ratio, and decay too rapidly in the inertial365

sub-range as a result of truncation errors. Further, the spectral peaks in the premultiplied streamwise velocity spectra are shifted

to higher wavenumber when compared to the reference PSFD solution, and the corresponding spatial autocorrelation of the

streamwise velocity rapidly decays across the ABL along both the streamwise and spanwise coordinate directions. Consistently

with these findings, instantaneous snapshots of the streamwise velocity fluctuations reveal that the flow is populated by shorter

and thinner structures. The dominant mechanism supporting the tangential Reynolds stress in ABL flow – spanwise-paired370

sweeps and ejections– is found to be much weaker than what commonly observed in the ABL, with sweeps dominating over

ejections in the surface layer, which is at odds with available measurements and with corresponing results from the PSFD-

based solver. A quadrant-hole analysis highlighted how the considered FV-based solver severely underpredicts ejection events,

which are notoriously localized in the spanwise direction, as well as inner and outer interactions. In the authors’ opinion, this
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Figure 11. Stress fractions at x2/h≈ 0.1. Profiles are normalized so that the sum of the stress fractions for H = 0 is unity across the cases.

Lines and symbols are defined in Table 1.

underprediction of ejection events is the root-canse of many of the observed mismatches and sensitivity to grid resolution of375

flow statistics. This statement is partly supported by the strong sensitivity of quadrant profiles to the grid stencil, and to the

approximately monotonic convergence of ejection (Sf2,H ) profiles towards the reference PSFD ones as the grid is refined.

Overall, the present findings show that truncation errors have an overwhelming impact on the predictive capabilities of

second-order-accurate FV-based solvers that rely on a co-located grid set-up and centered schemes for the WMLES of ABL

flow. Although first- and second-order statistics can be considered acceptable provided sufficient grid resolution, the predictive380

capabilities of said solvers are relatively poor for higher-order statistics, velocity spectra, and turbulence topology.

Code availability. OpenFOAM® is an open-source computational-fluid-dynamics toolbox. The present study features the OpenFOAM®

version 6.0, available for download at https://openfoam.org/version/6/. The Matlab scripts used for the post-processing are accessible from

the GitLab repository https://gitlab.com/turbulence-columbia/miscellaneous/fv-solvers-abl-flow.
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Figure A1. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Circles, dark to light gray,

CS = 0.1 to CS = 0.1678; full circles, PSFD.

Appendix A385

A1 Smagorinsky constant

A sensitivity analysis on the Smagorinsky constant CS is here performed, considering CS = 0.12, CS = 0.14, CS = 0.16, and

CS = 0.1678 (the default value in OpenFOAM®). All the tests are run on 643 control volumes.

As shown in Fig. A1(a), CS has an impact on the LLM, whereby the CS = 0.1 case results in the largest positive LLM, in

agreement with predictions from the PSFD solver, and larger values of the coefficient predict a smaller, albeit still positive,390

LLM. The Smagorinsky coefficient has a discernible impact on the velocity RMSs. Specifically, the magnitude of the near-

surface maximum in both u′1 (Fig. A1(b)) and u′2 (Fig. A1(c)) is reduced, and its location shifted away from the surface– likely

the result of a higher near-surface energy dissipation as CS is increased. Larger CS values also yield a more apparent departure

from corresponding profiles from the PSFD-based solver.

One-dimensional spectra (Fig. A2(a)) show that largerCS coefficients result in a more rapid decay of energy density through-395

out the spectrum, and in a shift of profiles in the inertial sub-range. Interestingly, such profiles are characterized by the same

power-law exponent. No value of the Smagorinsky coefficient seems able to yield a k−5/3 power law in the inertial sub-

range. Further, as also shown in Fig. A2(b) and (c), increasing CS when compared to the considered value leads to a modest

improvement on the R11 profiles, with no impact on the previously drawn conclusions.

A2 Interpolation schemes400

The results in §3 made use of the linear interpolation scheme to evaluate the terms in the filtered Navier-Stokes equations

at the face-centers, as a consequence of the Gauss divergence theorem. Additional tests were carried out using the QUICK
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Figure A2. Normalized one-dimensional spectrum of streamwise velocity at height x2/h≈ 0.1 (a); one-dimensional spatial autocorrelation

of streamwise velocity at height x2/h≈ 0.1 along the streamwise direction (b) and along the spanwise direction (c). Circles, dark to light

gray,CS = 0.1 toCS = 0.1678; full circles, PSFD; solid red line, (k1x2)−1 in the production range and (k1x2)−5/3 in the inertial sub-range.

interpolation scheme (Ferziger and Peric, 2002) for the evaluation of non-linear terms, and results thereof are here compared

with the R-2π and B-2π cases, at the same grid resolution.

Figure A3(a) shows the vertical structure of the mean streamwise velocity. The QUICK and the linear schemes provide the405

same results in the near-wall region, where an underprediction is observed (see LLM). The interpolation scheme plays a role

in the outer layer, where the velocity profile obtained with the QUICK scheme shows a speed-up when compared to the R-2π

and B-2π cases. The RMSs of streamwise and vertical velocities are shown in Fig. A3(b) and (c), respectively. In the near-wall

region, an overprediction of u′1 and an underprediction of u′2 characterize the FV results, more severe when the QUICK scheme

is used.410

The one-dimensional spectrum, shown in Fig. A4(a), exhibits the k−1 power-law behavior typical of the production range

at low wavenumber. In the inertial sub-range, the profile obtained with the QUICK scheme decays faster than the one from the

B-2π case, and the decay starts at lower wavenumbers. In terms of one-dimensional spatial autocorrelation (Fig. A4(b) and (c)),

the QUICK interpolation scheme performs slightly better than the linear one, in the sense that the decay of the autocorrelation

is slower.415

The instantaneous snapshot of the streamwise velocity fluctuations proposed in Fig. A5, obtained with the QUICK scheme,

highlights that the flow field features larger (more coherent) patterns when compared to those shown in Fig. 7.

A3 rk4projectionFoam

In this Sub-Appendix, an alternative solver in the OpenFOAM® framework is considered, and the results are contrasted against

those obtained with pisoFoam. The solver, rk4projectionFoam, is based on a projection method coupled with the420

Runge-Kutta 4 time-advancement scheme (Ferziger and Peric, 2002). Details on the implementation can be found in Vuorinen
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Figure A3. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Circles, linear interpolation

scheme; x-marks, QUICK interpolation scheme; full circles, PSFD.
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Figure A4. Normalized one-dimensional spectrum of streamwise velocity at height x2/h≈ 0.1 (a); one-dimensional spatial autocorrela-

tion of streamwise velocity at height x2/h≈ 0.1 along the streamwise direction (b) and along the spanwise direction (c). Circles, linear

interpolation scheme; x-marks, QUICK interpolation scheme; full circles, PSFD.

et al. (2015) (note that in their reported code, a term in the form of a time-step ∆t is missing, leading to a dimensional

mismatch and raising a compile-time error). A comparison of the performances of the solvers has been performed at moderate

Reynolds number in Vuorinen et al. (2014), where it is pointed out that rk4projectionFoam provides similar results at

lower computational cost when compared to pisoFoam. In the following, the performances of the solver are tested at high425

Reynolds number (Reτ = 107). The same cases simulated with pisoFoam (Table 1) are considered.

In Fig. A6(a) the vertical profile of the mean streamwise velocity is shown. The rk4projectionFoam solver leads to a

behavior that is similar to the pisoFoam one in the very near surface region, but the profiles feature no LLM in the surface
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Figure A5. Instantaneous snapshot of streamwise velocity fluctuations, as defined in Fig. 7, at height x2/h≈ 0.1.
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Figure A6. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Lines and symbols are

defined in Table 1.

layer. Streamwise and vertical velocity RMSs are shown in Fig. A6(b) and (c), respectively. The same scenario as the one

obtained with pisoFoam is observed: turbulence intensities are underpredicted in the near-wall region, u′+1 -peak values are430

overpredicted and u′+2 -peak values are underpredicted (except for the cases B-π and F-2π).
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