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Abstract. The present work analyzes quality and reliability of an important class of general-purpose, second-order accurate

finite-volume (FV) solvers for the large-eddy simulation of a neutrally-stratified atmospheric boundary layer (ABL) flow. The

analysis is carried out within the OpenFOAM® framework, which is based on a colocated grid arrangement. A series of open-

channel flow simulations are carried out using a static Smagorinsky model for sub-grid scale momentum fluxes in combination

with an algebraic equilibrium wall-layer model. The sensitivity of the solution to variations in numerical parameters such as5

grid resolution (up to 1603 control volumes), numerical solvers, and interpolation schemes for the discretization of nonlinear

terms is evaluated and results are contrasted against those from a well established mixed pseudo-spectral–finite-difference

code. Considered flow statistics include mean streamwise velocity, resolved Reynolds stresses, velocity skewness and kurtosis,

velocity spectra and two-point autocorrelations. A quadrant analysis along with the examination of the conditionally-averaged

flow field are performed to investigate the mechanisms responsible for momentum transfer in the flow. It is found that, at10

the selected grid resolutions, the considered class of FV-based solvers yields a poorly correlated flow field and is not able

to accurately capture the dominant mechanisms responsible for momentum transport in the ABL. Specifically, the predicted

flow field lacks the well-known sweep and ejection pairs organized side by side along the cross-stream direction, which are

representative of a streamwise roll mode. This is especially true when using linear interpolation schemes for the discretization

of nonlinear terms. This shortcoming leads to a misprediction of flow statistics that are relevant for ABL flow applications and15

to an enhanced sensitivity of the solution to variations in grid resolution, thus calling for future research aimed at reducing the

impact of modeling and discretization errors.

Copyright statement. The article and corresponding preprints are distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

An accurate prediction of atmospheric boundary layer (ABL) flows is of paramount importance across a wide range of fields and20

applications, including weather forecasting, complex terrain meteorology, agriculture, air quality modeling and wind energy

(Whiteman, 2000; Fernando, 2010; Calaf et al., 2010; Oke et al., 2017; Shaw et al., 2019).
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Since the early work of Deardorff (1970), the large eddy simulation (LES) technique has spurred considerable insight on the

fundamental dynamics of ABL flow over rough surfaces (Anderson and Meneveau, 2010; Salesky et al., 2017; Momen et al.,

2018), over and within plant and urban canopies (Yue et al., 2007b; Bailey and Stoll, 2013; Pan et al., 2014; Tseng et al., 2006;25

Bou-Zeid et al., 2009; Giometto et al., 2017; Li and Bou-Zeid, 2019), and ABL flow for wind energy applications (Calaf et al.,

2010; Abkar and Porté-Agel, 2013; Stevens and Meneveau, 2017), amongst others.

The majority of past works has relied on fully or partially dealiased mixed pseudo-spectral–finite-difference (PSFD) solvers—

the go-to approach for LES studies since the works of Moin et al. (1978) and Moeng (1984). Such solvers are known to yield

accurate flow fields up to the LES cutoff frequency and to produce good results when used in conjunction with dynamic30

sub-grid scale (SGS) models (Germano et al., 1991; Lilly, 1992). However, single domain PSFD-based solvers are limited to

regular domains, are not suitable for the simulation of non-periodic flows and sharp variations in the flow field such as shocks

or fluid-solid interfaces in boundary layer flows, and are typically difficult to parallelize owing to the global support of their

spatial representation (see e.g. Margairaz et al., 2018). With the increasing need to account for complex geometries and multi-

physics, several efforts have been devoted to the mitigation of the aforementioned limitations (Fang et al., 2011; Li et al., 2016;35

Chester et al., 2007). However, the solutions are often ad-hoc or validated only for specific applications, thus introducing a

degree of uncertainty in model results that is hard to quantify and generalize.

There is hence a growing interest from the ABL community in LES solvers based on compact spatial schemes via structured

or unstructured meshes (Orlandi, 2000; Ferziger and Peric, 2002). The parallelized large eddy simulation model (Raasch and

Schröter, 2001; Maronga et al., 2015) and the weather research and forecasting model (Skamarock and Klemp, 2008; Powers40

et al., 2017) are prominent examples of said efforts. Both the approaches are based on a high-order finite-difference discretiza-

tion, with nonlinear terms approximated by using high-order upwind biased differencing schemes. The latter are suitable for

LES in complex geometries with arbitrary grid stretching factors and outflow boundary conditions (Beaudan and Moin, 1994;

Mittal and Moin, 1997), but are dissipative and do not strictly conserve energy. On the other hand, if central schemes are used

instead for the evaluation of nonlinear terms, no numerical dissipation is introduced, but truncation errors can have an over-45

whelming impact on the computed flow field (Ghosal, 1996; Kravchenko and Moin, 1997). These limitations typically result

in a strong sensitivity of the solution to properties of the spatial discretization and numerical scheme (Meyers et al., 2006,

2007; Meyers and Sagaut, 2007; Vuorinen et al., 2014; Rezaeiravesh and Liefvendahl, 2018; Breuer, 1998; Montecchia et al.,

2019). Further, truncation errors corrupt the high wavenumber range of the solution, restricting the ability to adopt dynamic

LES closure models which make use of information from the smallest resolved scales of motion to evaluate the SGS diffusion50

(Germano et al., 1991). Notwithstanding these limitations, central schemes have been heavily employed in the past in both

the geophysical and engineering flow communities, and are the de-facto standard in the wind engineering one, where most of

the numerical simulations are carried out using second-order accurate finite-volume (FV) -based solvers (Stovall et al., 2010;

Churchfield et al., 2010; Balogh et al., 2012; Churchfield et al., 2013; Shi and Yeo, 2016, 2017; García-Sánchez et al., 2017;

García-Sánchez and Gorlé, 2018).55

Motivated by the aforementioned needs, the present study aims at characterizing quality and reliability of an important

class of second-order accurate FV solvers for the LES of neutrally-stratified ABL flows. The analysis is conducted in the
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open-channel flow setup (no Coriolis acceleration) via the OpenFOAM® framework (Weller et al., 1998; De Villiers, 2006;

Jasak et al., 2007). A suite of simulations is carried out varying physical and numerical parameters, including grid resolution

(up to 1603 control volumes), the numerical solver, and interpolation schemes for the discretization of the nonlinear term.60

Predictions from the FV solvers are contrasted against the results from the Albertson and Parlange (1999) PSFD code in terms

of flow statistics, including mean streamwise velocity, resolved Reynolds stresses, two-point velocity autocorrelations, and

mechanisms supporting momentum transport. The end goal is to provide a more nuanced understanding of the capabilities of

general-purpose, second order, FV-based solvers in predicting ABL flow.

The work is organized as follows. Section 2 summarizes the setup of the problem, the simulation database, and the post-65

processing procedure. Results are shown in §3 and conclusions are drawn in §4. A further discussion on the sensitivity of the

solution to model constants, interpolation schemes, and numerical solvers is provided in the Appendix.

2 Methodology

2.1 Governing equations and numerical schemes

We use index notation in a Cartesian reference system. The spatially-filtered Navier–Stokes equations are considered,70

∂ui
∂t

+uj
∂ui
∂xj

=−1

ρ

∂p̃

∂xi
− ∂τij
∂xj
−
∂τSGS,dev
ij

∂xj
− 1

ρ

∂P

∂xi
, (1)

∂ui
∂xi

= 0 , (2)

where ui = (u,v,w) is the spatially-filtered velocity field along the streamwise (x), cross-stream (y) and vertical (z) co-

ordinate directions, respectively, t is the time, ρ is the constant fluid density (Boussinesq approximation), p̃≡ p+ 1
3τ

SGS
kk is

a modified pressure term, τij is the filtered viscous stress tensor, and τSGS,dev
ij is the deviatoric part of the SGS stress tensor.75

In addition, the term − 1
ρ
∂P
∂xi

is an imposed costant pressure gradient driving the flow. The spatially-filtered viscous tensor is

τij =−2νSij , where ν = const is the kinematic viscosity of the Newtonian fluid and Sij is the resolved (in the LES sense)

rate of strain tensor. For the SGS stress tensor, the static Smagorinsky model is used,

τSGS,dev
ij =−2νSGSSij =−2(CS∆)2|S|Sij , (3)

where νSGS is the SGS eddy viscosity, CS is the Smagorinsky coefficient (Smagorinsky, 1963), ∆ = (∆x∆y∆z)1/3 is80

a local length scale based on the volume of the computational cell (Scotti et al., 1993), and |S|=
√

2SijSij quantifies the

magnitude of the rate of strain. In the present work, CS = 0.1, unless otherwise specified. Note that dynamic Smagorinsky

models are preferred to the static one for the LES of ABL flows (Germano et al., 1991; Lilly, 1992; Meneveau and Lund, 1996;

Porté-Agel, 2004; Bou-Zeid et al., 2005). Dynamic models evaluate SGS stresses via first-principles-based constraints, feature

improved dissipation properties when compared to the static Smagorinsky one (especially in the vicinity of solid boundaries),85
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and are free of explicit modeling parameters. The choice made in the present study is motivated by problematics encountered

when using the available dynamic Lagrangian model in preliminary tests. However, while SGS dissipation plays a crucial role

in PSFD solvers, truncation errors may overshadow SGS stress contributions in the second-order FV-based ones (Kravchenko

and Moin, 1997). The static Smagorinsky SGS model used herein might hence perform similarly to dynamic SGS models for

the considered flow setup. This conjecture is supported by the results of Majander and Siikonen (2002).90

The large scale separation between near-surface and outer-layer energy containing ABL motions poses stringent resolution

requirements to numerical modelers, if all the energy containing motions have to be resolved. To reduce the computational

cost of such simulations, the near-surface region is typically bypassed, and a phenomenological wall-layer model is lever-

aged instead to account for the impact of near-wall (inner-layer) dynamics on the outer-layer flow (Piomelli, 2008; Bose and

Park, 2018). This approach is referred to as wall-modeled large eddy simulation (WMLES) and is used herein. An algebraic95

wall-layer model for surfaces in fully rough aerodynamic regime was implemented, based on the logarithmic equilibrium

assumption, i.e.,

|ũ|= u∗
κ

ln
( z
z0

)
, (4)

where |ũ| ≡
√
u2 + v2 is the norm of the velocity at a certain distance from the ground level, u∗ is the friction velocity

(see Sub-Section 2.2 for details), κ is the von Kármán constant, z is the distance from the ground level and z0 is the so-called100

aerodynamic roughness length, a length-scale used to quantify the drag of the underlying surface. In this work, the values

κ= 0.41 and z0 = 0.1 m are set. The kinematic wall shear stress is assumed to be proportional to the local velocity gradient

(Boussinesq hypothesis),

τiz,w = (ν+ νt)
∂ui
∂z

∣∣∣
w
, i= x,y , (5)

with νt the total eddy viscosity. Employing the no-slip condition for the velocity field, the standard FV approximation of the105

shear stress at the wall gives (Mukha et al., 2019)

τiz,w = (ν+ νt)f
ui,c
∆z

, i= x,y , (6)

where the subscript f is used to denote the evaluation at the center of the wall face, the subscript c denotes the evaluation at

the center of the wall-adjacent cell and ∆z is the distance from the wall. From the logarithmic law (Eq. 4) evaluated at the first

cell-center, one can write u∗ = κ|ũ|c/ ln(∆z
z0

). Using the definition of friction velocity u∗ =
√
τ2
w, where τw is the magnitude110

of the kinematic wall shear stress vector, along with Eq. 5, and rearranging, the total eddy viscosity at the wall can be written

as

νt,f =

(
κ|ũ|c

ln
(∆z

z0

))2
∆z

|ũ|c
− ν , (7)
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which is the formulation implemented herein. Note that ν+ νt ≈ νt in boundary layer flows in fully rough aerodynamic

regime, so that ν could be neglected without loss of accuracy.115

In the present work, the computational grid is colocated, being the colocated grid arrangement the only one available

within the OpenFOAM® framework. Note that, although advantageous in complex domains when compared to staggered grids

(Ferziger and Peric, 2002), the colocated arrangement is known to cause difficulties with pressure-velocity coupling, hence re-

quiring specific procedures to avoid oscillations in the solution. OpenFOAM® offers the standard Rhie-Chow correction (Rhie

and Chow, 1983), which is known to negatively affect the energy-conservation properties of central schemes (Ferziger and120

Peric, 2002). In addition, when approximating the integrals over the surfaces bounding each control volume (as a consequence

of the Gauss divergence theorem), the unknowns are evaluated at face-centers and are assumed to be constant at each face,

yielding an overall second-order spatial accuracy (Churchfield et al., 2010). Since the divergence form of the convective term

is used in combination with a low-order scheme over a non-staggered grid, the solution is inherently unstable (Kravchenko

and Moin, 1997). The present work makes use of the linear and QUICK interpolation schemes (Ferziger and Peric, 2002) to125

evaluate the unknowns at face-centers (more details are provided in § 2.2). The numerical solver is based on the PISO algorithm

(Issa, 1985) for the pressure-velocity calculation and on an implicit Adams–Moulton scheme for time integration (Ferziger and

Peric, 2002). In the Appendix A2, the performances of an alternative solver with a Runge–Kutta time-advancement scheme

and a projection method for the pressure-velocity coupling (Vuorinen et al., 2014) are analyzed.

2.2 Problem setup130

A series of WMLES of ABL flow (open-channel flow setup) is performed. Tests are carried out in the domain [0,Lx]×[0,Ly]×
[0,Lz] with Lx = 2πh, Ly = 4

3πh, Lz = h, where h= 1000 m denotes the width of the open channel. Symmetry is imposed

at the top of the computational domain, no-slip applies at the lower surface and periodic boundary conditions are enforced

along each side. A kinematic pressure gradient term− 1
ρ
∂P
∂x = 1 m/s2 drives the flow along the x coordinate direction, yielding

u∗ = 1 m/s. The kinematic viscosity is set to a nominal value of 10−7 m2/s, which results in an essentially inviscid flow.135

The computational mesh is Cartesian, with a uniform stencil along each direction. Three simulations are run, over 643,

1283 and 1603 control volumes, with the linear interpolation scheme for the evaluation of the unknowns at the face-centers

(simulations FV64, FV128 and FV160, respectively). Three additional simulations are run, at the same grid resolutions, with the

linear scheme for the approximation of every term except for the nonlinear one, for which the QUICK scheme is used instead

(simulations FV64*, FV128* and FV160*). The cases span different grid resolutions at the same aspect ratio ∆x/∆z = 2π.140

Note that the chosen grid resolutions are in line with those typically used in studies of ABL flow with the pseudo-spectral

approach (see, e.g., Salesky et al., 2017). All the calculations satisfy the Courant–Friedrichs–Lewy (CFL) condition C . 0.1,

where C is the Courant number. Runs are initialized from a fully developed open-channel flow simulation in statistically steady

state (dynamic equilibrium), and time integration is carried out for 100 eddy turnover times, where the eddy turnover time is

defined as h/u∗. Flow statistics are the result of an averaging procedure over the horizontal plane of statistical homogeneity145

of turbulence (xy) and in time over the last 60 eddy turnover times. The procedure yields well converged statistics throughout

the considered cases. In the following, the horizontal and temporal averaging operation is denoted by 〈·〉. The results from
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Table 1. Tabulated list of cases.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

Nx×Ny ×Nz 643 1283 1603 643 1283 1603 643 1283 1603

numerical solver FV FV FV FV + QUICK FV + QUICK FV + QUICK PSFD PSFD PSFD
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Figure 1. Vertical structure of mean streamwise velocity 〈u〉/u∗ (a), streamwise velocity RMS u′RMS/u∗ (b), cross-stream velocity RMS

v′RMS/u∗ (c) and vertical velocity RMS w′RMS/u∗ (d). The red line in (a) denotes the reference logarithmic profile and the red line in (b) is

a reference profile from Hultmark et al. (2013).

the present study are contrasted against the corresponding ones from the Albertson and Parlange (1999) mixed PSFD code

(simulations PSFD64, PSFD128 and PSFD160). The code is based on an explicit second-order accurate Adams–Bashforth

scheme for time integration and on a fractional-step method for solving the system of equations. Simulations from the PSFD150

solver are carried out using a static Smagorinsky SGS model with CS = 0.1, a rough wall-layer model with z0 = 0.1 m, and

C . 0.1. A summary of the runs is given in Tab. 1 along with the acronyms used in this study.

3 Results

This Section is devoted to the analysis of velocity central moments (§3.1), spectra and spatial autocorrelations (§3.2), and

momentum transfer mechanisms (§3.3).155
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3.1 Mean velocity, Reynolds stresses, and higher order statistics

Figure 1 shows first and second order statistics for all the considered cases. The mean streamwise velocity is shown in Fig. 1(a),

in a comparison with the phenomenological logarithmic-layer profile. The velocity at the first two cell-centers off the wall is

consistently underpredicted, whereas a positive log-layer mismatch (LLM) is observed in the bulk of the flow (Kawai and

Larsson, 2012). The LLM is particularly pronounced for the cases using the QUICK interpolation scheme. This behavior could160

have been anticipated, as the wall shear stress is evaluated using the instantaneous horizontal velocity at the first cell-center off

the wall. A number of procedures has been proposed to alleviate the LLM, including modifying the SGS stress model in the

near-wall region (Sullivan et al., 1994; Porté-Agel et al., 2000; Chow et al., 2005; Wu and Meyers, 2013), shifting the matching

location further away from the wall (Kawai and Larsson, 2012), and carrying out a local horizontal/temporal filtering operation

(Bou-Zeid et al., 2005; Xiang et al., 2017). In preliminary runs, the approach of Kawai and Larsson (2012) was implemented in165

an attempt to alleviate the LLM. However, no apparent improvement was observed and the solution became very sensitivity to

grid resolution and matching location. This finding suggests that alternative procedures might need to be devised to overcome

the LLM in ABL flow simulations when using the considered class of FV solvers. Note that profiles from the PSFD solver

also feature a positive LLM, in spite of a spatial, low-pass filtering operation that is carried out on the horizontal velocity field

before evaluating the surface shear stress (Bou-Zeid et al., 2005).170

The vertical structure of turbulence intensities is also shown in Fig. 1, where (·)′RMS denotes the root mean square (RMS)

of the fluctuations. Profiles from the FV-based solver start off relatively slow at the wall when compared to those from the

PSFD-based solver and to the reference profile from Hultmark et al. (2013). This behavior is due to a combination of SGS

and discretization errors, which damp the energy of high-wavenumber modes and whose accurate quantification remains an

open challenge in LES (see e.g., Meyers et al., 2006; Meyers and Sagaut, 2007; Meyers et al., 2007). Further aloft, u′RMS175

(w′RMS) features relatively stronger (weaker) peak values when compared to the corresponding PSFD profile, the overprediction

(underprediction) being more apparent in the simulations with the QUICK scheme. The overshoot in the peak of u′RMS is a

well-known problem of FV-based WMLES (Bae et al., 2018). Lack of energy redistribution via pressure fluctuation from shear

generated u′RMS to v′RMS and w′RMS is the root cause of said behavior, and possible mitigation strategies include allowing for

wall transpiration (Bose and Moin, 2014). Grid refinement shifts the velocity RMS peaks closer to the surface and increases180

the magnitude of velocity RMS therein, but lead to no improvement in the max(u′RMS) and only marginally improves the

estimation of the max(w′RMS). A quantitative measure of the relative error on u′RMS with respect to the reference profile

u′RMS,ref from Hultmark et al. (2013) in the z0/h≤ z/h≤ 0.4 interval is shown in Tab. 2. The FV-based solver performs

worse than the PSFD-based one, and the convergence is not monotonic. Note that non-monotonic convergence is relatively

common in LES at relatively coarse resolutions and is due to the interaction between discretization and modeling errors, whose185

impact on the solution cannot be a-priori quantified (Meyers et al., 2007).

Skewness and kurtosis of the streamwise velocity (Suu and Kuu, respectively) are shown in Fig. 2. The profiles of Suu

obtained with the FV-based solver and the QUICK scheme as well as those obtained with the PSFD-based solver are in

good agreement with experimental results from Monty et al. (2009), here taken as a reference. On the contrary, the FV-based
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Table 2. Relative error on the turbulence intensities ||u′RMS−u′RMS,ref ||L2/||u′RMS,ref ||L2 w.r.t. the reference profile from Hultmark et al.

(2013), in the interval z0/h≤ z/h≤ 0.4.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

relative error on u′RMS 0.23 0.17 0.17 0.28 0.20 0.20 0.10 0.05 0.07
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Figure 2. Vertical structure of skewness of streamwise velocity (a) and kurtosis of streamwise velocity (b). Lines are defined in Fig. 1. The

red x-marks denote the measurements from Monty et al. (2009), digitalized by the authors.

solver overpredicts Suu when the linear interpolation scheme is used, with the skewness remaining positive throughout the190

whole extent of the surface layer. Note that a positive skewness of streamwise velocity represents a flow field where negative

fluctuations are more likely to happen than the corresponding positive ones. The kurtosis obtained with the FV-based solver is

consistently overpredicted, representing a flow field populated by a greater number of extreme events. Again, profiles from all

cases feature a non-monotonic convergence to the reference ones, as shown in Tab. 3, where the relative error on skewness and

kurtosis with respect to the measurements from Monty et al. (2009) is reported, in the interval z0/h≤ z/h≤ 0.4.195

3.2 Spectra and autocorrelations

One-dimensional spectra of streamwise velocity fluctuations (Euu) are shown in Fig. 3(a). The profiles are contrasted against

the phenomenological production range and inertial sub-range power-law profiles (k−1 and k−5/3, respectively). Predictions

from the PSFD-based solver feature a relatively good agreement with the phenomenological power-law profile, especially at

high grid resolution. For example, the cases PSFD128 and PSFD160 exhibit a slope of −1.2 in the production range (here200

defined as kxz < 1). Profiles from the FV-based solver, on the contrary, exhibit strong sensitivity to grid resolution and are

unable to capture the expected power-law behavior. In the production range, velocity spectra from the FV solver start off

relatively shallow at small wavenumber, especially when using the linear scheme. A narrow band can be identified where
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Table 3. Relative error on skewness ||Suu−Suu,meas||L2/||Suu,meas||L2 and kurtosis ||Kuu−Kuu,meas||L2/||Kuu,meas||L2 w.r.t. the

measurements from Monty et al. (2009), in the interval z0/h≤ z/h≤ 0.4.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160

relative error on Suu 1.63 1.77 1.81 0.86 0.75 0.71 0.51 0.57 0.68

relative error on Kuu 0.28 0.25 0.25 0.23 0.16 0.15 0.11 0.05 0.04
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Figure 3. (a) Normalized one-dimensional spectra of streamwise velocity at z/h≈ 0.1. The solid red line depicts the (kxz)
−1 production

range and (kxz)
−5/3 inertial sub-range scaling. All other lines as in Fig. 1. (b) Premultiplied one-dimensional spectra of streamwise velocity

at z/h≈ 0.1.

Euu ∼ (kxz)
−1, followed by a rapid decay in energy density—the decay being particularly pronounced when using the QUICK

interpolation scheme, because of the associated numerical dissipation. Overall, the energy density in the production range205

and in the inertial sub-range is not well captured by the FV-based solver and grid refinement does not help circumvent this

limitation, at least at the considered resolutions. The authors note that this fact might limit the use of dynamic procedures based

on the Germano et al. (1991) identity. A further characterization of the energy distribution in the wavenumber space is given

in Fig. 3(b), where premultiplied velocity spectra kxEuuu−2
∗ are shown. The usual reason for considering these quantities is to

create a plot in semi-log scale where equal areas under the profiles correspond to equal energy. In addition, premultiplied spectra210

provide information on the coherence of the flow, in particular on the so-called large and very large scale motions (LSMs and

VSLMs, respectively). These structures are responsible for carrying more than half of the kinetic energy and Reynolds shear

stress and are a persistent feature of the surface and outer layers of both aerodynamically smooth and rough walls (Kim and

Adrian, 1999; Balakumar and Adrian, 2007; Monty et al., 2007; Hutchins and Marusic, 2007; Fang and Porté-Agel, 2015).

The current domain is of modest dimensions and is able to accommodate only LSMs (Lozano-Durán and Jiménez, 2014),215

which are identified in premultiplied spectra by a local maximum at the streamwise wavenumber kx/h≈ 1. The location of
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Figure 4. Contours of two-dimensional spatial autocorrelation of streamwise velocity at height z/h≈ 0.1, from the simulations FV64 (a),

FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). Contour levels from 0.1 to 0.9 with increments of 0.1.

the peaks from the FV-based solver with linear interpolation scheme shifts toward higher wavenumber with grid refinement,

with a maximum at kx/h≈ 4 for the FV160 case. This fact signals a flow field where the streamwise extent of energetic

modes (a.k.a., coherent structures) reduces as the grid is refined. On the contrary, the FV-based solver in combination with

the QUICK scheme predicts the peak in premultiplied energy density at the expected wavenumber, hence suggesting that this220

approach is able to capture LSMs. The PSFD-based solver features a peak at the expected wavenumber (kx = 1) only at the

lowest resolution (PSFD64). Profiles from the higher resolution cases feature high energy densities at the lowest wavenumber,

highlighting an artificial “periodization" of energy-containing structures in the streamwise direction. This behavior is linked to

the limited horizontal extent of the computational domain. The authors have indeed verified that a larger domain (twice as large

along each horizontal direction) enables to capture LSM with the PSFD solver at resolutions matching the one of the PSFD128225

case (not shown). A corresponding single run was carried out with the FV solver over the said larger domain and premultiplied

spectra were found to be in good agreement with those presented herein, supporting the conjecture that the proposed domain

size suffice to capture the range of variability of FV solvers for the problem under consideration.

To gain better insight on the spatial coherence of the flow field, the contour lines of the two-dimensional autocorrelation of

the streamwise velocityR2D
uu in the xy plane are shown in Fig. 4. TheR2D

uu = 0.1 contour is often used to identify the boundaries230

of coherent structures populating the flow field. The contours from the FV-based solver with linear scheme (Figs. 4,a,d) are

representative of a poorly correlated flow field, with a streamwise extent of the R2D
uu = 0.1 contour of 0.5h and 0.1h along
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Figure 5. One-dimensional spatial autocorrelation of streamwise velocity at height z/h≈ 0.1, along the streamwise direction (a) and along

the cross-stream direction (b). Lines as in Fig. 1.

the streamwise and cross-stream directions, respectively. On the contrary, the contours from the FV-based solver with QUICK

scheme (Fig. 4,b,e) depict a flow field characterized by larger spatial autocorrelation, in line with results from the PSFD-based

solver. Note that the flow statistics presented above should not be impacted by the fact that the current domain size prevents235

some of the contour lines (simulations FV64*, FV160*, PSFD64, PSFD160) from closing, as discussed in Lozano-Durán and

Jiménez (2014).

The one-dimensional spatial autocorrelation (Ruu), shown in Fig. 5 along the streamwise and cross-stream directions, further

corroborates the above findings. From Fig. 5(a) it is apparent that the extension of the selected domain does not enable the flow

to become completely uncorrelated in the streamwise direction for the PSFD solver and for the FV solver using QUICK:240

Ruu remains finite in the available rx/h range across resolutions. On the other hand, profiles from the FV-based solver using

the linear interpolation rapidly decay towards zero. Along the cross-stream direction (Fig. 5,b), profiles from the PSFD-based

solver feature the expected negative lobes, highlighting the presence of high- and low-momentum streamwise-elongated streaks

flanking each others in the said direction. This behavior is in line with findings from previous studies on the coherence of

wall-bounded turbulence and with standard turbulence theory. Profiles from the FV-based solver exhibit a similar profile,245

albeit featuring a more rapid decay and less prominent negative lobes, especially for the high-resolution cases using the linear

interpolation scheme. A quantitative measure of the coherence of the flow field is provided in Tab. 4, where the integral lengths

Λrx,u and Λry,u are reported for all the considered cases and compared against direct numerical simulations of a channel flow

at Reτ = 2000 from Sillero et al. (2014). The integral lengths in Tab. 4 are evaluated at z/h≈ 0.15, since the data from Sillero

et al. (2014) are available at this height. Although Λrx,u might not be meaningful across the considered cases, owing to the lack250

of a zero crossing of the autocorrelation function, it is apparent that the FV-based solver underestimates the integral lengths

when compared to the PSFD cases and the reference DNS values, especially when the linear interpolation scheme is used.
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Table 4. Integral lengths at height z/h≈ 0.15.

simulation FV64 FV128 FV160 FV64* FV128* FV160* PSFD64 PSFD128 PSFD160 Sillero et al. (2014)

Λrx,u/h 0.23 0.12 0.11 0.82 0.59 0.59 1.28 1.50 1.45 2.14

Λry,u/h 0.04 0.03 0.03 0.10 0.08 0.08 0.14 0.15 0.14 0.20

Figure 6. Instantaneous snapshots of normalized streamwise velocity fluctuations at z/h≈ 0.1 from the simulations FV64 (a), FV64* (b),

PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). The normalized velocity fluctuation is defined as (u−〈u〉xy)/u∗, where averages

(and fluctuations therefrom) are evaluated in space over the selected horizontal plane.

Instantaneous snapshots of streamwise velocity fluctuations over a horizontal plane support the above findings (see Fig. 6).

Artificially-periodized, streamwise-elongated bulges of uniform high and low momentum are indeed apparent in the snapshots

from the PSFD-based solver (Fig. 6,c,f). On the contrary, the instantaneous streamwise velocity field from the FV solver255

is populated by smaller regions of uniform momentum, especially when using the linear scheme, and the size of energetic

structures diminishes with increasing grid resolution (see, e.g., Figs. 6,a,d).

3.3 Momentum transfer mechanisms

This Section is devoted to the analysis of momentum transfer mechanisms in the ABL, with a focus on quadrant analysis (Lu

and Willmarth, 1973) and on statistics of conditionally-averaged flow fields.260

The quadrant hole analysis is a technique based on the decomposition of the velocity fluctuations into four quadrants: the first

and third quadrants, outward interactions (u′ > 0, w′ > 0) and inward interactions (u′ < 0, w′ < 0), respectively, are negative

contributions to the momentum flux, whereas the second and fourth quadrants, a.k.a. ejections of low-speed fluid outward from
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Figure 7. Stress fractions at z/h≈ 0.1. The profiles are normalized so that the sum of the stress fractions forH = 0 is unity across the cases.

Lines are defined in Fig. 1.

the wall (u′ < 0, w′ > 0) and sweeps of high-speed fluid toward the wall (u′ > 0, w′ < 0), represent positive contributions. A

range of flow statistics can be defined based on this decomposition and used to provide insight on the mechanisms supporting265

momentum transfer in the ABL.

Figure 7 features the quadrant-hole analysis, where the notation is the same as in Yue et al. (2007a), with H being the hole

size, Si,H the resolved Reynolds shear stress contribution to the i-th quadrant at hole size H , and Sfi,H is the corresponding

quadrant fraction. Stress fractions are presented for values of the hole size H ranging from 0 to 8, where larger hole sizes

correspond to contributions to the resolved Reynolds shear stress from more extreme events. Clearly, the FV-based solver with270

the linear scheme underpredicts ejections (Fig. 7,a), outward interactions (Fig. 7,b) and inward interactions (Fig. 7,c), and

overpredicts sweeps at large hole size H (Fig. 7,d). On the contrary, the FV solver with QUICK scheme underpredicts all the

profiles except for the ejections, which are captured fairly well instead (see Fig. 7,a). Note that ejections are violent events,

concentrated over a very thin region in the cross-stream direction of the ABL (Fang and Porté-Agel, 2015).

To gain insight on the vertical structure of momentum transfer mechanisms, the exuberance ratio and the ratio of sweeps275

to ejections are analyzed in the following. Fig. 8(a) shows the exuberance ratio, defined as the ratio of negative to positive

contributions to the momentum flux, (S1,0 +S3,0)/(S2,0 +S4,0) (Shaw et al., 1983). The exuberance ratios from the PSFD-

based solver are larger in absolute value than the correspondent ones from the FV-based solver across the whole surface

layer, except very close to the surface. Profiles highlight that outward and inward interactions have a significant impact on the
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ejections. Lines as in Fig. 1.

Figure 9. Visualization of the conditionally-averaged velocity field in the cross-stream-vertical plane at ∆x/h= 0 from simulations FV64

(a), FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160 (f). The conditional event is a positive streamwise velocity fluctuation

at ∆x/h= 0, ∆y/h= 0, and z/h= 0.5. Colors are used to represent the magnitude of the streamwise component, vectors denote the

cross-stream and vertical components.

resolved Reynolds stress in the PSFD-based solver, whereas the flow simulated with the FV-based solver is characterized by a280

predominance of sweeps and ejections. This behavior is consistent throughout the ABL. Fig. 8(b) shows the ratio of sweeps to

ejections at the lowest portion of the ABL (z/h≤ 0.4). Profiles obtained with the QUICK scheme are in line with predictions

from the PSFD-based solver and with findings from measurements of surface-layer flow over rough surfaces, where ejections

are identified as the dominant momentum transport mechanism in the ABL (Raupach et al., 1991). On the contrary, the FV-

based solver with linear scheme tends to favor sweeps over ejections as the mechanisms for momentum transfer in the surface285

layer.
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Figure 10. Conditionally-averaged flow field from simulations FV64 (a), FV64* (b), PSFD64 (c), FV160 (d), FV160* (e) and PSFD160

(f). The conditional average is computed as in Fig. 9. Red iso-surfaces show positive fluctuations (> 0.7, top, and > 0.65, bottom); blue

iso-surfaces show negative fluctuations (<−0.55, top, and <−0.5, bottom).

To conclude the analysis on the mechanisms responsible for momentum transfer, velocity statistics from a conditionally-

averaged flow field are discussed next. The approach of Fang and Porté-Agel (2015) is adopted to compute the conditionally-

averaged flow field, where the conditional event is a positive streamwise velocity fluctuation at ∆x/h= 0, ∆y/h= 0, z/h=

0.5. Figure 9 features a pseudo-color and vector plot of the conditionally-averaged velocity field in a cross-stream-vertical290

plane for selected cases, whereas Fig. 10 displays a three-dimensional iso-surface thereof. The flow structure in the equilib-

rium surface layer is known to be characterized by counter-rotating rolls and low- and high-momentum streamwise-elongated

streaks flanking each others in the cross-stream direction. Rolls and streaks are indeed the dominant flow mechanism respon-

sible for tangential Reynolds stress (Ganapatisubramani et al., 2003; Lozano-Durán et al., 2012). As apparent from Fig. 9, the

PSFD conditionally-averaged velocity field exhibits counter-rotating patterns associated with positive and negative streamwise295

velocity fluctuations (corresponding to the aforementioned streaks). Throughout the ABL, the roll modes feature a diameter

which is consistent with findings from the literature (d≈ h). Moreover, positive and negative velocity fluctuations are approx-

imately of the same magnitude (≈ u∗). From Fig. 10, it is apparent that the considered iso-surfaces extend about 4h along the

streamwise direction. Quite surprisingly, the FV-based solver is not able to predict the roll modes, irrespective of the interpo-

lation scheme and grid resolution, and severely underpredicts the magnitude of the low-momentum streaks. Further, Figs. 9300

and 10 both depict a FV conditionally-averaged flow field that is poorly correlated along the cross-stream and streamwise

directions, resulting in significantly smaller momentum-carrying structures. This fact supports previous findings from the two-

dimensional spatial autocorrelation (Fig. 4). The lack of roll modes implies that the FV-based solvers here used are not able
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to capture the fundamental mechanism supporting momentum transfer in the ABL, at least at the considered grid resolutions.

This limitation is likely to be the root cause of several of the observed problematics associated with the FV-solver solution,305

including the relatively high (low) streamwise-velocity skewness when using linear (QUICK) schemes (see Fig. 2,a) and the

observed imbalance between sweeps and ejections (Fig. 1 and Fig. 8).

4 Conclusions

The present work provides insight on quality and reliability of an important class of general-purpose, second-order accurate

FV-based solvers for the wall-modeled LES of neutrally-stratified ABL flow. The considered FV-based solvers are part of310

the OpenFOAM® framework, make use of the divergence form for the nonlinear term, and are based on a colocated grid

arrangement.

A suite of simulations was carried out in an open-channel flow setup, varying the grid resolution up to 1603 control volumes,

interpolation schemes for the discretization of the nonlinear term, the value of the Smagorinsky coefficient, the pressure-

velocity coupling method, and the time-advancement scheme. Several flow statistics were contrasted against profiles from315

a well established PSFD-based solver and against experimental measurements when these were available. Considered flow

statistics include mean velocity, turbulence intensities, velocity skewness and kurtosis, velocity spectra and spatial autocorre-

lations. An analysis of mechanisms supporting momentum transfer in the flow field was also proposed. The main findings are

summarized below.

With the exception of the FV solver with the projection method and the Runge–Kutta time-advancement scheme, mean320

velocity profiles from the PSFD and FV solvers all feature a positive LLM. Existing techniques to alleviate this limitation led

to no apparent improvement, thus calling for alternative approaches.

Near-surface streamwise velocity fluctuations are consistently overpredicted by both the PSFD and FV solvers, irrespective

of the grid resolution. The overshoot is particularly pronounced for the cases based on the QUICK interpolation scheme. This

behavior can be related to a deficit of pressure redistribution in the budget equations for the velocity variances, which results325

in a pile-up of shear-generated streamwise velocity fluctuations and deficit in the vertical and cross-stream velocity fluctuation

components.

The interpolation scheme used for the discretization of the nonlinear term plays a role in determining the remaining flow

statistics. Specifically, FV solvers with a linear interpolation scheme lead to

– a positive streamwise velocity skewness throughout the surface layer, which is at odds with experimental findings;330

– a severe overprediction of the streamwise velocity kurtosis;

– a poorly correlated streamwise velocity field in the horizontal directions, especially at high grid resolutions;

– a severe underprediction of outward and inward interactions and ejection events;

– a lack of organized high- and low-momentum streaks and associated roll modes in the conditionally-averaged flow field.

Grid resolution is either not affecting the above quantities or leading to larger departures from the expected behavior. The335

QUICK scheme, on the other hand, leads to
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– an improved prediction of the streamwise velocity skewness and kurtosis, especially as the grid stencil is reduced;

– a streamwise velocity field that is more correlated along the horizontal directions, but integral length scales remain only

a fraction of those from the PSFD and reference DNS results;

– an underprediction of inward and outward interactions;340

– a lack of organized high- and low-momentum streaks and associated roll modes in the conditionally-averaged flow field.

To summarize, the considered class of FV-based solvers predicts a flow field that is less correlated than the one obtained

with the PSFD solver and do not capture the salient mechanisms responsible for momentum transfer in the ABL, at least at

the considered grid resolutions. These limitations appear to be the root cause of many of the observed discrepancies between

FV flow statistics and the correspondent PSFD or experimental ones, including the mispredicted streamwise-velocity skewness345

(Fig. 2,a), the imbalance between sweeps and ejections (Fig. 1 and Fig. 8), and the overall sensitivity of flow statistics to

variations in the grid resolution. Higher grid resolutions might help alleviate some of these shortcomings, but given that grid

resolutions used herein are state-of-the-art for general-purpose FV-based solvers and that computing power increases relatively

slowly with time (Moore, 1965), the aforementioned limitations are likely to persist for years to come, thus introducing a degree

of uncertainty in model results that needs to be addressed. These limitations call for research aimed at reducing the impact of350

discretization errors in this class of solvers, or for alternative approaches such as using discretizations based on staggered grid

arrangements and higher-order spatial discretization schemes.

Code availability. OpenFOAM® is an open-source computational fluid dynamics toolbox. The present study made use of OpenFOAM®

version 6.0, available for download at https://openfoam.org/version/6/. Data and scripts to generate figures in this manuscript

can be downloaded from https://gitlab.com/turbulence-columbia/miscellaneous/fv-solvers-abl-flow.355

Appendix A

A1 Smagorinsky constant

We here test the sensitivity of selected flow statistics to variations in the Smagorinsky constant CS. The values CS = 0.1,

CS = 0.12, CS = 0.14, CS = 0.16, and CS = 0.1678 (the default value in OpenFOAM®) are considered, and all tests are

carried out at 643 control volumes.360

As shown in Fig. A1(a), the Smagorinsky constant has a relatively important and non-monotonic impact on the mean velocity

profile. The case atCS = 0.1 results in the largest positive LLM, in agreement with the predictions from the PSFD-based solver,

whereas the cases at larger CS exhibit a smaller, albeit still positive, LLM. The Smagorinsky coefficient has also a discernible

impact on the velocity RMSs. Specifically, as CS is increased, the magnitude of the near-surface maximum for both u′RMS

(Fig. A1,b) and w′RMS (Fig. A1,c) is reduced, and the location of the maximum is shifted away from the surface—possibly the365

result of a higher near-surface energy dissipation. In addition, larger values of CS yield a more apparent departure from the

corresponding profiles obtained with the PSFD-based solver.
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Figure A1. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Red lines denote the

phenomenological logarithmic-layer profile (a) and analytical expressions from similarity theory (Stull, 1988) (b, c).
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Figure A2. Normalized one-dimensional spectra of streamwise velocity at z/h≈ 0.1 (a); one-dimensional spatial autocorrelation of stream-

wise velocity at z/h≈ 0.1 along the streamwise direction (b) and along the cross-stream direction (c). Lines as in Fig. A1. Red line, (kxz)
−1.

The one-dimensional spectra (Fig. A2,a) show that larger values of the Smagorinsky coefficient result in a more rapid decay

of energy density and in a shift of profiles toward the inertial sub-range. No value of the Smagorinsky coefficient seems suitable

for capturing the k−1 power law in the pruduction range of turbulence. Increasing CS leads to a modest improvement in the370

two-point autocorrelation profiles (Fig. A2,b and Fig. A2,c).
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Figure A3. Vertical structure of streamwise velocity (a), streamwise velocity RMS (b), vertical velocity RMS (c). Red lines denote the

phenomenological logarithmic-layer profile (a) and the analytical expressions from similarity theory (Stull, 1988) (b, c).

A2 Solvers

The performance of an alternative solver within the OpenFOAM® framework is here considered, and results are contrasted

against those previously shown (obtained with the PISO algorithm in combination with an Adams–Moulton time-advancement

scheme). The solver is based on a projection method coupled with the Runge–Kutta 4 time-advancement scheme (Ferziger and375

Peric, 2002). Details on the implementation can be found in Vuorinen et al. (2015). The performances of the two solvers are

compared at moderate Reynolds number in Vuorinen et al. (2014), where it is pointed out that the projection method coupled

with the Runge–Kutta 4 time advancement scheme provides similar results at lower computational cost. In the following, the

performances of the solver are tested for the considered ABL flow. Two grid resolution are considered, based on 643 (case

FV64RKp) and 1283 (case FV128RKp) control volumes.380

The vertical profile of the mean streamwise velocity is shown in Fig. A3(a). The use of the projection Runge–Kutta 4 solver

leads to an underprediction of the velocity at the wall as for the simulations FV64 and FV128, but no apparent LLM in the

surface layer. u′RMS exhibits the previously observed near-surface peaks (Fig. A3,b) whereas w′RMS is overpredicted above

z/h= 0.15 (Fig. A3,c).
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