On the suitability of second-order accurate finite-volume solvers for the simulation of atmospheric boundary layer flow

Beatrice Giacomini¹ and Marco G. Giometto¹

¹Department of Civil Engineering and Engineering Mechanics, Columbia University in the City of New York, 500 W 120th St, New York, NY 10027, USA.

Recommendation: minor revisions

The manuscript has been significantly improved compared to the original version. Now it documents even more convincingly that, at investigated grid resolutions, FV-based solvers of the considered class are "not able to accurately capture the dominant mechanisms responsible for momentum transport" in neutrally stratified atmospheric boundary layer flows — a rather discouraging, albeit just, conclusion.

While reading the revised manuscript, I found (I should had noticed this earlier) that governing equations (1), (2), and subsequent material are presented in a very confusing manner, using notation that does not make sense to me.

Assuming that ∇ is a regular del operator ($\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$), Eq. 1 for the nondivergent filtered velocity field, $\nabla \cdot \mathbf{u} = 0$, is fine, but what does $\nabla \mathbf{u} \cdot \mathbf{u}$ in (2) then mean? Operator ∇ does not apply to a vector \mathbf{u} as $\nabla \mathbf{u}$, so apparently $\nabla \mathbf{u} \cdot \mathbf{u}$ is supposed to read $\nabla (\mathbf{u} \cdot \mathbf{u})$, but this is wrong, as one expects this term to be $(\mathbf{u} \cdot \nabla)\mathbf{u}$ (provided $\nabla \cdot \mathbf{u} = 0$).

Furthermore, ∇ is also applied to tensors (τ and $\tau^{SGS,dev}$) as $\nabla \cdot \tau$ and $\nabla \cdot \tau^{SGS,dev}$, while the operation $\nabla \cdot$ for tensors is generally not defined. Besides this, terms $\nabla \cdot \tau$ and $\nabla \cdot \tau^{SGS,dev}$ (whatever they mean) must enter (2) with the same sign, as τ and $\tau^{SGS,dev}$ are quantities of the same physical nature (kinematic stresses). But in fact, concluding from how these variables are defined, $\tau = -2\nu S$ and $\tau^{SGS,dev} = -2\nu^{SGS} S$, they are rather kinematic momentum fluxes (negative of stresses, cf. Eqs. 5 and 6).

This has to be straightened out and corrected, if needed. Maybe, presenting Eqs. 1 and 2 in tensor (rather than in vector) notation will help to make things clearer. Hopefully, for simulations the discretized equations have been employed in their correct forms.

Another problem I have is related to the choice of notation for horizontal velocity vector in (4). Notation **u** is already reserved for the 3D filtered velocity vector in Eqs. 1 and 2, which implies

that $|\mathbf{u}|$ can be nothing else than $\sqrt{u^2 + v^2 + w^2}$, so it would be necessary to introduce a horizontal 2D velocity vector $\mathbf{v} = (u, v)$ with $|\mathbf{v}| = \sqrt{u^2 + v^2}$ and make corresponding adjustments in the remaining equations of Sect. 2.1.

Other minor points.

- 1. Table 1. Total number of grid/cell points (e.g., 160³) is not a measure of grid resolution.
- 2. Figure 1. Primes (') are typically reserved for denoting fluctuations, not their RMS values. May be a source of confusion.
- 3. Table 2. Are you sure that you need four decimal places to characterize the relative error?
- 4. Table 3. Same problem. Here you even use five decimal places...
- 5. Table 4. See two previous points.

6. Line 294. You need to be more specific about the way double-primed quantities have been evaluated and comment on meaning of their signs.

7. Line 321. Apparently, it should be $C_S = 0.1678$.